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Abstract

Researchers have recently found that 3-month-old infants are
capable of using analogical abstraction to learn the same or
different relation, given the right conditions (Anderson et al.
2018). Surprisingly, seeing fewer distinct examples led to
more successful learning than seeing more distinct examples.
This runs contrary to the prediction of standard learning
theories, which hold that a wider range of examples leads to
better generalization and transfer, but is compatible with other
findings in infant research (Casasola 2005; Maguire et al.
2008). Anderson et al. (2018) propose that this is due to
interactions between encoding and analogical learning. This
paper explores that proposal through the lens of cognitive
simulation, using automatically encoded visual stimuli and a
cognitive model of analogical learning. The simulation results
are compatible with the original findings, thereby providing
evidence for this explanation. The assumptions underlying the
simulation are delineated and some alternatives are discussed.
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Introduction

Relational learning and reasoning are central in human
cognition (Gentner, 2003, 2010; Gentner & Markman 1997;
Hofstadter, 2001; Penn et al., 2008). How does this ability
arise? Is analogical ability built up gradually via maturational
change, or by combining other component processes? Or is

structure-mapping ability an innate species-level adaptation?
The first possibility may seem more plausible, given the
abundant evidence that relational sophistication increases
over development (Gentner & Rattermann, 1991). But recent
findings suggest that analogical processing ability may be
present early on, and that developmental gains in analogical
fluency are due to increases in relational knowledge
(Gentner, 2010; Gentner & Rattermann, 1991) and/or
executive ability (Richland et al., 2006; Thibaut et al., 2010).
For example, Ferry, Hespos and Gentner (2015) found
evidence that 7-9-month-old infants can carry out analogical
abstraction across a sequence of exemplars to derive an
abstract same or different relation.

Anderson et al. (2018) recently reported that even 3-
month-old infants can learn same or different relations via
analogical abstraction. A surprising aspect of the research
was that the infants learned better when given fewer
examples. In the first experiment, infants failed to learn these
relations after being shown six distinct examples of either
same or different repeated until habituation. (The exact
number of habituation trials varied, ranging from 6 to 9 trials
until infants’ looking times declined by 50% from the first
three trials to the last three, or until infants had completed
nine trials.) In the second experiment, infants succeeded after
being given repeated exposure to only two examples of the
relation. This result runs contrary to the predictions of



standard learning theories, which predict that a wider range
of examples leads to better generalization and transfer, but is
compatible with some prior findings on infant relational
learning (Casasola 2005; Maguire et al. 2008).

Anderson et al. (2018) proposed that these phenomena are
due to interactions between encoding and analogical
processing. This paper examines this proposal via cognitive
modeling, using automatically encoded stimuli and a model
of analogical learning. Specifically, we ask whether the 3-
month-old pattern can be modeled by assuming that the
infants have structure-mapping ability, but that they are
limited by their encodings of examples. We lay out a set of
assumptions that provide a possible processing account and
show that these assumptions could explain the generalization
pattern. The modeling enterprise also reveals other possible
encoding assumptions, which can be explored in future work.

We first review prior research on analogical abstraction,
then describe the Anderson et al. (2018) experiments to be
modeled. Then we describe our model of the infants’
encoding and learning process. To preview, the model is
constructed from pre-existing components (described below).
This includes automatic encoding of visual stimuli based on
photos of the objects shown to the infants. We describe the
processing performed by the model, laying out the
assumptions we are making and noting where alternative
explanations are feasible. Then we present the results of
computational simulation based on the model. We end with a
discussion of the implications and possible future work

Background

There is evidence of analogical ability in children from early
preschool through adulthood (Gentner, 2003; Gentner &
Rattermann, 1991; Richland et al., 2006). Two signatures of
this ability are (1) the ability to perceive abstract relational
matches can be enhanced by comparing instances of a
relation, in both adults (Gick & Holyoak, 1983; Markman &
Gentner, 1993) and children (Gentner, 2003; Kotovsky &
Gentner, 1996); and (2) the presence of salient objects can
interfere with relational mapping, especially early in
development (Gentner & Toupin, 1986; Paik & Mix, 2008;
Richland et al., 2006). These findings are consistent with
other research suggesting that comparison entails a structural
alignment process that highlights relational commonalities
between the items compared (Markman & Gentner, 1993).
Recent research has explored relational learning in human
infants (Anderson et al., 2018; Ferry et al., 2015; Gervain et
al., 2012). Ferry et al. (2015) found evidence that 7 to 9-
months-old infants can engage in analogical abstraction.
When shown a series of same pairs (using the method
described below), infants afterwards looked significantly
longer at a novel different pair than at a novel same pair (and
the reverse for habituation to different). This is evidence for
the first signature of analogical processing—that comparing
across examples promotes abstracting the common relational

