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39
40 Abstract
41

42 Soil respiration (i.e., from soils and roots) provides one of the largest global fluxes of carbon 

43 dioxide (CO2) to the atmosphere and is likely to increase with warming, yet the magnitude of soil 

44 respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this 

45 knowledge gap, we first compiled a new CO2 flux database for permafrost-affected tundra and 

46 boreal ecosystems in Alaska and Northwest Canada. We then used the CO2 database, multi-

47 sensor satellite imagery, and Random Forest models to assess the regional magnitude of soil 

48 respiration. The flux database includes a new Soil Respiration Station network of chamber-based 

49 fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to 

50 August 2017, revealed that the largest soil respiration emissions occurred during the summer 

51 (June-August) and that summer fluxes were higher in boreal sites (1.87 + 0.67 gCO2-C m-2 d-1) 

52 relative to tundra (0.94 + 0.4 gCO2-C m-2 d-1). We also observed considerable emissions (boreal: 

53 0.24 + 0.2 gCO2-C m-2 d-1; tundra: 0.18 + 0.16 gCO2-C m-2 d-1) from soils during the winter 

54 (November-March) despite frozen surface conditions. Our model estimates indicated an annual 

55 region-wide loss from soil respiration of 591 + 120 Tg CO2-C during the 2016-2017 period. 

56 Summer months contributed to 58% of the regional soil respiration, winter months contributed to 

57 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual 

58 gross primary productivity (GPP) across the study domain. We also found that in tundra 

59 environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, 

60 soil respiration often exceeded GPP, resulting in a net annual source of CO2 to the atmosphere. 

61 As this region continues to warm, soil respiration may increasingly offset GPP, further 

62 amplifying global climate change. 

63

64 Keywords:  Arctic, boreal, soil respiration, roots, carbon, CO2, winter, ecosystem vulnerability, 
65 climate change
66
67
68
69
70
71
72
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74 1. Introduction

75 The northern permafrost region holds over 50% of the global soil organic carbon (SOC) pool and 

76 approximately one trillion tonnes of carbon in the top 3-m of soil alone (Hugelius et al 2014, 

77 Meredith et al 2019). Historically, SOC in permafrost-affected ground and seasonally thawed 

78 active layers was largely protected from microbial decomposition by low-temperatures 

79 (Faucherre et al 2018). However, arctic air temperatures have increased rapidly (Box et al 2019), 

80 rising 2.7 °C (annual average) and 3.1 °C (October – May) between 1971 to 2017. This warming 

81 has increased the length of the non-frozen season (Kim et al 2012) and has deepened soil thaw 

82 (Luo et al 2016) in Alaska and Canada. Soil warming can increase microbial activity (Natali et al 

83 2014) and may result in large amounts of soil carbon being released into the atmosphere, 

84 predominantly as carbon dioxide (CO2; Schuur et al 2015, Turetsky et al 2020). 

85 Soil root and microbial respiration (herein referred to as soil respiration) are dominant 

86 components of an ecosystem’s annual CO2 emission (Mahecha et al 2010). Soil respiration in 

87 boreal forests is estimated to account for 4868% of total ecosystem respiration (ER; soil + 

88 aboveground components; Hermle et al 2010, Parker et al 2020). In tundra, soil respiration is the 

89 primary source of CO2 efflux and summer emissions alone may account for 6090% of annual 

90 ER (Sommerkorn et al 1999, Gagnon et al 2018, Strimbeck et al 2018). Generally, the 

91 seasonality and magnitude of soil respiration are influenced by soil temperature, soil water 

92 content, root activity, and microbial-community access to SOC (Bond-Lamberty et al 2004, 

93 Schuur et al 2009, Nagano et al 2018). 

94  As northern landscapes continue to warm, CO2 emissions resulting from soil respiration may 

95 increasingly offset carbon uptake by plants (i.e., gross primary productivity, GPP). Moreover, the 

96 fastest rate of warming in the Arctic-boreal region is occurring in autumn, winter, and spring 

97 (Box et al 2019), a period when microbial respiration continues but plant productivity is limited. 

