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Nanoscale pattern formation on solid surfaces bombarded by two broad ion beams
in the regime in which sputtering is negligible
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We study nanoscale pattern formation on the surface of a solid that is bombarded with two diametrically
opposed, broad ion beams for ion energies low enough that sputtering can be neglected. We focus on the case
in which the angle of ion incidence is just above the threshold angle for pattern formation. The equation of
motion at sufficiently long times is derived using a generalized crater function formalism. This formalism also
yields expressions for the coefficients in the equation of motion in terms of crater function moments. We find
that virtually defect-free ripples with a sawtooth profile can emerge at sufficiently long times. The ripples also
coarsen as time passes, in contrast to the near-threshold behavior of ripples in the higher energy regime in which
sputtering is significant.
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I. INTRODUCTION

Ion bombardment is a widely employed method of pro-
ducing nanoscale patterns on solid surfaces [1]. A variety of
patterns, which include surface ripples and arrays of nanodots
or nanoholes, can be fabricated in a single process step with-
out a mask or photoresist [1–11]. Nanoscale surface ripples in
particular will form on virtually any solid target material if the
angle of ion incidence, θ , exceeds a critical value θc.

Experiments have typically been done with noble gas ions
that have energies on the order of 1 keV. In this regime, sputter
yields are usually of order unity. For a given target material,
ion species, and angle of incidence, the feature size of the
nanostructures is found to be an increasing function of the ion
energy [1]. To produce smaller feature sizes, therefore, ions of
lower energy should be employed.

When the energy of the incident ions is on the order of
a few tens of electron volts, sputtering is negligible. Exper-
iments in this low-energy regime are few, but they reveal
that nanostructures do form: ripples and disordered arrays of
spikes have been observed [12–15]. In addition to its intrinsic
scientific interest, the low-energy regime may become impor-
tant in applications since the feature size of the nanostructures
can be below 50 nm.

In the low-energy regime, mass redistribution (MR) takes
place: momentum transfer from the incident ions to atoms
near the solid surface leads to inelastic displacement of the
atoms [16–18]. Depending on the ion energy and target ma-
terial, dozens of atoms can be displaced even though there
is essentially no sputtering. MR is important at ion energies
on the order of 1 keV, a regime in which sputter yields are
relatively high [19]. It plays an even more crucial role in the
low-energy regime in which sputtering is irrelevant [15].

Ions can also be implanted in the low-energy regime. How-
ever, when an ion is incident on the solid surface, the result can
be at most one implanted ion, whereas, as noted above, dozens
of atoms can be displaced. In addition, noble gas ions pene-
trate only a few nanometers into the solid, are highly mobile,
and usually desorb when they reach the solid surface [20].
Implantation of noble gas ions can therefore be neglected [21].
This is confirmed by estimates of the curvature coefficients in
the linearized equation of motion obtained using molecular
dynamics simulations and the crater function formalism [15].

When sputtering and implantation are neglected, the mass
of the solid is conserved. This makes the low-energy limit
fundamentally different than the higher energy regime in
which sputtering is significant. The equation of motion that
is typically adopted in the high-energy regime, the anisotropic
Kuramoto-Sivashinsky equation [1,22,23], is not valid in the
low-energy regime because it does not conserve mass. In
addition, while curvature-dependent sputtering, MR, and ion
implantation may all contribute to the surface instability in the
higher energy regime, the instability is entirely due to MR in
the low-energy regime.

In this paper, we will study the behavior of a solid surface
that is bombarded with two low-energy noble gas ion beams
with the same angle of incidence, θ , and azimuthal angles
that differ by 180◦. We will focus on θ values just above
the threshold value θc for pattern formation and carry out a
systematic expansion in the small parameter ε ≡ (θ − θc)1/2.
It will be shown that the equation of motion (EOM) has the
form

ut = auxx + Duyy − Buxxxx + c∂xu
3
x + β∂2

x u
2
x (1)

for sufficiently low ion fluxes. Here u(x, y, t ) is the height of
the surface above the point (x, y) in the x-y plane at time t
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and the subscripts x, y, and t on u denote partial derivatives.
In Eq. (1), D and B are positive, c and β are non-negative,
and a changes sign from positive to negative as θ is increased
through θc. Simulations of the EOM (1) show that dual-beam
ion bombardment can lead to the formation of ripples with
a high degree of order, a finding that may prove to be quite
useful in applications. The ripples also coarsen; i.e., their
wavelength and amplitude increase with time. In contrast,
in the higher energy regime in which significant sputtering
occurs, the ripples that form in the dual-beam problem with θ

just above θc are disordered and do not coarsen [24].
In our derivation of the EOM (1), we will utilize a gen-

eralized crater function formalism (CFF). The crater function
is the average result of many ion impacts at a particular sur-
face point, and so is effectively the Green’s function for the
problem. The CFF allows us to determine the response of a
surface to bombardment with a broad ion beam if the crater
function is known [24–26]. This approach takes into account
the effect of ion-induced mass redistribution but does not
rely on the simple, approximate model of this phenomenon
introduced by Carter and Vishnykov [16]. Our CFF yields
explicit expressions for the coefficients a, D, B, c, and β

that appear in the EOM (1). These expressions relate the
coefficients to moments of the crater function, and so could
be used to estimate the coefficients using input from atomistic
simulations.

In Ref. [24], a generalized CFF was developed for the
regime in which the ion energy is high enough that sputtering
is significant. That generalized CFF was used to derive the
EOM that applies for incidence angles just above the threshold
angle for pattern formation θc. In this paper, we will employ an
analogous CFF to derive the EOM that applies for θ just above
θc in the low-energy regime in which sputtering is negligible.
Although there are parallels between high- and low-energy
regimes, there are important differences in the CFFs for the
two problems, and the equations of motion are fundamentally
different.

As we will see, the problem in which diametrically op-
posed beams are simultaneously incident on the solid surface
is much simpler than the problem in which there is a single
incident beam. In an experiment, two ion beams would prob-
ably not be used. Instead, the sample would likely be rotated
periodically through 180◦ increments about its normal while
being bombarded with a single obliquely incident beam. If
the time between rotations were made sufficiently small, the
effect would be essentially the same as if the sample were
concurrently bombarded with diametrically opposed beams.

