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Abstract

In this paper, we consider numerical approximations for the magnetic-coupled phase-field-crystal model for ferromagnetic
solid materials. The governing PDE system consists of two coupled and highly nonlinear equations in which one is the Cahn–
Hilliard equation for the density of atoms, and the other is the Allen–Cahn equation for the magnetization field. To solve it,
we construct an unconditionally energy stable scheme with the second-order accuracy in time based on the recently developed
stabilized-SAV approach. The energy stability of the scheme is proved, and the stability and accuracy are then demonstrated
numerically by implementing various numerical examples in 2D and 3D, including the crystal growth and phase separations
for both of the magnetic-free and magnetic-coupled cases.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Ferromagnetic solid materials, that exhibit a long-range ordering phenomenon at the atomic level, had been
greatly used in magnetic-based memory devices such as magnetic tapes, magnetic hard drives, and magnetic
random access memory, etc. Since the electromagnetic properties of a solid material including the magnetization
and polarization are strongly coupled with the crystalline structure, it is promising to study the polycrystalline
microstructure formations in ferromagnetic solids at atomic length scales through mathematical modeling and
numerical simulations. In the pioneering work of Elder et. al., in [1–8], a successful approach, called as phase-
field-crystal method (PFC, for short), had been developed to simulate the dynamics of the atomic-scale crystal
growth. In comparisons with the traditional atomistic simulations (such as molecular dynamics), the PFC model
can easily address interfaces and dislocations on the atomic scale since features such as elasticity, dislocations,
anisotropy, grain boundaries, and polycrystalline structures naturally emerge in the total free energy functional of
it, cf. [2,3,9].
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In this paper, we study numerical approximations for the magnetic-coupled model PFC (FMPFC, for short) for
ferromagnetic solid materials that had been developed in [10,11]. By coupling the free energy of the PFC model
with the classical Ginzburg–Landau formalism for ferromagnetic ordering, the FMPFC model expands the PFC
approach to generate a dissipative model for the ferromagnetic solid below a density-dependent Curie temperature.
Formally, the FMPFC system consists of two highly coupled nonlinear equations, where one is the Cahn–Hilliard
equation (conserved dynamics) for the density field of atoms (or called as a phase-field variable), and the other is
the Allen–Cahn equation (non-conserved dynamics) for the magnetization field. This model appears to be a minimal
model with the least number of nonlinear coupling terms between the atoms density field and the magnetization field
included in the total free energy. For instance, to incorporate the anisotropy (the dependence of magnetic properties
on the crystallographic directions), more degrees of coupling of the magnetization to the gradient of the density
were required which in turn brings up a far more complicated system that consists of one extra Cahn–Hilliard
equation for concentration field and one extra Allen–Cahn equation for the polarization field, see [12].

However, for algorithm designs, this FMPFC model presents numerous numerical challenges that include a
stiffness issue introduced by two nonlinear fourth-order double-well type potentials, as well as the highly coupling
nature between the phase-field variable and the magnetization field. It has been well-known that, for the scheme
development of gradient flow type models, the main requirement is to develop a scheme that preserves the energy
dissipation law unconditionally. This type of scheme is especially preferred for models with high stiffness issues
since schemes without following the energy dissipation laws may lead to unstable computations or spurious solutions
in practice. Meanwhile, linear and/or decoupled types of schemes are more desirable for the highly coupled nonlinear
model from the perspective of practical implementations. We recall that, for the classical PFC model without the
magnetic field, enormous successful attempts had been done to obtain energy stable schemes with easy-to-implement
properties, for example, the nonlinear convex splitting schemes [13–15], the linear stabilized-explicit scheme [15],
the nonlinear quadrature scheme [16], the linear Invariant Energy Quadratization (IEQ) scheme [17], and the linear
Scalar Auxiliary Variable (SAV) scheme [15], etc. However, for the highly nonlinear and coupled FMPFC model,
as far as the authors know, all accomplishments had been focused on numerical simulations instead of scheme
developments, see [10–12].

Therefore, in this paper, we aim to construct an efficient and accurate numerical scheme for solving the FMPFC
model. We adopt the SAV approach that is recently developed in [18–23] and modify it to be the stabilized version
by introducing some critical stabilization terms to enhance the stability. These stabilization terms are shown to be
important to allow large time steps in practice (see Figs. 4.1 and 4.2 in Section 4). The implementation procedure
is very simple. First, a nonlocal type auxiliary variable is defined as the square root of the nonlinear part of the free
energy and the PDE model is then reformulated in terms of it. By introducing an inverse linear operator, the nonlocal
term then vanishes and a linear and decoupled system is finally obtained. At each time step, one only needs to solve
several decoupled linear equations, thus the scheme is highly efficient. We prove the unconditional energy stability
of the scheme rigorously and further perform various benchmark numerical simulations including the crystal growth
and phase separation in two and three-dimensional spaces to demonstrate the accuracy and stability of the scheme,
numerically. To the best of the authors’ knowledge, the scheme developed in this paper is the first unconditionally
energy stable scheme for solving the FMPFC model.

The rest of the article is organized as follows. In Section 2, the governing PDE system for the FMPFC model
is presented and the associated energy dissipation law is established. In Section 3, a second-order accurate, linear,
and decoupled scheme is developed and its solvability and energy stability are further proved. In Section 4, we
perform accuracy and stability tests to show the second-order accuracy and energy stability and present numerous
benchmark simulations to show the dynamical morphology of pattern formations of microstructures in two and
three-dimensional spaces. Some conclusive remarks are finally given in Section 5.

2. Model and its energy law

We fix some notations here. For each k ≥ 0, let (·, ·)k and ∥·∥k be the H k(Ω ) inner product and norm, respectively
(H 0(Ω ) = L2(Ω )). We use (·, ·) and ∥ · ∥ to denote the L2 inner product and its norm, respectively. In this paper,
all of the bold-lettered symbols represent vectors.

