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Abstract—A central challenge in protein modeling research and protein structure prediction in particular is known as decoy selection.
The problem refers to selecting biologically-active/native tertiary structures among a multitude of physically-realistic structures
generated by template-free protein structure prediction methods. Research on decoy selection is active. Clustering-based methods are
popular, but they fail to identify good/near-native decoys on datasets where near-native decoys are severely under-sampled by a
protein structure prediction method. Reasonable progress is reported by methods that additionally take into account the internal energy
of a structure and employ it to identify basins in the energy landscape organizing the multitude of decoys. These methods, however,
incur significant time costs for extracting basins from the landscape. In this paper, we propose a novel decoy selection method based
on non-negative matrix factorization. We demonstrate that our method outperforms energy landscape-based methods. In particular, the
proposed method addresses both the time cost issue and the challenge of identifying good decoys in a sparse dataset, successfully
recognizing near-native decoys for both easy and hard protein targets.

Index Terms—Decoy selection, non-negative matrix factorization, protein structure prediction, protein model quality assessment.
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1 INTRODUCTION

Protein molecules are ubiquitous in the cell and partic-
ipate in virtually all cellular processes. Their central role
continues to motivate research in the wet laboratory in un-
derstanding protein function. Due to the central role that the
three-dimensional/tertiary structure plays in governing the
biological activity of a protein [1], determining biologically-
active/native tertiary structures of a protein is often a first,
critical step to decoding protein function [2]. Resolving
tertiary protein structures in wet laboratories is challenging
and costly, and manifests itself in a large disparity between
millions of protein-encoding gene-sequences and the far
lesser number of experimentally-resolved native structures
(147, 193 as of December 2019); this disparity has prompted
complementary approaches in dry laboratories. Template-
free protein structure prediction (PSP) methods address the
most challenging setting of novel protein sequences with no
known structural templates from homologous sequences [3].

Template-free PSP methods generate many low-energy
three-dimensional/tertiary structures under the assumption
that near-native structures are more likely to be associated
with low energies. This assumption is based on seminal
discoveries by Anfinsen et al [4], but the energy functions
employed in silico are semi-empirical and inherently biased.
Research has shown that energy is an unreliable indicator of
nativeness [5]. For this reason, identifying one or more near-
native structure(s) from an ensemble of decoys generated by
a template-free method, a problem known as decoy selection,
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remains an outstanding challenge in protein modeling re-
search and, broadly in computational structural biology.

In decoy selection methods that discriminate based on
the energies are moderately effective; hence, independent
estimation of the ”near-nativeness” of decoys has become
a necessity; the central question is what makes a decoy
near-native? Accurate prediction of near-native decoys is
essential in advancing the state of protein structure pre-
diction, which prompted the community-wide experiment
”Critical Assessment of Techniques for Structure Prediction”
(CASP) to include decoy/model quality estimation, estima-
tion of model accuracy (EMA), as an independent category
in CASP 7 (2006). EMA methods are assessed using their
ability to identify best model from several available. GDT-TS
is one such popular metric [6], which we use among other
metrics in this paper. To that end, we propose multi-model
(clustering-based) methods to identify the best model.

Clustering-based (multi-model) methods have domi-
nated the EMA category until recently. These methods em-
ploy the hypothesis that decoys are randomly distributed
around the ”true” answer (the native structure), and so a
consensus method is likely to discover near-native decoys.
The hypothesis is flawed, and its veracity is keenly tied
to the quality of the distribution of decoys generated by
a structure prediction method. In particular, the sparsity of
good-quality decoys for a hard target makes it challenging
for a clustering-based method to identify near-native de-
coys [7]. In response, single-model methods have emerged.
These methods predict the quality of one decoy at a time us-
ing physics-based [8], knowledge-based [9] energetic prop-
erties of decoys, or a combination of both, and often employ
machine learning techniques [10]. While steadily improving,
the performance of single model methods may depend
on the specific evaluation score that they are trained on.
Consensus methods are more balanced in this regard [6].
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Since its inception in CASP7, EMA methods are steadily
improving in accuracy estimation and best model selection.
EMA methods in CASP13 showed clear progress. Several
outperformed the best ones from previous CASPs; the av-
erage GDT-TS losses for the best consensus method and
the best single model methods were 0.052 and 0.075, re-
spectively [11]. One of the driving forces of this progress
is the recent application of deep learning [6]. However, no
EMA method is able to always select the best model. The
top performing groups in the recent CASP still failed to
precisely estimate the accuracy of models and select the
top model for some hard targets [6]. The potential for more
improvement is significant for hard targets. Additionally,
the decoys generated by recent application of deep learning
methods also pose a challenge for EMA methods [11].

A recent line of work leverages the concept of energy
landscape for decoy selection via basin selection, using
either unsupervised [12] or supervised learning [13]. En-
ergy landscape-based methods are shown to outperform
clustering-based methods that do not take into account de-
coy energies. However, they incur significant time costs as-
sociated with reconstructing the landscape and identifying
the best basins/clusters which motivated us to investigate
an alternative method for decoy clustering [14]. Inspired by
the success of non-negative matrix factorization (NMF) [15]
in various applications of computational biology, such as,
clustering genes for molecular pattern discovery [16] as well
as discovering mutational signatures (as latent variables) in
human cancer [17], we embarked on using NMF to cluster
decoys for decoy selection.

While various clustering-based methods have been em-
ployed to cluster decoys for decoy selection, the inherent
property of NMF to extract latent structures and hidden
patterns to aid decoy selection is yet to be explored. NMF
is an unsupervised, parts-based learning methodology that
has a number of applications, including pattern recognition,
dimensionality reduction, feature extraction, text mining,
sparse coding, multimedia data analysis, speech recogni-
tion, information retrieval, social network analysis, etc. De-
tailed reviews can be found in Ref. [18], [19].

