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Abstract

®

CrossMark

The nanostructures produced by oblique-incidence broad beam ion bombardment of a solid
surface are usually modelled by the anisotropic Kuramoto—Sivashinsky equation. This
equation has five parameters, each of which depend on the target material and the ion species,
energy, and angle of incidence. We have developed a deep learning model that uses a single
image of the surface to estimate all five parameters in the equation of motion with
root-mean-square errors that are under 3% of the parameter ranges used for training. This
provides a tool that will allow experimentalists to quickly ascertain the parameters for a given
sputtering experiment. It could also provide an independent check on other methods of
estimating parameters such as atomistic simulations combined with the crater function

formalism.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Nominally flat solid surfaces bombarded by obliquely inci-
dent, broad ion beams often self-organize into nanoscale rip-
ple structures [1, 2]. These ripples are a result of a surface
instability. Consider an elemental target material below its
recrystallization temperature that is bombarded with noble gas
ions. The incident ions are to have an energy in the range
between roughly 0.2 and 20 keV. After transforming to an
appropriate moving frame of reference, the equation of motion
(EoM) becomes the anisotropic Kuramoto—Sivashinsky (aKS)
equation

Uy = Kilyx + Kollyy — BV*V?u + Alui + )\zuf,, (D)

where u(x, y, t) is the height of the surface above the point (x, y)
in the x—y plane at time ¢, the subscripts x, y, and 7 on u denote
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partial derivatives, and V> = 07 + 33 [3, 4]. According to the
Bradley—Harper theory [5], the second order derivative terms
uy, and uy, are produced by the curvature dependence of the
sputter yield, although it is now known that ion-induced mass
redistribution [6—8], ion-induced viscous flow [2, 9—11] and
ion implantation [12, 13] also contribute to these terms. The
smoothing term —BV?V?u comes from surface diffusion or
ion-induced viscous flow near the surface [2, 14]. The coef-
ficients K1, K2, A1, A2 and B are constants which depend on
the target material and the ion species, energy and angle of
incidence [3—5, 15—18]. The parameter B also depends on the
sample temperature, but the remaining parameters do not. The
x axis is oriented so that the angle of incidence 6 of the ion
beam is nonnegative and the azimuthal angle is zero.

If both x| and k; are positive, there is no surface instability
and the surface smooths. This occurs in the case of normal inci-
dence and for 6 below a threshold value. If, however, k1 < 0
and Kk < Ky, ripples with wave vector k parallel to the x axis
emerge; these are called parallel-mode ripples. If k» < k1 and

© 2020 IOP Publishing Ltd  Printed in the UK
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Ky < 0, on the other hand, the selected wave vector is along the
y direction and so-called perpendicular-mode ripples form.

Spontaneous pattern formation induced by ion bombard-
ment is not only of academic interest: ion bombardment has the
potential to provide a method for fast, versatile, and low-cost
fabrication of large-area nanostructures with features smaller
than optical lithography can produce.

Multiple studies in which the parameters in the EoM are
estimated have been conducted using a variety of techniques.
Grazing-incidence small angle x-ray scattering (GISAXS)
has been employed to estimate the coefficients x; and k,
for semiconductor surfaces bombarded with noble gas ions
[19-21]. More recently, GISAXS with a coherent x-ray beam
rather than an incoherent one has been used to estimate the
coefficients of the leading-order linear and nonlinear terms
[22]. Estimates of the parameters have also been obtained
for normal-incidence bombardment of silicon with iron co-
deposition starting from measurements of physical attributes
of the pattern like the characteristic lateral length scale and the
pattern’s amplitude at long times [23, 24].

The coefficients can also be determined by atomistic sim-
ulations combined with the so-called crater function formal-
ism (CFF) [15, 17]. Norris et al input the results of molecular
dynamics simulations into the CFF to estimate the coefficients
k1 and k; for irradiation of a silicon target with 100 and 250 eV
Ar ions [25]. More recently, Hofsass and Bobes carried out
Monte Carlo simulations using SDTrimSP and input the results
into the CFF [26]. This yielded estimates for all of the param-
eters in the AKS equation (1) for a variety of target materials
and ion species.

