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ABSTRACT
Uncovering the organization of a landscape that encapsulates all
states of a dynamic system is a central task in many domains, as it
promises to reveal, in an unsupervised manner, a system’s inner
working. One domain where this task is crucial is in bioinformat-
ics, where the energy landscape that organizes three-dimensional
structures of a molecule by their energetics is a powerful con-
struct. The landscape can be leveraged, among other things, to
reveal macrostates where a molecule is biologically-active. This is
a daunting task, as landscapes of complex actuated systems, such
as molecules, are inherently high-dimensional. Nonetheless, our
laboratories have made some progress via topological and statistical
analysis of spatial data over the recent years. We have proposed
what is essentially a dichotomy, methods that are more pertinent
for visualization-driven discovery, and methods that are more per-
tinent for discovery of the biologically-active macrostates but not
amenable to visualization. In this paper, we present a novel, hybrid
method that combines strengths of these methods, allowing both
visualization of the landscape and discovery of macrostates. We
demonstrate what the method is capable of uncovering in com-
parison with existing methods over structure spaces sampled with
conformational sampling algorithms. Though the direct evaluation
in this paper is on protein energy landscapes, the proposed method
is of broad interest in cross-cutting problems that necessitate char-
acterization of fitness and optimization landscapes.
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1 INTRODUCTION
In many domains, it is central to characterize and understand the
behavior of a complex dynamic system. This is particularly im-
portant in bioinformatics. Specifically, in computational molecu-
lar biology, uncovering the organization of the structure space of
an inherently plastic molecule has become a central component
in structure-driven discoveries of biological activity [18]. This is
particularly true in studies of proteins, which can employ signifi-
cantly different structures with which to "stick to" and bind other
partners in the cell [6]. In a statistical mechanics treatment, the
structure space has an inherently hierarchical organization and
can be described in terms of macrostates, which contain thermody-
namically inter-converting structures that are also referred to as
microstates [7].

Revealing this organization is important to obtain information
on the mechanism(s) of action of a molecule and possibly reveal new
states employed formolecular interactions [24]. This organization is
inherent in the concept of the energy landscape [7], which organizes
structures by proximity and energetics. As is often the case with
complex, highly-actuated systems, such as molecules (and proteins),
the landscapes are high-dimensional. The landscape essentially lifts
the structure space with an additional dimension which evaluates
structures based on their energies.

It is worth noting that the concept of the energy landscape,
often also referred to as fitness landscape, originated in theoretical
biology [36] and has become a useful construct in many domains
and disciplines, from describing the physics of disordered systems,
to molecular biology and bioinformatics, to more general search
and optimization problems in AI, the study of complex systems, etc.
In particular, the energy landscape has improved our understanding
of the relationship between protein structure, structure plasticity,
and function [7, 23].
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The inherent organization of a molecular energy landscape ex-
poses structural states as recognizable components. The landscape
dimensionality and multimodality make automated detection of
such components exceptionally challenging. Moreover, the protein
energy landscape is a continuous surface. Yet, whether through
wet- or dry-laboratory techniques, we only have access to a set
of structure-energy pairs that are sampled from the landscape. A
central question is how to go from this discrete representation of
the landscape to an information-rich representation that reveals
the organization of structures in the landscape and do so in an
unsupervised manner.

Many studies that utilize the energy landscape define 2 fea-
tures with which to summarize structures or obtain such features
via compression models. The featurized structures are visualized
and color-coded by energies to detect the possible emergence of
thermodynamically-stable and semi-stable states that present them-
selves as local neighborhoods of low-energy structures. Interesting
discoveries linking structure to function are made via visualiza-
tion [9, 19].

Other studies employ barrier or disconnectivity trees or graphs [35]
to visualize landscapes. These build over informal notions of land-
scape components and assume critical points are known a priori.
What is needed is a tool to reconstruct the energy landscape and
then decompose it into (formally-defined) components of inter-
est with no prior knowledge on the location of critical points in
the landscape. This task can be formulated under the umbrella of
unsupervised learning.