In this paper, we propose a novel decoy selection
framework using NMF. The key insight leveraged here
is that, often, decoy selection methods use many energy-
based, consistency-based, and contact-based decoy charac-
teristics/features. These features are used to design ma-
chine learning approaches that identify the best decoy in
an ensemble. The occurrence of interactions or overlaps
between the features in intra- or inter-categories (energy-
based, consistency-based, or contact-based) is a concern. A
preliminary investigation in [20] demonstrated the promise
of an NMF-based approach. Specifically, we showed that
the latent features, ingrained in the feature matrix describes
an ensemble of decoys, an effective tool to cluster decoys
and discover near-natives. We showed that NMF extracts
the latent features underlying the feature matrix of a decoy
ensemble for decoy selection as a way to identifying the best
group of near-native decoys as well as the best decoy.

Building on these initial findings, in this paper we pro-
pose a new strategy that exploits decoy-specific character-
istics to select the best group of decoy, and the best decoy
from the selected group. We also perform a statistical signif-

icance test to find the best decoy selection method. Detailed
analysis of results are also carried out with the help of
illustrations to provide more insights into the inner mecha-
nisms of NMF for clustering and for subsequent results. Our
analysis exhibits that NMF-based methods outperform en-
ergy landscape-based methods and a state-of-the-art EMA
method MUFOLD-CL [21]. Encouraging results with regard
to the quality of selected decoys indicate overall utility and
promise of NMF in furthering decoy selection research.

2 RELATED WORK

Protein model accuracy estimation, also known as decoy
selection, has been a part of protein structure prediction
since its infancy [22]. The energy function that the structure
prediction methods optimize performs the initial estimation
of model accuracy. The insufficient capability of purely
energy-based functions in determining the ”nativeness” of a
decoy led to limited success in accurately predicting decoy
quality [23]–[25]. Due to unsatisfactory decoy selection per-
formance, multitudes of decoy selection methods emerged
based on different types of features and learning strategies.
These methods can be divided into three categories: single-
model methods, multi-model methods, and quasi-single
methods. Many of these methods utilize various unsuper-
vised and supervised machine learning techniques. All of
these methods explore features based on characteristics of
primary amino acid sequence, secondary structures, and
energy-evaluated three-dimensional structures (decoys).

Single-model decoy selection methods estimate quality
of one decoy at a time [26]. These methods either develop
a statistical scoring function or employ a machine learning
technique for selecting the best decoy(s) from a decoy set.
Both the scoring function and the machine learning model
rely on a diverse collection of either physics-based [27]–[29]
and/or knowledge-based [30]–[32] features with the later
being more successful in discriminating good decoys (near-
natives) from bad (non-natives) ones [33], [34].

Clustering-based methods are at the heart of multi-
model methods [35]. These methods rely on the consensus
in a decoy set. The general strategy is to group the decoys
and select the best k decoy-groups as prediction. Multi-
model methods dominated the accuracy estimation category
of biennial assessment of CASP until recently [36]. Single-
model methods progressed to a point where these methods
are on par or more successful in selecting the best decoy
from a decoy set [37]. Diverse and ever-increasing number
of features and continually improving supervised machine-
learning techniques are the key ingredients in the success of
single-model methods. Quasi-single methods combine the
approaches of single-model and multi-model methods [38],
[39]. The general strategy is to select some high-quality
decoys as a reference. The rest in the decoy set are then
compared with the reference decoys for quality estima-
tion [40]. Research shows that quasi-single methods can
improve upon single and multi-model methods [41]–[43].

Machine learning techniques proved to aid both multi-
model and single-model methods. Decoy selection litera-
ture shows the use of a variety of ML techniques such as
Random Forest [44], Support Vector Machines [45], [46],
Neural Networks [47], [48], and ensemble methods [49].
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Recently, the works in [50], [51] show the application of
supervised and unsupervised machine learning techniques
for decoy selection exploiting the energy landscapes of the
protein ensembles. Great success of deep learning models in
a variety of research areas such image recognition inspired
research in decoy selection to employ these models for
decoy selection as well. For instance, deep convolutional
neural network has been quite successful in a number of
single-model methods [48], [52]–[55]. Despite the enormous
success, deep learning-based methods need to fulfill some
specific requirements such as access to a large amount
of data for accurate prediction. Machine learning-based
methods, specially the supervised learning models, need
to deal with several challenges such as imbalanced data
distribution and lack of enough labeled data.

NMF has seen success in computational biology [56],
[57]. For instance, Greene et al. [58] used NMF for clustering
protein-protein interactions and Brunet et al. [16] used NMF
to elucidate cancer subtypes. NMF has been used in a
variety of computational biology applications: identifying
distinct genomic subtypes [59], discovering functionally re-
lated genes [60], for protein sequence motif discovery [61],
as well as for successfully decomposing the largest available
dataset of human cancers and identifying cancer mutational
signatures [17]. To the best of our knowledge, we are the
first to employ NMF for decoy selection. Our preliminary
results of NMF for decoy selection [20] showed promising
results on two sets of proteins.

3 METHODS

In this paper we address the decoy selection problem as
follows. Given a decoy ensemble, we group the decoys,
select a decoy group/cluster, then select a representative
decoy from the selected decoy-group. Our aim is to find
the best decoy group and the best decoy. The best group is
populated with the maximum number of good decoys (true
positives, near-natives) compared to the size of the group.
A near-native is structurally similar to the known native
structure. Section 3.6 explains how near-natives are defined.
The best decoy is close to the native. We employ NMF to
group the decoys into different clusters. NMF provides a
parts-based representation of the original features. Due to
the non-negativity property, the parts produced by NMF
can be interpreted as a subset of of the elements that tend
to occur together in a sub-part of the dataset [62]. This phe-
nomenon potentially makes NMF a good candidate to build
a clustering-based decoy selection method. We leverage this
interpretation of NMF to devise a NMF-based consensus
method for grouping decoys and find the decoy-group that
represents the near-native.

