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Abstract 
Researchers have recently found that 3-month-old infants are 
capable of using analogical abstraction to learn the same or 
different relation, given the right conditions (Anderson et al. 
2018).  Surprisingly, seeing fewer distinct examples led to 
more successful learning than seeing more distinct examples.  
This runs contrary to the prediction of standard learning 
theories, which hold that a wider range of examples leads to 
better generalization and transfer, but is compatible with other 
findings in infant research (Casasola 2005; Maguire et al. 
2008).  Anderson et al. (2018) propose that this is due to 
interactions between encoding and analogical learning.  This 
paper explores that proposal through the lens of cognitive 
simulation, using automatically encoded visual stimuli and a 
cognitive model of analogical learning.  The simulation results 
are compatible with the original findings, thereby providing 
evidence for this explanation.  The assumptions underlying the 
simulation are delineated and some alternatives are discussed. 
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Introduction 
Relational learning and reasoning are central in human 
cognition (Gentner, 2003, 2010; Gentner & Markman 1997; 
Hofstadter, 2001; Penn et al., 2008). How does this ability 
arise? Is analogical ability built up gradually via maturational 
change, or by combining other component processes?  Or is 

structure-mapping ability an innate species-level adaptation? 
The first possibility may seem more plausible, given the 
abundant evidence that relational sophistication increases 
over development (Gentner & Rattermann, 1991).  But recent 
findings suggest that analogical processing ability may be 
present early on, and that developmental gains in analogical 
fluency are due to increases in relational knowledge 
(Gentner, 2010; Gentner & Rattermann, 1991) and/or 
executive ability (Richland et al., 2006; Thibaut et al., 2010).  
For example, Ferry, Hespos and Gentner (2015) found 
evidence that 7-9-month-old infants can carry out analogical 
abstraction across a sequence of exemplars to derive an 
abstract same or different relation. 

Anderson et al. (2018) recently reported that even 3-
month-old infants can learn same or different relations via 
analogical abstraction.  A surprising aspect of the research 
was that the infants learned better when given fewer 
examples.  In the first experiment, infants failed to learn these 
relations after being shown six distinct examples of either 
same or different repeated until habituation. (The exact 
number of habituation trials varied, ranging from 6 to 9 trials 
until infants’ looking times declined by 50% from the first 
three trials to the last three, or until infants had completed 
nine trials.) In the second experiment, infants succeeded after 
being given repeated exposure to only two examples of the 
relation. This result runs contrary to the predictions of 



standard learning theories, which predict that a wider range 
of examples leads to better generalization and transfer, but is 
compatible with some prior findings on infant relational 
learning (Casasola 2005; Maguire et al. 2008).  

 Anderson et al. (2018) proposed that these phenomena are 
due to interactions between encoding and analogical 
processing.  This paper examines this proposal via cognitive 
modeling, using automatically encoded stimuli and a model 
of analogical learning.  Specifically, we ask whether the 3-
month-old pattern can be modeled by assuming that the 
infants have structure-mapping ability, but that they are 
limited by their encodings of examples. We lay out a set of 
assumptions that provide a possible processing account and 
show that these assumptions could explain the generalization 
pattern. The modeling enterprise also reveals other possible 
encoding assumptions, which can be explored in future work. 

We first review prior research on analogical abstraction, 
then describe the Anderson et al. (2018) experiments to be 
modeled.  Then we describe our model of the infants’ 
encoding and learning process. To preview, the model is 
constructed from pre-existing components (described below). 
This includes automatic encoding of visual stimuli based on 
photos of the objects shown to the infants.  We describe the 
processing performed by the model, laying out the 
assumptions we are making and noting where alternative 
explanations are feasible.  Then we present the results of 
computational simulation based on the model. We end with a 
discussion of the implications and possible future work 

Background 
There is evidence of analogical ability in children from early 
preschool through adulthood (Gentner, 2003; Gentner & 
Rattermann, 1991; Richland et al., 2006). Two signatures of 
this ability are (1) the ability to perceive abstract relational 
matches can be enhanced by comparing instances of a 
relation, in both adults  (Gick & Holyoak, 1983; Markman & 
Gentner, 1993) and children (Gentner, 2003; Kotovsky & 
Gentner, 1996); and (2) the presence of salient objects can 
interfere with relational mapping, especially early in 
development (Gentner & Toupin, 1986; Paik & Mix, 2008; 
Richland et al., 2006). These findings are consistent with 
other research suggesting that comparison entails a structural 
alignment process that highlights relational commonalities 
between the items compared (Markman & Gentner, 1993). 