Our laboratories have made some progress in this direction via
topological and statistical analysis of spatial data. Over the past
few years, we have proposed methods for a more reliable visual-
ization and methods that forego the ability to visualize for a more
accurate identification of stable and semi-stable structural states
via the concept of basins. In this paper, we address this methodolog-
ical dichotomy and present a novel, hybrid method that combines
the strengths of visualization- and discovery-driven methods for
reconstructing and decomposing energy landscapes.

We demonstrate that the proposed method provides both useful
visualization of high-dimensional energy landscapes and identi-
fication of homogeneous structural states. The method achieves
these dual tasks in an unsupervised manner and leverages concepts
and ideas from topological and statistical analysis and unsuper-
vised learning. Though the direct evaluation is on protein energy
landscapes, due to the importance of landscapes in many problems
and domains, the proposed method is of broad interest in problems
that necessitate characterization of and learning over fitness and
optimization landscapes that summarize high-dimensional states
of complex systems.

The rest of this paper proceeds as follows. After summarizing
related work in Section 1.1, we relate methodological details in
Section 2. Evaluation is provided in Section 3. The paper concludes
in Section 4.

1.1 Related Work and Background
We first formalize useful concepts before describing how they are
leveraged in the proposed method.

1.2 The Energy Landscape
The energy landscape is an example of the more general fitness
landscape (referred to as the height landscape or the lifted space in
other disciplines). The fitness landscape consists of a set of points
𝑋 , a neighborhood N(𝑋 ) defined on 𝑋 , a distance metric on 𝑋 ,
and a fitness function 𝑓 : 𝑋 → R≥0. The neighborhood N(𝑋 )
assigns a neighborhood to every point in 𝑋 . The fitness function 𝑓
assigns a fitness to every point 𝑥 ∈ 𝑋 . In a structure space probed
by a computational method, the points 𝑋 correspond to computed
structures, and the fitness function is an energy function scoring
the structures.

A point of the landscape is a structure-and-energy pair. An en-
ergy landscape may contain many components, such as basins and
basin-separating barriers. The concept of a basin is tied to a lo-
cal/focal minimum. A focal minimum is surrounded by a basin of
attraction, which is the set of points on the landscape from which
steepest descent/ascent converges to that focal optimum. Barriers
regulate transitions of a system between different structural states
corresponding to basins in the landscape. Algorithms that compute
structures of a molecule effectively sample points from an unknown,
underlying landscape and so obtain a discrete, sample-based view
of the landscape as a set or collection of points on the landscape.

Under the energy landscape view, one can in principle iden-
tify the biologically-active states by identifying the corresponding
basins in the landscape. This presents several challenges, because
protein energy landscapes are high-dimensional, overly rugged,
and probed by (conformational sampling) algorithms that obtain
a limited, biased view of it. Below we describe a concept in Morse
theory called Morse-Smale complex, which provides a mathemat-
ical model and tool to decompose, reconstruct, and visualize the
energy landscape.

1.3 The Morse-Smale Complex
Suppose we have a smooth function 𝑓 : M ↦→ R, where we
think of M as the (possibly featurized) structure space; 𝑓 as an
energy function that maps a point in𝑀 to an energy/fitness value.
Given a starting point 𝑥 ∈ M, an integral curve 𝜂𝑥 : R ↦→ M

is a curve satisfying 𝑑𝜂𝑥 (𝑡 )
𝑑𝑡

= ∇𝑓 (𝜂𝑥 ), 𝜂𝑥 (0) = 𝑥 . A particle
following this integral moves towards a destination defined by
dest(𝑥) = lim𝑡→∞ 𝜂𝑥 (𝑡). The path 𝜂𝑥 can also be traced back to
its origin defined by org(𝑥) = lim𝑡→−∞ 𝜂𝑥 (𝑡). Both dest(𝑥) and
org(𝑥) are critical points of 𝑓 . The paths of the integral lines and
the critical points cover the entire domain M, and we may find
partitions ofM by aggregating the integral lines depending their
origins and destinations.