Fig. 1 shows our framework for NMF-based decoy se-
lection. The decoys are colored in red, green, and blue
which indicate the energy levels of the decoys. Red decoy
are of higher energy. In contrast, blue decoys are of lower
energy. Green indicates a level somewhere in between red
and blue. First, we extract features from the decoys and
store them in an initial feature matrix, X . In the next
step, NMF decomposes the feature matrix into two non-
negative matrices, W and H . The first factor matrix W
contains the basis patterns. Linear combinations of these

basis patterns describe and reconstruct each decoy in the
initial matrix. These basis patterns define different decoy-
groups or clusters. We assign a decoy d to a decoy-group G
if d is closest to the basis pattern representing decoy-group
G. Next, we select a decoy-group by applying our proposed
decoy selection methods and evaluate its ”near-nativeness”.
To assess the ”near-nativeness” of a group, we determine
how many near-native decoys populate the group. Our aim
is to select a group which is populated by mostly true-
positives (near-natives) and very few to zero false-positives,
thereby resulting in a high precision/purity. We explain
the evaluation metrics in Section 3.7. Finally, we select a
representative decoy from the selected cluster/group as an
approximation of the best decoy in the decoy set. Our aim
is to find the best decoy from the selected group.

3.1 Feature Extraction
First, we extract 39 features from the decoys of each target
protein. Of these 39 features, 9 are potential energy-based,
17 are Rosetta REF2015 energy terms, 9 features are based
on the consistency between the actual and predicted val-
ues of decoys, and 3 are contact-based scores. One more
feature comes from Rosetta Score12 total energy. The poten-
tial energy-based and consistency-based terms are used in
a Support-Vector-Machine-based single-model decoy selec-
tion method [63].

3.1.1 Features Based on Energy Functions
Twenty seven features fall under this category. Eighteen
of these features are collected from Rosetta REF2015 and
Score12 energy functions. We use raw values of 17 terms
from Rosetta REF2015 energy function. We also use REF2015
and Score12 total energy. The total energy values are com-
puted using the weighted energy terms.

The 9 potential energy terms are following. We use a
side-chain orientation-dependent potential RWplus [64];
a distance-dependent potential DFIRE [65]; dDFIRE [66]
adds orientation-dependency to DFIRE; three features from
GOAP [67] which is a distance and orientation-dependent
all-atom potential. GOAP contains DFIRE and an angle-
dependent term. We use the overall GOAP potential, the
DFIRE term, and the angle-dependent term as three fea-
tures. OPUS-PSP [68] is an orientation-dependent all-atom
potential that includes an orientation-dependent packing
energy term and a Lenard-Jones repulsive energy term. Both
of these energy terms and the total energy make up three
more features.

3.1.2 Features Based on Structural Consistency
We use nine features based on structural consistency. Four
of these are secondary structure-based features. We use
PSIPRED to compute the secondary structure of each target
from their primary sequence. We extract the secondary
structure of the decoys for each protein using DSSP. We
keep track of the number of matches in secondary structure
elements (beta sheets, alpha helixes, and coils) between
PSIPRED and DSSP calculations. We normalize the match
counts for the three secondary structure elements by the
length of the corresponding sequence, and use the normal-
ize match counts as features. The fourth feature is computed
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Fig. 1. Illustration: Framework of the proposed NMF-based decoy selection method.

as follows. When there is a match between the PSIPRED
and DSSP calculations, we store the score of each secondary
element computed by PSIPRED. We add these scores and
use the total score as a feature.

We compute 5 features based on solvent accessibility. To
determine the buried (B) or exposed (E) state of a residue
(with respect to solvent accessibility), we use RaptorX,
which is a Deep Convolutional Neural Fields (DeepCNF)-
based web server [69]. We specify each residue as either
buried or exposed based on the probabilities computed by
RaptorX. We also calculate the relative solvent accessibility
of a residue of each decoy using DSSP. To specify a residue
as buried or exposed we divide the calculated solvent
accessibility by the total solvent accessibility [70]. A cut-
off value of 25% has been used in this process. Two more
features are computed from the number of B and E matches
computed by RaptorX and DSSP. We use the length of the
corresponding sequence to normalize these features. When
there is a mismatch between RaptorX and DSSP results, we
note the corresponding probabilities. We use the combined
probability as another feature. We also compute Pearson’s
correlation and cosine similarity between the number of
secondary structure elements and solvent accessibility states
computed from the primary sequence and from the decoys,
and use them as two features.

3.1.3 Features Based on Residue Contacts

We use 3 features based on contact scores. We use relative
contact order which is defined as the average sequence
distance between all pairs of contacting residues and nor-
malized by the total sequence length [71]. We extract two
more features by following the process mentioned in [72].
We use RaptorX-contact to predict the contacts from amino-
acid sequence. We treat the top 10 RaptorX-predicted con-
tacts as references. We determine true positives (TP), false
positives (FP), and False negatives (FN) from the decoys
using the top 10 pairs of amino acids. If these 10 pairs are
also found in contact in a decoy, we have a true positive.
False negatives increase when the top 10 pairs are not found
in contact in a decoy. Finally, false negatives are found if the
contacts in a decoy are not found in the reference decoys.
We calculate precision and recall and use them as features;
precision is defined by TP/(TP+FP), and recall is defined as
TP/(TP+FN).

Fig. 2 shows the importance of the employed features.
Briefly, we calculate the importance of each feature using the
feature importances property of Random Forest algorithm
implemented in scikit-learn as RandomForestRegressor [73].
As described in greater detail below in Section 3.6, we
employ two datasets for evaluation, to which we refer as
the benchmark dataset and the CASP dataset. Fig. 2a shows
that features generated by the Rosetta template-free protocol
play a crucial role in decoy-group selection for the bench-
mark proteins listed in Table 1. However, Fig. 2b shows that
this is not the case for the CASP dataset listed in Table 2. In
this case, the three most important features are the number
of matches in the alpha helixes, the backbone-backbone
hbonds distant in primary sequence, and the probability of
an amino acid at φ/ψ.

