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Abstract

Soil respiration (i.e., from soils and roots) provides one of the largest global fluxes of carbon
dioxide (CO,) to the atmosphere and is likely to increase with warming, yet thesmagnitude of soil
respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this
knowledge gap, we first compiled a new CO, flux database for permafrost-atfected tundra and
boreal ecosystems in Alaska and Northwest Canada. We then used the CO3database, multi-
sensor satellite imagery, and Random Forest models to assess the regional magnitude of soil
respiration. The flux database includes a new Soil Respiration Statien network of chamber-based
fluxes, and fluxes from eddy covariance towers. Our site-level'data, spanning September 2016 to
August 2017, revealed that the largest soil respiration emisstons occurred during the summer
(June-August) and that summer fluxes were higher in boreal sites (1.87 + 0.67 gCO,-C m2 d!)
relative to tundra (0.94 + 0.4 gCO,-C m2 d-!). We also observed considerable emissions (boreal:
0.24 + 0.2 gCO,-C m2 d*!; tundra: 0.18 + 0.16:gCO,-C.m? d-!) from soils during the winter
(November-March) despite frozen surface conditions. Our model estimates indicated an annual
region-wide loss from soil respiration’'0f 591+ 120 Tg CO,-C during the 2016-2017 period.
Summer months contributed to 58% of the regional soil respiration, winter months contributed to
15%, and the shoulder months e¢ontributed to 27%. In total, soil respiration offset 54% of annual
gross primary productivity (GPP) across the study domain. We also found that in tundra
environments, transitional tundra/bereal/ecotones, and in landscapes recently affected by fire,
soil respiration often exceeded/GPP, resulting in a net annual source of CO, to the atmosphere.
As this region continues‘to warm, soil respiration may increasingly offset GPP, further

amplifying global climate change.

Keywords: Aurctie, boreal, soil respiration, roots, carbon, CO,, winter, ecosystem vulnerability,
climate change
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i 74 1. Introduction

5 75  The northern permafrost region holds over 50% of the global soil organic carbon (SOC) pool and
? 76  approximately one trillion tonnes of carbon in the top 3-m of soil alone (Hugelius ef @l 2014,

g 77  Meredith et al 2019). Historically, SOC in permafrost-affected ground and seasonally thawed

1(1) 78  active layers was largely protected from microbial decomposition by low-temperatures

12 79  (Faucherre et al 2018). However, arctic air temperatures have increased rapidly (Box et a/ 2019),
12 80  rising 2.7 °C (annual average) and 3.1 °C (October — May) between 1971.to 2017. This warming
12 81  has increased the length of the non-frozen season (Kim ef a/ 2012) and has deepened soil thaw

17 82  (Luo et al 2016) in Alaska and Canada. Soil warming can increase microbial activity (Natali ef al
12 83  2014) and may result in large amounts of soil carbon being released nto the atmosphere,

;? 84  predominantly as carbon dioxide (CO;; Schuur et al 2015 Turetsky'er a/ 2020).

;g 85 Soil root and microbial respiration (herein referred toas soil respiration) are dominant

;2’ 86  components of an ecosystem’s annual CO, emission (Mahecha et a/ 2010). Soil respiration in

;? 87  boreal forests is estimated to account for 48=68% of total ecosystem respiration (ER; soil +

28 88  aboveground components; Hermle et a/ 2010, Parker.ezal 2020). In tundra, soil respiration is the
;g 89  primary source of CO, efflux and summeremissions ‘alone may account for 60—-90% of annual
g; 90  ER (Sommerkorn ef al 1999, Gagnon et al 2018, Strimbeck et a/ 2018). Generally, the

gi 91  seasonality and magnitude of spibsespiration are influenced by soil temperature, soil water

35 92  content, root activity, and microbial-community access to SOC (Bond-Lamberty et al 2004,

2? 93  Schuur et al 2009, Nagano et al 2018).

gg 94 As northern landscapes continue to warm, CO, emissions resulting from soil respiration may
2(1) 95 increasingly offset carbonyuptake by plants (i.e., gross primary productivity, GPP). Moreover, the
fé 96 fastest rate of warming in.the Arctic-boreal region is occurring in autumn, winter, and spring

44 97  (Box et al 2019), aperiod when microbial respiration continues but plant productivity is limited.
22 98  Recent tundra/and boreal earbon budgets in northern Alaska and Canada using eddy covariance
j; 99  (EC) flux observations show that enhanced soil respiration during an anomalously warm winter

49100  (2015-2016) offset any carbon gains provided by GPP (Liu et a/ 2020). Similarly, annual soil