Specifically, we define the stable (or ascending) manifold of a
critical point 𝑦 as 𝐴(𝑦) = {𝑥 : dest(𝑥) = 𝑦}, and the unstable (or
descending) manifold of a critical point 𝑦 as 𝐷 (𝑦) = {𝑥 : org(𝑥) =
𝑦}. We assume that 𝑓 is a Morse function, meaning that its stable
and unstable manifolds intersect transversally. The Morse-Smale
complex is a set consisting of the intersections𝐴(𝑦𝑖 ) ∩𝐷 (𝑦 𝑗 ) for all
the critical points 𝑦𝑖 and 𝑦 𝑗 , which forms a partition ofM. In this
paper, we focus on the unstable manifolds of the energy function
with local minima as the origins, because those sets are naturally
related to the concepts of energy basins.
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1.4 Persistence
The concept of persistencemeasures how a critical point is vertically
distinct from its neighboring critical points. Given a critical point 𝑦
of 𝑓 , let 𝑁 (𝑦) be the set of critical points 𝑧 of 𝑓 such that they are
directly connected with𝑦 through the integral curves (meaning that
there are no other critical points in the path between 𝑦 and 𝑧). We
define pers(𝑦) = min𝑧∈𝑁 (𝑦) |𝑓 (𝑦) − 𝑓 (𝑧) | as the persistence of the
critical point 𝑦. In particular, when 𝑦 is a local minimum, pers(𝑦)
is the minimum difference between the energy values at 𝑦 and
its directly connected saddle points, which reflects the minimum
amount of energy required to move out of the basin org(𝑦) from
its bottom.

Using persistence, the Morse-Smale complex of 𝑓 can be sim-
plified in the following way. Given a threshold 𝑡 , if the difference
of the energy values between a critical point 𝑦 and one of its di-
rectly connected critical points is below this threshold, then these
paired critical points can be merged or canceled, which results in a
simplified partition of the domain. This simplification procedure
is useful when the small persistence of critical points is believed
to be insignificant. For example, noise in the data can increase the
complexity of the Morse-Smale partition by bringing artificial criti-
cal points of small persistence; simplification tries to recover the
true Morse-Smale complex.

1.5 Nearest-neighbor Graph
One can embed structures in a connectivity data structure and uti-
lize energies to identify basins. Specifically, consider an Ω set of
structures (these can be uncomplexed structures of a protein, ligand,
or even complexed, protein-ligand or protein-protein structures
obtained via conformational sampling). The ensemble Ω can be
embedded in a nearest-neighbor graph (nngraph) 𝐺 = (𝑉 , 𝐸). The
vertex set 𝑉 is populated with the structures, and edge set 𝐸 is
populated by inferring the neighborhood structure of the landscape.
The distance between two structures is measured via root-mean-
squared-deviation (RMSD) [20] after each of the structures is super-
imposed over some reference structure (arbitrarily, chosen to be the
first in the ensemble; the superimposition minimizes differences
due to rigid-body motions.

Each vertex 𝑢 ∈ 𝑉 is connected to vertices 𝑣 ∈ 𝑉 if 𝑑 (𝑢, 𝑣) ≤ 𝜖 ,
where 𝜖 is a user-defined parameter. A small 𝜖 may result in a
disconnected graph, which is the result of a sparse, non-uniform
sampling of the landscape. This can be remedied by increasing
𝜖 while controlling the density of the resulting nngraph via the
number of nearest neighbors of𝑢. It is worth noting that the concept
of the nngraph is pervasive in computer science. It allows one to
capture the connectivity of a space and has been leveraged, among
other applications, in constructing paths in the configuration space
of a robot for robot motion planning [14] or in computing structural
transitions in proteins [19, 21, 22, 30, 32].

2 METHOD
We describe a novel method that utilizes all the concepts laid
out in Section 1.1. The method hybridizes two recent methods,
BD(nngraph) and MS(PCs). BD(nngraph) focuses only on the task
of basin detection (BD) over the nngraph embedding tertiary struc-
tures sampled for a protein via a conformational sampling algorithm.

MS(PCs) addresses on the broader task of energy landscape recon-
struction and decomposition by constructing the Morse-Smale (MS)
complex over a two-dimensional embedding (via PCA) of the sam-
pled tertiary structures. BD(nngraph) has been published in [2].
Though originally not named, the naming BD(nngraph) better con-
veys the core concepts leveraged. MS(PCs) has been published
in [1], originally referred to as LRD for landscape reconstruction
and decomposition. We now proceed to relate details, starting with
BD(nngraph) and MS(PCs) over which MS(PCs+nngraph) builds
over.