Deep learning algorithms are a class of machine learning
(ML) algorithms that use artificial neural networks (ANNs)
to extract important features from raw data [27]. This same
technology is at the forefront of advancements in self-driving
cars [28], facial recognition [29], and natural language pro-
cessing [30]. In the case of computer vision problems, ANNs
learn to recognize and understand visual input [31]. This sug-
gests that deep learning could be used effectively to recognize
the parameters associated with patterns produced by ion sput-
tering and to predict what the parameters are for a particular
ion-target combination given a single atomic force microscope
(AFM) scan of the surface. The first steps in this direction have
recently been made by Reiser [32]. His work was restricted to
normal incidence ion bombardment, however, and the surface
of an elemental material simply remains flat when it is bom-
barded with a normally incident noble gas ion beam. Reiser’s
method also requires two images of the surface that are taken
at times separated by a short time interval. This is impractical
if the surface scans must be made ex-sifu, as is invariably the
case.

In this paper, we develop an ANN that is able to estimate
the five parameters in the EoM (1) from a single AFM scan
of a solid surface that has been bombarded with an obliquely
incident ion beam. We trained the network for a range of
parameters using images generated by numerical integration
of the aKS equation (1). The parameter ranges selected are
appropriate for sputtering of a silicon surface with a 1 keV
argon ion beam, and the ANN was trained for fluences of

5 x 107 jons/cm? and 1 x 10'7 ions/cm?. For the first fluence,
our ANN was able to estimate all five parameters in the EoM
with root-mean-square errors less than 3% of the parameter
ranges used for training. For the second fluence, it estimated
the parameters with root-mean-square errors values under 2%
of the parameter training ranges. This demonstrates that our
network can reliably predict the parameters and can be trained
for various ion fluences.

A key benefit of the tool we have developed is that it
could be used to provide a validation check on parameter esti-
mates determined by other means, e.g., GISAXS or atom-
istic simulations combined with the CFF. Just like estimates
based on GISAXS, our tool takes experimental results and ana-
lyzes them to estimate the parameters in the EoM. A notable
difference is that our method utilizes a single AFM image,
and AFMs are widely available. GISAXS, on the other hand,
requires the experiment to be conducted at a facility with a
synchrotron x-ray beamline.

This paper is organized as follows. A brief look at the prin-
ciples of training a ML algorithm and a general overview
of ANNs are presented in section 2. In section 3, we dis-
cuss the particular architecture used for our analysis as well
as the production of the dataset used for training and evalu-
ation. A simple test of estimating a single parameter in the
EoM is conducted in section 4. In section 5, we generalize
the ANN to estimate all five parameters and present the esti-
mates. Next, we consider related work and the previous studies
of the KS equation using ML techniques in section 6. Potential
extensions and considerations of the utility of the network are
addressed in section 7. Our conclusions and final thoughts are
given in section 8.

2. Machine learning and convolutional neural
networks

Machine learning (ML) is a subset of artificial intelligence
in which a system learns to identify patterns in data and
report the associated meaning [33]. We leverage this ability
to recognize and interpret patterns to analyze the pattern for-
mation observed on ion-sputtered solid surfaces. Supervised
ML algorithms learn to associate patterns in data with known
‘targets’. The network developed in our study uses super-
vised learning and the targets are the values of x;, K, B, A,
and \,.

Supervised learning can be further subdivided into classi-
fication or regression algorithms. The distinction is that the
output for classification models are discrete values or ‘classes’,
whereas the output from a regression model is continuous [33].
While the outputs differ, the training methodology is similar.
Since our targets K, k2, B, A1, and A, are continuous variables,
regression methods were applied to our problem.

Supervised training of ML models involves providing the
specified learning algorithm with well understood training
data. This data has a known target which the algorithm is used
to identify. By repeatedly presenting the model with training
data and telling it what the target is, the parameters of the
algorithm are adjusted to best align the model output with the
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targets. This is done by maximizing a metric, such as accu-
racy, or minimizing a ‘loss function’, such as the root-mean-
square error (RMSE). In our case, the target is the parameters
in the EoM (1) and the mean-square error (MSE) is the loss
function.

Numerous ML algorithms that can analyze data and extract
meaning exist [33-35]. In our work, the algorithm we
employed was an ANN. An ANN consists of layers of inter-
connected artificial neurons, which we will refer to simply
as neurons for the sake of brevity [35]. Each neuron in the
network receives input, processes the input, and calculates an
output signal. Once a neuron has computed its output signal,
it passes it forward to the connected neurons in the next layer.
The neuron’s output is calculated via a mathematical activation
function. The input to the activation function is a weighted sum
of the inputs to the neuron and the output is a real number. A
linear combination, step function, and sigmoid are examples
of commonly employed activation functions [36]. The con-
nections between neurons have associated weights, which are
typically randomly assigned at the start but are modified dur-
ing training to highlight the aspects of the training data that
are the most useful for identifying the target. These weights
tell the next neuron how important the input from the previous
neuron is. Deep learning is a subset of ML which uses ANNs
with numerous layers to extract features and aid in prediction
of the targets.