51 101  respiration offset 75% of the total forest GPP in a boreal Finland study (Pumpanen et a/ 2015). In
s3 102 northern Sweden, a steady increase in soil respiration, and no change in forest GPP, resulted in a
>4 193, transition from net annual ecosystem CO; sink to source (Hadden et a/ 2016). An atmospheric

56 104%, study of North Slope, Alaska tundra reported late autumn and early winter CO, emissions had
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increased by 73% since 1975 (Commane et a/ 2017). These observed increases in soil respiration
have been attributed to increased ground thaw (Kim et al 2006) and residual unfrozen‘water in
soil pore space (Faucherre et al 2018). Further, a recent synthesis of soil fluxsindicated.soil
respiration from Arctic-boreal permafrost regions may already outweigh ecosystemCO, uptake

under contemporary climate conditions (Natali & Watts et al 2019).

Little is known about the spatiotemporal patterns of soil CO, emissions from tundra and
boreal biomes at the regional level, in part due to the lack of spatial representation by in situ
observations. Existing in situ (e.g., EC) and satellite-based CO, monitoringnetworks are unlikely
to detect changes in soil respiration across the permafrost domain (Parazeo et al 2016),
especially in winter months, or identify local changes in net ecosystem exchange (NEE) or

component (i.e., GPP and respiration) CO, fluxes (Schimél et.a/ 2015).

Process-based terrestrial models can be useful tools to diagnose how components of the
carbon cycle might change in response to shifts in écosystem properties and climate but are
hampered in representing seasonal and spatial patterns'by-the lack of integrated observations
(Fisher et al 2018, Natali & Watts ef al 2019). In many-tegions, including Northern Eurasia and
Alaska, process-models have failed to-agree omsflux magnitudes and even the sink vs. source
status of ecosystem carbon budgets (Fisher et.a/ 2014, Rawlins ef al 2015). Improving process-
level understanding of soil respiration requires’integrating in situ flux data, observations of
ecosystem properties (e.g., vegetation characteristics, thermal and moisture state) from satellite

remote sensing, and data-informed modeling (Jeong et al 2018, Schimel et al 2019).

This study addresses knowledge gaps in our understanding of soil respiration from
permafrost ecosystems. We seek to improve understanding of the spatiotemporal patterns of soil
respiration in boreal‘and tundra landscapes, the magnitudes of seasonal and annual soil CO; loss,
and how soil respiration impacts ecosystem carbon budgets. Here we apply information gained
from a new network of Soil.Respiration Stations (SRS) within the NASA Arctic Boreal
Vulnerability Experiment (ABoVE) domain. We also incorporate a complementary suite of flux
records from EC towers within the region. We used Random Forest models and remote sensing
to extrapolate soil fluxes to the ABoVE domain for the 2016-2017 period, obtaining spatially and

seasonally disaggregated regional estimates of soil emissions. Last, we determine the seasonal
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z 134 and annual offset of GPP by respiration (soil, and ecosystem) to identify landscape net annual
5 135  carbon source, or sink, status under contemporary climate conditions.

6

7

o 136 2.Methods

10

11 137  2.1. Study region

12

13 138  The spatial domain of this study, which includes permafrost-affected landscapes of Alaska and
139  Northwest Canada, represents the core region of the NASA ABoVE Field Campaign (Kasischke
16 140 et al 2014, Loboda et al 2019) and spans gradients of climate, permafrost distribution (or

18 141  prevalence), vegetation, and ecosystem disturbance from fires (Figuse 1)."Approximately 24% of
20 142 theregion has been recently burned (between 2000 and 2017; Loboda et al 2017a, 2017b,
21143 Pastick et al 2018). Because our flux sampling locations only tepresent permafrost-affected

23 144  ecosystems, our analyses excluded landscapes where permafrost ‘was absent (Gruber 2012); we

25 145 also excluded barren lands (< 10% vegetation) and lopen watet.