2.1 BD(nngraph): From a Graph Decoy
Embedding to Basins

As described in Section 1.1, tertiary structures are first embedded
in an nngraph 𝐺 = (𝑉 , 𝐸). BD(nngraph) groups 𝑉 (𝐺) into distinct
basins as follows. Tying the concept of a basin to its focal mini-
mum, BD(nngraph) starts by first identifying local minima. A vertex
𝑢 ∈ 𝑉 is a local minimum if ∀𝑣 ∈ 𝑉 𝑓 (𝑢) ≤ 𝑓 (𝑣), where 𝑣 ∈ 𝑁 (𝑢)
(𝑁 (𝑢) denotes the neighborhood of 𝑢). The remaining vertices are
assigned to basins as follows. Each vertex 𝑢 is associated a nega-
tive gradient estimated by selecting the edge (𝑢, 𝑣) that maximizes
the ratio [𝑓 (𝑢) − 𝑓 (𝑣)]/𝑑 (𝑢, 𝑣). From each vertex 𝑢 that is not a
local minimum, the negative gradient is followed (via the edge
that maximizes the above ratio) until a local minimum is reached.
Vertices that reach the same local minimum are assigned to the
basin associated with that minimum. This approach of tying a basin
to a local minimum and using traversals of the nngraph to assign
vertices to basins was first proposed in [8]. BD(nngraph) can be
considered a realization of unsupervised learning over a graph. The
method extracts non-overlapping clusters/basins without actually
reconstructing the underlying landscape, and so it does not support
visualization of the landscape.

2.2 MS(PCs): From a 2D Embedding to
Landscape Reconstruction and
Decomposition

MS(PCs) exposes basins in the landscape by first explicitly recon-
structing the landscape. Conceptually, the method “fills in” the
landscape via kernel regression, which infers energies of points on
the landscape based on energies of sampled points (computed struc-
tures) that are nearest neighbors. This filling is limited to points on
a 2d grid, which allows explicitly reconstructing and decomposing
low-dimensional embeddings of multi-dimensional and continuous
landscapes. Principal Component Analysis (PCA) [17] is used to
extract low-dimensional structural coordinates of the landscape.
We note that PCA is shown effective for analysis of protein tertiary
structures in various applications of interest in computational biol-
ogy [9, 10, 18, 26]. MS(PCs) leverages an analysis of the cumulative
variance to assess the effectiveness of dimensionality reduction in
PCA and reduces the structures to two-dimensional points consist-
ing of the first two principal components.

Given energy-evaluated (scored) two-dimensional points,MS(PCs)
computes the alpha convex hull containing the points via the
method described in [27]. On a 2d grid (over PC1 and PC2) within
the hull, energies are estimated using kernel regression, which is a
smoothing technique that calculates the weighted average of the
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Figure 1: Tertiary structures are embedded via PCA, and the
embedded landscape is reconstructed and decomposed into
basins. Critical points are shown in different colors. The
basin boundaries are drawn in black.

energies within a small neighborhood of a given point, where the
weights are determined by the distance to the given point via a
bounded-support Gaussian kernel. The MS complex described in
Section 1.1 is then constructed over the grid points. In the case of
𝑑 = 2, local minima are located in the bottom of the basins, and the
basin boundaries are descending manifolds with saddle points as
the origins, which include integral curves connecting local maxima
and adjacent saddle points on the boundary (see Section 1.1).

Grid points with the same destinations in the path flows are
grouped into the same basins. The grid points on the boundaries
are connected using polygons for visualization purpose. The basins
and their boundaries give hierarchical decomposition of the entire
energy landscape. One such decomposition is shown in Fig. 1 for
one of the test cases employed in this paper.

2.3 MS(nngraph): From a Multi-Dimensional
Embedding to Landscape Reconstruction
and Decomposition

MS(PCs) provides much richer information than BD(nngraph). It
shows local minima, basins, saddles, and local maxima. However,
this information is drawn from a 2d embedding of the structural
data. Much detail is lost. It is possible, for instance, that what are
depicted as separate basins may indeed overlap in higher dimen-
sions. Extending this method to higher dimensions is not as straight-
foward as increasing the dimensionality of the grid. Doing so brings
a combinatorial explosion of the grid points and makes the method
infeasible. Since the grid is the core connectivity structure that is

the bottleneck of Morse-Smale complex-based approach, this bottle-
neck is what we address in MS(nngraph). The essential realization
is that the nngraph in BD(nngraph) better captures the connectivity
of the structure data, even though BD(nngraph) does not leverage it
for more than detection of basins. Therefore, in MS(nngraph), we ef-
fectively construct a Morse-Smale complex over an nngraph. Let us
describe this construction first before relating the rest of the details
on the novel MS(nngraph) method that hybridizes BD(nngraph)
and MS(PCs).