! To test for salient-object interference, the infants had previously
seen some objects in the waiting room; this is not modeled here.

structure. They also found evidence for the second signature
of analogical processing: that salient objects tend to distract
from relational processing. When infants were shown a
subset of objects prior to habituation, they performed poorly
on test trials containing these objects, failing to distinguish
same and different. Thus, Ferry et al. (2015) concluded that
by 7-9-months, infants can use analogical generalization to
form a relational abstraction.

Analogical Learning in 3-month-old Infants

To explore the origins of analogical ability, Anderson et al.
(2018) asked whether 3-month-olds could abstract same and
different relations. Infants were shown a series of pairs: half
the infants saw same pairs and the other half saw different
pairs ! . The materials were pairs of colorful, distinctive
objects (Fig. 1). In order to engage infants’ attention, on each
habituation and test trial, the pair was moved together
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B 2T
TG R
LI

Figure 1: Examples of habituation pairs from
Anderson et al. Expt. 1 (2018).

through a fixed motion path: up, then tilted left, then right,
then down to the start point. This 8-second cycle was repeated
continuously until the infant looked away for 2 seconds. Then
the next pair was shown in the same way. The habituation
trials continued until the infant’s looking time declined by
50% from the first three trials to the last three, with a
maximum of nine trials (range = 6 to 9 trials).

Both groups of infants then saw the same six test pairs—
three depicting the same relation and three depicting the
different relation. The pairs were shown one at a time, and the
key dependent measure was how long the infant looked at
each pair. The key test pairs had brand new objects
instantiating either the same or different relation. If infants
have abstracted the relation they saw during habituation, they
should look longer at the novel relation. (This use of looking-
time is commonly used with preverbal infants; the idea is that
the familiar relation will fit their expectations, whereas the
novel relation will be more surprising.)

In Experiment 1, infants were shown six distinct pairs
(either all same or all different) during habituation. During
test, the infants failed to look longer at novel pairs on the key
trials. Thus, there was no evidence for analogical learning.
Although this could mean that 3-month-olds lack this ability,
the experimenters explored another possibility: that the



infants were overwhelmed by the variety of objects in the
study, and thus failed to encode the relations between them
(e.g., Casasola & Park, 2013). Consequently, in Experiment
2, only two distinct pairs were used during habituation (e.g.,
AA, BB, AA, BB...for same). The infants were then tested in
the same manner as in Experiment 1. In this case, infants did
indeed learn. They looked longer at pairs showing the novel
relation, even with brand new objects—evidence that they
had abstracted the relation.

Simulating the Infants’ Learning

In order to abstract a same or different relation from a series
of examples, two things must happen (not necessarily in a
fixed order): (1) the learner must compare the objects within
each pair to form some initial representation of the same (or
different) relation within the pair; and (2) the learner must
compare across the pairs to arrive at a more abstract
encoding of the relation. Only if both those things happen will
the learner experience a brand new same pair as familiar. Our
simulation explores one path—by no means the only path—
by which this could happen.

Simulation Design

Here we discuss our simulation. We begin by noting a critical
point: in order to be informative about human cognition, a
simulation must be constrained. Many simulations have used
hand-coded representations to depict the learner’s construal
of a situation, and/or have implemented a simulation process
specific to the situation being modeled. But this allows
enormous latitude to tailor the representations and processes
to fit whatever outcome is desired. To avoid this problem,
(a) as input, the model is given representations that are
automatically encoded from the visual stimuli given to the
infants; and (b) our processing model is built out of pre-
existing components that have successfully simulated prior
findings in analogical processing.

We first describe the component models, then how they are
combined.

Simulation of analogical processing

We use the Structure-Mapping Engine (SME, Forbus et al.
(2016)) as a simulation of analogical mapping, and SageWM
(Kandaswamy et al. 2014) as a simulation of analogical
generalization in working memory. These models have been
used to model a number of psychological phenomena already.