We now introduce the FMPFC model for ferromagnetic solids that were developed in [10,11]. A phase-field
variable φ(x, t) with x ∈ Ωd , d = 2, 3 and time t , is introduced to describe the particle number density difference
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t the point x between the number density of solid atoms and the reference density of liquids at the status of
o-existence, M(x, t) denotes the magnetization field, and H(x, t) represents the applied external magnetic field.

Hence, the total free energy is a combination of the one-mode PFC formalism for the crystal growth [1–8] and
he classical Ginzburg–Landau formalism for ferromagnetic ordering [24] which is described as

E(φ,M) = EP FC (φ) + EGL (M) + EC (φ,M) + Eex (φ,M). (2.1)

We give a brief introduction for the four parts of the free energy as follows.

• EP FC (φ) is the free energy for one-mode PFC model that is defined as

EP FC (φ) =

∫
Ω

(φ
2

L2φ −
ϵ

2
φ2

+
1
4
φ4

)
dx, (2.2)

where L = ∆ + q0, ∆ is the Laplace operator, q0 represents the equilibrium distance between atoms, and ϵ
is a positive constant that relates to the temperature of the system.

• EGL (M) is the Ginzburg–Landau free energy for magnetization field that is defined as

EGL (M) =

∫
Ω

(
w0

2
|∇M|

2
−
α

2
|M|

2
+
β

4
|M|

4
− M · H

)
dx, (2.3)

where w0 > 0 relates to the exchange correlation length, α and β are two positive phenomenological constants
that control the bulk behavior of magnetization, and H is the external applied magnetic field.

• EC (φ,M) is the coupling energy that is defined as

EC (M) =

∫
Ω

(
−γM2φ −

η

2
(M · ∇φ)2

)
dx, (2.4)

where the first term induces magnetic islands at atomic sites, the second term gives rise to magneto-elastic
coupling, and hence the magnetostriction effect (see [2,10–12] for further discussion of how these parameters
relate to material properties).

• Eex (φ,M) is the extra energy term that is defined as

Eex (φ,M) =

∫
Ω

(
θ1

6
|M|

6
+
θ2

4
|∇φ|

4
)

dx, (2.5)

where 0 < θ1, θ2 ≪ 1. These two terms are simply introduced to make the total energy bounded from below.

Remark 2.1. Remarkably, the total free energy given in the references [10–12] only includes EP FC , EGL , and EC .
However, it is highly non-trivial to prove such a free energy to be bounded from below where the main challenge
lies in how to bound the second coupling terms in EC . To this end, instead of controlling the magnitude of model
parameters or the complex Sobolev embedding inequality for the terms of ∇φ and ∆φ, we introduce two extra
higher order terms in Eex . In this way, it becomes very straight forward to show that the total energy is bounded
from below as long as the two parameters θ1 and θ2 are nonzero. The details are shown in Lemma 3.1.

By using the Cahn–Hilliard dynamics, i.e., the H−1-gradient flow approach for the atoms density phase-field
variable φ, and the Allen–Cahn dynamics, i.e., the L2-gradient flow approach for the magnetization field, the state
of the system that relates the temporal changes of the two variables φ(x, t) and M(x, t) is governed by the following
equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φt = M1∆µ1,

µ1 =
δE(φ,M)

δφ
,

− Mt = M2µ2,

µ2 =
δE(φ,M)
δM

,

(2.6)

here M1,M2 > 0 are the mobility constants, µ1 and µ2 are two chemical potentials derived by the variational
erivative of the total free energy.
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By taking the total free energy described in (2.1), the PDE system (2.6) turns into

φt = M1∆µ1, (2.7)
µ1 = L2φ + φ3

− ϵφ + η∇ · ((M · ∇φ)M) − γM2
− θ2∇ · (|∇φ|

2
∇φ), (2.8)

−Mt = M2( − w0∆M − αM + β(M · M)M − H (2.9)
−2γMφ − η(M · ∇φ)∇φ + θ1|M|

4M),

here the initial conditions are set as φ(t = 0) = φ0 and M(t = 0) = M0.
Concerning the boundary conditions, in this work, we consider the square domain and assume the periodic

oundary conditions are satisfied for all variables. Thus all complexities affiliated with the boundary integrals caused
y integration by parts can be removed. Alternative boundary conditions can be the no-flux type as

∂nφ|∂Ω = ∂nµ1|∂Ω = ∂nM|∂Ω = 0, (2.10)

here n is the outward normal on the boundary. All numerical analyses in this paper are applicable to the no-flux
oundary conditions without any further difficulties.

It is easy to see that the model (2.7)–(2.9) follows the energy dissipation law. We take the L2 inner product of
2.7) with −µ1, and of (2.8) with φt , of (2.9) with −

1
M2

Mt , perform integration by parts, and take the summation
of all equalities to obtain

d
dt

E(φ,M) ≤ −M1∥∇µ1∥
2
−

1
M2

∥Mt∥
2
− (H,Mt ). (2.11)

y using the Cauchy–Schwarz inequality, we derive

−(H,Mt ) ≤
1

2M2
∥Mt∥

2
+

M2

2
∥H∥

2. (2.12)

ence, the energy law becomes
d
dt

E(φ,M) ≤ −M1∥∇µ1∥
2
−

1
2M2

∥Mt∥
2
+

M2

2
∥H∥

2. (2.13)

Remark 2.2. The FMPFC system (2.7)–(2.9) degenerates to the classical PFC model (magnetic-free case) if we
set β = γ = θ2 = 0 in (2.8), that reads as

φt = M1∆µ1, (2.14)
µ1 = L2φ + φ3

− ϵφ. (2.15)

We note that the main numerical issue to develop energy stable scheme for the PFC system (2.14)–(2.15) lies on the
temporal discretization of the only nonlinear term φ3. Compared with it, it is obvious the FMPFC model (2.7)–(2.9)
nclude many coupled nonlinear terms and thus it presents much more numerical challenges to obtain schemes with
nconditional energy stability.