27 146  2.2. SRS chamber data

29 147 Weused CO, flux data from 10 SRS (Minions ef al 2019) installed along a north-south gradient
30 148 in Alaska, spanning the North Slope‘to Eight Mile Lake near Denali National Park (Figure 1;
32 149  Supporting Information, SI Table I). Each SRS is a fully automated system that measures soil
34 150  surface CO, flux using three forced:diffusion (FD) chambers. The SRS technique was designed
36 151  toprovide year-round measurements of soil emissions (live aboveground vegetation was
37152 removed during chamber installationsto ensure that flux measurements do not reflect net CO,
39 153  exchange), even during periods of show cover. Detailed information about the SRS system and
41 154 FD processing is providediin the Supplement (S7 Section I). In addition to the SRS records,

155  chamber-based fluxés eollected using an Eosense eosFD portable sensor near Council, Alaska
44 156  were obtained from project partners. Six of the 11 FD stations (SRS and the eosFD site) are in
46 157  tundra and five in the boreal region. Six of the SRS sites represent paired burned and unburned

48 158  ecosystems (SI'Table 1).
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160°W 140°W 120°W 100°W
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B sheubland
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60°N

0 155 310 620 930 1,240
- Kilometers

Figure 1. Locations of soil respiration stations (SRS) and eddy covariance (EC) towers
considered in this study. The study domain is part of the NASA ABoVE core region. The sites
span climate and vegetation gradients (tundra.to boreal) within Alaska and Northwest Canada.
Landscapes evaluated in this study (2.68E12 km?) do not include barren land, open water, or
where permafrost was absent (indicated in grey): Landcover classes are from Wang et al (2019).

2.3. EC tower data

We used AmeriFlux (ameriflux.lbl.gov) and EC-investigator provided quality-controlled CO,
flux records primarily from September 2016 through August 2017 (matching the period of
highest data availability from‘the SRS sites) from 15 EC towers (Figure 1, see SI Table 1, SI
Section 2.1); 8 tower sites were,in tundra and 7 in boreal. The half hourly EC records included
NEE, GPP, and ER/NEE was obtained directly from the EC records and indicates the net of
ecosystem CO, respiration,and CO, uptake; GPP and ER were obtained using standard EC flux
partitioning algorithms (Reiehstein et al 2005, Lasslop et al 2010). Quality data were available
year-roundfor atileast ten sites (SI Table 1; SI Figure 2).

2.4. Flux modeling
We used published values from field and laboratory studies to separate aboveground respiration
components from the EC-based ER records (S7 Section 2.2). We acknowledge that the literature-

based ratio approach does not account for seasonal variability in aboveground respiration, and
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variability from other factors including temperature, species type, total biomass, and ecosystem
stress. However, this approach was used because more detailed information was not available.
We then used the combined SRS FD and EC ER dataset, information from remote sensing, and
ancillary geospatial layers (S/ Section 3) to obtain data-driven Random Forest models (S Section
4) developed separately for summer (June — August), autumn (September, October), winter
(November — March) and spring (April and May). These seasons were based on observed
seasonality in the tundra and boreal SRS and EC flux records (S7 Figure 3). Candidate variables
used in the models are described in the Supplement (S7 Section 3) and included information
about vegetation greenness and productivity, leaf area, topography, soil characteristics (e.g.,
permafrost status, soil texture, soil organic carbon content), and other eénvironmental conditions

(e.g., albedo, radiation, temperature, snow cover, soil moisture status).

2.4.1 Random forest models and spatial prediction

Random Forest (RF) is a machine learning method that uses)an ensemble approach to regression
by means of multiple decision trees and bootstrap sampling (Liaw & Wiener 2002, Cutler et al
2012). RFs have been widely used in ecological studies’(Pearson et al/ 2013, Clewley et al 2017)
and carbon budget assessments (Tramontanatetal 2015, Jung ef al 2020). Strengths of RF
include the ability to handle high-dimensional problems, noise, and non-linearity, and its ability

to provide robust internal estimates,of error and variable importance (Cutler ef al 2012).

We developed RF models in the R computing environment (R Core Team 2019) using the
randomForest package (Liaw:2018). Each tree was constructed using a random selection (i.e.,
bagging) of approximately 2/3 of the samples (42 site-flux observations in the autumn model,
110 in the winter model, 48 in the spring model and 65 in the summer model; see SI Section 4.1).
The remaining 1/3 of the ebservations was used to validate each tree in the forest (1000 trees per
trained RF model). Predictor variable (SI Table 4) selection was achieved using the Variable
Selection Using Random Forest (VSURF; Genuer ef al/ 2019, Genuer et al 2010) R package
which was_designedto reduce high (>70%) cross-correlations between the selected inputs. The
tuneRF algorithm (Liaw 2018) was applied to optimize the Mtry parameter (the number of
variables available for splitting at each tree node). Variable importance was assessed using
randomForest varlmpPlot (Liaw 2018) and the rfPermute (Archer 2020) R package was used to

provide corresponding estimates of parameter significance. This process was applied to obtain
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optimal RF models for each season (SI Section 4.2). The final models were applied to the raster
predictor datasets (raster package in R; Hijmans et a/ 2020) to obtain 300-m resolution maps of

monthly average soil respiration.