2.3.1 Morse-Smale complex over nngraph. The Morse-Smale com-
plex constructed for a smooth function 𝑓 can also be extended
on a discrete set. We exploit the ideas laid out in [13] to do so.
With a given data set 𝑋 = {𝑥1, · · · , 𝑥𝑛} ⊂ R𝑑 and the associated
energy values 𝑌 = {𝑓 (𝑥1), · · · , 𝑓 (𝑥𝑛)}, one can first build an nn-
graph of 𝑋 , denoted by 𝑛𝑛𝑔𝑟𝑎𝑝ℎ(𝑋 ), and then use 𝑛𝑛𝑔𝑟𝑎𝑝ℎ(𝑋 )
and 𝑌 to compute the Morse-Smale complex, which partitions the
set 𝑋 . The key is to estimate the gradient at each 𝑥𝑖 and find the
path following the gradient. For each 𝑥𝑖 , define its adjacency as
adj(𝑥𝑖 ) = {𝑥 𝑗 : 𝑥𝑖 ∈ 𝑛𝑛𝑔𝑟𝑎𝑝ℎ(𝑥 𝑗 ), 𝑥 𝑗 ∈ nngraph(𝑥𝑖 )}. Then from
𝑥𝑖 , the steepest ascent move is argmax𝑥 𝑗 ∈adj(𝑥𝑖 ) (𝑓 (𝑥 𝑗 )), and the
steepest descent move is argmin𝑥 𝑗 ∈adj(𝑥𝑖 ) (𝑓 (𝑥 𝑗 )). The trajectories
tracking the steepest ascent and descent directions arrive at their
destinations and origins, respectively. Each point in the set 𝑋 is
then clustered into one of the estimated Morse-Smale complex,
depending on the pair of its destination and origin.

To retain the ability to visualize the Morse-Smale complex in
lower dimensions, we construct the nngraph over the top 𝐾 PCs
obtained via preprocessing of the (structure) data set 𝑋 with PCA.
Note that the definition provided above makes no such demands.
The main idea is that by utilizing the top 𝐾 PCs, one can choose
to visualize the constructed Morse-Smale complex over the top
𝑃𝐶𝑠 , thus obtaining the benefit of visualization for interpretation
of what the organization of the structure space may reveal. Yet,
by choosing the 𝐾 PCs that provide a desired cumulative variance,
MS(nngraph) preserves a desired level of the structural variability,
reconstructs the space spanned by the 𝐾 principal components, and
extracts the basins, saddles, local maxima, local minima (the entire
Morse-Smale complex). The extracted 𝐾-dimensional basins can
be projected onto the space spanned by the first two PCs for the
purpose of visualization. It is worth noting that, since the original
basins have dimensions higher than 2, the projected basins may
have overlaps. We use the average energy (over structures assigned
to a basin) to represent the overall energy of a basin, and plot the
projected basins with the highest energy at the deepest bottom, as
we are more interested in basins with low energy values.

2.3.2 Advantages of MS(nngraph) over other methods. Our new
method MS(nngraph) provides a new flexible framework to handle
the curse of dimensionality in the high-dimensional energy land-
scape data (and more generally in high-dimensional data) as well
as to provide informative visualization of the decomposition of
energy landscape at the same time. Compared with BD(nngraph),
MS(nngraph) utilizes the low-dimension embeddings for which the
user can directly choose the amount of the preserved variance. The
dimension reduction technique significantly lowers the possibility
of overfitting the Morse-Smale complex and the space complexity
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of the data used in the computation of the nearest graph. Similar
to MS(PCs), the new method MS(nngraph) also uses PCs, but it is
not based on kernel smoothing evaluated on grid points, which
computationally restricts the MS(PCs) method from being applied
to PCs of much more than 2 dimensions in practice. In addition,
the visualization outcomes of the new method, MS(nngraph), are
projections from the Morse-Smale complex of the 𝐾-dimensional
PC space, which more closely reflects the structure of the original
energy landscape. Only based on the first two PCs, the visualization
using MS(PCs) runs a higher risk of oversimplifying the structure
of energy landscapes, although the Morse-Smale complex decom-
position using MS(PCs) is non-overlapping.