. Numerical schemes

In this section, for the highly coupled nonlinear system (2.7)–(2.9), we construct a numerical scheme which is
inear, decoupled, and second-order accurate in time. We mainly adopt the recently developed SAV approach [18–23]
ut modify it by introducing several linear stabilization terms to improve energy stability. Numerical results show
hat these stabilization terms are effective for stability improvement, particularly when large time steps are used.
he details are shown as follows.

We first establish a bounded-from-below property for the nonlinear part of the total free energy (2.1) as follows.

emma 3.1. For any positive constants θ1 and θ2, there always exists a constant C such that

G(φ,M) ≥ C, (3.1)

here G(φ,M) includes all nonlinear terms in E(φ,M) that is defined as

G(φ,M) =

∫
Ω

(1
4
φ4

−
ϵ

2
φ2

−
α

2
|M|

2
+
β

4
|M|

4
− γM2φ −

η

2
(M · ∇φ)2

+
θ1

6
|M|

6
+
θ2

4
|∇φ|

4
)

dx.
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roof. We only need to show the two coupling terms can be bounded by other terms. From Young’s inequality, it
s easy to derive

−γM2φ ≥ −|γ |(
1
2
|M|

4
+

1
2
φ2), (3.2)

nd

−
η

2
(M · ∇φ)2

≥ −
θ2

8
|∇φ|

4
−
η2

2θ2
|M|

4. (3.3)

herefore, we obtain

G(φ,M) ≥

∫
Ω

(
θ2

8
|∇φ|

4
+

1
4
φ4

+ aφ2
+
θ1

6
|M|

6
+ b|M|

4
+ c|M|

2
)

dx. (3.4)

here a, b, c (may not be positive) are the constants after combining the terms of same kind. It is easy to see that,
or any a, b, c, there always exists a constant C such that (3.1) is valid as long as the two given constants θ1 and
2 are positive. □

We split the total free energy (2.1) into the linear part and the nonlinear part, as follows.

E(φ,M) =

∫
Ω

(
φ

2
L2φ +

w0

2
|∇M|

2
)

dx + G(φ,M), (3.5)

nd define an auxiliary non-local function u(t) to quadratize G(φ,M), i.e.,

u(t) =
√

G(φ,M) + B, (3.6)

here B is a constant such the radicand G(φ,M)+B > 0. By using the new variable u, we recast the pseudo-energy
unctional (2.1) as

E(φ,M, u) =

∫
Ω

(
φ

2
L2φ +

w0

2
|∇M|

2
)

dx + u2
− B. (3.7)

By taking the time derivative for the new variable u(t), we can rewrite the system (2.7)–(2.9) to be the following
ystem,

φt = M1∆µ1, (3.8)
µ1 = L2φ + u R, (3.9)

−
1

M2
Mt = −w0∆M + Ru − H, (3.10)

ut =
1
2

∫
Ω

(Rφt + R · Mt )dx, (3.11)

here⎧⎪⎪⎪⎨⎪⎪⎪⎩
R(φ,M) =

φ3
− ϵφ + η∇ · ((M · ∇φ)M) − γM2

− θ2∇ · (|∇φ|
2
∇φ)

√
G(φ,M) + B

,

R(φ,M) =
−αM + β(M · M)M − 2γMφ − η(M · ∇φ)∇φ + θ1|M|

4M
√

G(φ,M) + B
.

(3.12)

The initial conditions of the above system are given as

φ(t = 0) = φ0,M(t = 0) = M0, u(t = 0) =

√
G(φ0,M0) + B. (3.13)

ote the transformed system (3.8)–(3.11) is equivalent to the original system (2.7)–(2.9). Hence these two systems
hare the same boundary conditions. Meanwhile, the system (3.8)–(3.11) also preserves the energy dissipative law
hich is derived as follows. After taking the L2 inner product of (3.8) with −µ1, of (3.9) with φt , of (3.10) with

Mt , and multiplying (3.11) with 2u, performing integration by parts, and summing all equalities up, we can obtain
the energy dissipation law as

d
E(φ,M, u) = −M1∥∇µ1∥

2
−

1
∥Mt∥

2
≤ 0. (3.14)
dt M2
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For a given positive integer N , we set tn
= nδt, 0 ≤ n ≤ N , where δt = T/N be the time step size and let ψn

e the numerical approximation to the analytic function ψ(·, t)|t=tn .
By using the second-order backward differentiation formula (BDF2) for the time derivative, and simple implicit–

xplicit combinations for the nonlinear terms, we construct a numerical scheme for solving the system (3.8)–(3.11)
hat reads as follows.

We update φn+1, Mn+1, and un+1 by solving the following scheme

3φn+1
− 4φn

+ φn−1

2δt
= M1∆µ

n+1
1 , (3.15)

µn+1
1 = L2φn+1

+ un+1 R∗,n+1
+ S1(φn+1

− φ∗,n+1) − S2∆(φn+1
− φ∗,n+1), (3.16)

−
3Mn+1

− 4Mn
+ Mn−1

2M2δt
= −w0∆Mn+1

− H + un+1R∗,n+1
+ S3(Mn+1

− M∗,n+1), (3.17)

3un+1
− 4un

+ un−1
=

1
2

∫
Ω

(
R∗,n+1(3φn+1

− 4φn
+ φn−1) (3.18)

+R∗,n+1
· (3Mn+1

− 4Mn
+ Mn−1)

)
dx,

where (φ,M, u)n and (φ,M, u)n−1 are assumed to be known,

φ∗,n+1
= 2φn

− φn−1, M∗,n+1
= 2Mn

− Mn−1,

R∗,n+1
= R(φ∗,n+1,M∗,n+1), R∗,n+1

= R(φ∗,n+1,M∗,n+1),
(3.19)

nd S1, S2, S3 are three positive stabilization parameters. Note H is the constant applied external field treated as a
orcing term.