Experiments with dual ion beams have been carried out
in the past, but the azimuthal angles of the beams differed
by 90◦ rather than 180◦ [27,28]. In addition, the sample has
been rotated once through a 90◦ azimuthal angle during bom-
bardment with a single obliquely incident ion beam [28,29].
The effect of repeated rotations through an azimuthal angle of
180◦ has been studied theoretically for binary target materials,
but only in the early-time linear regime [30]. In all of these
studies, the ion energies were high enough that sputtering had
an important effect [31].

This paper is organized as follows. After making some in-
troductory remarks in Sec. II, we introduce the crater function
that we will employ in Sec. III. In Sec. IV, we develop our

generalized crater function formalism and derive the EOM
for the case in which a single beam is incident on the sample
surface. The EOM for the case in which diametrically opposed
beams are incident on the surface is derived, analyzed, and
discussed in Sec. V. Problematic aspects of the single-beam
EOM are the subject of Sec. VI. We discuss our results in
Sec. VII and conclude in Sec. VIII.

II. PRELIMINARY CONSIDERATIONS

We will begin by considering the bombardment of a solid
elemental material with a single broad beam of noble gas ions
before moving on to the case in which two diametrically op-
posed beams are incident on the surface. The material may be
amorphous or crystalline. If the material is initially crystalline,
we assume that a layer at the surface of the solid is amorphized
by the ion bombardment. As stated in the Introduction, we
will make the customary assumption that the effect of ion
implantation is negligible [21]. Finally, we will take the sam-
ple temperature to be low enough that the effect of thermally
activated surface diffusion is negligible compared to the effect
of ion-induced surface viscous flow [32].

The sample surface will be taken to be nominally flat
before the irradiation begins. The unit vector ẑ will be cho-
sen to be normal to the macroscopic surface and to point
away from the solid. We define the unit vector x̂ to lie in
the direction of the projection of the incident ion beam onto
the macroscopic surface. The incident ion flux is J = −J ê,
where ê ≡ −x̂ sin θ + ẑ cos θ and the angle of incidence, θ , is
the angle between the global vertical and the incident beam.

We assume that the surface remains flat for θ < θc and that
parallel-mode ripples develop for θ > θc. A morphological
transition of this kind has been observed in single-beam ex-
periments in the low-energy regime [12,15].

We will employ a continuum description of the surface
dynamics in which the position of an arbitrary point on the
surface is given by r = xx̂ + yŷ + u(x, y, t )ẑ, where u(x, y, t )
is the height of the point above the x-y plane at time t . The
surface height u is obtained by coarse-graining the detailed
microscopic surface configuration and is assumed to be a
smoothly varying function of its arguments x, y, and t .

III. THE CRATER FUNCTION

The crater function describes the average effect of a single
ion impact on the morphology of the solid surface. The crater
function that we will employ was first introduced in Ref. [24].
In this section, we will find it convenient to place the origin O
at the point of ion impact.

The value of the crater function f at the point (x, y) is
defined to be minus the average change in the surface height u
above the point (x, y) in the x-y plane as a result of a single ion
impact at x = y = 0 [24,26]. The crater function f depends on
x, y and the angle of incidence, θ . It also depends on the shape
of the entire surface, or, equivalently, on all of the spatial
derivatives of u(x, y, t ) evaluated at x = y = 0. We will write

f = f (x, y, θ ; ux, uy, uxx, uxy, uyy, uxxx,

uxxy, uxyy, uyyy, uxxxx, . . .). (2)
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The partial derivatives of u that appear on the right-hand side
of Eq. (2) are all to be evaluated at x = y = 0. We assume that
f is known a priori from another theory or from atomistic
simulations. Because the mass of the solid is conserved,∫

f (x, y, θ ; ux, uy, uxx, uxy, uyy, uxxx, . . .)d
2x = 0, (3)

where d2x ≡ dxdy.
We will take the crater function f to be evaluated at a time

long enough after the ion impact that nearly all ion-induced
motion has ceased. It therefore takes into account mass redis-
tribution and ion-induced surface viscous flow. When a broad
beam is incident on the surface, we will assume that the ion
flux is low enough that essentially all ion-induced motion near
a point of impact, P, has ended before another ion strikes the
surface in the vicinity of P.

IV. SINGLE-BEAM EQUATION OF MOTION

Wewill begin this section by finding ut at an arbitrary point
P0 on the solid surface for all times t � 0. The case in which
a single broad beam of noble gas ions is incident on the solid
will be considered. We will now find it convenient to place
the origin O at the position of P0 at time t . The origin will be
taken to be stationary, and so it will remain fixed as the surface
point P0 moves either up or down.

The flux of ions through a surface element dA centered on
r is J ê · n̂dA, where the surface normal n̂ is given by

n̂ = ẑ − ∇u√
1 + (∇u)2

(4)

and dA =
√
1 + (∇h)2dxdy. Each arriving ion produces a

crater which changes the height of the surface point P0. It
follows that the value of ut at x = y = 0 is given by

ut = −J
∫

dx
∫

dy f (−x,−y, θ ; ux, uy, uxx, uxy, uyy, . . .)

× (cos θ + ux sin θ ). (5)

All of the spatial derivatives of u that appear in the integrand
on the right-hand side of Eq. (5) are evaluated at the point
(x, y) in the x-y plane.

Equation (5) completely specifies the dynamics of the sur-
face but it is an exceedingly complicated integro-differential
equation. It becomes much simpler when ε ≡ (θ − θc)1/2 is
small and positive, however. We seek solutions to Eq. (5) of
the form

u(x, y, t ) = U (X,Y,T ), (6)

where

X ≡ εx, Y ≡ ε2y, and T ≡ ε4t . (7)

X , Y , and T are the so-called “slow” variables and x, y, and t
are the corresponding “fast” variables. Heuristically speaking,
Eqs. (6) and (7) say that for θ close to the critical angle θc,
the height of the surface disturbance varies slowly in space
and time. In addition, the spatial variation in the y direction
is more gradual than in the x direction because parallel-mode
ripples develop for θ > θc. An a posteriori justification for
adopting the scaling ansatz given by Eqs. (6) and (7) will be

obtained once we have arrived at an EOM that is well behaved
in the ε → 0 limit for the case in which diametrically opposed
beams are incident on the target’s surface. The scaling given
by Eqs. (6) and (7) differs from the scaling that applies when
the ion energy is high enough that sputtering is appreciable
[24].