98 Recent tundra and boreal carbon budgets in northern Alaska and Canada using eddy covariance 

99 (EC) flux observations show that enhanced soil respiration during an anomalously warm winter 

100 (2015-2016) offset any carbon gains provided by GPP (Liu et al 2020). Similarly, annual soil 

101 respiration offset 75% of the total forest GPP in a boreal Finland study (Pumpanen et al 2015). In 

102 northern Sweden, a steady increase in soil respiration, and no change in forest GPP, resulted in a 

103 transition from net annual ecosystem CO2 sink to source (Hadden et al 2016). An atmospheric 

104 study of North Slope, Alaska tundra reported late autumn and early winter CO2 emissions had 
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105 increased by 73% since 1975 (Commane et al 2017). These observed increases in soil respiration 

106 have been attributed to increased ground thaw (Kim et al 2006) and residual unfrozen water in 

107 soil pore space (Faucherre et al 2018). Further, a recent synthesis of soil flux indicated soil 

108 respiration from Arctic-boreal permafrost regions may already outweigh ecosystem CO2 uptake 

109 under contemporary climate conditions (Natali & Watts et al 2019).  

110 Little is known about the spatiotemporal patterns of soil CO2 emissions from tundra and 

111 boreal biomes at the regional level, in part due to the lack of spatial representation by in situ 

112 observations. Existing in situ (e.g., EC) and satellite-based CO2 monitoring networks are unlikely 

113 to detect changes in soil respiration across the permafrost domain (Parazoo et al 2016), 

114 especially in winter months, or identify local changes in net ecosystem exchange (NEE) or 

115 component (i.e., GPP and respiration) CO2 fluxes (Schimel et al 2015). 

116 Process-based terrestrial models can be useful tools to diagnose how components of the 

117 carbon cycle might change in response to shifts in ecosystem properties and climate but are 

118 hampered in representing seasonal and spatial patterns by the lack of integrated observations 

119 (Fisher et al 2018, Natali & Watts et al 2019). In many regions, including Northern Eurasia and 

120 Alaska, process-models have failed to agree on flux magnitudes and even the sink vs. source 

121 status of ecosystem carbon budgets (Fisher et al 2014, Rawlins et al 2015). Improving process-

122 level understanding of soil respiration requires integrating in situ flux data, observations of 

123 ecosystem properties (e.g., vegetation characteristics, thermal and moisture state) from satellite 

124 remote sensing, and data-informed modeling (Jeong et al 2018, Schimel et al 2019). 

125 This study addresses knowledge gaps in our understanding of soil respiration from 

126 permafrost ecosystems. We seek to improve understanding of the spatiotemporal patterns of soil 

127 respiration in boreal and tundra landscapes, the magnitudes of seasonal and annual soil CO2 loss, 

128 and how soil respiration impacts ecosystem carbon budgets. Here we apply information gained 

129 from a new network of Soil Respiration Stations (SRS) within the NASA Arctic Boreal 

130 Vulnerability Experiment (ABoVE) domain. We also incorporate a complementary suite of flux 

131 records from EC towers within the region. We used Random Forest models and remote sensing 

132 to extrapolate soil fluxes to the ABoVE domain for the 2016-2017 period, obtaining spatially and 

133 seasonally disaggregated regional estimates of soil emissions. Last, we determine the seasonal 
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134 and annual offset of GPP by respiration (soil, and ecosystem) to identify landscape net annual 

135 carbon source, or sink, status under contemporary climate conditions.  

136 2. Methods

137 2.1. Study region

138 The spatial domain of this study, which includes permafrost-affected landscapes of Alaska and 

139 Northwest Canada, represents the core region of the NASA ABoVE Field Campaign (Kasischke 

140 et al 2014, Loboda et al 2019) and spans gradients of climate, permafrost distribution (or 

141 prevalence), vegetation, and ecosystem disturbance from fires (Figure 1). Approximately 24% of 

142 the region has been recently burned (between 2000 and 2017; Loboda et al 2017a, 2017b, 

143 Pastick et al 2018). Because our flux sampling locations only represent permafrost-affected 

144 ecosystems, our analyses excluded landscapes where permafrost was absent (Gruber 2012); we 

145 also excluded barren lands (< 10% vegetation) and open water. 

146 2.2. SRS chamber data

147 We used CO2 flux data from 10 SRS (Minions et al 2019) installed along a north-south gradient 

148 in Alaska, spanning the North Slope to Eight Mile Lake near Denali National Park (Figure 1; 

149 Supporting Information, SI Table 1). Each SRS is a fully automated system that measures soil 

150 surface CO2 flux using three forced diffusion (FD) chambers. The SRS technique was designed 

151 to provide year-round measurements of soil emissions (live aboveground vegetation was 

152 removed during chamber installations to ensure that flux measurements do not reflect net CO2 

153 exchange), even during periods of snow cover. Detailed information about the SRS system and 

154 FD processing is provided in the Supplement (SI Section 1). In addition to the SRS records, 

155 chamber-based fluxes collected using an Eosense eosFD portable sensor near Council, Alaska 

156 were obtained from project partners. Six of the 11 FD stations (SRS and the eosFD site) are in 

157 tundra and five in the boreal region. Six of the SRS sites represent paired burned and unburned 

158 ecosystems (SI Table 1). 
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159

160 Figure 1. Locations of soil respiration stations (SRS) and eddy covariance (EC) towers 
161 considered in this study. The study domain is part of the NASA ABoVE core region. The sites 
162 span climate and vegetation gradients (tundra to boreal) within Alaska and Northwest Canada. 
163 Landscapes evaluated in this study (2.68E12 km2) do not include barren land, open water, or 
164 where permafrost was absent (indicated in grey). Landcover classes are from Wang et al (2019).