In the above-developed scheme, we add three linear stabilization terms in (3.16) and (3.17) to improve stability.
his is because the nonlinear terms are treated explicitly in H and R. Although these stabilization terms bring up
xtra splitting errors, the orders of errors are comparable to that induced by the linear extrapolation of the nonlinear
erms. Therefore, in practice, when the three stabilization constants are set as S1 ∼ O(1) (to balance the cubic term
3), S2 ∼ O(η) (to balance the term (η∇ · ((M · ∇φ)∇φ))), and S3 ∼ max(β, γ, η) (to balance β(M · M)M, γMφ,
nd (η(M · ∇φ)∇φ)), numerical evidences show that the scheme achieves the best balance between the stability
nd accuracy. While adopting large time steps, these stabilization terms are critical to enhance the stability which
s demonstrated by numerous numerical examples, cf. Figs. 4.1 and 4.2, where we give the detailed comparisons

in the accuracy and stability computed by the developed scheme with and without the stabilization terms.
Even though the scheme (3.15)–(3.18) provides a linear system, the three unknowns φn+1, Mn+1, and un+1 are

nonlinearly coupled together thus some costly iterative solvers are needed. Hence, to overcome this difficulty in
practice, we implement the scheme by the following decoupling process which also eliminates the computations of
the nonlocal term of un+1 in the meantime. Details are shown below.

We rewrite (3.18) as follows,

un+1
=

1
2

∫
Ω

R∗,n+1φn+1dx +
1
2

∫
Ω

R∗,n+1
· Mn+1dx + gn, (3.20)

where gn includes all explicit terms that read as

gn
=

4un
− un−1

3
−

1
2

∫
Ω

R∗,n+1 4φn
− φn−1

3
dx −

1
2

∫
Ω

R∗,n+1
·

4Mn
− Mn−1

3
dx.

Then the scheme (3.15)–(3.18) can be combined together to be the following two coupled nonlocal type equations

D(φn+1) −
1
2
∆R∗,n+1

(∫
Ω

R∗,n+1φn+1dx +

∫
Ω

R∗,n+1
· Mn+1dx

)
= g̃n

1 , (3.21)

D(Mn+1) +
1

R∗,n+1
(∫

R∗,n+1φn+1dx +

∫
R∗,n+1

· Mn+1dx
)

= g̃n
2, (3.22)
2 Ω Ω
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here the operators D and D are defined as

D(ψ) =
3

2M1δt
ψ − ∆L2ψ − S1∆ψ + S2∆

2ψ,

D(M) =
3

2M2δt
M − w0∆M + S3M,

(3.23)

or any arbitrary functions ψ and M, and the two terms on the right hand side g̃n
1 and g̃n

2 include all explicit terms.
We define a linear inverse operator D−1(·) and D−1(·), such that for any periodic functions φ,M ∈ L2(Ω ),
= D−1(φ) and Q = D−1(M) are the solutions of the two linear systems as

D(ψ) = φ, D(Q) = M, (3.24)

ith the periodic boundary conditions.
By applying the operator D−1 to (3.21) and D−1 to (3.22), we obtain

φn+1
−

1
2
D−1(∆R∗,n+1)

(∫
Ω

R∗,n+1φn+1dx +

∫
Ω

R∗,n+1
· Mn+1dx

)
= D−1(g̃n

1 ), (3.25)

Mn+1
+

1
2

D−1(R∗,n+1)
(∫

Ω

R∗,n+1φn+1dx +

∫
Ω

R∗,n+1
· Mn+1dx

)
= D−1(g̃n

2). (3.26)

We take the L2 inner product of (3.25) with R∗,n+1, and of (3.26) with R∗,n+1 to obtain the following 2 × 2
matrix system[

1 + a a
b 1 + b

] [ ∫
Ω R∗,n+1φn+1dx∫

Ω R∗,n+1
· Mn+1dx

]
=

[ ∫
Ω R∗,n+1D−1(g̃n

1 )dx∫
Ω R∗,n+1

· D−1(g̃n
2)dx

]
, (3.27)

here

a = −
1
2

∫
Ω

R∗,n+1D−1(∆R∗,n+1)dx, b =
1
2

∫
Ω

R∗,n+1
· D−1(R∗,n+1)dx. (3.28)

We need to verify that determinant of the 2 × 2 matrix on the left-hand side is nonzero. A simple calculation
gives

det = 1 + a + b

= 1 −
1
2

∫
Ω

R∗,n+1D−1(∆R∗,n+1)dx +
1
2

∫
Ω

R∗,n+1
· D−1(R∗,n+1)dx.

(3.29)

t is easy to check that −
∫
Ω R∗,n+1D−1(∆R∗,n+1)dx ≥ 0 and

∫
Ω R∗,n+1

· D−1(R∗,n+1)dx ≥ 0 since −D−1(∆) and
−1 are both positive definite. Therefore det ̸= 0 implies the linear system (3.27) is uniquely solvable.
Furthermore, (3.27) can be regarded as an explicit formulation for the two nonlocal terms

∫
Ω R∗,n+1φn+1dx and

Ω R∗,n+1
· Mn+1dx. Therefore, in computations, we first find

ψ1 = D−1(g̃n
1 ), ψ2 = D−1(∆R∗,n+1),

Q1 = D−1(g̃n
2), Q2 = D−1(R∗,n+1),

hat means to solve the following four decoupled linear equations formed as,(
3

2M1δt
− ∆L2

− S1∆ + S2∆
2
)
ψi = g̃n

1 ,∆R∗,n+1, i = 1, 2,(
3

2M2δt
− w0∆ + S3

)
Qi = g̃n

2,R∗,n+1, i = 1, 2,
(3.30)

ith the periodic boundary conditions. And then, after by applying (3.27) to obtain
∫
Ω R∗,n+1φn+1dx and

∫
Ω R∗,n+1

·
n+1dx, we can obtain φn+1 and Mn+1 from (3.25) and (3.26) directly.
Hence, from the decoupling process presented above, we find that the total cost at each time step is just solving

our decoupled linear equations with constant coefficients. Since the system is equipped with periodic boundary
onditions, these equations can be easily solved when using the Fourier-Spectral method. Thus this scheme is highly

fficient and easy to implement.
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The unconditionally energy stability of the numerical scheme (3.15)–(3.18) is shown as follows.