The crater function f depends on the fast spatial variables
x and y since it varies over distances on the order of the char-
acteristic size of a collision cascade a0. It is also a function
of the slow spatial variables X and Y because it depends on
the spatial derivatives of u. These derivatives vary only over
distances comparable to the ripple wavelength l , and l is much
larger than a0 close to threshold.

Applying Eqs. (6) and (7), Eq. (5) becomes

ε4UT = −J
∫

dx
∫

dy f (−x,−y, θ ; εUX , ε2UY ,

ε2UXX , ε3UXY , . . .)(cos θ + εUX sin θ ). (8)

On the left-hand side of Eq. (8),UT = UT (0, 0,T ). All of the
spatial derivatives of U that appear on the right-hand side of
Eq. (8) have the arguments X , Y , and T .

We now expand the right-hand side of Eq. (8) in powers
of ε and retain terms up to fourth order in ε. This results in
an equation too lengthy to reproduce here. Our next step is to
carry out a Taylor series expansion of U (X,Y,T ) about the
point X = Y = 0: we set

U (X,Y,T ) =
∞∑
n=0

∞∑
m=0

Sn,m(T )
XnY m

n!m!
, (9)

where

Sn,m(T ) ≡ ∂n+mU

∂Xn∂Ym
(0, 0,T ). (10)

We also introduce new dummy variables of integration, x̃ =
−x and ỹ = −y, and then drop the tildes. In this part of the
calculation, we again retain terms up to fourth order in ε. So
that we can write down the resulting equation succinctly, we
define

f0(x, y, θ ) ≡ f (x, y, θ ; 0, 0, . . .), (11)

f1(x, y, θ ) ≡ ∂

∂ux
f (x, y, θ ; ux, 0, 0, . . .)|ux=0, (12)

f2(x, y, θ ) ≡ ∂

∂uy
f (x, y, θ ; 0, uy, 0, 0, . . .)|uy=0, (13)

f3(x, y, θ ) ≡ ∂

∂uxx
f (x, y, θ ; 0, 0, uxx, 0, 0, . . .)|uxx=0, (14)

and so on. Similarly, for positive integers i and
j, fi, j (x, y, θ ) will denote the partial derivative of
f (x, y, θ ; ux, uy, uxx, uxy, . . .) with respect to the ith and
jth arguments that appear after the semicolon, evaluated for
all the arguments after the semicolon set equal to zero. For
example,

f1,3(x, y, θ )≡ ∂

∂ux

∂

∂uxx
f (x, y, θ ; ux, 0, uxx, 0, 0, . . .)|ux=uxx=0.

(15)
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In addition, we define the crater function moments

Mn,m ≡
∫∫

xnym f0(x, y, θ )dxdy, (16)

Mn,m
i ≡

∫∫
xnym fi(x, y, θ )dxdy, (17)

Mn,m
i, j ≡

∫∫
xnym fi, j (x, y, θ )dxdy, (18)

and so forth, where n and m are non-negative integers and i
and j are positive integers. It is important to note that since
mass is conserved,

M0,0 = M0,0
i = M0,0

i, j = M0,0
i, j,k = 0 (19)

for all positive integers i, j, and k. Equation (19) yields a very
significant simplification in the final result of the calculation,
which is

J−1ε4UT = ε2C11S2,0 + ε3C111S3,0 + ε4C1111S4,0 + ε4C22S0,2

+ 2ε4ρ
(
S1,0S3,0 + S22,0

) + 2ε3γ2S1,0S2,0

+ 3ε4γ3S
2
1,0S2,0. (20)

Here

C11 = M1,0
1 cos θ + M1,0 sin θ, (21)

C111 = ( − 1
2M

2,0
1 + M1,0

3

)
cos θ − 1

2M
2,0 sin θ, (22)

C1111 = (
1
6M

3,0
1 − 1

2M
2,0
3 + M1,0

6

)
cos θ + 1

6M
3,0 sin θ,

(23)

C22 = M0,1
2 cos θ, (24)

ρ = 1
4

(
2M1,0

1,3 − M2,0
1,1

)
cos θ + (

M1,0
3 − M2,0

1

)
sin θ,

(25)

γ2 = 1
2M

1,0
1,1 cos θ + M1,0

1 sin θ, (26)

and

γ3 = 1
6M

1,0
1,1,1 cos θ + 1

2M
1,0
1,1 sin θ. (27)

Recalling the definition of Sn,m [Eq. (10)], Eq. (20) be-
comes

J−1UT = ε−2C11UXX + ε−1C111UXXX +C1111UXXXX

+C22UYY + ρ∂2
XU

2
X + ε−1γ2∂XU

2
X + γ3∂XU

3
X ,

(28)

where all of the partial derivatives of U are evaluated at X =
Y = 0. Equation (28) holds for X = Y = 0. However, because
we placed the origin at an arbitrary surface point, this partial
differential equation is actually valid for all X andY . Equation
(28) is invariant under the transformation Y → −Y , as it must
be.

The EOM (28) becomes

J−1ut = C11uxx +C22uyy +C111uxxx +C1111uxxxx

+ ρ∂2
x u

2
x + γ2∂xu

2
x + γ3∂xu

3
x (29)

when written in terms of the original, unscaled variables. The
coefficients on the right-hand side of Eq. (29) depend on the

angle of incidence, θ , and are related to the crater function
moments by Eqs. (21)–(27). The expressions for C11, C22,
C111, and C1111 derived in Ref. [24] reduce to our results
(21)–(24) for the case in which mass is conserved.