ANNs can be broadly divided into three parts: the input
layer, the output layer, and the hidden layers. The input layer
takes the raw data and processes it for the rest of the model.
The output layer is typically a fully connected layer of neu-
rons in which each neuron is connected to every neuron in
the preceding layer. The activation function of neurons in the
output layer is selected to best match the target: for example,
a linear activation function is often employed for regression,
while a tanh function is frequently used for binary classifica-
tion. In our model, we used a linearly activated output layer of
neurons in which the number of neurons matched the number
of parameters being estimated. Each neuron in this layer out-
put the estimated value of one of parameters in the EoM. The
hidden layers are where the bulk of the calculation is done.
They allow the model to identify important features of the
training data that enable it to provide a good estimate of the
target.

We chose to utilize a particular kind of ANN—a convo-
lutional neural network (CNN)—because of their high lev-
els of performance on computer vision problems. CNNs are
adept at identifying spatial relationships and have had signifi-
cant success in practical applications [35, 37]. These networks
achieve this by utilizing a specialized linear operation called a
convolution. Convolutions allow the network to extract high-
level features such as edges to better identify the target. An
in-depth explanation of CNNs can be found in chapter 9 of
reference [35].

A key benefit of CNNs is that they can accept high dimen-
sional data like an image as input, whereas many ML algo-
rithms require the user to reduce the number of dimensions
and determine useful features manually. CNNs take the raw
images as input and determine which features of the image are

useful in estimating the parameters during the training process.
Other algorithms, such as a support vector machine, can do
well in image processing but typically require the user to do
some preprocessing to determine which features of the image
are of interest and then translate that information into a form
that the algorithm can use.

Additional details of ML algorithms, and of deep learning
models in particular, are beyond the scope of this paper. Fur-
ther discussion of the learning methods, training methodology,
and architecture can be found in references [33-35].?

3. The convolutional neural network and dataset
generation

Rather than building and training a network from scratch, we
chose to use a dense convolutional network (DenseNet) with
121 layers [38]. This architecture is well understood and has
been shown to perform remarkably well for computer vision
problems, making it an excellent candidate for the analysis
of AFM images*. An additional benefit of using this struc-
ture for the network is that one can obtain a network that
is pre-trained. The DenseNet architecture was trained on the
ImageNet dataset, which consists of more than 14 million
images and 20 000 classes®. This means that the network had
already learned to extract information from images, a bene-
fit that we repurposed for our problem using transfer learn-
ing. Transfer learning takes a network that has already been
trained for a similar task and repurposes it for a new problem
[39]. This drastically reduces the training time needed and
allows a smaller dataset to be used for the training process.
We adapted the network by replacing the output layer with a
new layer designed for our problem. The layers of the base
model were frozen and the output layer and associated con-
nections were trained to understand what to report for the new
problem. Once the model had a good ‘understanding’ of what
the output should be, the base layers were unfrozen and the
entire model was fine-tuned to optimize the results.

We used PyTorch for our analysis. PyTorch is a software
tool that facilitates in the construction, training, and implemen-
tation of deep neural networks. This tool is openly available, is
commonly used in deep learning research, and has a dedicated
team for the support and advancement of the tool itself®. We
also made use of the fastai library, which provides additional
functionality and assists in the training process.

Our dataset was produced via numerical simulations’.
Equation (1) was numerically integrated using the fourth-order

3 Tutorials on implementing these algorithms can be found at https:/scikit-
learn.org/stable/tutorial/index.html, https://pytorch.org/tutorials/, and

https://tensorflow.org/tutorials.
The structure of DenseNet-121 is described in table 1 of reference [38]. The

key difference between our model and the one presented in reference [38]
lies in the final output layer. In our model, this layer is a fully connected five-
neuron layer. The activation function was also changed from softmax to linear.
5 The ImageNet dataset can be found at http://image-net.org/.

6 We used the PyTorch framework which is documented at https:/pytorch.org/.
The fast.ai library was also used to facilitate calculations. This library can be
found at https:/fast.ai/.