heorem 3.1. The scheme (3.15)–(3.18) follows a discrete energy dissipation law as

1
δt

(En+1
− En) ≤ −M1∥∇µ

n+1
1 ∥

2
−

1
2M2

3Mn+1
− 4Mn

+ Mn−1

2δt

2

+
M2

2
∥H∥

2, (3.31)

here

En+1
=

1
2

(
∥Lφn+1

∥
2
+ ∥L(2φn+1

− φn)∥2

2
) +

w0

2
(
∥∇Mn+1

∥
2
+ ∥∇(2Mn+1

− Mn)∥2

2
)

+
(un+1)2

+ (2un+1
− un)2

2
+ S1

∥φn+1
− φn

∥
2

2
+ S2

∥∇φn+1
− ∇φn

∥
2

2
+ S3

∥Mn+1
− Mn

∥
2

2
.

roof. First, by taking the L2 inner product of (3.15) with −2δtµn+1
1 , we obtain

−(3φn+1
− 4φn

+ φn−1, µn+1
1 ) = 2δt M1∥∇µ

n+1
1 ∥

2. (3.32)

Second, by taking the L2 inner product of (3.16) with 3φn+1
− 4φn

+ φn−1, and using integration by parts, we

btain

(µn+1
1 , 3φn+1

− 4φn
+ φn−1) =(Lφn+1, L(3φn+1

− 4φn
+ φn−1))

+ un+1(R∗,n+1, 3φn+1
− 4φn

+ φn−1)

+ S1(φn+1
− 2φn

+ φn−1, 3φn+1
− 4φn

+ φn−1)

+ S2(∇(φn+1
− 2φn

+ φn−1),∇(3φn+1
− 4φn

+ φn−1)).

(3.33)

Third, by taking the L2 inner product of (3.17) with 3Mn+1
− 4Mn

+ Mn−1, and using integration by parts, we

btain

−
1

2M2δt
∥3Mn+1

− 4Mn
+ Mn−1

∥
2

=w0(∇Mn+1,∇(3Mn+1
− 4Mn

+ Mn−1))

− (H, 3Mn+1
− 4Mn

+ Mn−1)

+ un+1(R∗,n+1, 3Mn+1
− 4Mn

+ Mn−1)

+ S3(Mn+1
− 2Mn

+ Mn−1, 3Mn+1
− 4Mn

+ Mn−1).

(3.34)

Fourth, by multiplying (3.18) with −2un+1, we obtain

−2(3un+1
− 4un

+ un−1)un+1
= − un+1

∫
Ω

R∗,n+1(3φn+1
− 4φn

+ φn−1)dx

− un+1
∫
Ω

R∗,n+1(3Mn+1
− 4Mn

+ Mn−1)dx.
(3.35)

Finally, we combine the above equations and apply the following two identities

2a(3a − 4b + c) = a2
+ (2a − b)2

− b2
− (2b − c)2

+ (a − 2b + c)2,

2 2 2 (3.36)

(3a − 4b + c)(a − 2b + c) = (a − b) − (b − c) + 2(a − 2b + c) ,
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1
2

(∥Lφn+1
∥

2
+ ∥L(2φn+1

− φn)∥2) −
1
2

(∥Lφn
∥

2
+ ∥L(2φn

− φn−1)∥2)

+
w0

2
(∥∇Mn+1

∥
2
+ ∥∇(2Mn+1

− Mn)∥2) −
w0

2
(∥∇Mn

∥
2
+ ∥∇(2Mn

− Mn−1)∥2)

+
(
(un+1)2

+ (2un+1
− un)2)

−
(
(un)2

+ (2un
− un−1)2)

+ S1∥φ
n+1

− φn
∥

2
− S1∥φ

n
− φn−1

∥
2
+ S2∥∇φ

n+1
− ∇φn

∥
2
− S2∥∇φ

n
− ∇φn−1

∥
2

+ S3∥Mn+1
− Mn

∥
2
− S3∥Mn

− Mn−1
∥

2

+

{ 1
2
∥Lφn+1

− 2Lφn
+ Lφn−1

∥
2
+
w0

2
∥∇(Mn+1

− 2Mn
+ Mn−1)∥2

+ (un+1
− 2un

+ un−1)2
+ 2S1∥φ

n+1
− 2φn

+ φn−1
∥

2

+ 2S2∥∇φ
n+1

− 2∇φn
+ ∇φn−1

∥
2
+ 2S3∥∇Mn+1

− 2∇Mn
+ ∇Mn−1

∥
2

}
= −2δt M1∥∇µ

n+1
1 ∥

2
− 2δt

1
M2

3Mn+1
− 4Mn

+ Mn−1

2δt

2

+ (H, 3Mn+1
− 4Mn

+ Mn−1).

or the last term on the right end, by using the Cauchy–Schwarz inequality, we derive

(H, 3Mn+1
− 4Mn

+ Mn−1) ≤ δt
1

M2

3Mn+1
− 4Mn

+ Mn−1

2δt

2

+ M2δt∥H∥
2. (3.37)

This concludes (3.31) after we drop all positive terms in {}. □

emark 3.1. Heuristically, 1
δt (En+1

− En) is a second-order approximation of d
dt E(u, φ,M) at t = tn+1. For any

mooth variable ψ with time, we have

∥ψn+1
∥

2
− ∥2ψn+1

− ψn
∥

2

2δt
−

∥ψn
∥

2
− ∥2ψn

− ψn−1
∥

2

2δt

∼=
∥ψn+2

∥
2
− ∥ψn

∥
2

2δt
+ O(δt2) ∼=

d
dt

∥ψ(tn+1)∥2
+ O(δt2), (3.38)

nd

∥ψn+1
− ψn

∥
2
− ∥ψn

− ψn−1
∥

2

2δt
∼= O(δt2). (3.39)

emark 3.2. The computations of second-order time-discrete scheme (3.15)–(3.18) need the values of φ1,M1 and
1. In practice, we obtain them by developing a similar first-order time marching scheme where the backward Euler
ormulation is used for time derivative, that reads as,

φ1
− φ0

δt
= M1∆µ

1
1,

µ1
1 = L2φ1

+ u1 R0
+ S1(φ1

− φ0) − S2∆(φ1
− φ0),

−
M1

− M0

M2δt
= −w0∆M1

− H + u1R0
+ S3(M1

− M0),

u1
− u0

=
1
2

∫
Ω

(
R0(φ1

− φ0) + R0
· (M1

− M0)
)

dx,

(3.40)

here R0
= R(φ0,M0) and R0

= R(φ0,M0).