Equation (29) can be written in the form

ut = −�(∂x jx + ∂y jy), (30)

where � is the atomic volume and the surface atomic cur-
rent j = jxx̂ + jyŷ + jz ẑ is everywhere tangent to the solid
surface. The components jx and jy of the surface current are
given by

jx = −�−1J
(
C11ux +C111uxx +C1111uxxx

+ 2ρuxuxx + γ2u
2
x + γ3u

3
x

)
(31)

and

jy = −�−1JC22uy, (32)

respectively. Equation (30) shows explicitly that the mass of
the solid is a conserved quantity.

In the Carter-Vishnyakov (CV) model of mass redistribu-
tion, the magnitude of the surface current j depends only on
the local angle of incidence, or, equivalently, on θ , ux, and uy
[16]. It may therefore seem surprising that in general jx de-
pends on uxx. Molecular dynamics simulations of ion impacts
on a sinusoidally rippled surface show that the mass current
is larger at the base of a trough than at the top of a crest,
however [20]. These simulations therefore strongly suggest
that jx does indeed depend on uxx. It is this dependence that
leads to the presence of the linearly dispersive term C111uxxx
and of the so-called conserved Kuramoto-Sivashinsky (CKS)
nonlinearity ρ∂2

x u
2
x in the EOM (29).

V. SURFACE DYNAMICS WITH DIAMETRICALLY
OPPOSED BEAMS

A. Derivation of the equation of motion

We now turn our attention to the problem in which there
are two diametrically opposed beams, each with ion flux J/2.
(Recall that the beams have the same polar angle but their
azimuthal angles differ by 180◦.) If only the beam that is in-
cident from the left were present, the EOM would be Eq. (28)
with J replaced by J/2:

UT = J

2

(
ε−2C11UXX + ε−1C111UXXX +C1111UXXXX

+C22UYY + ρ∂2
XU

2
X + ε−1γ2∂XU

2
X + γ3∂XU

3
X

)
. (33)

Conversely, if only the beam that is incident from the right
were present, the EOM would be Eq. (33) with X replaced by
−X :

UT = J

2

(
ε−2C11UXX − ε−1C111UXXX +C1111UXXXX

+C22UYY + ρ∂2
XU

2
X − ε−1γ2∂XU

2
X + γ3∂XU

3
X

)
. (34)

To getUT when both beams are turned on, we take the sum of
the right-hand sides of Eqs. (33) and (34) to yield

UT = J
(
ε−2C11UXX +C1111UXXXX +C22UYY

+ ρ∂2
XU

2
X + γ3∂XU

3
X

)
. (35)

Note that in addition to being invariant under the transforma-
tion Y → −Y , the dual-beam EOM (35) is invariant under
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X → −X , as it must be. Equation (35) holds for θ just above
the critical angle θc, i.e., for small ε = (θ − θc)1/2.

Experiments carried out with a single incident ion beam
show that parallel-mode ripples form for θ greater than the
critical angle θc and that the surface remains flat for θ < θc:
see Refs. [12,15]. We assume that this remains true in the
problem with diametrically opposed beams. For solutions to
Eq. (35) to be in agreement with this assumption,C11 must be
positive for θ < θc, zero for θ = θc, and negative for θ > θc.
Carrying out a Taylor series expansion of C11 = C11(θ ) about
the point θ = θc yields C11 = −A11(θ − θc) + O((θ − θc)2),
where the constant A11 is non-negative. We neglect the cor-
rection term of order (θ − θc)2 and so obtain C11

∼= −A11ε
2.

We will assume that A11 is nonzero.
If C22 were negative for θ = θc, it would also be negative

for θ slightly less than θc. Since C11 is positive for θ slightly
less than θc, perpendicular-mode ripples would develop for
θ just below θc. Because this is not observed in single-beam
experiments, we assume that C22 is non-negative for θ = θc.
We exclude the anomalous special case in which C22(θc) is
zero so that C22(θc) is positive.

Equation (35) may now be written

J−1UT = −A11UXX +C1111UXXXX +C22UYY

+ ρ∂2
XU

2
X + γ3∂XU

3
X . (36)

Notice that ε does not appear in Eq. (36). Thus, the scaling we
posited in Eqs. (6) and (7) leads to a well-behaved EOM in the
small-ε limit. Moreover, all of the terms are of the same order
in ε.

The EOM (35) becomes

J−1ut = C11uxx +C22uyy +C1111uxxxx + ρ∂2
x u

2
x + γ3∂xu

3
x
(37)

when written in terms of the unscaled variables. If C1111

were positive or zero, arbitrarily short wavelengths would be
linearly unstable and the continuum description would break
down. We therefore assume that C1111 < 0. In addition, γ3
cannot be negative since if it were, the slope of the surface
would grow without bound. To simplify the notation, we
set a = JC11, D = JC22, B = −JC1111, c = Jγ3, and β = Jρ,
where D > 0, B > 0, and c � 0 are constants. Equation (37)
is then identical to Eq. (1). By replacing u by −u if necessary,
we can also arrange for β to be non-negative.

The term c∂xu3x in Eq. (1) is familiar from the theory of the
mounding instability that can occur during molecular beam
epitaxy. There the term results from the Ehrlich-Schwoebel
(ES) effect and can lead to the formation of a faceted surface
[33]. In our problem, the slope dependence of the surface
current produced by MR leads to the presence of this term.
The term β∂2

x u
2
x , on the other hand, is the CKS nonlinearity.

Although this term was first encountered in molecular beam
epitaxy [33,34], it is believed to play a role in ion-induced
pattern formation even when a surface layer of the target mate-
rial is amorphized by the ion bombardment [35–37]. The CKS
nonlinearity tends to produce coarsening of the surface pat-
terns, i.e., the characteristic lateral and vertical length scales
increase with time. It also breaks the u → −u symmetry that
would be present if β were zero. Since there is vacuum above
the surface and solid below, there is no reason that such a
symmetry should exist.