Recent research has explored relational learning in human 
infants (Anderson et al., 2018; Ferry et al., 2015; Gervain et 
al., 2012). Ferry et al. (2015) found evidence that 7 to 9-
months-old infants can engage in analogical abstraction. 
When shown a series of same pairs (using the method 
described below), infants afterwards looked significantly 
longer at a novel different pair than at a novel same pair (and 
the reverse for habituation to different). This is evidence for 
the first signature of analogical processing—that comparing 
across examples promotes abstracting the common relational 

 
1 To test for salient-object interference, the infants had previously 

seen some objects in the waiting room; this is not modeled here.  

structure. They also found evidence for the second signature 
of analogical processing: that salient objects tend to distract 
from relational processing. When infants were shown a 
subset of objects prior to habituation, they performed poorly 
on test trials containing these objects, failing to distinguish 
same and different. Thus, Ferry et al. (2015) concluded that 
by 7-9-months, infants can use analogical generalization to 
form a relational abstraction.  

Analogical Learning in 3-month-old Infants 
To explore the origins of analogical ability, Anderson et al. 
(2018) asked whether 3-month-olds could abstract same and 
different relations. Infants were shown a series of pairs: half 
the infants saw same pairs and the other half saw different 
pairs 1 . The materials were pairs of colorful, distinctive 
objects (Fig. 1). In order to engage infants’ attention, on each 
habituation and test trial, the pair was moved together 

through a fixed motion path: up, then tilted left, then right, 
then down to the start point. This 8-second cycle was repeated 
continuously until the infant looked away for 2 seconds. Then 
the next pair was shown in the same way.  The habituation 
trials continued until the infant’s looking time declined by 
50% from the first three trials to the last three, with a 
maximum of nine trials (range = 6 to 9 trials). 

Both groups of infants then saw the same six test pairs—
three depicting the same relation and three depicting the 
different relation. The pairs were shown one at a time, and the 
key dependent measure was how long the infant looked at 
each pair. The key test pairs had brand new objects 
instantiating either the same or different relation. If infants 
have abstracted the relation they saw during habituation, they 
should look longer at the novel relation. (This use of looking-
time is commonly used with preverbal infants; the idea is that 
the familiar relation will fit their expectations, whereas the 
novel relation will be more surprising.) 

In Experiment 1, infants were shown six distinct pairs 
(either all same or all different) during habituation. During 
test, the infants failed to look longer at novel pairs on the key 
trials. Thus, there was no evidence for analogical learning. 
Although this could mean that 3-month-olds lack this ability, 
the experimenters explored another possibility:  that the 

 
 

 
Figure 1: Examples of habituation pairs from 

Anderson et al. Expt. 1 (2018).  



infants were overwhelmed by the variety of objects in the 
study, and thus failed to encode the relations between them 
(e.g., Casasola & Park, 2013).  Consequently, in Experiment 
2, only two distinct pairs were used during habituation (e.g., 
AA, BB, AA, BB...for same). The infants were then tested in 
the same manner as in Experiment 1.  In this case, infants did 
indeed learn. They looked longer at pairs showing the novel 
relation, even with brand new objects—evidence that they 
had abstracted the relation.  

Simulating the Infants’ Learning 
In order to abstract a same or different relation from a series 
of examples, two things must happen (not necessarily in a 
fixed order): (1) the learner must compare the objects within 
each pair to form some initial representation of the same (or 
different) relation within the pair; and (2) the learner must 
compare across the pairs to arrive at a more abstract   
encoding of the relation. Only if both those things happen will 
the learner experience a brand new same pair as familiar. Our 
simulation explores one path—by no means the only path—
by which this could happen.  

Simulation Design 
Here we discuss our simulation. We begin by noting a critical 
point: in order to be informative about human cognition, a 
simulation must be constrained. Many simulations have used 
hand-coded representations to depict the learner’s construal 
of a situation, and/or have implemented a simulation process 
specific to the situation being modeled.  But this allows 
enormous latitude to tailor the representations and processes 
to fit whatever outcome is desired.  To avoid this problem, 
(a)  as input, the model is given representations that are 
automatically encoded from the visual stimuli given to the 
infants; and (b) our processing model is built out of pre-
existing components that have successfully simulated prior 
findings in analogical processing.  

We first describe the component models, then how they are 
combined. 

Simulation of analogical processing 
We use the Structure-Mapping Engine (SME, Forbus et al. 
(2016)) as a simulation of analogical mapping, and SageWM 
(Kandaswamy et al. 2014) as a simulation of analogical 
generalization in working memory.  These models have been 
used to model a number of psychological phenomena already. 