2.4.2 ABoVE region carbon budgets

We used the monthly average soil CO, emission maps (gCO,-C m2d-") from the RF models to
obtain regional flux budgets. The emission estimates were scaled to the térrestrial spatial domain
within each 300 x 300 m grid cell by removing fractions of identified open,water within each
grid cell. Fractional water was derived using the 30-m Wang et a/ (2019)1and cover map for
2014. We then obtained monthly and annual soil respiration totals for the: ABoVE domain (Tg
CO,-C period!). To determine the extent that soil respiration‘offset the annual ecosystem uptake
of CO, (i.e., GPP), we obtained estimates from an ensemble of satellite observation based GPP
records for the 2016 and 2017 period (S7 Section 3), including NASA MODIS MOD17
(MOD17A2H.006, Running ef al 2015), NASA Soil Moisture Active Passive (SMAP) Level 4
Carbon (L4_C) (Kimball ef al 2014, Jones et al 2017) and Global OCO-2 SIF (GOSIF) GPP data
products (Li & Xiao 2019). Lastly, to gauge the potential impact of regional NEE on annual
GPP, we used literature-based flux ratios(SZ.Section 2) to provide estimates of emissions from

aboveground respiration, in addition to our"RF-estimates of soil respiration.

3. Results

3.1 Soil emission characteristics

Site-level fluxes showed strong seasonal emission patterns (Figure 2) closely tied to changes in
air and soil temperature (Figure 3)< Soil respiration (regional mean + standard deviation) was
largest in summer (boreal: 1,87+ 0.67 gCO,-C m? d'!; tundra: 0.94 + 4 gCO,-C m2 d'!") and
peak daily-averaged respiration was often observed in July (S/ Figure 3), the warmest month (air
temperatures > 10 °C,at EC and SRS flux sites). This was followed by a steady decline in
autumn (boreal: 0.8 £0.4 g€CO,-C m2 d!; tundra: 0.42 + 0.2 gCO,-C m2 d-!). Winter respiration
persisted even under snow cover, and cold air and soil (10-15 cm depth) temperatures averaging
-18 + 6 °C and -3.5 + 2.7 °C, respectively. In winter, boreal soil respiration averaged 0.24 + 0.2
g2CQ,-C m? d! and tundra averaged 0.18 + 0.16 gCO,-C m d-!. Soil respiration began to
increase again in spring (boreal: 0.82 + 0.6 gCO,-C m? d'!; tundra: 0.28 + 0.2 gCO,-C m2 d*!) as

ecosystems warmed (average boreal/tundra soil temperatures of -1.98 °C in April, -0.07 °C in
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1
2
i 238  May, and 1.82 °C in June). Soil respiration from boreal sites was systematically higher than
5 239  those from tundra in all seasons, excluding winter (t-test; p=0.03 in autumn, p=0.22 in'winter,
6
7 240  p=0.002 in spring, p < 0.001 in summer). T-test significance for monthly fluxsaverages.is shown
g 241  in SI Figure 3 and seasonal flux patterns according to biome (i.e., tundra or boreal):and flux
1? 242  location are shown in SI Figure 4.
12 243
13
14 3
15
16 E3 Boreal
17 E Tundra
18
19 85 2 2
21 @O
[0}
22 r A a
—0
23 B O }
24 w21 .
- R .
26 ‘ .
27 |
28 ! ‘__’_‘
29 0
30 244 Autumn Winter Spring Summer

31 245  Figure 2. Seasonal soil respiration patterns observed in the SRS and EC fluxes for the ABoVE
32 246  domain, for boreal (green) and tundra (blue) biomes. Soil respiration emissions are average
247  monthly fluxes from individual sites, totaling 45 site-fluxes in autumn, 110 in winter, 48 in

35 248  spring, and 65 in summer. The boxplotirange indicates the first and third quartiles; the middle
36 249  line denotes the median. Box whiskers indicate minimum and maximum values, excluding

37 250  outliers indicated by black circles; ‘a’denotes t-test results with no significant difference

38 251  between seasons at o. = 0.03.

ig 252
a1 253 Air temperature (p =0:009) and soil temperature at 10-15 cm depth (p = 0.01) explained 65%
42

254  of the observed variability,in monthly soil respiration at the site level, in a linear regression

44 255  analysis that included.fluxes from all seasons. During the 2016-2017 period, soil respiration was
46 256  observed even atair tempetatures approaching -30 °C and at soil temperatures (~ 15 cm depth)
48 257  below -10 °C (Figuré 3a, b; ST Figure 5). Soil respiration increased steadily after ground thaw.
49 258 Soil respiration for the 14 tundra and boreal sites where in situ soil moisture was available

51 259  indicated that'higher fluxes in summer most often occurred where soils (< 15 cm depth) were

53 260 relatively wet but not saturated (S/ Figure 6). Observed relationships between the seasonal site-
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level soil respiration fluxes and important remote-sensing based indicators of permafrost status,

temperature, soil moisture, and GPP is provided in SI Figure 7.