3.2 Non-negative Matrix Factorization
Non negative matrix factorisation is a widely used un-
supervised learning method for dimensionality reduction
and feature extraction. The non-negative data, a matrix of
dimensions features × samples, is factorized into two non-
negative low-rank matrix factors, W and H with a small
inner dimension K . For a given data X ∈ RF×N

+ (features
× samples), NMF approximates X with the product of W
and H , by minimizing the Frobenius norm (indicated by
||.||F),

ε = min||X −WH||2F
or, Xij =

∑K
s=1WisHsj + εij , where, εij is the error of the

approximation, which is normally distributed. In this way,
each column of X (representing a sample) is expressed as a
linear combination of the basis latent patterns (the columns
of W ) and its weights (the corresponding column of H),
Fig. 3. The non-negativity forces NMF to learn local parts
of the object (described in X) [74], hence, to extract easy
interpretable and sparse latent features, which makes NMF
a preferable technique when explainability is important.

NMF is underpinned by a statistical model of super-
imposed components (the number of these components is
equal to the size of the small dimension K) that can be
treated as latent features in Gaussian, Poisson, or other
mixture model [75]. NMF minimization (with a specific
distance metric ||...||dist) is equivalent to the expectation-
minimization (EM) algorithm. In this probabilistic interpre-
tation of NMF, the manifested variables are the columns
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Fig. 2. X-axis shows feature importance values. Y-axis shows feature names. Higher value indicates higher importance. a shows feature importance
on targets listed in Table 1 in Section 4, and b does so for targets listed in Table 2.

d1, ..., dN , of the matrix, X , generated by the latent vari-
ables, h1, ..., hK , that are the columns of the matrix, H .
Specifically, each observable xi is generated from a proba-
bility distribution with mean 〈di〉 =

∑K
s=1Wishs, where K

is the number of the latent variables [74]. Thus, the influence
of hs on di is through the basis patterns represented by the
columns of the matrix W , w1, ..., wK .

Fig. 3. Illustration of NMF decomposition of the feature matrix X. The
decomposition produces two factor matrices W and H. The columns of
W represent basis patterns. Each decoy di (column in feature matrix
X) is expressed as a linear combination of the basis patterns with
coefficients found in the corresponding column matrix H.

In our case, the basis patterns, represented by the
columns of the matrix W , can be thought of as pseudo-
decoys (not necessarily in the decoy ensemble) whose linear
combinations span the entire ensemble space. Then each
decoy is a linear combination of these pseudo-decoys with
coefficients given by the corresponding columns of matrix
H . The NMF optimization problem, min||X − WH||dist,
can be solved by various algorithms, such as the multiplica-
tive update [74], block principle pivot [76] and projected
gradient methods [77]. All these methods follow alternating
non-negative least squares [78], where in each iteration one
of the factors is fixed while updating the other factor.

3.3 NMF-Backed Decoy Groups

We construct decoy clusters/groups using the factors of
NMF on the decoy matrix. The decoy matrix is essentially
a feature matrix with features extracted from the decoys.
In the decoy matrix X , the rows correspond to the fea-
tures of decoys and the columns represent distinct decoys.
Therefore, each cell X(i, j) represents the i-th feature of j-
th decoy. To satisfy the non-negativity, we shift the negative
values of any feature in the feature matrix X into positive
space, and then apply NMF to the feature matrix.

The basis patterns, i.e., the columns of the matrix W de-
fine the decoy-groups backed by NMF. To identify the basis
pattern that a decoy di belongs to, we note the maximum

value of the corresponding hidden variable his (see Fig. 3).
A decoy di belongs to the group/cluster defined by the basis
pattern wi; basis pattern wi is associated with the maximum
value of the column his corresponding decoy di.

3.4 Decoy-Group Selection
Once the membership of each decoy to a given pattern wi

is established, we select a decoy group/cluster. The decoy-
groups are characterized by their associated metrics. We
compute two metrics. Each of these metrics are essential
for our decoy (group) selection, and we use these metrics
to name our methods. The first metric, median absolute
deviation (MAD), measures the spread of data in a cluster.
Lower MAD value indicates less variability. Another desir-
able property of MAD is its robustness against outliers. As
our methods rely on the principle of consensus.

3.4.1 NMF-MAD
Median Absolute Deviation (MAD) measures the variability
of data samples while not considering any application-
centric characteristics of the data samples. This metrics is
also resilient to outliers. Let C be a group and xi be a decoy
from C , then the MAD measure for C is defined as

MAD(C) = b ·median({dist(xi,median(C)) | xi ∈ C}),
where b is a constant scale factor that depends on the
probability density of the observed samples [79]. For each
group C , we compute the MAD score for all decoys in the
group and average the scores. The average MAD score is
the group's characteristic. Groups are then ranked based on
increasing MAD score and the top group is selected.

3.4.2 NMF-Rank
The second selection method is based on decoy-specific
characteristics. The average of the energies of decoys of a
group is defined as the average energy of the group. The
minimum energy of a group is defined as the minimum of the
energies of all decoys assigned to that group. The size of a
group is the number of decoys populating the group. Three
stages of rankings are performed on the groups to identify
the group that represents the near-native. The groups are
ranked based on increasing size and the top 5 groups
are selected. We rank the selected groups again based on
minimum energy and select the top 3 groups. Finally, these
3 groups are sorted in ascending order of average energy,
where the top group is offered as prediction.
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3.5 Decoy Selection
We use the concept of density score of a decoy [80] to select
the best decoy from the top decoy-group. Let a decoy-group
consists of n decoys and a decoy xi belongs to this group.
The density score Si of decoy xi is defined as following.

Si =

∑n
j=1 rij

n

The term rij denotes the pairwise root-mean-squared-
deviation (RMSD) between decoy xi and decoy xj (1 ≤
i, j ≤ n). We normalize the density scores so that the
scores are in a range between −1 and 1. We compute the
normalized density score S

′

i as following.

S
′

i =


(Si−Smedian)
Smedian−Smin

if Si < Smedian

0 if Si = Smedian
(Si−Smedian)
Smax−Smedian

if Si > Smedian

The terms Smin, Smax, and Smedian denote the minimum,
maximum, and median density scores, respectively. We
assign weight Wi to each decoy based on its normalized
density score. The weight Wi is defined by Wi = e−rS

′
i ,

where r is a constant. We use r = 5. We rank the decoys in
decreasing order of their weights, and offer the top decoy as
the best. If a decoy set is sparse decoy distribution, then a
group might consist of only two decoys. In such a scenario,
we offer the decoy with the lower energy as prediction.