SME is based on Gentner’s (1983) structure-mapping 
theory of analogy and similarity.  Given two cases consisting 
of structured relational representations, SME computes one 
or more mappings between them, preferentially aligning 
common relational structure. A mapping includes a set of 
correspondences that align entities and statements in the base 
and target, a similarity score that indicates how similar the 
base and the target are, and candidate inferences, which are 

 
2 As descriptions are merged, frequency counts are kept for how 

often each statement is aligned.  If the probability goes below a 
threshold (0.2 by default), the statement is eliminated. 

projections of additional structure from one case to the other, 
based on the aligned structure. SME also computes a 
structural evaluation score—a similarity score that takes into 
account the depth of the common structure as well as the 
among of overlap. Here SME is used both as a similarity 
metric and as a means of combining cases into 
generalizations in SageWM. 

SageWM is the working-memory version of SAGE 
(McClure et al. 2015), the Sequential Analogical 
Generalization Engine. It provides a model of analogical 
abstraction.  SageWM creates new generalizations from a 
series of examples, by iterative application of SME. When 
given a series of examples, SageWM stores the first example. 
When the next example arrives, SageWM compares it to the 
first one, using SME. If there is sufficient overlap (that is, if 
SME’s score is above a pre-set assimilation threshold), the 
common structure is stored as a generalization. If the 
similarity to the abstraction is below threshold, the example 
will be stored separately. This process continues as new 
examples arrive. Thus, if new examples are sufficiently 
similar to the ongoing generalization, then the generalization 
will be updated to be somewhat more abstract. We use 0.95 
as the assimilation threshold in these experiments2 which is 
the default for SageWM. 

Simulation of visual encoding 
In order to avoid hand-coding the stimuli, we use CogSketch 
(Forbus et al. 2017), a pre-existing cognitive model of visual 
encoding and visual problem solving, to provide a vocabulary 
of visual representations.  CogSketch has successfully 
modeled a variety of adult visual tasks, including Ravens’ 
Progressive Matrices (Lovett & Forbus, 2017), an oddity task 
(Lovett & Forbus, 2011), and a paper-folding task (Lovett & 
Forbus, 2013).   

The production of visual stimuli occurs via an automatic 
pipeline, starting with photographs the pairs of objects 
provided by the original experimenters.  The photographs are 
blurred and the Canny edge detector is used to generate a set 
of initial edges describing each object.  CogSketch 
decomposes these initial edges into segments based on 
discontinuities and intersections.  CogSketch automatically 
computes a variety of information about each segment, e.g. 
its length, curvature, orientation, position, and topological 
relations with other segments. This graph of segments and 
junctions is also used to identify regions within an object 
(McLure et al. 2011).  This includes the object’s boundary, 
consisting of all exterior edges, which we assume is visually 
salient and likely to be encoded early in human processing.  
Several kinds of information are automatically encoded for 
regions as well, such as whether or not it has curved sides.  
CogSketch also estimates its closeness to a set of shape 
templates, e.g. spindles, triangles, rectangles, and ellipses.  
Since color is visually salient, we use a color extraction 



library to extract up to eight of the most frequent colors for 
an object.   

An important issue in this modeling effort is to consider the 
visual encoding processes available to 3-month-olds. In the 
first months of life, vision and attentional processes are 
becoming increasingly stable (Arterberry & Kellman, 2016; 
Colombo, et al., 1991). Visual acuity improves steadily 
through the first several months. Especially relevant here, 
infants’ habituation and fixation periods decrease 
dramatically during the first 6 months (Bornstein, 1985; 
Colombo & Mitchell, 2009), suggesting that young infants’ 
encoding is slower and more variable than that of older 
infants. 

 To capture young infants’ relatively inefficient encoding 
processes, here we have assumed slow encoding—that is, that 
not all the available information is encoded on first exposure.   
(Other assumptions are possible, including variable 
extraction of information.) Specifically, we assume that the 

boundary of an object, its shape properties, and color are 
encoded early.  When given more time, we assume infants 
compute higher-level representations of the shape, including 
internal properties and relations. We use the scheme from 
Chen et al. (2019), which is inspired by Biederman’s (1987) 
Recognition by Components theory, which describes shapes 
as being made out of parts called geons.  CogSketch identifies 
geons by using a medial axis transform, compatible with 
Biederman’s original account and consistent with evidence 
from Lowet et al. (2018) regarding their use in human shape 
representations.  Object-internal relationships between geons 
are computed in terms of positional relations and qualitative 
topological relations (Cohn et al.1997).  Figure 2 shows 
examples of boundary and geon representations for one of the 
objects. We further assume that, given sufficient time, infants 
encode representations of both objects.  