165 2.3. EC tower data 

166 We used AmeriFlux (ameriflux.lbl.gov) and EC-investigator provided quality-controlled CO2 

167 flux records primarily from September 2016 through August 2017 (matching the period of 

168 highest data availability from the SRS sites) from 15 EC towers (Figure 1, see SI Table 1, SI 

169 Section 2.1); 8 tower sites were in tundra and 7 in boreal. The half hourly EC records included 

170 NEE, GPP, and ER. NEE was obtained directly from the EC records and indicates the net of 

171 ecosystem CO2 respiration and CO2 uptake; GPP and ER were obtained using standard EC flux 

172 partitioning algorithms (Reichstein et al 2005, Lasslop et al 2010). Quality data were available 

173 year-round for at least ten sites (SI Table 1; SI Figure 2). 

174 2.4. Flux modeling 

175 We used published values from field and laboratory studies to separate aboveground respiration 

176 components from the EC-based ER records (SI Section 2.2). We acknowledge that the literature-

177 based ratio approach does not account for seasonal variability in aboveground respiration, and 
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178 variability from other factors including temperature, species type, total biomass, and ecosystem 

179 stress. However, this approach was used because more detailed information was not available. 

180 We then used the combined SRS FD and EC ER dataset, information from remote sensing, and 

181 ancillary geospatial layers (SI Section 3) to obtain data-driven Random Forest models (SI Section 

182 4) developed separately for summer (June – August), autumn (September, October), winter 

183 (November – March) and spring (April and May). These seasons were based on observed 

184 seasonality in the tundra and boreal SRS and EC flux records (SI Figure 3). Candidate variables 

185 used in the models are described in the Supplement (SI Section 3) and included information 

186 about vegetation greenness and productivity, leaf area, topography, soil characteristics (e.g., 

187 permafrost status, soil texture, soil organic carbon content), and other environmental conditions 

188 (e.g., albedo, radiation, temperature, snow cover, soil moisture status). 

189 2.4.1 Random forest models and spatial prediction

190 Random Forest (RF) is a machine learning method that uses an ensemble approach to regression 

191 by means of multiple decision trees and bootstrap sampling (Liaw & Wiener 2002, Cutler et al 

192 2012). RFs have been widely used in ecological studies (Pearson et al 2013, Clewley et al 2017) 

193 and carbon budget assessments (Tramontana et al 2015, Jung et al 2020). Strengths of RF 

194 include the ability to handle high-dimensional problems, noise, and non-linearity, and its ability 

195 to provide robust internal estimates of error and variable importance (Cutler et al 2012).   

196 We developed RF models in the R computing environment (R Core Team 2019) using the 

197 randomForest package (Liaw 2018). Each tree was constructed using a random selection (i.e., 

198 bagging) of approximately 2/3 of the samples (42 site-flux observations in the autumn model, 

199 110 in the winter model, 48 in the spring model and 65 in the summer model; see SI Section 4.1). 

200 The remaining 1/3 of the observations was used to validate each tree in the forest (1000 trees per 

201 trained RF model). Predictor variable (SI Table 4) selection was achieved using the Variable 

202 Selection Using Random Forest (VSURF; Genuer et al 2019, Genuer et al 2010) R package 

203 which was designed to reduce high (>70%) cross-correlations between the selected inputs. The 

204 tuneRF algorithm (Liaw 2018) was applied to optimize the Mtry parameter (the number of 

205 variables available for splitting at each tree node). Variable importance was assessed using 

206 randomForest varImpPlot (Liaw 2018) and the rfPermute (Archer 2020) R package was used to 

207 provide corresponding estimates of parameter significance. This process was applied to obtain 
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208 optimal RF models for each season (SI Section 4.2). The final models were applied to the raster 

209 predictor datasets (raster package in R; Hijmans et al 2020) to obtain 300-m resolution maps of 

210 monthly average soil respiration. 