(@) (b)

Soil Respiration
(gCO,-C m2d")

AD A 149

B A
& RGP PG

-30 -20 -10 0 10 Tyndra ® SRS A EC =10 0 10
Air Temperature (°C) Boreal © SRS A EC Soil Temperature (°C)

Figure 3. Observed relationships between (a) air temperature or (b) in situ soil temperature (
~10-15 cm depth) and average monthly soil vespiration (€0O,-C m~ d') from eddy covariance
(EC; triangles) and soil respiration stations (SRS, circles) in Alaska and Northwest Canada for
boreal (green) and tundra (blue) sites. Fitted curves.(black lines) were obtained using locally
weighted loess smoothing; grey shading represents confidence intervals (+/- standard error).

3.2 RF model performance and variable importance

The RF models explained much of the variance in soil respiration, with moderate-to-low root
mean squared error (RMSE) and imean absolute error (MAE; SI Table 5, SI Figure 8). The R?
values were 0.68 for the summer meodely0.57 for autumn, 0.65 for winter, and 0.76 for spring.
The respective RMSE (gCQ,-€ m2d!) values were 0.35 (summer), 0.24 (autumn), 0.10
(winter), and 0.25 (spring). The'positive MAE (averaging 0.2 + 0.09 gC m= d-!) indicated a
slight underestimation-ef soil respiration by the models. In the summer RF model, MODIS
(MOD) GPP was the most important variable, followed by soil sand content (an indicator of
water retentionsand nutriént content), MODIS leaf area index (LAI), tree cover, and normalized
difference vegetation/index/ (NDVI; an indicator of greenness). In the autumn model, SMAP
Root Zone Soil Moisture (RZSM) was the most important predictor (Table 1), followed by
permafrost zenation index (PZI), SMAP soil temperature (TSOIL) from layer 4 (70-140 cm
depth), downwelling shortwave radiation (RAD), and SoilGrids SOC (0-30 cm depth). In winter,
the Landsat-based Normalized Difference Water Index (NDWI; an indicator of landscape

wetness gradients) was most important, providing finer resolution (30-m) legacy information

Page 10 of 24
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about moisture status from the previous summer. Other significant predictors were MODIS,LAI,
Landsat enhanced vegetation index (EVI; another indicator of greenness), SMAP RZSM, PZI, a
MODIS snow index (NDSI), and SMAP layer 3 (~30-70 cm) TSOIL. The 30=70 cm seil
temperature selected by the winter model may better represent the delay in active-layer freeze as
deeper soils remain closer to 0 °C even after upper-layers have frozen (e.g., Zona et a/ 2016).
The PZI was the most important variable for the spring model, followed by tree cover, land
surface temperature (LST), soil clay content, MODIS GPP, Landsat EVI,,and SMAP surface (0-

10 cm) soil moisture (SM).

Table 1. Variable importance for the seasonal RF models, accotding to the percentage increase
in model mean squared error (%0/ncMSE) when a specific variable was excluded in the
development of regression trees. Larger values for %/ncMSE indicate greater importance of the
predictor variable relative to the other predictors. MON indicates that variable information was
input for each month and Summer indicates variable information from June-August.

Summer Autumn
Variable %IncMSE p-value Variable %IncMSE p-value
MOD GPP (Summer) 22.02 0.0033 SMAP RZSM (MON) 19.83 0.0016
SoilGrids % Sand 21.52 0.0033 PZ1 16.32 0.0033
MOD LAI (Summer) 20.24 0.0003 SMAP Tsoil L4 (MON)  15.69 0.0017
MOD % Tree Cover 20.23 0.0050 SMAPRAD (MON) 1543 0.0049
MOD NDVI (MON) 17.60 0.0067 SoilGrids SOC 9.44 0.0549