2.4 Implementation Details
BD(nngraph) and MS(PCs) are applied with default parameters as
described in [1, 2]. Alignment of structures to remove rigid-body
motions is implemented via BioPython [11]. PCA is carried out
with the Python sklearn library. The construction of the nngraph
over the𝐾 PCs is also implemented in Python. The R package msr is
used to extract the Morse-Smale complex from the nngraph. In our
experiments, we set 𝐾 = 10 and 𝑡 = 3, where 𝑡 is the threshold for
the persistent level. Different persistence values in the Morse-Smale
complex are investigated, but they do not appreciably impact the
results; results shown are obtained with a persistence value of 3.
The construction of the nngraph in BD(nngraph) takes between
26 minutes and 2.5 hours depending on the size of the dataset
(50 − 60K structures, 53 to 93 amino acids). This dominates the
running time; the time to search for local minima and map vertices
to these minima is insignificant. In MS(PCs), the running time is
dominated by the computation of the alpha-convex hull and kernel
smoothing of energy calculation on the grid, in addition to basin
identification, resulting in a total of 6 to 21 minutes per dataset.
The construction of the Morse-Scale complex in MS(nngraph) takes
only about 5 minutes on each dataset. The additional visualization
component in MS(nngraph), if desired, takes 40−60 minutes per
dataset.

3 RESULTS
Results are presented on a dataset of 10 proteins of varying folds
(𝛼 , 𝛽 , 𝛼 + 𝛽 , and 𝑐𝑜𝑖𝑙 ) and lengths (53 to 93 number of amino acids).
To generate tertiary structures, an amino-acid sequence is used as
input to the Rosetta ab-initio protocol [15]. This is executed in an
embarrasingly parallel manner to obtain an ensemble of 50, 000 −
60, 000 structures per protein.

MS(PCs) and MS(nngraph) rely first on a PC-embedding of the
probed structure space of a protein. Table 1 lists the cumulative
variance captured by the top PCs in each protein/test case. In 5/10
of the test cases, the top two PCs capture 50% or more of the vari-
ance; this threshold is met by 7/10 of the test cases with three PCs.
This suggests that visualizing reconstructed landscapes on two di-
mensions, PC1 and PC2, allows capturing a major portion of the
structural diversity in the decoy ensemble data. More importantly,
Table 1 shows that the top ten PCs capture over 70% of the cumula-
tive variance on all the test cases, and over 80% on 6/10 of the test
cases.

3.1 Visualization of Reconstructed and
Decomposed Landscapes

We first provide in Fig. 2 a visual demonstration of the landscapes
reconstructed by the proposed MS(nngraph) method on selected
proteins. As described in Section 2, while the landscapes are recon-
structed over the space spanned by the top ten PCs, the visualization
utilizes an embedding over the top two PCs. Polygons, as described
in Section 2, approximate basins for visualization. Color-coding is
carried out via the Rosetta all-atom energy (score12). The blue-to-
red color scheme indicates low-to-high energies.The energy associ-
ated with a basin is the average over decoys in the basin. Results
that use the minimum energy instead are similar and not shown
in the interest of space. The three largest basins are highlighted by
drawing their boundaries in red.

Visualizing the landscape probed by a conformational sampling
agorithm is informative. For instance, Fig. 2(a) shows that on LCI-
CPA2 there are two distal regions in the landscape (and structure
space) with deep basins. One region contains the larger basins (as
annotated). Our quantitative evaluation below indicates that the
larger basins contain structures similar to a known native structure
and so possibly comprise the known native state. Could the low-
energy basins in the other region be artifacts of the energy bias in
Rosetta, or could these basins indicate alternative, long-lived states
yet to be probed in the wet laboratory? Fig. 2(b) shows that on
ArgR (DNA-binding D), an entire region of deep basins is probed
by Rosetta, but (as the evaluation below shows), none of these are
anywhere near the native state. On other proteins, such as L (B1),
many regions (see Fig. 2(c)) are empty. These are not probed by
Rosetta, indicating possible inherent bias in the algorithm or the
energy function.