211 2.4.2 ABoVE region carbon budgets

212 We used the monthly average soil CO2 emission maps (gCO2-C m-2 d-1) from the RF models to 

213 obtain regional flux budgets. The emission estimates were scaled to the terrestrial spatial domain 

214 within each 300 x 300 m grid cell by removing fractions of identified open water within each 

215 grid cell. Fractional water was derived using the 30-m Wang et al (2019) land cover map for 

216 2014. We then obtained monthly and annual soil respiration totals for the ABoVE domain (Tg 

217 CO2-C period-1). To determine the extent that soil respiration offset the annual ecosystem uptake 

218 of CO2 (i.e., GPP), we obtained estimates from an ensemble of satellite observation based GPP 

219 records for the 2016 and 2017 period (SI Section 3), including NASA MODIS MOD17 

220 (MOD17A2H.006, Running et al 2015), NASA Soil Moisture Active Passive (SMAP) Level 4 

221 Carbon (L4_C) (Kimball et al 2014, Jones et al 2017) and Global OCO-2 SIF (GOSIF) GPP data 

222 products (Li & Xiao 2019). Lastly, to gauge the potential impact of regional NEE on annual 

223 GPP, we used literature-based flux ratios (SI Section 2) to provide estimates of emissions from 

224 aboveground respiration, in addition to our RF-estimates of soil respiration.

225 3. Results 

226 3.1 Soil emission characteristics

227 Site-level fluxes showed strong seasonal emission patterns (Figure 2) closely tied to changes in 

228 air and soil temperature (Figure 3). Soil respiration (regional mean + standard deviation) was 

229 largest in summer (boreal: 1.87 + 0.67 gCO2-C m-2 d-1; tundra: 0.94 + 4 gCO2-C m-2 d-1) and 

230 peak daily-averaged respiration was often observed in July (SI Figure 3), the warmest month (air 

231 temperatures > 10 °C, at EC and SRS flux sites). This was followed by a steady decline in 

232 autumn (boreal: 0.8 + 0.4 gCO2-C m-2 d-1; tundra: 0.42 + 0.2 gCO2-C m-2 d-1). Winter respiration 

233 persisted even under snow cover, and cold air and soil (10-15 cm depth) temperatures averaging 

234 -18 + 6 °C and -3.5 + 2.7 °C, respectively. In winter, boreal soil respiration averaged 0.24 + 0.2 

235 gCO2-C m-2 d-1 and tundra averaged 0.18 + 0.16 gCO2-C m-2 d-1. Soil respiration began to 

236 increase again in spring (boreal: 0.82 + 0.6 gCO2-C m-2 d-1; tundra: 0.28 + 0.2 gCO2-C m-2 d-1) as 

237 ecosystems warmed (average boreal/tundra soil temperatures of -1.98 °C in April, -0.07 °C in 
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238 May, and 1.82 °C in June). Soil respiration from boreal sites was systematically higher than 

239 those from tundra in all seasons, excluding winter (t-test; p=0.03 in autumn, p=0.22 in winter, 

240 p=0.002 in spring, p < 0.001 in summer). T-test significance for monthly flux averages is shown 

241 in SI Figure 3 and seasonal flux patterns according to biome (i.e., tundra or boreal) and flux 

242 location are shown in SI Figure 4. 

243

244
245 Figure 2.  Seasonal soil respiration patterns observed in the SRS and EC fluxes for the ABoVE 
246 domain, for boreal (green) and tundra (blue) biomes. Soil respiration emissions are average 
247 monthly fluxes from individual sites, totaling 45 site-fluxes in autumn, 110 in winter, 48 in 
248 spring, and 65 in summer. The boxplot range indicates the first and third quartiles; the middle 
249 line denotes the median. Box whiskers indicate minimum and maximum values, excluding 
250 outliers indicated by black circles; ‘a’ denotes t-test results with no significant difference 
251 between seasons at α = 0.05. 
252
253 Air temperature (p = 0.009) and soil temperature at 10-15 cm depth (p = 0.01) explained 65% 

254 of the observed variability in monthly soil respiration at the site level, in a linear regression 

255 analysis that included fluxes from all seasons. During the 2016-2017 period, soil respiration was 

256 observed even at air temperatures approaching -30 °C and at soil temperatures (~ 15 cm depth) 

257 below -10 °C (Figure 3a, b; SI Figure 5). Soil respiration increased steadily after ground thaw. 

258 Soil respiration for the 14 tundra and boreal sites where in situ soil moisture was available 

259 indicated that higher fluxes in summer most often occurred where soils  (< 15 cm depth) were 

260 relatively wet but not saturated (SI Figure 6). Observed relationships between the seasonal site-
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261 level soil respiration fluxes and important remote-sensing based indicators of permafrost status, 

262 temperature, soil moisture, and GPP is provided in SI Figure 7. 