7 Simulated images have been used elsewhere to train ML models. See, for
example, reference [40].
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Runge—Kutta exponential time-differencing method described
by Cox and Matthews [41]. Periodic boundary conditions
were applied. The linear terms were calculated exactly in
Fourier space and the nonlinear terms were approximated in

u(x — 2Ax,y) — 8u(x — Ax,y) + 8u(x + Ax,y) — u(x + 2Ax,y)

real space by a central difference finite differencing scheme
accurate to fourth order in the grid spacing. For example, the
partial derivative of u# with respect to x was approximated
by

ou
a(x, y) =~

where Ax is the spatial separation of grid points in the x direc-
tion [42].8 Each simulation was started from a low-amplitude
white noise initial condition and the parameters xy, k7, Aj, A2
and B were randomly selected from parameter ranges that will
be specified later.

The surface images produced by our simulations are sin-
gle channel images in which the intensity at each point on
the spatial grid is determined by the value of u. The Ima-
geNet dataset is made up of three channel images, however.
Therefore, in order to use transfer learning with the ImageNet
dataset, we had to convert our single channel simulated images
to three channel images. This was done using the default color
mapping of Python’s matplotlib library®. The resulting three
channel pseudo-color images were saved as 224 x 224 pixel
images using the .png file type. They were also normalized
so that the pixel values for each channel had the same mean
and standard deviation as the corresponding channel of the
images in the ImageNet dataset. Finally, the normalized three
channel images were used to train our network. Conversion
of greyscale to pseudo-color images is a practice that has also
been employed in ML processing of medical images like chest
x-rays [43].

We introduced a 5% probability that a given image was
rotated azimuthally before it was input into the CNN. If an
image was selected to be rotated, the rotation angle was ran-
domly chosen from the range [—5°,5°]. This rotation was
done because normally the AFM image would be produced
ex situ and the sample could be slightly misaligned when it is
positioned in the AFM sample holder.

The produced images were segmented into a training set, a
validation set, and a test set. The training set was segmented
into batches of 64 images. A single batch was given to the
model, and the weights between neurons were updated to
increase performance. Another batch was then given to the
model and the weights were updated again. This process was
repeated until the model had seen all of the images in the train-
ing set. The model was then asked to predict the parameter
values for all the images in the validation set. By checking
the performance on the validation set, we could monitor how

8 Higher order finite difference schemes can be determined via the tool found
at https://web.media.mit.edu/crtaylor/calculator.html.

9The default color map in version 2.0 of the matplotlib library is
‘viridis’. Detailed information about the coloring mapping can be found at
https://matplotlib.org/3.3.0/users/dflt_style_changes.html.

12Ax @

much the model had learned and determine how useful the
network was for our problem. A complete pass through every
image in the training set is called an epoch. After each epoch,
the model was validated by comparing the predicted and true
values for the validation set. This process of segmenting the
training set into batches, showing images to the model, updat-
ing weights, and validating was reiterated for 60 epochs to train
the model and evaluate its performance during the training pro-
cess. The model’s performance was gauged by determining the
MSE between the predicted values and the actual values of the
parameters. The network weights were adjusted during train-
ing in accordance with the Adam optimization algorithm [44].
Rather than using a fixed learning rate to update the network,
we utilized a ‘1 cycle policy’ [45]. This method uses a variable
learning rate to help prevent overfitting.

Once training was completed, the final performance of the
model was evaluated. The test set had been withheld from the
model until this point, which made it suitable for the final test.
The model predicted the targets for every image within the test
set. These predictions were then compared to the true values
and the RMSE was calculated. The RMSE was selected for the
final evaluation because of its familiarity to physicists, whereas
the MSE was used during training because it stores the same
information but is simpler computationally.

4. Estimation of a single parameter

We began by setting all of the parameters in equation (1) to
fixed values and only allowing A; to vary. We then trained our
ANN to predict the value of \;. The coefficients in equation (1)
were chosen to be Ky = ko = —1, B=1, and \, = 1, while
A1 could vary between 0.1 and 5.1. The anisotropy present
for \; # 1 gives a tendency for the pattern to be elongated
along either the x or y direction. Three examples of simulated
surfaces are shown in figure 1. As \; increases, so does the
elongation of protrusions and depressions along the x direc-
tion. Large values of \; cause significant elongation in the x
direction whereas smaller values do not.