Remark 3.3. The theoretical results derived in this paper can be carried over to any consistent finite-dimensional
Galerkin approximations in the space even though the only time-discrete scheme is considered here since the proofs
are all based on a variational formulation with all test functions in the same space as the space of the trial functions.
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4. Numerical examples

In this section, we present numerical experiments to solve the FMPFC model by implementing the developed
scheme (3.15)–(3.18). The numerical examples include the accuracy/stability tests in the refinement of time step size,
and the benchmark simulations of crystal growth, as well as the phase separation examples. For each simulation, we
compare the magnetic-free and magnetic-coupled cases to investigate how the magnetic field motivates the pattern
formation.

We use a square 2D or 3D computed domain as Ω = [0, L]d with d = 2, 3 and adopt Fourier-spectral method
or the space discretization since the periodic boundary conditions are assumed for all variables. Meanwhile, we
hoose sufficient spatial resolutions to guarantee that the spatial gradients are fully resolved.

.1. Accuracy and stability test

We first perform refinement tests for temporal convergence of the proposed scheme, the stabilized-SAV scheme
3.15)–(3.18), denoted by SSAV for short. To see the effectiveness of the stabilizers, we also compute the
onvergence rates of the non-stabilized version, namely, the scheme (3.15)–(3.18) but with S1 = S2 = S3 = 0,

denoted by SAV for short.
We set the 2D computational domain as Ω = [0, 128]2 and use 1292 Fourier modes to discretize the space so

that the error from spatial discretization is neglected compared with the time discretization. The initial conditions
read as⎧⎪⎪⎨⎪⎪⎩

φ0
= sin(ωx) cos(ωy),

M0
= (M0

1,M0
2) = (sin(ωx) sin(ωy), cos(ωx) cos(ωy)),

H = (H1,H2) = (sin(ωx) cos(
1
2
ωy), cos(

1
2
ωy)),

(4.1)

with ω =
8π
128 . Since the exact solutions of the system are not known, we treat the numerical solutions obtained

ith a very tiny time step size δt = 1e − 9 computed by the scheme SSAV as the exact solution. By varying the
ime step sizes, we compute the average of the L2 errors of the phase function φ and M between the exact and

approximate solutions at time t = 10.
The model parameters are set as follows,

M1 = 1, M2 = 0.01, q0 = 1, ϵ = 0.05, B = 1e7, α = 1, β = 10, θ1 = θ2 = 1e − 9. (4.2)

e vary the two coupling parameters γ, η to test the convergence rates.
First, we test the low stiffness case by setting relatively small values of γ = 0.01 and η = −0.1. In Fig. 4.1(a),

we plot the average of L2 numerical errors of the atoms density field φ and the magnetization field M that are
computed by the two schemes SSAV and SAV. From the accuracy plots shown in Fig. 4.1(a), both of the schemes
SSAV and SAV present almost perfect second-order accuracy. This implies the stabilizers are not necessary for the
low stiffness case. But we still set S1 = S2 = S3 = 1 in computations to compare the accuracy rate. We also see
that the magnitude of errors generated by the scheme SSAV is relatively larger than that of the scheme SAV since
extra splitting errors are introduced by the three extra stabilization terms.

Second, we test the high stiffness case by setting γ = 1, η = −100. We set the stabilization parameters
S1 = 5, S2 = S3 = 100. In Fig. 4.1(b), the average of L2 numerical errors of phase-field variable φ and
magnetization field M are plotted. We find the scheme SAV loses the accuracy when the time step is larger than
0.1/212. Only for smaller time steps of δt ≤ 0.1/212, the scheme SAV exhibits the second-order convergence rate.
On the contrary, the scheme SSAV always presents second-order accuracy for all tested time steps which means
the stability is controlled well by the stabilization terms.

Finally, we testify whether the stabilized scheme SSAV is unconditionally energy stable by plotting energy
evolution curves with different time steps. We still use the previous accuracy example of the high stiffness case. In
Fig. 4.2(a), we plot the evolution curves of the total free energy (2.1) that is calculated by the scheme SSAV with
ten different time steps from δt = 1 to δt =

1
29 with a factor of 1

2 . All obtained energy curves show monotonic
attenuation, which indicates that the scheme SSAV is unconditionally stable. For comparisons, we plot the energy
evolution curves computed by the non-stabilized scheme SAV in Fig. 4.2(b). The scheme SAV blows up for all
δt > 0.1/216 and the energy shows oscillations when δt = 0.1/216. The energy curve computed by SAV with
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Fig. 4.1. The average of the L2 numerical errors for the atoms density field φ and the magnetization field M with various time steps that
are computed using the schemes SSAV and SAV. The two parameters γ , and η are set as (a) γ = 0.01, η = 1 (low stiffness case), and
(b) γ = 1, η = 100 (high stiffness case).

Fig. 4.2. Time evolution of the total free energy (2.1) computed by the scheme (a) SSAV and (b) SAV with various time step sizes for the
igh stiffness parameter set γ = 1, η = 100. (Note: we only plot the energy curves computed by SAV with δt =

1
216 and 1

217 in (b). This
is because the scheme SAV blows up for δt > 1

216 , thus the associated energy curves are omitted here. For comparisons, the energy curve
computed by SSAV with δt =

1
23 is used as the reference solution.).