263
264 Figure 3.  Observed relationships between (a) air temperature or (b) in situ soil temperature (     
265 ~10-15 cm depth) and average monthly soil respiration (gCO2-C m-2 d-1) from eddy covariance 
266 (EC; triangles) and soil respiration stations (SRS; circles) in Alaska and Northwest Canada for 
267 boreal (green) and tundra (blue) sites. Fitted curves (black lines) were obtained using locally 
268 weighted loess smoothing; grey shading represents confidence intervals (+/- standard error).   

269 3.2 RF model performance and variable importance

270 The RF models explained much of the variance in soil respiration, with moderate-to-low root 

271 mean squared error (RMSE) and mean absolute error (MAE; SI Table 5, SI Figure 8). The R2 

272 values were 0.68 for the summer model, 0.57 for autumn, 0.65 for winter, and 0.76 for spring. 

273 The respective RMSE (gCO2-C m-2 d-1) values were 0.35 (summer), 0.24 (autumn), 0.10 

274 (winter), and 0.25 (spring). The positive MAE (averaging 0.2 + 0.09 gC m-2 d-1) indicated a 

275 slight underestimation of soil respiration by the models. In the summer RF model, MODIS 

276 (MOD) GPP was the most important variable, followed by soil sand content (an indicator of 

277 water retention and nutrient content), MODIS leaf area index (LAI), tree cover, and normalized 

278 difference vegetation index (NDVI; an indicator of greenness). In the autumn model, SMAP 

279 Root Zone Soil Moisture (RZSM) was the most important predictor (Table 1), followed by 

280 permafrost zonation index (PZI), SMAP soil temperature (TSOIL) from layer 4 (70-140 cm 

281 depth), downwelling shortwave radiation (RAD), and SoilGrids SOC (0-30 cm depth). In winter, 

282 the Landsat-based Normalized Difference Water Index (NDWI; an indicator of landscape 

283 wetness gradients) was most important, providing finer resolution (30-m) legacy information 
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284 about moisture status from the previous summer. Other significant predictors were MODIS LAI, 

285 Landsat enhanced vegetation index (EVI; another indicator of greenness), SMAP RZSM, PZI, a 

286 MODIS snow index (NDSI), and SMAP layer 3 (~30-70 cm) TSOIL. The 30-70 cm soil 

287 temperature selected by the winter model may better represent the delay in active-layer freeze as 

288 deeper soils remain closer to 0 °C even after upper-layers have frozen (e.g., Zona et al 2016). 

289 The PZI was the most important variable for the spring model, followed by tree cover, land 

290 surface temperature (LST), soil clay content, MODIS GPP, Landsat EVI, and SMAP surface (0-

291 10 cm) soil moisture (SM).  

292 Table 1. Variable importance for the seasonal RF models, according to the percentage increase 
293 in model mean squared error (%IncMSE) when a specific variable was excluded in the 
294 development of regression trees. Larger values for %IncMSE indicate greater importance of the 
295 predictor variable relative to the other predictors. MON indicates that variable information was 
296 input for each month and Summer indicates variable information from June-August. 

                    Summer                                               Autumn
Variable %IncMSE p-value Variable %IncMSE p-value
MOD GPP (Summer) 22.02 0.0033 SMAP RZSM (MON) 19.83 0.0016
SoilGrids % Sand 21.52 0.0033 PZI 16.32 0.0033
MOD LAI (Summer) 20.24 0.0003 SMAP Tsoil L4 (MON) 15.69 0.0017
MOD % Tree Cover 20.23 0.0050 SMAP RAD (MON) 15.43 0.0049
MOD NDVI (MON) 17.60 0.0067 SoilGrids SOC   9.44 0.0549

Winter Spring
Variable   %IncMSE     p-value Variable %IncMSE p-value
Landsat NDWI (Summer) 22.53 0.0017 PZI 17.47 0.0019
MOD LAI (Summer) 21.14 0.0016 MOD % Tree Cover 16.94 0.0009
Landsat EVI (Summer) 21.13 0.0017 MOD LST (MON) 12.79 0.1798
SMAP RZSM (MON) 20.79 0.0016 SoilGrids % Clay 12.67 0.0099
MOD GPP (Summer) 19.78 0.0017 MOD GPP (Summer) 12.05 0.0079
PZI 18.85 0.0017 Landsat EVI (Summer) 10.40 0.0159
MOD NDSI (MON) 18.11 0.0016 SMAP SM (Summer) 10.12 0.0229
SMAP TSOIL L3 (MON) 10.70 0.0233

297

298

299

300

301

302
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303      
304 Figure 4.  (a) Annual soil respiration emissions (gCO2-C m-2) per 300-m grid cell for the ABoVE 
305 domain (2016-2017). Estimates exclude non-permafrost, barren, and open water (in grey) areas. 
306 Triangles indicate EC and SRS flux monitoring sites used for model development. (b) Monthly 
307 RF-derived respiration (TgCO2-C) for the ABoVE region. 