SME is based on Gentner’s (1983) structure-mapping
theory of analogy and similarity. Given two cases consisting
of structured relational representations, SME computes one
or more mappings between them, preferentially aligning
common relational structure. A mapping includes a set of
correspondences that align entities and statements in the base
and target, a similarity score that indicates how similar the
base and the target are, and candidate inferences, which are

2 As descriptions are merged, frequency counts are kept for how
often each statement is aligned. If the probability goes below a
threshold (0.2 by default), the statement is eliminated.

projections of additional structure from one case to the other,
based on the aligned structure. SME also computes a
structural evaluation score—a similarity score that takes into
account the depth of the common structure as well as the
among of overlap. Here SME is used both as a similarity
metric and as a means of combining cases into
generalizations in SageWM.

SageWM is the working-memory version of SAGE
(McClure et al. 2015), the Sequential Analogical
Generalization Engine. It provides a model of analogical
abstraction. SageWM creates new generalizations from a
series of examples, by iterative application of SME. When
given a series of examples, SageWM stores the first example.
When the next example arrives, SageWM compares it to the
first one, using SME. If there is sufficient overlap (that is, if
SME’s score is above a pre-set assimilation threshold), the
common structure is stored as a generalization. If the
similarity to the abstraction is below threshold, the example
will be stored separately. This process continues as new
examples arrive. Thus, if new examples are sufficiently
similar to the ongoing generalization, then the generalization
will be updated to be somewhat more abstract. We use 0.95
as the assimilation threshold in these experiments? which is
the default for SageWM.

Simulation of visual encoding

In order to avoid hand-coding the stimuli, we use CogSketch
(Forbus et al. 2017), a pre-existing cognitive model of visual
encoding and visual problem solving, to provide a vocabulary
of visual representations. CogSketch has successfully
modeled a variety of adult visual tasks, including Ravens’
Progressive Matrices (Lovett & Forbus, 2017), an oddity task
(Lovett & Forbus, 2011), and a paper-folding task (Lovett &
Forbus, 2013).

The production of visual stimuli occurs via an automatic
pipeline, starting with photographs the pairs of objects
provided by the original experimenters. The photographs are
blurred and the Canny edge detector is used to generate a set
of initial edges describing each object.  CogSketch
decomposes these initial edges into segments based on
discontinuities and intersections. CogSketch automatically
computes a variety of information about each segment, e.g.
its length, curvature, orientation, position, and topological
relations with other segments. This graph of segments and
junctions is also used to identify regions within an object
(McLure et al. 2011). This includes the object’s boundary,
consisting of all exterior edges, which we assume is visually
salient and likely to be encoded early in human processing.
Several kinds of information are automatically encoded for
regions as well, such as whether or not it has curved sides.
CogSketch also estimates its closeness to a set of shape
templates, e.g. spindles, triangles, rectangles, and ellipses.
Since color is visually salient, we use a color extraction



library to extract up to eight of the most frequent colors for
an object.

An important issue in this modeling effort is to consider the
visual encoding processes available to 3-month-olds. In the
first months of life, vision and attentional processes are
becoming increasingly stable (Arterberry & Kellman, 2016;
Colombo, et al.,, 1991). Visual acuity improves steadily
through the first several months. Especially relevant here,
infants’ habituation and fixation periods decrease
dramatically during the first 6 months (Bornstein, 1985;
Colombo & Mitchell, 2009), suggesting that young infants’
encoding is slower and more variable than that of older
infants.

To capture young infants’ relatively inefficient encoding
processes, here we have assumed slow encoding—that is, that
not all the available information is encoded on first exposure.
(Other assumptions are possible, including variable
extraction of information.) Specifically, we assume that the
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Figure 2: Example of boundary and Geon relational
Representations. These relational representations are
automatically generated. For the readers’ convenience,
we use English word to indicate relations and entities.

boundary of an object, its shape properties, and color are
encoded early. When given more time, we assume infants
compute higher-level representations of the shape, including
internal properties and relations. We use the scheme from
Chen et al. (2019), which is inspired by Biederman’s (1987)
Recognition by Components theory, which describes shapes
as being made out of parts called geons. CogSketch identifies
geons by using a medial axis transform, compatible with
Biederman’s original account and consistent with evidence
from Lowet et al. (2018) regarding their use in human shape
representations. Object-internal relationships between geons
are computed in terms of positional relations and qualitative
topological relations (Cohn et al.1997). Figure 2 shows
examples of boundary and geon representations for one of the
objects. We further assume that, given sufficient time, infants
encode representations of both objects.
In the original experiments, the pairs were moved in a

uniform way throughout the habituation and test trials. We

assume that the infants encode these motions, since motion
is extremely salient for them. While we could use
qualitative spatial representations to automatically represent
the specific motions of the stimuli as part of the encoding
process, using techniques like (Chen & Forbus, 2018), this
would involve considerable complexity to gather the video
data. Thus, we do not explicitly encode such motions in the
present model.