Each of the images used for training, validation and test-
ing was taken from a simulation in which \; was randomly
selected from the range 0.1 < A\ < 5.1. All of the images
were taken at time 7 = 10; this time was chosen to match pre-
vious work [46]. The network was trained on 4000 images and
the validation set consisted of 1000 images. After training was
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Figure 1. uvs x and y at t = 10 for A} = 0.10 (left), A\; = 2.55 (middle), and \; = 4.79 (right). The domain size is 224 x 224.
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0 1 2 3 4 5
Actual A;

Figure 2. Predicted values of \; vs the actual values. The red points
show the actual points and the solid black line shows what perfect
agreement would be. The RMSE was 0.107.

completed, the final network was evaluated on a test data set
consisting of 500 images.

Training the output layer resulted in a RMSE of 0.193,
which is less than 4% of the range of \; values. After unfreez-
ing the hidden layers and fine-tuning the network, the RMSE
on the validation set was 0.101, i.e. 2.12% of the range. Lastly,
the CNN was given the test set and asked to predict the value of
A for each image. Figure 2 shows that the values predicted by
the network agree well with the true values. The final RMSE
on the test set was 0.107, which is 2.14% of the range. These
results demonstrate that using a single image, the CNN can
very effectively estimate the parameter \; in equation (1) for
fixed values of ki, k2, A\, and B.

5. Prediction of all of the parameters

As we have seen, the model does quite well at estimating a sin-
gle parameter. However, in an experiment, all of the parameters

in equation (1) have unknown values. As such, it is neces-
sary to train the model to estimate not just one parameter, but
five. To achieve this, a training set of 32000 images, a vali-
dation set of 8000 images, and a test set of 5000 images were
generated.

For each simulation, the values of the parameters x, k»,
B, A\ and \, were randomly selected from the ranges given in
table 1. These ranges were chosen to be approximately twice
as wide as the parameter ranges determined in reference [26]
fora 1 keV Ar beam incident on Si with an angle of incidence
0 between 55° and 80°. (This is the range in which there is
a linear instability [26].) To ensure that a surface instability
always existed, a simulation was run only if one or both of the
randomly generated x; and x, values was negative. If both of
these values was positive, a new pair of x; and k, values was
randomly chosen.

The images were taken at a time ¢ that corresponds to a flu-
ence of 5 x 10!7 ions/cm?. Most sputtering experiments are
run until a fluence in excess of this value is reached. The
domain size of the simulations was 500 nm x 500 nm and each
surface image was saved as a 224 x 224 pixel image. It took
approximately a week to produce these images on a worksta-
tion with an ASUS X299-A motherboard and 78GB of RAM.
Any experimental image that is input into our CNN should be
a 224 x 224 pixel image of a 500 nm x 500 nm surface region
that has been irradiated to a fluence of 5 x 10'7 ions/cm?.

The CNN used was the same as in section 4 with the excep-
tion of the output layer; there were five neurons in the output
layer instead of a single one, which allowed the network to
return values for the five parameters k, k2, A\j, Ay and B.
Training the CNN took about a day on a GPU.

Figure 3 shows three of the images used for training.
Depending on the values of the parameters, the surface could
be similar to the surfaces shown in figure 1, or could display
parallel or perpendicular-mode ripples. When only a single
parameter is varied, the effect on the simulated surface is fairly
easy to recognize, but with five free parameters, each one’s
impact on the surface dynamics and the observed patterns is
significantly harder to identify.

Figure 4 shows the predicted parameter values vs the actual
values for the 5000 images in the test set after preliminary
training and fine-tuning. Since 5000 data points on a single
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Table 1. The ranges of the five parameters in the EoM (1) that were used for
training and the RMSE and R? evaluation metrics for these parameters for a

fluence of 5 x 10'7 ions/cm?.

Parameter Minimum value Maximum value RMSE R?

K1 —0.12 nm? s~! 0.22nm?s~!  0.00037nm?s~'  0.959
Ko —0.12 nm? s7! 0.22nm?s~!  0.00035nm?s~'  0.960
B 0.010 nm*s™"  3.96nm*s™!  0.11 nm*s~ 0.902
Al —147nm s ! 0.72nm s ! 0.045 nm s~! 0.889
A —1.47nms™! 0.72nms"! 0.039 nms~! 0.903

500
500

400
400

y [nm]
300
300

200
y [nm]

200

100
100

200 300 200 300 300
x [nm] x [nm] x [nm]
Figure 3. u vs x and y at a fluence of 5 x 10'7 ions/cm? for x; = —0.098 nm? s, ko = —0.094 nm*> s, B = 1.169 nm* s~ !,