3.6 Experimental Setup and Datasets
We evaluate our methods on two datasets. First, we evaluate
on 17 benchmark proteins of different folds and lengths
(number of amino acids, Table 1). We use Rosetta template-
free protocol to generate 50, 000 to 60, 000 decoys per target.
The 4-letter PDB id for each protein is in column 3. These
proteins represent easy, medium, and hard cases for Rosetta.
The difficulty levels (easy, medium, hard) are informed by
the performance of an incremental clustering-based decoy
selection. Details can be found in Ref. [12]. The size of
decoy ensemble |Ω| for each protein is in column 6. Column
7 is the minimum distance, min dist, between the decoys
generated by Rosetta and a known native conformation in
corresponding PDB entries. The min dist informs about the
varied performance that Rosetta achieves for each protein.

We set a threshold, dist thresh, to determine near-
natives. We use least-root-mean-squared-deviation (lRMSD)
to measure the distance between the decoys. All decoys with
lRMSD from the known native structure within dist thresh
are considered near-natives. lRMSD removes differences
due to rigid-body motions (translations and rotations in
space) and reports the minimum RMSD by finding an
optimal superimposition. The dist thresh is set on a per-
target basis as there are three different difficulty levels of
proteins. For the easy cases (min dist < 0.7Å), dist thresh
is set to 2Å. We set the range of dist thresh to {2, 4.5}Å
for medium-difficulty proteins. For hard proteins, we var-
ied dist thresh from 6Å to a value that ensures a non-
zero number of near-natives in a cluster generated by an
incremental clustering strategy [12]. Note, there are decoy
sets where the best decoy is more than 4Å away from the
native (e.g. hard targets). In such cases, we consider a decoy

TABLE 1
Testing dataset (* denotes proteins with a predominant β fold and a

short helix). The chain extracted from a multi-chain PDB entry is shown
in parentheses.

Difficulty # PDB ID Fold Length |Ω| min dist
(Å)

Easy

1 1ail α 70 53, 544 0.50
2 1dtd(B) α+ β 61 57, 810 0.51
3 1wap(A) β 68 51, 810 0.60
4 1tig α+ β 88 52, 071 0.61
5 1dtj(A) α+ β 74 53, 497 0.68

Medium

6 1hz6(A) α+ β 64 57, 449 0.72
7 1c8c(A) β∗ 64 53, 297 1.08
8 2ci2 α+ β 65 52, 187 1.22
9 1bq9 β 53 53, 629 1.31
10 1hhp β∗ 99 52, 128 1.52
11 1fwp α+ β 69 53, 103 1.56
12 1sap β 66 51, 182 1.75

Hard

13 2h5n(D) α 123 51, 450 2.05
14 2ezk α 93 50, 167 2.56
15 1aoy α 78 52, 189 3.27
16 1cc5 α 83 51, 666 3.95
17 1isu(A) coil 62 60, 329 5.53

to be a near-native if it is within a certain distance threshold
not too far away from the best decoy in the decoy set.

Besides, we consider 10 free modeling targets from
CASP 12 and CASP 13 (Table 2). Several of these targets
such as T0953s2, T0957s1, T1008 are determined as hard
targets [6], [81].

TABLE 2
CASP dataset. CASP target IDs are shown in Column 2. PDB ID,

Length, and Min RMSD over decoy dataset to corresponding native
structure are shown for each target. Native structures only available in

the CASP website [82] are marked by asterisks.

# Target ID PDB ID Length |Ω| min dist
(Å)

1 T1008-D1 6msp 77 55, 000 1.54
2 T0886-D1 5fhy 69 55, 000 4.92
3 T0953s1-D1 6f45 67 55, 000 5.81
4 T0960-D2 6cl5 84 55, 000 5.98
5 T0898-D2 ** 55 43, 435 6.0
6 T0892-D2 5nv4 110 36, 860 6.62
7 T0953s2-D3 6f45 77 55, 000 7.52
8 T0957s1-D1 6cp8 108 45, 000 4.91
9 T0897-D1 ** 138 25, 000 8.30
10 T0859-D1 5jzr 113 40, 000 9.06

We use the NMF ifrom scikit-learn with Non-negative
Double Singular Value Decomposition (NNDSVD) initial-
ization. We use 200 iterations with the default settings for
other parameters such as Coordinate Descent solver and
Frobenius norm. We vary k (number of components) from 5
to 38, then select the best-performing k. We use a publicly
available code provided in [83] to calculate TM-Score and
GDT-TS score. lRMSD loss of random selection is computed
by averaging over results obtained from 100 runs. Both
NMF-MAD and NMF-Rank take ∼ 3 minutes to finish.

3.7 Evaluation Metrics

The evaluation of near-native group/cluster selection fo-
cuses on purity (p) metric, which keeps track of the number
of near-native decoys relative to the size of a group. The
purity of group/cluster C is
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pc =
number of near-natives in C

|C|

where |C| denotes the size of group C. Purity resembles
the precision metric in machine learning. If we consider the
near-natives in a group/cluster as true-positives (TP) and
the non-native decoys as false-positives (FP), then purity
is TP

TP+FP . Here we are less concerned about the false
negatives as our objective is to maximize the possibility of
selecting a near-native decoy from a random draw from a
group, which entails maximizing true positives and mini-
mizing false positives in a group. The metric p penalizes a
group to the extent of the number of false positives present
in that group. Therefore, a group/cluster populated with a
large number of false positives will result in a low purity (p)
regardless of number of true positive population present in
that group. We also report the average lRMSD of all decoys
in a group as an indication of group/cluster quality.