Winter Spring
Variable %IncMSE p-value Variable %IncMSE p-value
Landsat NDWI (Summer) 22.53 0.0017 PZI 17.47 0.0019
MOD LAI (Summer) 21.14 0.0016 MOD % Tree Cover 16.94 0.0009
Landsat EVI (Summer) 21.13 0.0017 MOD LST (MON) 12.79 0.1798
SMAP RZSM (MON) 20.79 0.0016 SoilGrids % Clay 12.67 0.0099
MOD GPP (Summer) 19.78 0.0017 MOD GPP (Summer) 12.05 0.0079
PZI 18.85 0.0017 Landsat EVI (Summer)  10.40 0.0159
MOD NDSI (MON) 18.11 0.0016 SMAP SM (Summer) 10.12 0.0229
SMAP TSOIL L3 (MON) 10,70 0.0233

10
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(a) Annual Soil CO, Emissions (b) Scil CO, Emission Budgets by Mo
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[ ABoVE Domain /\ Flux Stations 570 0 570km
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Figure 4. (a) Annual soil respiration emissions (¢CO,-C m) per
domain (2016-2017). Estimates exclude non-permafrost, barre
Triangles indicate EC and SRS flux monitoring sites used for mode
RF-derived respiration (TgCO,-C) for the ABoVE region.

do

opment. (b) Monthly

(@) Offset of Annual GPP by Soil Respiration
160°W 120°W

Soil CO, and GPP Budgets

MOD17 GOSIF SMAP Soil
GPP GPP GPP  Respiration

P by soil respiration. A 100% offset indicates that soil
respiration equaled or exc PP. Triangles indicate CO, flux monitoring stations (EC and

70°N

60°N

ssion for the study domain was 591.2 TgC-CO, + 120 TgC-CO,
igure 4; SI Table 6). Monthly soil respiration maps are provided

soil 1 , the longer winter (November — March) period generated 15%, with comparable
proportions occurring in autumn (15%, September, October) and spring (12%, April, May).

oss the ABoVE region, the largest soil respiration budgets occurred in the boreal zones and

11
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the warmer, more southern, forest-tundra ecotone. Over half of regional soil respiration
emissions (54% of annual total) were from colder landscapes having a widespread occurrence of
near-surface permafrost (i.e., where the PZI was > 75%; spanning 70% of thexdomain).and the
remaining 46% of emissions were from warmer permafrost (0% < PZI > 75%; 30% of the
domain; Table 2; SI Figure 12). The area covered by Shrubland/Herbaceous wegetation produced

the majority (46%) of soil respiration, followed by Sparse Vegetation andEvergreen Forest.

Table 2. Percent of annual soil respiration and annual GPP totals for the study ‘domain,
according to tundra (including shrub tundra and excluding transitional tundra-boreal biomes) and
boreal biomes (from Natali & Watts ef al 2019), vegetation cover (from Wang et a/ 2019) and
permafrost class (Gruber ef al 2019).

Land Cover % of Domain % of GPP % of Soil Respiration
Boreal Biome 86 85 83

Tundra Biome 14 15 17
Shrubland/Herbaceous 43.7 49 46

Sparse Vegetation 22.9 17 19
Evergreen Forest 14.3 15 16

Wetland 10.4 10 10

Mixed Forest 33 4 3.5

Tussock Tundra 3.7 3 2.9
Deciduous Forest 1.7 2 2.6
Permafrost Class % of Domain % of GPP_, % of Soil Respiration
PZI>75 70 38 54
50<PZI<75 14 21 12

25 <PZI<50 9 21 8

0<PZI <25 7 20 26

Annual GPP for the whole’domain, obtained from MOD17, GOSIF, and SMAP L4 C
products (Section 2.4.2, 81 Figure 13), was 1046-1256 TgCO,-C in 2016 and 1025-1134 TgCO,-
C in 2017 (SI Table Zywith an estimated uncertainty of 310 TgCO,-C yr'! (SI Section 3). Annual
GPP was considerably higher (> 600 gCO,-C m yr'!) in the boreal regions relative to tundra (<
300 gCO,-C m? yr'; ST Figure 13). Our extrapolations indicate soil respiration offset
approximately$4% of GPP across the domain (averaging 1101 TgCO,-C). The offset of GPP by
soil respiration varied considerably across the region (Figure 5; SI Figure 14). Offsets of >
100%:x(i.e., annual net carbon source areas) were identified in far northern tundra and
mountainous landscapes, along transitional tundra-boreal ecotones, and in landscapes recently
disturbed by fire (e.g., west of Hudson Bay & south of the Selwym Mountains in Canada). We

estimate that approximately 8% of the ABoVE region was a net carbon source (100% offset of

12
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GPP) in 2016-2017, based on soil respiration alone and not accounting for aboveground

respiration and non-terrestrial carbon emissions (i.e., aquatic bodies).