In the original experiments, the pairs were moved in a 
uniform way throughout the habituation and test trials.  We 

assume that the infants encode these motions, since motion 
is extremely salient for them.  While we could use 
qualitative spatial representations to automatically represent 
the specific motions of the stimuli as part of the encoding 
process, using techniques like (Chen & Forbus, 2018), this 
would involve considerable complexity to gather the video 
data. Thus, we do not explicitly encode such motions in the 
present model.   

We hypothesize that the repeated motion influenced the 
infants’ processing in two ways. First, within a trial, the two 
objects in a pair always move together. This gives rise to a 
perception of the unity of the pair and prompts the infant to 
compare the two objects in a pair. Over trials, as the object 
representations become more detailed, this will lead to 
perceiving many common attributes in a same pair (or few, 
in the case of a different pair).  We call the representation of 
the two objects plus relations computed between them the 
pair-level description.  We hypothesize that pair-level 
descriptions are only computed when both objects have 
been fully encoded.  The second effect of the repeated 
motion is to invite comparison across trials: even though the 
individual pairs (say, AA and BB) are quite distinct, we 
hypothesize that the similarity in their motion leads the 
infant to compare them, as described below.  

To represent the visual similarity of objects, we use one of 
two relations, depending on whether their similarity, as 
measured by SME, is above a particular threshold (here, 0.5).  
If their similarity is above the threshold, a statement using the 
sameObject relation is encoded, and otherwise, 
differentObject. We use these terms for convenience, but we 
do not assume that infants distinguish absolute sameness 
from high similarity (see Smith, 1993). It is also not clear 
whether infants are learning these relations de novo, or 
whether they already possess some kind of representations of 
same and different, either innately or through early learning.  
We return to this question in the Discussion.  

Processing Assumptions 
To recapitulate, we assume that infants encode the motion of 
the pair of objects and that this invites comparison both 
within and across trials. However, the comparison process 
become also requires that the object representations be 
sufficiently detailed. We do not assume that infants encode 
everything about the objects in a trial at first exposure. Here 
we assume that information about object boundaries and 
color are computed first, followed by information about the 
decomposition of the object into geons, and that these two 
levels of representation occur in that sequence. We assume 
that even partial object representations are stored in 
SageWM, and retrieved the next time they are exposed to the 
pair.  This retrieval speeds up the initial encoding process, 
allowing processing to move on to the next level of encoding. 

It is not clear whether infants are encoding both objects on 
first exposure to a pair.  Here we assume that objects are 
encoded independently in parallel, but with the levels of 
representations outlined above.  We assume that having the 
objects placed into correspondence causes them to be 

 
Figure 2: Example of boundary and Geon relational 
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we use English word to indicate relations and entities. 
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compared, once their encodings are complete.  The result of 
this comparison results in the description of the pair being 
augmented with a sameObject or differentObject 
statement, depending on the outcome of that comparison. 

Experiment Simulation 
Now let us reconsider the experiments in Anderson et al. 
(2018) through the lens of cognitive simulation.  We discuss 
each in turn. In both simulations, we did not simulate the 
infants’ experience of some objects from waiting room. 

Simulation of Experiment 1 
Following the original experiment, we simulated two 
habituation sequences: one  with a sequence of six pairs of 
objects satisfying the same relationship (<A,A>, <B,B>, 
<C,C>, <D,D>, <E,E>, <F,F>) and one with a sequence of 
six pairs of objects satisfying the different relationship 
(<A,B>, <C,D>, <E,F>, <B,C>, <F,A>, <D,E>).  Given our 
assumption of parallel object encoding, in the same condition 
only the first level of encoding occurs for each object in the 
simulation, and hence the objects are not compared and no 
pair-level descriptions are generated. For the different 
condition, there are repeated exposures to particular objects, 
but another comparison involving them would be needed to 
generate pair-level representations.  Since there are no pair-
level examples, they cannot be compared and generalized, 
and hence no analogical learning takes place, compatible with 
the infant results. 