We use lRMSD loss to evaluate the performance of the
best decoy selection. lRMSD loss is defined as the difference
in lRMSD between the selected decoy and the best decoy
in a decoy set. The best decoy is the one that is close to
the native. We report GDT-TS loss and loss in TM-Score
incurred by the selected decoy. GDT-TS is used in CASP to
assess EMA methods [6]. TM-score is also popular among
CASP participants. It eliminates protein size dependency
in score calculation [84]. GDT-TS loss and TM-Score loss
are defined similarly (the difference in score between the
selected decoy and the best decoy in the decoy set).

4 RESULTS

We present two sets of results. Decoy-group selection results
are presented in the next section, followed by the results for
the best decoy selection in terms of lRMSD loss, GTD-TS
loss, and loss in TM-Score.

4.1 Decoy-Group Selection Results

First, we compare the NMF-based decoy selection methods,
NMF-MAD and NMF-Rank, with four unsupervised basin-
based methods presented in [12]. The concept of energy
landscape has been used in [12] to construct decoy-groups.
First, basins are extracted from the underlying energy land-
scape of a protein structure space, and then decoy selection
is performed by ranking and selecting the basins based on
their size (Basins-Select(S)), and size and energy (Basins-
Select(S+E)). A Basin consists of decoys and is considered a
decoy-group/cluster. Specifically, Basins-Select(S) ranks the
basins based on decreasing basin-size and selects the top
basin. Basins-Select(S+E) ranks the basins first by decreasing
size and select top m basins where m is user-defined. Then,
the m basins are further ranked based on increasing energy
and the top basin is selected. Since the goals of obtaining
lower energy and larger size pose two conflicting objectives,
two Pareto-based selection methods are devised. Based on
the concept of dominance [85], two measures Pareto rank
(PR) and Pareto count (PC) are calculated. PR of a basin B
denotes the number of other basins that dominate B. PC of
a basin B denotes the number of other basins that B dom-
inates. Basins are ranked based on increasing Pareto rank

(Basins-Select(PR)) and the top basin is selected. Basins-
Select(PR+PC) first ranks the basins based on increasing PR
and then by decreasing PC, and selects the top basin. These
four methods are shown to outperform a cluster-based
decoy selection method in terms of the purity metric [12].

Fig. 4 compares NMF-MAD and NMF-Rank with four
basin-based unsupervised decoy selection methods on 17
proteins (5 easy, 7 medium-difficulty, 5 hard). All methods
perform comparably well on the easy test cases. For all the
5 test cases, NMF-MAD achieves 100% purity. NMF-Rank
shows more than 90% purity in 4 test cases, and more than
80% purity for the remaining. The four basin-based methods
achieve good purity scores (from 88% to 100%). However,
one method, Basins-Select(S+E), shows poor performance (
2.8% purity) even on an easy test case (1dtd(B) ).

For medium-difficulty proteins, NMF-MAD performs
better than basin-based methods in 4 out of 7 cases. The
decoy sets for medium-difficulty proteins contain com-
paratively lower number of near-natives. We present two
examples. For a decoy set of size 53, 629 (1bq9 ), only
1.6% of the decoys are near-natives. Similarly, we have
only 2.5% near-natives among the decoys in a decoy set
of size 52, 128 (1hhp). If we consider the near-natives as
true positives, our datasets are imbalanced, a challenging
problem in data mining and machine learning research.
Our proposed decoy selection methods largely overcome
this challenging problem and present us with reasonably
good decoy selection results. For instance, the best that the
basin-based methods achieve for the protein under PDB
entry id 1bq9 is 80.4% purity, whereas NMF-MAD achieves
100% purity. As another example, NMF-Rank scores 74.1%
for the protein under PDB entry id 1hhp. For the same
protein, the best purity score by any basin-based method
is 53.6%. NMF-Rank and NMF-MAD both outperform the
basin-based decoy (-group) selection methods.

The utility of NMF-based decoy selection methods can
be better realized when we consider the hard test cases.
The decoy sets for hard proteins exhibit the highest level of
sparsity. The number of near-natives found in these decoy
sets is the lowest (below 6%) among all three categories
of difficulty level. Additionally, the best quality decoy that
Rosetta could sample for these proteins is further away
from the native compared to the best decoys under the
category of easy and medium-difficulty proteins. For in-
stance, for the hard protein with PDB entry id 1isu(A),
the best decoy in the decoy set is 5.53Å from the native.
In contrast, the best decoy in the decoy set for the easy
protein with PDB entry id 1ail is 0.50Å from the native.
Template-free methods employs heuristics in their decoy
generation process. Energy function designed for template-
free methods contain inherent bias that may steer away
the decoy generation process from an entire region of the
decoy space that may contain near-native/native decoys [2],
[86]–[88]. A lack of enough good quality decoys and the
resulting sparsity in the decoy set for hard proteins make
the task of decoy selection in template-free protein structure
prediction more challenging. For these challenging cases,
NMF-based methods significantly outperform basin-based
methods in 4 out of 5 test cases. For instance, NMF-MAD
achieves 100% purity for both the proteins with PDB entry
ids 1cc5 and 1isu(A), whereas the basin-based methods can
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Fig. 6. Comparison of two NMF-based decoy selection methods and MUFOLD-CL on CASP targets. y-axis tracks the purity of the top
basin/group/cluster predicted by each selection method, while x-axis tracks the ID of each target protein.

achieve 1.14% and 14.1% purity at best. On the hardest test
case, the protein with PDB entry id 2h5n(D), NMF-Rank
achieves 7.54% purity whereas the basin-based methods
are unable to capture a single near-native (0% purity).
Such an outstanding performance by NMF-based methods
on the hard test cases emphasizes the utility of NMF for
clustering/grouping decoys for decoy selection.

Fig. 5 compares NMF-MAD and NMF-Rank to a state-
of-the-art EMA method MUFOLD-CL on the dataset listed
in Table 1. MUFOLD-CL is a multi-model (clustering-based)
method that clusters decoys and then selects cluster repre-
sentatives [21]. Note that 1fwp and 2h5n(D) is absent in
Fig. 5 because MUFOLD-CL was unable to successfully fin-
ish execution for these two targets. MUFOLD-CL is outper-
formed by NMF-MAD in 12/15 and by NMF-Rank in 11/15
test cases. Additionally, NMF-MAD acheives significantly
better purity than MUFOLD-CL on 7 targets which implies
that the possibility of selecting a good decoy from NMF-
MAD-selected group is higher than that of MUFOLD-CL, in
case one is interested in more than one decoys rather than
only the best model/decoy.