3.2 Relating Basins to Known Active States
We limit our analysis to known states we can find in the Protein
Data Bank (PDB) [4]. For each of the proteins listed above, we can
find one native structure, which we indicate by its 4-letter code
(the PDB id), with the chain name in parentheses (for PDB entries
that contain multiple chains). For instance, 1dtj(a) is the PDB id
corresponding to a known native structure of the Nova-2 protein.
We focus on a top basin that can be automatically selected via
ranking on attributes, such as size (ordering basins from largest to
smallest), size and energy (ranking first by size and then by energy,
where the energy of a basin is measured as the average over the
structures it contains), Pareto rank (PR; low to high) over the two
criteria of size and energy, and by PR and Pareto count (PC; high to
low) over these same two criteria (ordering basins with the same
PR by PC). The last two rankings use Pareto-based metrics that
employ the concept of dominance (related in the Appendix). A
selected basin is then compared to a known native structure based
on the fraction of structures in it that are within some proximity
of the native structure. We refer to this metric as purity. Proximity
is evaluated based on RMSD (over CA atoms), using a per-target
threshold (we use default values as in BD(nngraph) [2]).

Fig. 3 relates the purity of the largest basin in (a) and the lowest-
PR basin in (b) over basins detected by each of the three meth-
ods; the Appendix relates the top basin according to two more
attributes. Fig. 3 (and the results related in the Appendix) shows that
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Table 1: Testing dataset (protein names) are listed in Column 1. Domain names are in parentheses. Columns 2-5 list the cu-
mulative variance captured by the top 2, 3, 5, and 10 PCs. Column 6 shows the number of PCs (over the total number of PCs)
needed to reach 90% cumulative variance.

Name Var1−2 Var1−3 Var1−5 Var1−10 #PCsVar=90% / #PCs
LCI-CPA2 [29] 33.4% 43% 55.6% 76.5% 18/183 (10%)

IF3 [5] 61.7% 67.6% 76.8% 87.3% 13/264 (5%)
Nova-2 [16] 59.7% 66.1% 75.9% 87.1% 13/222 (6%)
L (B1) [25] 62.4% 72.1% 80.5% 90.3% 10/192 (5%)
Sso7d [33] 53.2% 63.4% 75.7% 88% 12/192 (6%)

Rubredoxin [3] 36.5% 45% 58.4% 78% 19/159 (12%)
Sac7d [12] 49.9% 60.4% 74.9% 86.6% 13/198 (7%)

MuA (Ibetagamma D) [31] 39% 50.4% 65.2% 83.5% 15/279 (5%)
ArgR (DNA-binding D) [34] 42.9% 53.4% 68.2% 83.2% 15/234 (6%)

HiPIP [28] 24.9% 34.1% 49.3% 71.5% 21/186 (11%)

(a) LCI-CPA2 (b) ArgR (DNA-binding D)

(c) Sso7d (d) L (B1)

Figure 2: MS(nngraph)-reconstructed and basin-decomposed landscapes are shown for selected proteins. The visualization is
over PC1 and PC2. The contour lines show the basin boundaries. The largest three basins are highlighted with red boundaries.

BD(nngraph) yields basins of highest purity, followed byMS(nngraph)
and MS(PCs), in this order. This is expected, as BD(nngraph) oper-
ates over the original dataset, whereas the other two methods op-
erate over lower-dimensional embeddings. However, MS(nngraph)
improves upon MS(PCs), as it considers more dimensions.