B. Analysis of the equation of motion

Because the surface of the solid is nominally flat initially,
Eq. (1) can be linearized at early times. The amplitude of a
sinusoidal ripple with wave vector k = kxx̂ + kyŷ increases
exponentially in time with the rate

σ (k) = −ak2x − Dk2y − Bk4x . (38)

[The ripple amplitude decays exponentially if σ (k) is neg-
ative.] It follows that for a < 0, ripples with wave number√|a|/(2B) and with their wave vector along the x direction
emerge shortly after the irradiation begins. Conversely, the
surface becomes flatter if a > 0.

Consider the case a < 0, so that a flat initial surface is
unstable and pattern formation occurs. If u is independent of
y, Eq. (1) reduces to a partial differential equation (PDE) in
one dimension. For β = 0, we set φ ≡ ux. Differentiating the
one-dimensional (1D) PDE with respect to x yields

φt = aφxx − Bφxxxx + c∂2
x φ

3, (39)

which is the 1D Cahn-Hilliard (CH) equation [38]. This leads
us to the conclusion that for long times the solution to the
1D PDE with β = 0 tends to a state in which most of the
surface has a slope nearly equal to one of the two selected
values ±(|a|/c)1/2. The slope changes rapidly in interfacial
regions between adjacent intervals with nearly constant slope.
As some regions of nearly constant slope contract and then
disappear and others expand, the pattern coarsens. For c = 0,
on the other hand, the 1D PDE is the CKS equation, which
has been studied as a model of amorphous thin film growth
[39] and the step meandering instability on a crystal surface
[40]. A family of periodic steady-state solutions to the CKS
equation exists [39]; these consist of concave, nearly parabolic
segments that meet at “kinks.” These kinks are not disconti-
nuities in ux, but are instead relatively narrow regions where
uxx is negative. For generic nominally flat initial conditions, a
nearly periodic pattern with the linearly selected wave number
emerges at early times, but at longer times coarsening occurs:
kinks merge and the average size of the parabolic segments
grows in time [40].

Before proceeding further, we will recast the full two-
dimensional EOM (1) that applies when u is not independent
of y in dimensionless form to reduce the number of parameters
to a minimum. We introduce the dimensionless quantities

x̃ ≡
( |a|

B

)1/2

x, ỹ ≡ |a|
(DB)1/2

y, t̃ ≡ |a|2
B

t, and

ũ =
√

β2 + Bc

B
u. (40)

We will also drop the tildes for the remainder of this subsec-
tion. Equation (1) becomes

ut = −uxx − uxxxx + uyy + (cos2 ψ )∂xu
3
x + (sinψ )∂2

x u
2
x,

(41)
where the angle ψ ∈ [0, π/2] is defined by the relation
tanψ = β/

√
Bc. For ψ = 0, we differentiate Eq. (41) with

respect to x and so obtain

φt = −φxx − φxxxx + φyy + ∂2
x φ

3. (42)
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Equation (42) is an anisotropic generalization of the 1D CH
equation to two dimensions. On the other hand, for ψ = π/2
(or, equivalently, for c = 0), Eq. (41) is an anisotropic general-
ization of the 1D CKS equation to two dimensions. Equation
(41) depends on the single dimensionless parameter ψ that
measures the relative strength of the quadratic and cubic non-
linearities.

Let us consider the behavior of solutions to Eq. (41) with
ψ = 0 on the domain in which 0 � x � L and 0 � y � L
and apply periodic boundary conditions. We introduce the
effective free energy

F ≡
∫ L

0

∫ L

0

[
1

2
u2xx + v(ux, uy)

]
dxdy, (43)

where

v(ux, uy) ≡ 1
4

(
u2x − 1

)2 + 1
2u

2
y (44)

will be referred to as the effective potential. Equation (41) can
be written

ut = −δF
δu

, (45)

where δF/δu denotes the variational derivative of F with
respect to the surface height u. Equation (45) implies that
dF/dt � 0, i.e., the effective free energy can never increase.
The dynamics therefore tends to minimize the value of F .
The effective potential v has minima at (ux, uy) = (±1, 0).
Therefore, the surface will tend toward a state in which most
of the surface has a gradient ∇u nearly equal to ±x̂; i.e., the
surface will facet. A flat facet with one of the two selected
gradients ±x̂ has a free energy equal to zero. Adjacent facets
are separated by “edges” which have a positive free energy per
unit length. ∇u changes rapidly but not discontinuously as an
edge is traversed.

Figures 1(a)–1(c) show the results of a simulation of
Eq. (41) with ψ = 0 and a low-amplitude spatial white noise
initial condition. (For details of the method of numerical in-
tegration we employed, see Ref. [41].) At early times, the
ripple wavelength is close to the linearly selected wavelength
and there is no selected slope. The ripple pattern becomes
progressively more faceted as time passes. The dislocations
present in the ripple pattern climb (i.e., move roughly parallel
to the y axis) until they meet dislocations of opposite sign
and annihilate one another. In this way, the average width of
the facets grows and the total length of the edges decreases,
leading to a reduction in the effective free energy of the sur-
face. As expected, the slope distribution has two pronounced
peaks at (ux, uy) = (±1, 0) at long times, as shown in Fig. 2(a)
for t = 5000. All of the dislocations have disappeared at this
point and the time evolution has become very slow. However,
although dislocations are no longer present, the wavelength
of the pattern varies as we move along the x direction [see
Fig. 2(d)]. The order is not perfect as a consequence.

Even though Eq. (41) cannot be written in the varia-
tional form (45) for 0 < sinψ � 1, the behavior we find for
sinψ = 0.2, 0.5, 0.7, and 0.9 is qualitatively similar to what
we observed for sinψ = 0. Figures 1(d)–1(f) show the time
evolution of the surface for sinψ = 0.9, for example. As for
sinψ = 0, the pattern coarsens with time and all of the dis-
locations eventually mutually annihilate. There are also sharp

peaks in the slope distribution, but the selected slope is larger
than for sinψ = 0. This is illustrated by Fig. 2(b) for the case
sinψ = 0.9.