Fig. 6 compares NMF-MAD, NMF-Rank and MUFOLD-

CL on the CASP targets. NMF-MAD and NMF-Rank out-
perform MUFOLD-CL in 10/10 and 8/10 test cases.

4.2 Decoy Selection Results

We compare NMF-MAD and MUFOLD-CL for best
model/decoy selection in Table 3 in terms of lRMSD loss,
GDT-TS loss, and TM-Score loss. We report the loss incurred
with random selection and the average lRMSD of the se-
lected group as baselines. Table 3 shows that the lRMSD loss
is below 1Å for 7 out of 17 test cases and below 4Å for 15
out of 17 test cases. One test case, a hard protein (2h5n(D) ),
NMF-MAD performs worse than random selection in terms
of lRMSD loss. For the rest of the test cases, NMF-MAD-
selected decoy is close to the best decoy available in the
decoy set compared to the random selection. For instance,
a randomly selected decoy for protein with PDB entry id
1ail resulted in 6.2Å lRMSD loss, while NMF-MAD-selected
decoy is only 0.65Å from the best decoy in the decoy set. For
protein 1fwp under the medium-difficulty category, lRMSD
loss due to random selection is 6.0Å, whereas NMF-MAD-
selected decoy is 0.72Å from the best decoy in the decoy set.
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Fig. 7. Decoys under each difficulty category (easy, medium, hard) selected by NMF-MAD are shown superimposed over known wet-laboratory
structures under PDB entry id 1tig, 1hz6(A), and 1cc5. The known native structure is colored in purple color, and the best decoy selected by
NMF-MAD is colored green. RMSD loss due to NMF-MAD for each selected decoy is reported in parentheses.

For the hard protein 1cc5, the decoy selected by NMF-MAD
is 1.93Å from the best decoy in the decoy set, whereas the
lRMSD loss due to random selection is 6.9Å. These results
emphasize the excellence of NMF-MAD.

Column 6 of Table 3 shows the average lRMSD of the top
clusters/decoy-groups for all test cases. The average lRMSD
is below 4Å for 9 out of 17 test cases. This result implies
that NMF-MAD is capable of selecting good clusters/decoy-
groups that comprise mostly good decoys. For the easy
proteins, the top decoy-group's average lRMSD is less than
or equal to 1.5Å. The top decoy-groups for the medium-
difficulty proteins show less than 4Å of average lRMSD in
4 out of 7 cases. For the proteins under hard category, the
average lRMSD of the top decoy-groups is below 5Å in 6 out
of 7 cases. These results show that NMF can be a promising
tool for grouping good quality decoys.

Table 3 shows that out of 15 test cases, NMF-MAD is
better than MUFOLD-CL in 8 cases for lRMSD loss, and
in 10 cases for GDT-TS loss and TM-score loss. NMF-MAD
outperforms MUFOLD-CL in 3 out of 4 hard targets in terms
of lRMSD loss and all of 4 hard targets in terms of GDT-
TS and TM-score loss, which shows promise of NMF-based
methods for tackling hard targets.

Table 4 shows a quantitative comparison between NMF-
MAD and MUFOLD-CL on the CASP dataset in terms of
lRMSD loss, GDT-TS loss, and TM-score loss. NMF-MAD
outperforms MUFOLD-CL in 8/10 cases in terms of lRMSD
loss, in 9/10 cases in terms of GDT-TS loss. In terms of TM-
score loss, MUFOLD-CL performs better than NMF-MAD in
5/10 cases, NMF-MAD outperforms MUFOLD-CL in 4/10
cases, while both are perform similar in the remaining case.

Fig. 7 shows NMF-MAD-selected decoys for each dif-
ficulty level (easy, medium, hard) superimposed over the
known structures resolved in wet laboratory and deposited
to Protein Data Bank. The native is colored purple and
the decoy selected by NMF-MAD is colored green. The
best decoy selected (see Fig. 7) by NMF-MAD for the easy
protein with PDB entry id 1tig and for the protein with
PDB entry id 1hz6(A) under medium-difficulty category
are structurally similar to the known native. For the hard
protein (PDB ID, 1cc5 ), the selected decoy, albeit not quite
close to the native as are the easy and medium-difficulty
cases, does not deviate significantly from the native.

TABLE 3
Columns 2 and 3 show loss in lRMSD, GDT-TS, TM-score for the best
model/decoy selected by NMF-MAD and MUFOLD-CL, respectively.
Results due to random selection are shown in column 4. Column 5

records the average lRMSD of decoys populating the group selected by
NMF-MAD. The ’-’ shown in two rows indicate that MUFOLD-CL was

unable to return a result for the corresponding targets.

Targets NMF-MAD
lRMSD Loss
(Å), GDT-TS
loss, TM Loss

MUFOLD-
CL
lRMSD Loss
(Å), GDT-TS
loss, TM Loss

Loss
Ran-
dom
(Å)

Average
lRMSD
(Å)

1ail 0.65, 0.54, 0.52 1.52, 0.27, 0.33 6.2 1.1
1dtdb(B) 0.55, 0.06, 0.04 0.94, 0.10, 0.09 5.9 1.1
1wap(A) 0.60, 0.21, 0.17 0.26, 0.75, 0.77 9.7 1.2
1tig 0.32, 0.07, 0.07 1.9, 0.03, 0.03 5.2 1.5
1dtj(A) 0.46, 0.07, 0.06 0.43, 0.10, 0.14 5.7 1.2