3.3 Quality of Detected Basins
Due to the concept of a local neighborhood, we tie the quality
of a basin to the homogeneity of structures in it. A method that
does not introduce deformations, unlike MS(PCs), should obtain
structurally-homogeneous basins. Fig. 4(a) shows the width of the
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Figure 3: The basins detected by each of the three methods (color-coded in different colors) are ordered by different criteria; (a)
size, (b) PR. The purity of the top basin is shown in each panel over the datasets. The names of some proteins are abbreviated
in the interest of space.

largest basin detected by each method; width is measured as the
average over the RMSDs between pairs of structures in a basin. Only
the CA atoms of structures are used for the RMSD calculations. The
"width" metric gives some insight into the homogeneity (conversely,
the degeneracy) of a basin. Homogeneity is expected to suffer in
MS(PCs) due to the assignment to a basin of structures based on
a 2d embedding. Fig. 4(a) shows this to be the case. It shows that
MS(nngraph) improves upon MS(PCs) due to the increased number
of dimensions. As expected, by operating over the original dataset,
BD(nngraph) has the more homoegeneous basin(s). On many of
the datasets, however, the width of the largest basin obtained by
BD(nngraph) is very similar to that obtained byMS(nngraph). These
observations are reaffirmed in Fig. 4(b), which shows the width
averaged over all basins detected by a method.

3.4 Runtime Comparison
Utilizing only top 𝐾 PCs not only handles the curse of dimension-
ality while preserving informative structural information in the
high-dimensional energy landscape (as shown in Section 3), it also
saves us valuable CPU time. To elaborate on this topic, we show

here a runtime comparison for nngraph construction (BD(nngraph))
using high-dimensional data and using only top 10 PCs. Note that,
top 10 PCs retain 71.5% (HiPIP) to 90.3% (L(B1)) cumulative variance.

Table 2 compares the time required by BD(nngrph) on high-
dimensional data with the time spent on 10 PCs for constructing
nngraph. It is evident, as shown in columns 2 and 3, that the savings
in time cost is significant. Runtime on high-dimensional data are
at least more than 4 times (Sso7d) than runtime on 10 PCs. For in-
stance, BD(nngrpah) requires more than 10 times (LCI-CPA2) CPU
time than the time it requires for 10 PCs. The significant runtime
savings using only 10-dimensional embedding and being able to
retain important structural information show promise in uncov-
ering structural space sampled with a conformational sampling
algorithm by utilizing 𝑘-dimensional embedding.

4 CONCLUSION
The inspiration for the proposed MS(nngraph) method is the pro-
tein energy landscape. We anticipate the method may be of broad
interest in cross-cutting problems that necessitate characterization
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Figure 4: (a) The width of the largest basin (among basins detected by the different methods) is shown here, measured as the
average RMSD over pairwise RMSDs between the structures in the basin. (b) shows the average width over all basins detected
by a method. The names of some proteins are abbreviated in the interest of space.

Table 2: Runtime comparison. Protein names are listed in Column 1. Column 2 and 3 list runtimes incurred by BD(nngraph)
on high-dimensional data and on 10 PCs, respectively. Runtimes are in minutes (m) and seconds (s).

Name Runtime (High Di-
mension)

Runtime (10
PCs)

LCI-CPA2 [29] 81m 19s 8m 26s
IF3 [5] 80m 2s 7m 28s

Sso7d [33] 61m 10s 13m 24s
MuA (Ibetagamma D) [31] 74m 49s 14m 43s
ArgR (DNA-binding D) [34] 67m 32s 14m 59s

of fitness and optimization landscapes, so we make it available upon
request.

In this paper, we choose to employ 10-dimensional embeddings
for MS(nngraph) and, specifically, on embeddings obtained via PCA.
Higher-dimensional embeddings may be desired in other applica-
tions to reach a desired cumulative variance in the context of PCA.
The increase in dimensionality impacts the construction of the
nngraph, as it affects the distance metric employed in the nearest-
neighbor calculations. This impact becomes significant when ap-
proaching hundred and more dimensions. The embedding does
not have to be linear or rely on PCA. The method can be applied

to embeddings obtained via other compression models, including
non-linear ones. We will investigate these directions in future work,
motivated by discoveries on specific proteins of interest with possi-
bly multiple stable and semi-stable states.

Finally, as some of the visualization-based analysis indicates,
MS(nngraph) may be useful in comparing landscapes and struc-
tural states probed by different conformational sampling algorithms
and different energy functions. In doing so, the method may assist
researchers in highlighting inherent sampling biases and, more
importantly, assist in the design of more powerful conformational
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sampling algorithms and more accurate energy functions for molec-
ular modeling.
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