For sinψ = 1, ripples with their average wave vector ori-
ented in the x direction emerge and coarsen in time, just
as for sinψ < 1: see Figs. 1(g)–1(i) [42]. Once again, no
dislocations are present in the pattern at sufficiently long
times. However, the ripples that develop for sinψ = 1 are not
faceted, as Fig. 2(c) illustrates. This is because the ES term is
responsible for the formation of facets and it is not present in
the EOM for sinψ = 1.

Whatever the value of sinψ , there are no dislocations
present in the ripple pattern at sufficiently long times. How-
ever, as the cuts through the surface shown in Figs. 2(d)–2(f)
show, the wavelength varies with x and the surface is not
perfectly ordered. This is to be expected, because the band
of linearly unstable wavelengths is not narrow.

As we have seen, the mean wavelength of the ripples �

and the interface width increase as time passes. A natural
question to ask is whether these quantities exhibit power-law
scaling. We adopted the root-mean-square deviation of the
surface height from its mean value w as a measure of the
interface width. In our simulations, we found that w grows
exponentially at early times, as one would expect (not shown).
The value of w then quickly saturates or enters a regime of
very slow growth—our numerical results do not permit us to
determine which of these behaviors actually occurs. We also
find that � is comparable to the linearly selected wavelength
at early times. At later times, it grows but then appears to
saturate. In both cases, we do not observe scaling behavior
between the early-time and long-time behavior. The fluctua-
tions are also large, which would necessitate averaging over
many simulations to obtain results with an acceptable degree
of accuracy.

We can gain some insight into this situation in the follow-
ing way. The anisotropic CH equation obtained for ψ = 0
[Eq. (42)] is smoothing in the y direction. Its behavior is
therefore somewhat similar to that of the 1D CH equation.
The coarsening of the 1D CH equation is very slow (it is log-
arithmic [43]) and is therefore not easily studied numerically.
We believe that the same type of very slow coarsening occurs
in our two-dimensional (2D) EOM (41) for ψ < π/2.

C. The existence of selected slopes for diametrically
opposed beams

As we have seen, if θ is just above the critical angle θc
and c > 0, the surface evolves a state in which there are large
regions with slope very nearly equal to one of the two selected
values. The goal of this subsection is to provide some physical
insight into how there can be nonzero selected slopes when
diametrically opposed beams are incident on the solid surface.
To make this discussion as transparent as possible, we will
take the surface height u to be independent of y.

Consider the surface current j when a single ion beam is in-
cident on the solid. For the sake of simplicity, we assume that
j depends only on the local angle of incidence, θloc, as in the
CV model. In general, j(θloc) must be an odd function of θloc
and must vanish for θloc equal to 0 and π/2. In addition, j(θloc)
must be positive for 0 < θloc < π/2 since the current points
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FIG. 1. Top: Simulation of Eq. (41) with sinψ = 0 at (a) t = 50, (b) t = 1000, and (c) t = 5000. Middle: Simulation with sinψ = 0.9 at
(d) t = 50, (e) t = 1000, and (f) t = 5000. Bottom: Simulation with sinψ = 1 at (a) t = 50, (b) t = 1000, and (c) t = 5000. The domain size
was 200 × 200 in all three simulations.

in the projected beam direction. In the case of the CV model,
j(θloc) = μJ cos θloc sin θloc, where μ is a positive constant of
proportionality. This current satisfies all of the requirements
we have listed, but is unlikely to be exactly correct for any
beam-target combination.

Let α ≡ tan−1 ux be the angle that the surface is tilted away
from the horizontal. The total current when two diametrically
opposed beams are incident on the surface is jtot = [ j(θ −
α) − j(θ + α)]/2. For the CV model,

jtot = −1

2
μJ cos(2θ ) sin(2α) = −μJ cos(2θ )

ux
1 + u2x

. (46)

Note that the surface current is downhill for θ less than the
critical angle θc = π/4 but is uphill for θ > θc. This shows
very clearly that a flat initial surface is stable for θ < θc and is
unstable for θ > θc.

The total current is zero on a surface that has a selected
slope. Equation (46) shows that there are no nonzero selected
slopes in the case of the CV model except for θ = θc = π/4.
For that angle, the total current vanishes for all slopes ux
and so there are no selected slopes in that case either. The
CV model, however, is anomalous because j(θloc) is an even
function about the critical angle θloc = π/4.

As an example that shows that there can be nonzero se-
lected slopes for θ > θc in the dual-beam problem, consider
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FIG. 2. (a)–(c) Slope distributions for the surfaces shown in Figs. 1(c), 1(f), and 1(i). (d)–(f) Cuts through the surfaces shown in Figs. 1(c),
1(f), and 1(i) taken at y = 0.

a different model of the surface current. In the CV model,
every incident ion displaces an average mass proportional to
sin θloc. Some ions, however, are elastically reflected from the
solid surface and so displace no mass. Reflection of ions is
particularly important at high angles of incidence. To make
an easily analyzed model that takes the effect of ion reflection
into account in a crude way, we will take the average displaced
mass per ion to be proportional to sin θloc cos θloc. In this case,
j(θloc) = νJ cos2 θloc sin θloc, where ν is a positive constant of
proportionality. The critical angle θc is the angle where j(θloc)
attains its maximum value, sin−1(1/

√
3) ∼= 35.26◦. j(θloc) is

not an even function about this angle. The total current for
diametrically opposed beams is

jtot = − 1
4νJ[cos θ sin θ + cos(3θ ) sin(3α)]. (47)

For θ � θc, this is zero only for α = 0. For θ > θc, how-
ever, jtot also vanishes for the nonzero tilt angles α given by
sin2 α = sec(3θ )(1 − 3 sin2 θ ).

The EOM for the CV model with dual beams is ut =
−�∂x jtot, where jtot is given by Eq. (46). Thus, to sixth order
in ε,

ε4UT = −2�μJε4
(
UXX − ε2∂XU

3
X

)
. (48)

To order ε4, therefore, there is no term proportional to ∂XU 3
X .

Comparing this with Eq. (36), we see that for the CV model,
γ3 = 0 and hence c = 0. As a consequence, for the anomalous
special case in which the slope dependence of the surface
current is given correctly by the CV model, the 1D EOM is
the CKS equation and there are no nonzero selected slopes.