1hz6(A) 0.35, 0.08, 0.07 0.67, 0.20, 0.18 4.2 1.0
1c8c(A) 1.40, 0.62, 0.64 1.30, 0.23, 0.25 4.7 2.5
2ci2 3.80, 0.31, 0.30 2.5, 0.13, 0.16 6.0 8.2
1bq9 1.20, 0.13, 0.14 2.5, 0.31, 0.33 7.0 2.6
1hhp 3.30, 0.11, 0.12 2.6, 0.63, 0.64 11.6 4.6
1fwp 0.72, 0.11, 0.09 −,−,− 6.0 2.3
1sap 2.50, 0.42, 0.45 1.8, 0.25, 0.24 3.9 4.2

2h5n(D) 12.1, 0.11, 0.13 −,−,− 10.8 14.1
2ezk 6.30, 0.03, 0.02 4.2, 0.05, 0.07 6.4 8.8
1aoy 3.68, 0.34, 0.38 4.7, 0.46, 0.49 6.1 6.94
1cc5 1.93, 0.07, 0.10 5.5, 0.14, 0.14 6.9 7.0
1isu(A) 3.30, 0.08, 0.09 6.9, 0.40, 0.41 5.5 8.86

TABLE 4
Quantitative comparison results on CASP targets. Columns 2 and 3
show loss in lRMSD, GDT-TS, TM-score for the best model/decoy

selected by NMF-MAD and MUFOLD-CL, respectively.

Targets NMF-MAD
lRMSD Loss
(Å), GDT-TS
loss, TM Loss

MUFOLD-CL
lRMSD Loss
(Å), GDT-TS
loss, TM Loss

T0886-D1 2.77, 0.029, 0.03 8.51, 0.03, 0.02
T0892-D2 5.5, 0.007, 0.03 6.32, 0.025, 0.032
T0897-D1 3.5, 0.0, 0.003 6.5, 0.014, 0.017
T0859-D1 4.44, 0.011, 0.032 8.62, 0.022, 0.014
T0898-D2 5.2, 0.027, 0.01 5.1, 0.027, 0.007
T0953s1-D1 5.4, 0.011, 0.017 8.34, 0.019, 0.017
T0953s2-D3 4.88, 0.029, 0.039 4.2, 0.032, 0.024
T1008-D1 0.42, 0.012, 0.02 6.2, 0.019, 0.009
T0960-D2 3.51, 0.011, 0.016 5.6, 0.012, 0.02
T0957s1-D1 4.68, 0.008, 0.027 6.64, 0.074, 0.091
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4.3 Statistical Significance Results
We report the results of Friedman statistical tests with
Hommel’s post-hoc [89] analysis on group purity in Table 5.
The pair-wise non-parametric tests (such as Student’s t-test
or Mann Whitney U test) are simple to test statistical signif-
icance of two contending methods. The test becomes more
complicated when there are multiple methods contending
over multiple test cases. Friedman’s test is ideal in such
a case. It is a non-parametric test that helps to reject the
null hypothesis. A null hypothesis here states that there
is insignificant difference between the contending methods.
Once the null hypothesis is rejected, we conduct a post-hoc
analysis. There are a number of approaches (Nemenyi, Bon-
ferroni, Holm, Hommel, Hochberg) to perform a post-hoc
analysis, of which, Hommel analysis is considered relatively
complicated, yet more powerful [89]. Therefore, we chose to
perform Friedman tests with Hommel’s post-hoc analysis as
a more robust and accepted statistical procedure to justify
the performance of our methods. The statistical tests are
performed on all the seven different selection methods at
α = 0.05. The first column shows the methods, while the
second column presents the average rank calculated from
the Friedman’s test [90], which rejects the null hypothesis.
Upon the rejection of the null hypothesis, Hommel’s post-
hoc analysis helps to determine the statistical significance
of the new techniques compared to others. The third and
the fourth columns show the p-value and Hommel’s critical
value respectively. The lowest average rank shows the best
(NMF-MAD) method, and is marked with an asterisk (*).
A method is said to be significantly different from the best
one if the p-value of the corresponding method is less than
that of the p-Hommel at α = 0.05, is in boldface. As shown in
Table 5, NMF-MAD is the best and significantly outperforms
the state-of-the-art basin-based decoy selection methods.

TABLE 5
Statistical significance of seven methods determined through Friedman
tests with Hommel’s post-hoc analysis at α=0.05. The best method is

marked with an asterisk (*), while boldface presents the significance of
the respective method when compared with the best method.

Method Average p p
Rank value Hommel

MUFOLD-CL 6.0 1.83E-6 0.008
Basins-Select(S+E) 4.143 0.001 0.01
Basins-Select(PR) 3.929 0.004 0.0125
Basins-Select(S) 3.786 0.007 0.0167

Basins-Select(PR+PC) 3.679 0.012 0.025
NMF-Rank 3.571 0.018 0.05

NMF-MAD∗ 1.893 - -

5 CONCLUSION

In this paper, we have proposed two novel decoy selection
methods, NMF-Rank and NMF-MAD. Both methods are
based on non-negative matrix factorization. We compare
these methods against four unsupervised, clustering-based
methods and a state-of-the-art EMA method MUFOLD-CL
in terms of purity (higher true positives and lower false pos-
itives), lRMSD loss, GDT-TS loss, and TM-score loss. Results
show that NMF-MAD performs the best in selecting a good
decoy group as well as in selecting the best decoy in a decoy
ensemble. Moreover, NMF-MAD shows its superiority in

tackling the harder cases. The time cost incurred by NMF-
MAD is insignificant, as well.

These promising results shown by NMF-based methods
open a new venue for furthering decoy selection research.
In the future, we would like to investigate techniques to
automatically determine the best value of ’k’, i.e., the num-
ber of components for matrix decomposition. We would
also like to discriminate the decoy features into categories
and employ non-negative tensor decomposition to extract
latent features that might effectively describe a protein
structure and provide a marginalized summarization of
tertiary structure. Moreover, the feature matrices of NMF
are large scale, necessitating the use of parallelized NMF
techniques. Recently developed distributed NMF [91] is
shown to deal with 1TB input data, thus will employ these
big data analytics in our future analysis. We can also use the
extracted features in a supervised learning technique similar
to [51], which we plan to further extend with heuristics
(similar to [92], [93]) in improving the decoy selection.
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