308
309 Figure 5.  (a) Reduction (offset) of GPP by soil respiration. A 100% offset indicates that soil 
310 respiration equaled or exceeded GPP. Triangles indicate CO2 flux monitoring stations (EC and 
311 SRS) used for model development. (b) Annual soil respiration and GPP totals (TgCO2-C) for the 
312 ABoVE domain. GPP is from MODIS (MOD17), GOSIF, and SMAP L4_C products.  

313 3.3  Annual carbon flux estimates for ABoVE domain

314 Annual soil respiration emission for the study domain was 591.2 TgC-CO2 + 120 TgC-CO2 

315 during the 2016-2017 period (Figure 4; SI Table 6). Monthly soil respiration maps are provided 

316 in SI Figure 9 and seasonal respiration budgets are shown in SI Figure 10 (SI Figure 11 shows 

317 associated emission uncertainty maps). Summer (June – August) contributed to 58% of annual 

318 soil respiration, the longer winter (November – March) period generated 15%, with comparable 

319 proportions occurring in autumn (15%, September, October) and spring (12%, April, May). 

320 Across the ABoVE region, the largest soil respiration budgets occurred in the boreal zones and 
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321 the warmer, more southern, forest-tundra ecotone. Over half of regional soil respiration 

322 emissions (54% of annual total) were from colder landscapes having a widespread occurrence of 

323 near-surface permafrost (i.e., where the PZI was > 75%; spanning 70% of the domain) and the 

324 remaining 46% of emissions were from warmer permafrost (0% < PZI > 75%; 30% of the 

325 domain; Table 2; SI Figure 12). The area covered by Shrubland/Herbaceous vegetation produced 

326 the majority (46%) of soil respiration, followed by Sparse Vegetation and Evergreen Forest. 

327 Table 2. Percent of annual soil respiration and annual GPP totals for the study domain, 
328 according to tundra (including shrub tundra and excluding transitional tundra-boreal biomes) and 
329 boreal biomes (from Natali & Watts et al 2019), vegetation cover (from Wang et al 2019) and 
330 permafrost class (Gruber et al 2019). 

Land Cover % of Domain % of GPP % of Soil Respiration
Boreal Biome 86 85 83
Tundra Biome 14 15 17
Shrubland/Herbaceous 43.7 49 46
Sparse Vegetation 22.9 17 19
Evergreen Forest 14.3 15 16
Wetland 10.4 10 10
Mixed Forest 3.3 4 3.5
Tussock Tundra 3.7 3 2.9
Deciduous Forest 1.7 2 2.6
Permafrost Class % of Domain % of GPP % of Soil Respiration
PZI > 75 70 38 54
50 < PZI < 75 14 21 12
25 < PZI < 50 9 21 8
0 < PZI  < 25 7 20 26

331 Annual GPP for the whole domain, obtained from MOD17, GOSIF, and SMAP L4_C 

332 products (Section 2.4.2, SI Figure 13), was 1046-1256 TgCO2-C in 2016 and 1025-1134 TgCO2-

333 C in 2017 (SI Table 7) with an estimated uncertainty of 310 TgCO2-C yr-1 (SI Section 3). Annual 

334 GPP was considerably higher (> 600 gCO2-C m-2 yr-1) in the boreal regions relative to tundra (< 

335 300 gCO2-C m-2 yr-1; SI Figure 13). Our extrapolations indicate soil respiration offset 

336 approximately 54% of GPP across the domain (averaging 1101 TgCO2-C). The offset of GPP by 

337 soil respiration varied considerably across the region (Figure 5; SI Figure 14). Offsets of  > 

338 100% (i.e., annual net carbon source areas) were identified in far northern tundra and 

339 mountainous landscapes, along transitional tundra-boreal ecotones, and in landscapes recently 

340 disturbed by fire (e.g., west of Hudson Bay & south of the Selwym Mountains in Canada). We 

341 estimate that approximately 8% of the ABoVE region was a net carbon source (100% offset of 
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342 GPP) in 2016-2017, based on soil respiration alone and not accounting for aboveground 

343 respiration and non-terrestrial carbon emissions (i.e., aquatic bodies). 