δt = 0.1/217 agrees well with that computed by SSAV with δt = 0.1/23, which implies the time step adopted in
SAV can be 214 times larger than that of the scheme SAV to achieve two energy evolution profiles with no visible
ifference for this particular high stiffness case.

In summary, from the performance of the two schemes SSAV and SAV, we conclude that the stabilized scheme
SAV is stable for all tested time steps and performs very good approximations and second-order accuracy all
long.

.2. Crystal growth

In this subsection, we simulate the growth of tiny crystallites in a supercooled liquid by solving the magnetic-
oupled model by implementing the developed scheme SSAV. The initial conditions were set as one or more tiny
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Fig. 4.3. The 2D crystal growth example with the initial condition of one small crystallite as a seed that is deposited in the center of
the computed domain, where (a) is the magnetic-free case, and (b), (c), (d) are the magnetic-coupled cases with n̂ = (1, 0), (0, 1), and
−0.707, 0.707), respectively. The model parameters are given in (4.3). (Note: in each snapshot, a black hexagonal frame is superimposed
o highlight the displacement between the ordered pattern and the regular hexagon).

rystallites with different orientations deposited inside a computational domain. The liquid-crystal interfaces with
rain boundaries separating the crystals are formed when the time evolves. The crystal growth for the magnetic-free
FC model is the classical benchmark simulation, see [1,13,16,25,26].
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Fig. 4.4. Time evolution of the total free energy (2.1) for the 2D crystal growth example with the initial condition of one seed where
a) is the magnetic-free case, and (b) is the magnetic-coupled case with n̂ = (1, 0), n̂ = (0, 1), and n̂ = (−0.707, 0.707).

We first perform 2D simulations to investigate how a tiny crystallite grows up. The computed domain is set as
0, L]2 with L = 512 and we use 5132 Fourier modes to discretize the space. If not explicitly specified, the model
arameters are set as{

M1 = 1, B = 1e7, q0 = 1, ϵ = 0.25, α = 1, β = 10,M2 = 0.1,
γ = 0.1, η = −0.4, θ1 = θ2 = 1e − 9, S1 = S2 = S3 = 2.

(4.3)

o obtain the initial configuration of a regular tiny crystallite as a seed, we first implement the scheme SSAV to
olve the magnetic-free model for a sufficiently long time and cut a patch from the center region. The detailed
rocess to get the initial condition of φ0(x, y) is described as follows.

• First, we define a function Φ(x, y) to be a constant value and then modify it by superimposing some
trigonometric oscillations in a small circular patch, as follows:

Φ(x, y) =

⎧⎨⎩ φ̄ + q
(

cos(
p

√
3

yl) cos(pxl) − 0.5 cos(
2p
√

3
yl)

)
, if (x, y) ∈ D,

φ̄, else,
(4.4)

where D represents a small circular patch in the center of the domain that is given as

D = {(x, y) : (x − L/2)2
+ (y − L/2)2

≤ r2
}, (4.5)

and (r, φ̄, p, q) = (10, 0.285, 0.66, 0.446). (xl , yl) defines a local system of Cartesian coordinates that is
oriented with the crystallite lattice which is formulated by using an affine transformation of the global Cartesian
coordinates (x, y), i.e.,

(xl , yl) = (x sin(θ) + y cos(θ),−x cos(θ ) + y sin(θ )), (4.6)

where θ = 0 (note one can set any arbitrarily chosen values for θ to obtain various patterns with different
orientations). By taking Φ(x, y) as the initial condition, we implement the scheme SSAV for the sufficient
long time (t = 3000) to arrive at an intermediate profile of Φ̂(x, y).

• Then, we cut the small patch D from the intermediate profiles Φ̂(x, y) and use it as the initial condition of
φ0(x, y), i.e.

φ0(x, y) =

{
Φ̂(x, y), if (x, y) ∈ D,

φ̄, else.
(4.7)

We obtain the initial condition φ0(x, y) of a small crystallite from the above process. The profile is shown in the
rst subfigure in Fig. 4.3(a) where we superimpose a small inset figure to show the detailed contour of the initial
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Fig. 4.5. The 2D crystal growth example with the initial condition of two small twin seeds that are deposited symmetrically in the computed
domain, where (a) is the magnetic-free case, and (b), (c), (d) are the magnetic-coupled cases with n̂ = (1, 0), (0, 1), and (−0.707, 0.707),
espectively. The model parameters are given in (4.3).

rofile. We first perform the simulation for the magnetic-free case by setting H = 0, γ = η = θ2 = 0 and plot
everal snapshots of φ in Fig. 4.3(a). We observe that the small crystallite grows up and the pattern is ordered in
he hexagonal phase. At each snapshot, a black hexagonal frame is superimposed outside the crystals to highlight
he good agreement between the formed pattern of atoms and the standard hexagon.
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Fig. 4.6. The 2D crystal growth example with the initial condition of three small arbitrarily deposited seeds, where (a) is the magnetic-free
case, and (b), (c), (d) are the magnetic-coupled cases with n̂ = (1, 0), (0, 1), and (−0.707, 0.707), respectively. The model parameters are
iven in (4.3).

We further investigate the crystal growth for the magnetic-coupled case. We still use the same initial condition
f one seed and set the initial condition of the magnetization field as M0

= 0. The applied external magnetic field
is set as H = 0.25n̂ where n̂ represents the unit direction vector. In Fig. 4.3(b), (c), and (d), we present the profiles
of the phase-field variable φ by setting n̂ = (1, 0), (0, 1), and (−0.707, 0.707), respectively. In each snapshot, the
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Fig. 4.7. The 3D crystal growth example for the magnetic-free case with the initial condition of one seed deposited in the center, where
(a) is the snapshots of the isosurfaces {φ = −0.1} that are taken at t = 0, 100, 200, 300, 500, and 2000, and (b) is the close-up view of
the isosurfaces for a small cube [0, 60]3 with three different view angles. The model parameters are from (4.3).

black hexagonal frame is also superimposed to highlight the displacement of the atomic locations, where we see
that the formed regiment of atoms deviates from the hexagonal frame largely. Meanwhile, the main direction of
atoms growth is always perpendicular to the applied magnetic field H. These results are qualitatively consistent
with the simulations presented in [12].We plot the time evolution curves of the total free energy in Fig. 4.4.