4. Discussion

This study provides new estimates of soil respiration for the ABoVE domain and insights into
how soil respiration is offsetting net annual GPP across permafrost-affected tundra and boreal
landscapes. Our analysis of in situ observations and RF-model results indicate that'soil
respiration was generally highest under warmer (above freezing) soiltemperatures and deeper
seasonal soil thaw, in moderate-to-moist soils (0.5-0.8 m? m3), and ‘in-areas with higher
vegetation productivity. Accordingly, the largest annual soil respiration rates occurred in boreal
ecosystems where trees and shrubs were present, especially along the more southern portions of

the domain with substantial permafrost thaw.
4.1 The temperature-soil respiration relationship

Consistent with earlier studies (e.g., Wickland efal 2006, Natali et al 2014, Loranty et al
2018), we found temperature to be an important driver of soil respiration at the site level. Our
regional flux assessments showed highest soil réspiration rates in summer (contributing to 58%
of annual soil respiration) when soil temperatures were warmer and soil thaw was deepest.
Higher emissions in warmer soils are not only ffom increased microbial decomposition of SOC,
but likely also from increased root-activity (i.e., belowground autotrophic respiration), a strong
source of CO, in thawing permafrost systems (Hicks Pries ef al 2015, 2016). Although gridded
estimates of belowground root density are not available for this region, LAIL % tree cover, and
vegetation indices (important predictors in the RF models) provided proxies of vegetation

productivity (e.g., Street et @l 2006), and indirect information about root respiration.

Within the site-level soil respiration database, larger, and sometimes episodic, CO, emissions
(> 0.5 gCO,-C.m% d "y were observed as soil temperatures approached 0 °C, especially as soil
layers began to freeze in the autumn. Like our site-level findings, an atmospheric study of
Alaska’s North Slope also identified high CO, emissions in autumn and early winter (October —
December;Commane ef al 2017) during the landscape freeze. Although our RF model approach
represented,regional flux characteristics relatively well, the autumn RF model had the lowest

performance of the four seasonal models, resulting from its inability to capture spatiotemporally

13
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1

2

z 371  episodic releases of CO, observed in situ. As a result, the model underestimated regional CO,
5 372  emissions (by > 0.2 gC m2 d'!, based on MAE estimates) during the autumn period.

6

7 373

g 374 4.2 Regional predictors of soil respiration

10375 Our regional assessments show that carbon source/sink status is highlysheterogeneous.

12 376  Annual carbon status of an ecosystem is influenced by many factors, including GPP“and plant
14 377  community type (e.g., Rouse et a/ 2002, Parmentier et al 2011, Oechel et.al 2014, Forkel et al
15 378 2016, Ge et al 2017, Christiansen ef al 2018), winter snow cover which insulates soils (e.g.,
17379  Welker et al 2000, Christiansen et al 2018), and shifts in vegetation growth and microbial

19 380 activity (Arndt ef al 2019, Kim et a/ 2021). Soil moisture is also an extremely influential factor
51 381  thatis very heterogeneous across the landscape and affectssboth vegetation productivity and soil
22 382 respiration (Grogan & Chapin III 1999), yet this enviroimental variable can be radically altered
24 383 by permafrost thaw (Jorgenson ef al 2013) and is espeeially difficult to monitor regionally at

26 384 finer landscape-level scales (Du et al 2019),

28 385 Burn status (i.e., burned or unburned) was not a significant predictor of the regional monthly-
30 386  averaged soil respiration emissions examined. in this analysis, which could be in part due to our
31 387  database containing information from only*three burn sites (representing tundra and forest

33 388 landscapes 11-15 years after fire), or because of rapid post-fire recovery. Following a fire event,
35 389  the combination of warmer and drier soils can substantially increase CO, flux from soils (O’Neill
390 et al 2002, 2003, Ueyama et al 2019). However, a review of fire disturbance at high latitudes

38 391  reported that soil and root réspiration in forests may stabilize after a decade (Ribeiro-Kumara et
40 392 al2020). As a result, our estimates likely underestimate soil respiration from recently burned

47 393 areas (~ 5% of the domain from 2012-2016; SI Figure 15; Alaska and Canada Large Fire

43 304 Databases; Kasischke et a/ 2002, Amiro et al 2001, Stocks et al 2002).

jg 395 4.3 Regional carbon budgets
47
48 396 Our 2016-2017-assessment shows an annual soil respiration loss of 591Tg CO,-C for the

49 397 permafrost-affected ABoVE domain. A comparison of our RF-based results with the Natali &
5T 398  Watts'er al (2019) pan-Arctic estimates (referred to as NCC 2019 and subset to the ABoVE
53 399  permafrost-affected study area) showed that soil respiration estimates in the NCC 2019 record
55 4005, was substantially higher (~ 1.6x) than our RF budgets during the winter and early spring (S/