Simulation of Experiment 2 
Following the original experiment, two sequences of 
alternating pairs of objects were used.  For the same 
habituation trials, these were (<A,A>, <B,B>, <A,A>, 
<B,B>, <A,A>, <B,B>, and for the different habituation 
trials, these were <A,B>, <C,D>, <A,B>, <C,D>, <A,B>, 
<C,D>.  Thus for both habituation conditions, each pair was 
presented to the simulation three times, in alternation.  In the 
first exposure to a pair, the first level of encoding occurs for 
its objects, which are stored in SageWM. In the second 
exposure, the second level of encoding occurs, building on 
the initial model stored in SageWM.  In the third exposure, 
the fully-encoded objects retrieved are used to construct a 
pair description, including the cross-object comparison 
(because of the assumed common roles in the motion 
perceived by the infants).  That pair description is also stored 
in SageWM. The pair representations are generalized by 
SageWM across pairs as they occur: that is, a generalization 
is formed that includes either a sameObject or a 
differentObject statement, depending on habituation 
condition.  This new abstraction is relatively portable, since 
it has many fewer object details in common, and hence is 
retrieved when test pairs are presented.  Even if these test 
pairs are not fully encoded (because of novel objects), 
alignment with the abstraction leads to a projection of a 
sameObject or differentObject statement as a candidate 
inference (depending on whether habituation was for same or 
different). When a test pair is compatible with the learned 

relation, the candidate inference fits.  When a test pair is 
incompatible with the learned relation, the candidate 
inference is contradicted, and this novelty, we hypothesize, 
leads to greater looking times for the infant.  
 

Discussion 
The simulation captures the pattern of infant results across 
the two experiments: When given six different example pairs 
(Experiment 1), the simulation fails to form abstractions of 
same and different during habituation, and therefore fails to 
differentiate novel from familiar relations during test. When 
given two pairs (Experiment 2), the simulation forms 
abstractions of same and different during habituation, and 
therefore arrives at distinct matching scores for novel vs. 
familiar relations during test.  

Thus, we have shown that a reasonable set of assumptions 
about the visual encoding of infants, along with pre-existing 
encoding algorithms and analogical process models, can be 
used to simulate Anderson et al.’s (2018) results on 
analogical learning in 3 month old infants.  This provides 
evidence for their proposed explanation, in terms of partial 
infant encoding.   

This simulation assumed that something like sameObject 
and differentObject were already available to infants.  How 
might such relationships be learned, even perhaps during the 
experiment?  It is not unreasonable, given how ubiquitous 
analogy and similarity appear to be in human cognition 
(Gentner 2003), that infants can remember the qualitative 
feeling of high-similarity or low-similarity for pairs that they 
have just seen.  In other words, the alignments during 
analogical generalization could provide the basis for 
introducing a simple qualitative value on similarity, e.g. high 
or low (Forbus, 2019).  For example, given habituation on 
same trials, these similarity scores will tend to cluster quite 
high, and given habituation on different trials, these similarity 
scores will tend to cluster quite low (see Figure 3). Seeing a 
score for a pair in the same role that is substantially different, 
i.e. a different qualitative value, could also predict looking 
times and reifying such a difference into a pair of 
relationships would then make such information accessible in 
future comparisons.  This provides a possible explanation for 
how such relationships can be learned. 

Our general assumption is that the rather surprising 
pattern—that 3-month-olds can from an abstraction from two 
alternating pairs over six pairs but not from six different 
pairs—results from inefficiencies in their visual encoding 
process. In this simulation, we have focused on slow 
encoding to capture this inefficiency. Another interesting 
possibility is variable encoding. For example, different 
subsets of geons might be computed over different exposures, 
so that the perceived similarity of a pair over time would 
depend on the particular orders in which geons were found. 
Such models will be explored in future work.    

Despite the vast amount of research on analogical 
processing in children, there is very little research on how 
children learn relations in the first place.  One exception is 



DORA (Doumas et al. 2008).  DORA begins with 
unstructured representations of objects as simple feature 
vectors.  When DORA compares two or more objects, it 
forms explicit representations of any properties they share.  
These properties are then combined into relations.  This 
contrasts with our model, in which the relations are formed 
from online differences in qualitative similarity.   

 

Conclusion 
Our results lend support to the idea that 3-month-old infants 
have structure-mapping ability, but are limited by their 
encodings of examples. Here we have shown that a 
reasonable set of assumptions about encoding and the use of 
analogical generalization within working memory simulate 
the experiments from Anderson et al. (2018). The simulation 
provides an explanation for why 3-month old infants are able 
to learn, or not learn, same/different relations.   

We see a number of paths for future work.  First, we think 
encoding variability may be an important factor in explaining 
the conditions under which infants can learn. Second, we 
want to simulate a wider range of experiments with this 
model, including experiments with older infants (e.g. Ferry et 
al. 2015).  This will involve developing and testing plausible 
models for how encoding skills change across development 
with experience and building up models of long-term 
experiences and generalizations that infants accumulate. 
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