A = —1.075nms !, and A\, = —0.629 nm s~ (left); k; = —0.107 nm? s, k, = 0.128 nm? s~', B =2.893 nm* s~ ', \| =
—0.152nm s~ !, and A, = 0.175 nm s~! (middle); and x; = 0.078 nm? s~ !, k, = —0.010 nm? s~', B =2.860 nm* s ', \; = 0.187 nm s/,
and )\, = —0.035 nm s~! (right). The domain size is 500 nm x 500 nm.

plot would be difficult to interpret, we opted to visualize the
data via binning. The parameter space was divided into hexag-
onal bins that were colored according to the number of points
within each bin. For each of the five parameters, we observe
that the data aligns well with the cyan 1-to-1 agreement line'°.
The best agreement between the values predicted by the CNN
and the actual values is seen in the coefficients of the second
order linear terms: x; has a RMSE of 0.00037 nm? s~! while
ko has a RMSE of 0.00035 nm? s~'; these errors are 0.090%
and 0.097% of the range used for training, respectively.
The fourth order linear term’s coefficient B has a RMSE of
0.11 nm* s~!, which is 3.0% of the range. The coefficients of
the nonlinear terms \; and A, have RMSEs of 0.045 nm s~!
and 0.039 nm s, respectively. These RMSE values are 2.1%
and 1.8% of the parameter ranges. We conclude that the per-
formance of the CNN was excellent: it learned to predict the
five parameters in the EoM (1) to within 3% of the ranges used
for training.

Another evaluation metric commonly used in ML is R?. We
also used this metric to gauge the performance of our model.
The R? values are 0.959, 0.960, 0.902, 0.889, and 0.903 for &1,
K2, B, A1, and \,, respectively. This further confirms that our
model performs well on the test set and accurately predicts the
parameters in the EoM. For convenience, the RMSE and R2

10 One feature that is worth mentioning is the ‘hot spots’ present for the neg-
ative values of x; and k. These appear because the number of simulations
per nm? s~! was more than twice as large for negative x; as for positive #; for

i=1and?2.

values for the five parameters in the EoM (1) are compiled in
table 1.

There is an uncertainty in the value of the fluence
in an experiment. Thus, although an experimental image
input into our network could have a putative fluence of
5 x 10'7 ions/cm?, the actual value of the fluence could be
different. We therefore tested the performance of our model
when there could be an error in the reported fluence. To accom-
plish this, we generated a test set of 500 simulations. The
parameters kj, K, B, A;, and )\, for each simulation were
randomly selected from the previously specified ranges in
the manner we described above. Images were produced every
10'¢ jons/cm? from a fluence of 4.5 x 10'7 to a fluence of
5.5 x 10" ions/cm? for each of the 500 simulations. The
resulting 5500 images were input into our CNN and the param-
eters values were estimated for each. The RMSE values of
the predicted parameter values were 0.00035 nm? s~! for x,
0.00041 nm? s~! for k5, 0.12 nm* s~! for B, 0.047 nm s~!
for A;, and 0.040 nm s~' for \,. These are only marginally
different than the RSME errors we previously obtained, and
so a 10% error in the reported fluence has little effect on the
accuracy of our model’s predictions.

The next logical question is whether the accuracy of the
CNN’s predictions could be further improved. This could
potentially be achieved by more training on the dataset,
by adding additional images to the dataset, or by increas-
ing the number of layers within the network. Let us first
consider whether more training would improve the model’s
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performance. The sum of the fractional RMSEs of the five
parameters is plotted versus the number of epochs in figure 5.
The blue line shows the aggregate fractional RMSE and
the dashed black line shows the point when the model was
‘unfrozen’ and fine-tuned. The figure shows that at the start of
training, the aggregate RMSE decreases quite dramatically, but
later it levels off. We stopped the training at 60 epochs because
we had entered a regime of diminishing returns. More training
did not greatly improve the aggregate RMSE, and eventually it
caused the aggregate RMSE for the validation set to increase
(not shown).

Next we consider increasing the size of the dataset used for
training the CNN. More data would certainly help to reduce the
RMSE on the validation set: as with any analysis, more data is
always desirable. However, the network was able to estimate
the parameters to within 3% of the parameter ranges used for
training. We consider this to be excellent performance, but if
greater degree of accuracy were required, the dataset could be
augmented by carrying out more simulations.