58 14
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Table 6 and SI Figure 16). A corresponding model analysis by Schiferl ef a/ (In Review) used a
Stochastic Time-Inverted Lagrangian Transport (STILT; Lin et al 2003) model and atmospheric
CO, observations influenced by Alaska North Slope tundra (obtained from the Utqiagvik tall
tower) to verify the NCC 2019 and RF-model results. The study determined that our. RF-model
approach underestimated atmospheric enhancements in October-December by 2-3x but the RF-
estimates were much better aligned with atmospheric observations, relativeto NCC 2019, during
the January-April period (SI Section 5, SI Figure 17). While episodic bursts of CO, from
freezing soils may contribute to the larger atmospheric CO, levels gbserved October-December
across the North Slope, our assessments also indicate that very large emissions of CO, to the
atmosphere could result from the turnover and freeze of lakestiand ponds which are widespread
throughout the region (SI Section 5; Preskienis et al 2021)4lf this assessment is correct, then the
Natali & Watts ef al (2019) results also overestimate soilbCO, emissions for the North Slope

during the autumn season.

For the ABoVE study domain in 2016-2017, soil respiration only partially offset GPP, by
approximately 54% to 60%. However, for many grid cells in northern tundra, mountainous
regions, or where boreal forest GPP waswreduced by recent fire (SI Figure 14, 15) soil respiration
alone (not accounting for aboveground autetrophic respiration) equaled or exceeded annual GPP,
indicating that some sites are net:CO, sources. The Belshe ef al (2013) meta-analysis of EC
fluxes from high-latitude tundra sites ¢oncluded that tundra systems are currently CO, sources.
Similarly, Natali & Watts et al (2019) determined the permafrost-affected Arctic-boreal zone to
likely be a net CO, source when considering winter contributions from soils. Using published
ratio estimates of abovegroundivs belowground (soil) contributions to ER for boreal and tundra
biomes we estimate an.annualLER between 820 and 1171 Tg CO,-C, respectively offsetting 74-
106% of annual GPP (SI Figure 18). This estimate suggests that tundra is currently a CO, source,
while the borealds,a CO3Sink.

5. Conclusion

Soil respiration ¢an strongly impact the carbon sink or source status of high latitude permafrost
regions» When considering the permafrost-affected tundra and boreal biomes of Alaska and
Northwest Canada as a whole, soil respiration offset annual GPP in 2016-2017 by 54-60%.
However, in sparsely vegetated tundra regions and recently burned landscapes, soil respiration
exceeded GPP. Although a majority (58%) of annual soil respiration emissions occurred in the

15
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1

2

z 432  summer months, we found considerable contributions of soil CO, in the shoulder and winter

5 433 seasons. Our soil emission estimate of ~ 591 + 120 Tg CO,-C for the domain is likely

? 434  conservative due to the inability of our statistical model approach to capture gpisodic bursts of
g 435  CO, during soil freeze and thaw, and a lack of soil respiration data from very recentfire scars.

10 436  We also acknowledge uncertainties introduced by using a simple literature-based flux ¢orrection
12 437  ratio method to remove aboveground components from tower-based ER observations, which

14 438  does not account for variability in aboveground respiration by species, temperature, stand age

15 439 and other factors. We also note that the 2016-2017 period was characterized by record breaking
17440  high air temperatures across much of the region relative to previoeus years and the longer-term
19 441  1981-2019 normal (ACRC 2016, 2017). Warming records have been repeatedly broken in more
51 442 recent years and we estimate that post-2017 soil respirationsbudgetsiwill exceed those reported

22 443  here.

25 444 Our data-driven gridded soil respiration budgets provideinew, valuable records that will be
57 445 useful for the future benchmarking of process-based models. Although our assessment is limited
28 446  to a one-year period, efforts to ensure the continued operation of SRS and EC sites will allow

30 447  future regional studies to better understand interannual variability and spatiotemporal trends in
32 448  soil respiration across the rapidly changing Axctic-boreal environment. As current spaceborne
449  observations of CO, are not yet able to track changing emission contributions in winter, nor able
35 450 to identify finer landscape-level patternsiof soil emissions (Parazoo et al 2016), the continuation
37 451 if not expansion of existing in situ menitoring networks is urgently needed to document changes
39 452 insoil respiration and ecosystem carbon sink/source status across the thawing permafrost region

40 453 in North America and elsewhere, mcluding Siberia and the Tibetan Plateau.

42 W54
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