VI. THE SCALING ANSATZ IS INVALID FOR A SINGLE
INCIDENT BEAM

Consider the EOM (28) for a single incident beam with ion
flux J . Since C11 = −A11ε

2,

J−1UT = −A11UXX + ε−1C111UXXX +C1111UXXXX

+C22UYY + μ∂2
XU

2
X + ε−1γ2∂XU

2
X + γ3∂XU

3
X .

(49)

Equation (49) does not have a well-defined ε → 0 limit unless
C111 = γ2 = 0. This means that the scaling ansatz given by
Eqs. (6) and (7) is not appropriate for the case of a single
incident beam unless both C111 and γ2 happen to be zero at
the critical angle. This, of course, is highly unlikely.

To get a sense of the source of the difficulties that arise
when there is a single obliquely incident beam, let us suppose
that the EOM were in fact given by Eq. (28), or, equivalently,
Eq. (29). For simplicity, we will restrict our attention to the
1D case in which uy = 0. The most serious problem stems
from the presence of the term proportional to ∂xu2x , and so
let us suppose that its coefficient γ2 is nonzero. To simplify
the notation, earlier we set a = JC11, B = −JC1111, c = Jγ3,
and β = Jρ. In addition, we define α ≡ JC111 and b ≡ Jγ2.
Equation (29) becomes

ut = ∂x
(
aux + bu2x + cu3x

) − Buxxxx + αuxxx + β∂2
x u

2
x . (50)

Recall that a is positive for θ < θc, is zero for θ = θc, and is
positive for θ > θc. For simplicity, we will take the remaining
coefficients in Eq. (29) to be constants that are independent of
θ . For the problem to be well defined, c must be non-negative
and B must be positive, and so we assume that this is the case,
as we did previously for the dual-beam problem. We have

022804-8



NANOSCALE PATTERN FORMATION ON SOLID SURFACES … PHYSICAL REVIEW E 103, 022804 (2021)

assumed that γ2 
= 0 and hence b is nonzero. In fact, we may
take b to be positive without loss of generality because if it is
not, we replace u by −u in Eq. (50).

We will consider the special case in which α = β = 0 to
begin. To gain insight into the behavior of the surface, we
study the resulting equation

ut = ∂x
(
aux + bu2x + cu3x

) − Buxxxx (51)

on a large but finite interval 0 � x � L and apply periodic
boundary conditions. We also introduce the effective free en-
ergy

F ≡
∫ L

0

[
1

2
Bu2xx + f (ux )

]
dx, (52)

where

f (ux ) ≡ 1
2au

2
x + 1

3bu
3
x + 1

4cu
4
x (53)

will be referred to as the effective potential. Equation (51) can
be written

ut = −δF

δu
. (54)

Equation (54) implies that dF/dt � 0; i.e., the effective free
energy can never increase. The dynamics therefore tends to
minimize the value of F .

Differentiating Eq. (51) with respect to x and again setting
φ = ux, we obtain

φt = ∂2
x (aφ + bφ2 + cφ3 − Bφxx ). (55)

The initial state of interest is a nominally flat surface, and
so we take φ(x, 0) to be low-amplitude spatial white noise.
Equation (55) with this initial condition is the CH equation
for an off-critical quench [38]. The behavior of the solu-
tions to this problem are well known and so we will simply
summarize their properties here. For a > ac = 2b2/(9c), the
state φ = 0 is stable. Thus, for incidence angles θ sufficiently
far below θc, the surface smooths. In the coexistence region
0 < a < ac, on the other hand, there is a local minimum in
the potential f (φ) at φ = 0. The global minimum in the po-
tential is at φ = φ∗ ≡ −(b+ √

b2 − 4ac)/2c < 0. The state
φ = 0 is therefore metastable. Noise in the initial condition
or shot noise in the ion beam will lead to nucleation and
growth of regions with nonzero slopes φ1 and φ2 which satisfy
φ∗ < φ1 < 0 and φ2 > 0. The surface slope varies smoothly
in interfacial regions between adjacent intervals in which the
slope is very nearly constant. The width of these interfacial
regions depends on B. The precise values of the slopes φ1

and φ2 can be determined using the requirement that the
line joining the points (φ1, f (φ1)) and (φ2, f (φ2)) must be
tangent to the curve f = f (φ) at these two points. Finally, for
a � 0, the state φ = 0 is unstable and spinodal decomposition
occurs. At long times, regions in which the slope is nearly
equal to (−b± √

b2 − 4ac)/2c develop. Once again, adjacent
intervals with differing, nearly constant slopes are separated
by interfacial regions in which the slope varies smoothly.

The upshot of this discussion is that whether 0 < a < ac
or a < 0, at long times there will be regions in which the
slope is nearly equal to a nonzero value that is not small. We
began our derivation of the single-beam EOM, however, by
assuming that Eqs. (6) and (7) apply. These equations imply

that ux is proportional to ε = (θ − θc)1/2 � 1 for θ just above
the critical angle θc, i.e., for a that is small and negative. In
contrast, our analysis of Eq. (51) shows that for θ close to θc,
there will be regions in which the surface slope is of order 1
at long times. Thus, the small slope approximation inherent in
the scaling ansatz given by Eqs. (6) and (7) is not valid if b is
nonzero.

If there are diametrically opposed beams, b is zero and
Eq. (55) becomes the CH equation for a critical quench. The
flat surface is stable for a > 0, or, equivalently, for θ < θc.
For θ just above θc (i.e., for small, negative a), spinodal
decomposition occurs. Regions in which the surface slope is
very nearly equal to ±√|a|/c develop at long times. Since
a ∝ ε2, these slopes are of order ε. This is consistent with the
scaling ansatz.

So far, we have considered the special case of Eq. (50)
in which α = β = 0. A second special case of Eq. (50) in
which b is nonzero has already been studied [44]. In this
case, c = 0 but β is nonzero and α is arbitrary. It was shown
analytically that for small, negative a (i.e., for ε → 0), slopes
of order unity develop on the surface as time passes, and this
was confirmed by simulations. Thus, in this case as well, the
surface slope does not remain small and the scaling ansatz
given by Eqs. (6) and (7) is invalid.