Lastly, we consider whether adding more layers of neurons
to the network (i.e., increasing its ‘depth’) would be benefi-
cial. Before delving into this question, we first need to dis-
cuss underfitting and overfitting of networks. (A comprehen-
sive general discussion of this topic can be found in reference
[33].) In general, an ANN does not fully understand the pat-
terns in the training data in the early stages of training and is
‘underfit’. Continued training allows the network to learn more
about the patterns and the RMSE on both the training and vali-
dation sets is reduced. However, eventually the model starts to
recognize peculiarities of the training set that are not present in
the validation or test sets. Once the model starts to make these
connections, it is considered to be ‘overfit’. Overfitting is par-
ticularly problematic when it causes a decrease of the RMSE
on the training set, but increases the RMSE on the validation
set.

Additional layers do give the network an increased ability
to identify patterns and features within the data. This ability is
what has made deep learning so successful for a wide variety
of problems. However, deeper networks are not always bet-
ter. At a certain point, adding more layers makes the model
more likely to overfit and perform worse on test data [47].
When we compared results from DenseNet 121 (which has
121 layers of neurons) to results from DenseNet 201 (which
has 201), we found that there was more overfitting in the case
of the larger network. We therefore opted to use DenseNet
121.

6. Related work

Considering the significant progress achieved with ML and
deep learning in particular, it is unsurprising that these algo-
rithms were eventually applied to the study of partial differen-
tial equations (PDEs). Numerous studies have been conducted
in which these techniques were used both to carry out numer-
ical integration of PDEs as well to infer the values of the
parameters in a PDE used to model some aspect of the real
world.

Multiple studies of the Kuramoto—Sivashinsky (KS)
equation in particular have been conducted using ML algo-
rithms and methods [32, 46, 48-52]. Most of these stud-
ies focused on the 1D KS equation, whereas, in our study,
we considered the more general case in which the field
u depends on both the transverse and longitudinal coordi-
nates x and y. Raissi and Karniadakis used Gaussian pro-
cesses to estimate the parameters in the one-dimensional KS
equation, but required two snapshots of the field u sepa-
rated by a small time interval A¢ and the performance of
their model decreases as Ar becomes larger [51]. In another
study, Adams et al implemented a support vector machine
to analyze the two-dimensional aKS equation [46]. However,
their study only considered variation of the single parame-
ter A;. In addition, rather than looking at a range of values,
the parameter was chosen to belong to one of five classes.
That reduced the problem from a regression to a classification
problem.

The study most closely related to ours was conducted by
Reiser [32]. In his study, Reiser used linear regression to
estimate the coefficients in the isotropic two-dimensional KS
equation and specifically discussed applying his work to ion
sputtering. His results demonstrated that ML techniques can
predict parameters to a significant degree of accuracy. This was
the first paper to use ML techniques to estimate the parame-
ters in the EoM for an ion-bombarded surface and it provided
a proof of concept. However, there would be serious difficul-
ties in the application of Reiser’s model to real experimental
results. Firstly, Reiser’s work was limited to normal incidence;
this simplifies the problem because it makes the EoM isotropic
and reduces the number of parameters. However, the linear
terms in the EoM are stabilizing at normal incidence. This
means that the surface simply flattens as it is irradiated and
no nanostructures emerge. The parameter estimates obtained
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from real experimental surface images would be very inaccu-
rate as a consequence. In any event, the case of normal inci-
dence bombardment of an elemental target with a noble gas
ion beam is of little interest. Reiser’s method also requires
two consecutive snapshots of the surface separated by a short
time interval Ar; this would be particularly problematic for
the implementation of his method. If a sample were removed
from the vacuum chamber to take the first AFM scan, it would
be exposed to atmosphere, allowing deposition and/or oxida-
tion to occur. That would change the material present on the
surface and its topography and, therefore, the dynamics when
the sample was returned to the chamber and irradiation was
resumed. Additionally, there would be no guarantee that the
second AFM scan would be taken at exactly the same loca-
tion on the sample as the first. This would introduce an addi-
tional source of error. In contrast, our model requires a single
AFM image and can be used when the ion beam is obliquely
incident.

7. Discussion

In this paper, we demonstrated that a CNN can be trained to
predict the parameter values in the EoM (1) from a single AFM
scan of an ion-sputtered surface. Our network therefore pro-
vides a concrete tool to analyze the nanostructures produced
by ion sputtering.