344 4. Discussion 

345 This study provides new estimates of soil respiration for the ABoVE domain and insights into 

346 how soil respiration is offsetting net annual GPP across permafrost-affected tundra and boreal 

347 landscapes. Our analysis of in situ observations and RF-model results indicate that soil 

348 respiration was generally highest under warmer (above freezing) soil temperatures and deeper 

349 seasonal soil thaw, in moderate-to-moist soils (0.5-0.8 m3 m-3), and in areas with higher 

350 vegetation productivity. Accordingly, the largest annual soil respiration rates occurred in boreal 

351 ecosystems where trees and shrubs were present, especially along the more southern portions of 

352 the domain with substantial permafrost thaw. 

353 4.1 The temperature-soil respiration relationship

354 Consistent with earlier studies (e.g., Wickland et al 2006, Natali et al 2014, Loranty et al 

355 2018), we found temperature to be an important driver of soil respiration at the site level. Our 

356 regional flux assessments showed highest soil respiration rates in summer (contributing to 58% 

357 of annual soil respiration) when soil temperatures were warmer and soil thaw was deepest. 

358 Higher emissions in warmer soils are not only from increased microbial decomposition of SOC, 

359 but likely also from increased root activity (i.e., belowground autotrophic respiration), a strong 

360 source of CO2 in thawing permafrost systems (Hicks Pries et al 2015, 2016). Although gridded 

361 estimates of belowground root density are not available for this region, LAI, % tree cover, and 

362 vegetation indices (important predictors in the RF models) provided proxies of vegetation 

363 productivity (e.g., Street et al 2006), and indirect information about root respiration.   

364 Within the site-level soil respiration database, larger, and sometimes episodic, CO2 emissions 

365 (> 0.5 gCO2-C m-2 d-1) were observed as soil temperatures approached 0 °C, especially as soil 

366 layers began to freeze in the autumn. Like our site-level findings, an atmospheric study of 

367 Alaska’s North Slope also identified high CO2 emissions in autumn and early winter (October – 

368 December; Commane et al 2017) during the landscape freeze. Although our RF model approach 

369 represented regional flux characteristics relatively well, the autumn RF model had the lowest 

370 performance of the four seasonal models, resulting from its inability to capture spatiotemporally 
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371 episodic releases of CO2 observed in situ. As a result, the model underestimated regional CO2 

372 emissions (by > 0.2 gC m-2 d-1, based on MAE estimates) during the autumn period. 

373

374 4.2 Regional predictors of soil respiration

375     Our regional assessments show that carbon source/sink status is highly heterogeneous. 

376 Annual carbon status of an ecosystem is influenced by many factors, including GPP and plant 

377 community type (e.g., Rouse et al 2002, Parmentier et al 2011, Oechel et al 2014, Forkel et al 

378 2016, Ge et al 2017, Christiansen et al 2018), winter snow cover which insulates soils (e.g., 

379 Welker et al 2000, Christiansen et al 2018), and shifts in vegetation growth and microbial 

380 activity (Arndt et al 2019, Kim et al 2021). Soil moisture is also an extremely influential factor 

381 that is very heterogeneous across the landscape and affects both vegetation productivity and soil 

382 respiration (Grogan & Chapin III 1999), yet this environmental variable can be radically altered 

383 by permafrost thaw (Jorgenson et al 2013) and is especially difficult to monitor regionally at 

384 finer landscape-level scales (Du et al 2019). 

385 Burn status (i.e., burned or unburned) was not a significant predictor of the regional monthly-

386 averaged soil respiration emissions examined in this analysis, which could be in part due to our 

387 database containing information from only three burn sites (representing tundra and forest 

388 landscapes 11-15 years after fire), or because of rapid post-fire recovery. Following a fire event, 

389 the combination of warmer and drier soils can substantially increase CO2 flux from soils (O’Neill 

390 et al 2002, 2003, Ueyama et al 2019). However, a review of fire disturbance at high latitudes 

391 reported that soil and root respiration in forests may stabilize after a decade (Ribeiro-Kumara et 

392 al 2020). As a result, our estimates likely underestimate soil respiration from recently burned 

393 areas (~ 5% of the domain from 2012-2016; SI Figure 15; Alaska and Canada Large Fire 

394 Databases; Kasischke et al 2002, Amiro et al 2001, Stocks et al 2002). 

395 4.3 Regional carbon budgets

396 Our 2016-2017 assessment shows an annual soil respiration loss of 591Tg CO2-C for the 

397 permafrost-affected ABoVE domain. A comparison of our RF-based results with the Natali & 

398 Watts et al (2019) pan-Arctic estimates (referred to as NCC 2019 and subset to the ABoVE 

399 permafrost-affected study area) showed that soil respiration estimates in the NCC 2019 record 