Continuously, we set the initial conditions to be a twin crystallite seed where the initial conditions are obtained
y repeating the above procedure and changing the small patch D to be two small circular patches, shown in the
rst subfigure in Fig. 4.5(a). When the magnetic field is free, snapshots of dynamical morphology are shown in
ig. 4.5(a) where a long dislocation line is formed vertically due to the different alignment of the twin crystals.
n Fig. 4.5(b), (c), and (d), we show the growth process by applying the external magnetic field H = 0.25n̂ with

n̂ = (1, 0), (0, 1), and (−0.707, 0.707), respectively. Similar to the one-seed case, the main direction of atoms
growth is always perpendicular to the applied magnetic field H.

The dynamical process of crystal growth of three arbitrarily deposited seeds for the magnetic-free case is shown
in Fig. 4.6(a), where more dislocation lines and defects are formed due to the orientation discrepancy while the
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Fig. 4.8. The 3D crystal growth example for the magnetic-coupled case with the initial condition of one seed deposited in the center, where
(a) n̂ = (1, 0, 0), (b) n̂ = (0, 1, 0), (c) n̂ = (0, 0, 1), and (d) n̂ = (−0.577,−0.577, 0.577). The model parameters are all from (4.3).

rystallites grow up. The dynamical crystal growth process under the magnetic field is presented in Fig. 4.6(b), (c),
nd (d).

We finally simulate the growth process for the one-seed case in 3D where the computational domain is set as
0, L]3 with L = 200 and space is discretized by using 2013 Fourier modes. The model parameters are still from
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Fig. 4.9. (a) The 2D pattern formation of crystal lattice for the phase separation example for the magnetic-free case at various times. The
equilibrium solutions are obtained for the magnetic-coupled case where (b) n̂ = (1, 0), (c) n̂ = (0, 1), and (d) n̂ = (−0.707, 0.707).

4.3). The initial condition, shown in the first subfigure of Fig. 4.7(a), is obtained by performing a similar process
s the 2D example. The dynamical growth process for the magnetic-free case is shown in Fig. 4.7(a), where the
sosurfaces of {φ = −0.1} are plotted. We see that the tiny crystallite finally grows up to the whole computed
omain and the equilibrium solution presents the BCC pattern. To get a more accurate view, we enlarge a local
egion [0, 60]3 in Fig. 4.7(b) with three different view angles which clearly show the BCC structures in 3D. In
ig. 4.8, we simulate the magnetic-coupled cases by applying the external magnetic field H = 0.25n̂ with four
irections of n̂ = (1, 0, 0), (0, 1, 0), (0, 0, 1), and (−0.577,−0.577, 0.577), respectively. The process of crystal
rowth presents anisotropy and the main growth direction of atoms is always perpendicular to the applied magnetic
eld H which is consistent with the 2D simulations.
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Fig. 4.10. Time evolution of the total free energy (2.1) for the 2D phase separation example where (a) is the magnetic-free case, and (b)
s the magnetic-coupled case with n̂ = (1, 0), (0, 1), and (−0.707, 0.707).

4.3. Phase transitions

In this subsection, we simulate the phase transition behaviors of the FMPFC model by using the developed
scheme SSAV. The initial conditions are set as a homogeneous mixture with random perturbations for φ0(x, y).
Due to the spontaneous growth of the concentration fluctuations, the homogeneous state of the system will evolve
to the different phases.

We implement 2D simulations and set the computational domain as Ω = [0, 256]2 which is then discretized
using 2572 Fourier modes. The initial conditions read as

φ0(x, y) = φ̄ + 0.001rand(x, y), (4.8)

here φ̄ is the initial average, rand(x, y) is the random number in the range of [−1, 1]. If not explicitly specified,
e set the model parameters as{

M1 = 1, B = 1e7, q0 = 1, ϵ = 0.05, α = 1, β = 10,M2 = 0.01,
γ = 0.01, η = −0.1, θ1 = θ2 = 1e − 9, S1 = S2 = S3 = 2.

(4.9)

We set φ̄ = 0.07 and perform a simulation for the magnetic-free case by setting H = 0, γ = η = 0. Snapshots of
he phase-field variable φ at various times until that the equilibrium states are shown in Fig. 4.9(a) for the magnetic-
ree case, where we observe that the atoms are generated from the homogeneous state and many dislocations are
resented.

To see the effects from the magnetic field, we take the equilibrium solution of the magnetic-free case as the
nitial condition for the magnetic-coupled simulations. By applying the external magnetic field H = 0.25n̂ with
hree different directions of n̂ = (1, 0), (0, 1), and (−0.707, 0.707), we plot the obtained equilibrium state solutions

in Fig. 4.9(b)–(d). With the applied magnetic field, we find that the final equilibrium solutions of the density of
the atoms φ present the mixed-phase between the strips and BCC phase, and the orientation of the stripe phase is
always parallel to the direction n̂. The time evolutions of the total free energy for all these simulations are presented
in Fig. 4.10, that shows the monotonic decays with time.

5. Concluding remarks

We consider numerical approximations for the magnetic-coupled phase-field-crystal model in this paper. The
model consists of two strongly coupled nonlinear equations. To solve the model, we develop an efficient scheme
by combining the recently developed SAV approach with several added stabilization terms. For the high stiffness

case, the stabilization terms are critical to improve the stability particularly when large time steps are used. The
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scheme is easy to implement practically and also provably unconditionally energy stable. In simulating numerous
benchmark numerical examples including the accuracy/stability tests, the crystal growth and phase transitions in
2D and 3D, the stability and the accuracy of the developed scheme are demonstrated numerically. To the best of
the author’s knowledge, this is the first such a scheme that is second-order accurate in time, linear, decoupled, and
unconditionally energy stable for the magnetic-coupled PFC model.
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