The parameter ranges we chose for training our CNN are
for 1 keV Ar™ bombardment of silicon. Silicon is the most fre-
quently studied target material, argon is the most widely used
ion species, and 1 keV is a typical ion energy used in studies
of ion-induced pattern formation. However, using a different
ion species or target material or changing the ion energy to
another energy in the range of say 500—1500 eV would not rad-
ically change the dynamics of the bombarded surface—ripple
patterns would still be observed and the wavelengths would
still be of the same order of magnitude. As a consequence, the
parameters in the EoM (1) would not change radically either.
Thus, although the parameter ranges used for the training of
our CNN were selected for a particular choice of target mate-
rial, ion species and ion energy, it could be used to estimate
the parameter values for many choices of target material, ion
species and ion energy.

We trained our network for an ion fluence of
5 x 10" ions/cm?. Most experiments are continued until
at least this fluence is reached, and it is ordinarily large
enough for discernible patterns to emerge. If the parameters
are to be inferred for a particular choice of ion beam and
target material, an experiment with that ion beam and target
material and our selected fluence could be carried out, an
AFM scan could be done, and the image could be input
into our CNN. If it were for some reason necessary that
the parameters be estimated using a preexisting AFM scan
with a different ion fluence, our CNN could be retrained
for that fluence. To show that this can be done, we retrained
our CNN for one fifth of the original fluence, i.e., 1 X 107
ions/cm”. We again generated a training set of 32 000 images,
a validation set of 8000 images, and a test set of 5000
images. The results are shown in figure 6. Once again, we

observed that the predicted parameters cluster about the 1-to-1
agreement line. The respective RMSEs of the parameters x,
K2, B, A1, and \y were 0.00026 nm? s~!, 0.00025 nm? s~ !,
0.058 nm* s7!, 0.010 nm s, and 0.011 nm s~ ! respectively.
To put these values into perspective, the RMSEs for the &
and x, estimates were less than 0.08% of the range used for
training, the RMSE of the B predictions was under 1.5%, and
the RMSE:s of the \; and )\, estimates were both under 0.5%.
This demonstrates that the network could be retrained for
other fluences and reliably estimate the parameters. In fact, the
network performed better for the lower fluence, but since we
wanted to train our CNN for typical experimental conditions,
we initially selected a fluence of 5 x 10'7 ions/cm?.

For high ion fluences, additional terms that are not included
in the aKS equation (1) may begin to play a non-negligible role
in the dynamics [18, 53-57]. The CKS nonlinearity 6u>, for
example, is likely responsible for the ripple coarsening that is
often observed in experiments [55-57]. As a consequence, if
only the parameters in the aKS equation (1) are to be estimated,
it would be preferable to use an AFM scan in the low fluence
regime in which it is safe to neglect the effect of the additional
terms. If, on the other hand, the coefficients of the additional
terms are to be estimated, an AFM scan in the high fluence
regime would be needed. Simulations would then have to be
carried out with the additional terms in the EoM. These would
be used to train a CNN that had a number of neurons in the
output layer equal to the number of parameters in the modi-
fied EoM. This CNN could then be used to estimate all of the
parameters in the modified EoM using the AFM scan taken in
the high fluence regime.

For the equation of motion (1) to apply, the target material
must be elemental and the incident ions must be noble gas ions.
Our CNN can therefore only be used to estimate the parameters
in the EoM for experiments of this type. If the target material
is binary or the incident ions are not noble gas ions, the surface
morphology is influenced by the composition of a surface layer
and coupled equations of motion are needed [58—62]. Devel-
opment of a CNN that is capable of estimating the parameters
that appear in these coupled equations would be a worthwhile
direction for future work.

8. Conclusions

The nanostructures produced by bombardment of the surface
of an elemental material with an obliquely incident noble gas
ion beam are usually modelled by the aKS equation. This
equation has five parameters, each of which depend on the
target material and the ion species, energy, and angle of inci-
dence. In this paper, we developed a CNN that uses a single
image of the surface to estimate all five parameters in the
EoM with root-mean-square errors that are under 3% of the
parameter ranges used for training. The network was trained
and tested using thousands of images produced by numer-
ically integrating the EoM, but it was developed to enable
experimentalists to quickly ascertain the parameters for a given
ion-sputtering experiment from a single AFM scan of the solid
surface. In future work, our tool will be used to provide a
check on parameter estimates determined by other means, e.g.,
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GISAXS or atomistic simulations combined with the crater
function formalism.
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