400 was substantially higher (~ 1.6x) than our RF budgets during the winter and early spring (SI 
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401 Table 6 and SI Figure 16). A corresponding model analysis by Schiferl et al (In Review) used a 

402 Stochastic Time-Inverted Lagrangian Transport (STILT; Lin et al 2003) model and atmospheric 

403 CO2 observations influenced by Alaska North Slope tundra (obtained from the Utqiaġvik tall 

404 tower) to verify the NCC 2019 and RF-model results. The study determined that our RF-model 

405 approach underestimated atmospheric enhancements in October-December by 2-3x but the RF-

406 estimates were much better aligned with atmospheric observations, relative to NCC 2019, during 

407 the January-April period (SI Section 5, SI Figure 17). While episodic bursts of CO2 from 

408 freezing soils may contribute to the larger atmospheric CO2 levels observed October-December 

409 across the North Slope, our assessments also indicate that very large emissions of CO2 to the 

410 atmosphere could result from the turnover and freeze of lakes and ponds which are widespread 

411 throughout the region (SI Section 5; Preskienis et al 2021). If this assessment is correct, then the 

412 Natali & Watts et al (2019) results also overestimate soil CO2 emissions for the North Slope 

413 during the autumn season.

414 For the ABoVE study domain in 2016-2017, soil respiration only partially offset GPP, by 

415 approximately 54% to 60%.  However, for many grid cells in northern tundra, mountainous 

416 regions, or where boreal forest GPP was reduced by recent fire (SI Figure 14, 15) soil respiration 

417 alone (not accounting for aboveground autotrophic respiration) equaled or exceeded annual GPP, 

418 indicating that some sites are net CO2 sources. The Belshe et al (2013) meta-analysis of EC 

419 fluxes from high-latitude tundra sites concluded that tundra systems are currently CO2 sources. 

420 Similarly, Natali & Watts et al (2019) determined the permafrost-affected Arctic-boreal zone to 

421 likely be a net CO2 source when considering winter contributions from soils. Using published 

422 ratio estimates of aboveground vs belowground (soil) contributions to ER for boreal and tundra 

423 biomes we estimate an annual ER between 820 and 1171 Tg CO2-C, respectively offsetting 74-

424 106% of annual GPP (SI Figure 18). This estimate suggests that tundra is currently a CO2 source, 

425 while the boreal is a CO2 sink. 

426 5. Conclusion

427 Soil respiration can strongly impact the carbon sink or source status of high latitude permafrost 

428 regions. When considering the permafrost-affected tundra and boreal biomes of Alaska and 

429 Northwest Canada as a whole, soil respiration offset annual GPP in 2016-2017 by 54-60%. 

430 However, in sparsely vegetated tundra regions and recently burned landscapes, soil respiration 

431 exceeded GPP. Although a majority (58%) of annual soil respiration emissions occurred in the 
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432 summer months, we found considerable contributions of soil CO2 in the shoulder and winter 

433 seasons. Our soil emission estimate of ~ 591 + 120 Tg CO2-C for the domain is likely 

434 conservative due to the inability of our statistical model approach to capture episodic bursts of 

435 CO2 during soil freeze and thaw, and a lack of soil respiration data from very recent fire scars. 

436 We also acknowledge uncertainties introduced by using a simple literature-based flux correction 

437 ratio method to remove aboveground components from tower-based ER observations, which 

438 does not account for variability in aboveground respiration by species, temperature, stand age 

439 and other factors. We also note that the 2016-2017 period was characterized by record breaking 

440 high air temperatures across much of the region relative to previous years and the longer-term 

441 1981-2019 normal (ACRC 2016, 2017). Warming records have been repeatedly broken in more 

442 recent years and we estimate that post-2017 soil respiration budgets will exceed those reported 

443 here. 

444 Our data-driven gridded soil respiration budgets provide new, valuable records that will be 

445 useful for the future benchmarking of process-based models. Although our assessment is limited 

446 to a one-year period, efforts to ensure the continued operation of SRS and EC sites will allow 

447 future regional studies to better understand interannual variability and spatiotemporal trends in 

448 soil respiration across the rapidly changing Arctic-boreal environment. As current spaceborne 

449 observations of CO2 are not yet able to track changing emission contributions in winter, nor able 

450 to identify finer landscape-level patterns of soil emissions (Parazoo et al 2016), the continuation 

451 if not expansion of existing in situ monitoring networks is urgently needed to document changes 

452 in soil respiration and ecosystem carbon sink/source status across the thawing permafrost region 

453 in North America and elsewhere, including Siberia and the Tibetan Plateau. 
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