The discussion given in this section strongly suggests that
if a single ion beam with θ � θc is incident on the sample, the
surface slope is not small everywhere at long times. If this is
indeed the case, the surface current j would be needed for
arbitrary local angles of incidence θloc before a full theory
could be constructed. In the CV model [16], it is assumed
that j points in the projected ion beam direction and that its
magnitude is proportional to sin θloc cos θloc for arbitrary θloc.
However, this cannot be exactly correct because the CVmodel
gives θc = 45◦ and this disagrees with experiment [12,15]. In
addition, as already noted, molecular dynamics simulations
show that j depends on the surface curvature, but it does not
in the CV model [20]. Further progress on the single-beam
problem in the low-energy regime may become possible once
the dependence of j on θloc and the surface curvature has been
studied in detail using atomistic simulations.

VII. DISCUSSION

As we have seen, the case in which diametrically opposed
beams are simultaneously incident on the solid surface is
much simpler than the single-beam case because in the former
case, the EOM must be invariant under the transformation
x → −x. We obtained the EOM for diametrically opposed
beams [Eq. (1)] by expanding Eq. (5) to order ε4. If we
instead expanded to order ε6, we would recover Eq. (1), but
with correction terms of order ε2 appended to its right-hand
side. Examples of terms of this kind are uxxyy, ∂2

x u
2
y , ∂2

y u
2
x ,

and ∂x(uxu2y ). Close to threshold, ε is small and the correction
terms can safely be neglected. However, as θ is increased,
the correction terms gain in importance and the dynamical
behavior of the surface would change. If θ is increased still
further, the sign of the coefficient D in Eq. (1) could change
at a second critical angle θc,2. In this case, there would be
an instability if the y direction for θ > θc,2 and it would be
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necessary to include a term proportional to uyyyy in the EOM
[45].

We assumed that when a broad beam is incident on the
surface, the ion flux is low enough that essentially all ion-
induced motion near a point of ion impact, P, has ceased
before another ion strikes the surface in the immediate vicinity
of P. A hydrodynamic theory that applies when the ion energy
is low enough that sputtering is negligible has been developed
by Muñoz-García and co-workers [46]. This theory applies in
the high-flux regime in which a whole layer at the surface of
the target is mobilized by the ion impacts and behaves like a
highly viscous fluid.

Equations that are related to our EOM (1) have been
encountered in other physical contexts. When GaAs is main-
tained at a temperature in excess of its recrystallization
temperature and is bombarded with a normally incident Ar+

beam, highly ordered ripples form [14,47,48]. Ou et al. [47]
have modeled time evolution of the GaAs surface using a
variant of Eq. (1) in which the anisotropic terms −Buxxxx and
β∂2

x u
2
x are replaced by their isotropic counterparts −B∇2∇2u

and β∇2(∇u)2. The term Duyy in the EOM (1) suppresses
variations of the surface height in the transverse direction, and
so the differences in the time evolution produced by Eq. (1)
and the equation studied by Ou et al. are expected to be
modest.

Equations of motion that describe the instability of a
growing crystal surface and that include the ES and CKS
nonlinearities have been studied by Golubović and co-workers
[33]. Our EOM (1) is a special case of the EOM they used to
model the growth of a (110) surface [49–52], although they
did not analyze the case D > 0 in which there is no instability
in the transverse direction [53].

VIII. CONCLUSIONS

In this paper, we studied the behavior of a solid surface
that is bombarded with two diametrically opposed, obliquely
incident ion beams in the regime in which the ion energy is
low enough that sputtering is negligible. For angles of inci-
dence θ just above the threshold angle for ripple formation, θc,
we carried out a systematic expansion in powers of the small
parameter ε ≡ (θ − θc)1/2 and retained all terms up to fourth
order in ε. We found that close to threshold and at sufficiently
long times, the surface is governed by an anisotropic Cahn-
Hilliard equation with an additional nonlinear term that breaks
the up-down symmetry, Eq. (1).

Numerical integrations of Eq. (1) show that dual-beam ion
bombardment in the low-energy regime leads to the formation
of faceted parallel-mode ripples with a very low density of
dislocations. These ripples are much more highly ordered than
the ripples that usually result from ion bombardment of a
solid surface. However, because the ripple wavelength varies
in the longitudinal direction, the order is not perfect. This
suggests that although the ripples have the sawtooth form
that is needed for a blazed diffraction grating, they are not
sufficiently regular for the grating to have a high efficiency.

We used a generalized crater function formalism to derive
the EOM (1). The dependence of the crater function on spatial
derivatives of the surface height of arbitrarily high order was
taken into account. In addition, terms of all orders in the
surface height u were retained in our derivation. (Close to the
threshold for pattern formation, however, only terms of third
order in u appear in the EOM to lowest nontrivial order in
ε.) A by-product of our derivation of the EOM is expressions
that relate the coefficients in the EOM to moments of the
crater function. These expressions could be used to obtain
estimates of the coefficients in the EOM from input produced
by atomistic simulations. These estimates would include only
the short-time or “prompt” effects of an ion impact that occur
within picoseconds after the arrival of the ion, however. The
contributions to these coefficients from slow processes like
ion-induced viscous flow would have to be inferred from
experiment or be computed by other means, as in past work
[54].

Close to threshold, the surface slope remains small when
diametrically opposed beams are incident on a surface that
is initially flat. In contrast, our work strongly suggests that
when a surface is bombarded with a single obliquely incident
ion beam in the low-energy, no-sputtering regime, the surface
slope does not remain small as the ripple amplitude grows. We
therefore anticipate that developing a rigorous theory for the
single-beam problem will be considerably more difficult than
it was for the dual-beam problem.
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[49] L. Golubović, A. Levandovsky, and D. Moldovan, Phys. Rev.

Lett. 89, 266104 (2002).
[50] A. Levandovsky, L. Golubović, and D. Moldovan, Phys. Rev. E
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