We hypothesize that the repeated motion influenced the
infants’ processing in two ways. First, within a trial, the two
objects in a pair always move together. This gives rise to a
perception of the unity of the pair and prompts the infant to
compare the two objects in a pair. Over trials, as the object
representations become more detailed, this will lead to
perceiving many common attributes in a same pair (or few,
in the case of a different pair). We call the representation of
the two objects plus relations computed between them the
pair-level description. We hypothesize that pair-level
descriptions are only computed when both objects have
been fully encoded. The second effect of the repeated
motion is to invite comparison across trials: even though the
individual pairs (say, AA and BB) are quite distinct, we
hypothesize that the similarity in their motion leads the
infant to compare them, as described below.

To represent the visual similarity of objects, we use one of
two relations, depending on whether their similarity, as
measured by SME, is above a particular threshold (here, 0.5).
If their similarity is above the threshold, a statement using the
sameObject relation is encoded, and otherwise,
differentObject. We use these terms for convenience, but we
do not assume that infants distinguish absolute sameness
from high similarity (see Smith, 1993). It is also not clear
whether infants are learning these relations de novo, or
whether they already possess some kind of representations of
same and different, either innately or through early learning.
We return to this question in the Discussion.

Processing Assumptions

To recapitulate, we assume that infants encode the motion of
the pair of objects and that this invites comparison both
within and across trials. However, the comparison process
become also requires that the object representations be
sufficiently detailed. We do not assume that infants encode
everything about the objects in a trial at first exposure. Here
we assume that information about object boundaries and
color are computed first, followed by information about the
decomposition of the object into geons, and that these two
levels of representation occur in that sequence. We assume
that even partial object representations are stored in
SageWM, and retrieved the next time they are exposed to the
pair. This retrieval speeds up the initial encoding process,
allowing processing to move on to the next level of encoding.

It is not clear whether infants are encoding both objects on
first exposure to a pair. Here we assume that objects are
encoded independently in parallel, but with the levels of
representations outlined above. We assume that having the
objects placed into correspondence causes them to be



compared, once their encodings are complete. The result of
this comparison results in the description of the pair being
augmented with a sameObject or differentObject
statement, depending on the outcome of that comparison.

Experiment Simulation

Now let us reconsider the experiments in Anderson et al.
(2018) through the lens of cognitive simulation. We discuss
each in turn. In both simulations, we did not simulate the
infants’ experience of some objects from waiting room.

Simulation of Experiment 1

Following the original experiment, we simulated two
habituation sequences: one with a sequence of six pairs of
objects satisfying the same relationship (<A,A>, <B,B>,
<C,C>, <D,D>, <E,E>, <F,F>) and one with a sequence of
six pairs of objects satisfying the different relationship
(<A,B>, <C,D>, <E,F>, <B,C>, <F,A>, <D,E>). Given our
assumption of parallel object encoding, in the same condition
only the first level of encoding occurs for each object in the
simulation, and hence the objects are not compared and no
pair-level descriptions are generated. For the different
condition, there are repeated exposures to particular objects,
but another comparison involving them would be needed to
generate pair-level representations. Since there are no pair-
level examples, they cannot be compared and generalized,
and hence no analogical learning takes place, compatible with
the infant results.

Simulation of Experiment 2

Following the original experiment, two sequences of
alternating pairs of objects were used. For the same
habituation trials, these were (<A,A>, <B,B>, <A,A>,
<B,B>, <A,A>, <B,B>, and for the different habituation
trials, these were <A,B>, <C,D>, <A B>, <C,D>, <A,B>,
<C,D>. Thus for both habituation conditions, each pair was
presented to the simulation three times, in alternation. In the
first exposure to a pair, the first level of encoding occurs for
its objects, which are stored in SageWM. In the second
exposure, the second level of encoding occurs, building on
the initial model stored in SageWM. In the third exposure,
the fully-encoded objects retrieved are used to construct a
pair description, including the cross-object comparison
(because of the assumed common roles in the motion
perceived by the infants). That pair description is also stored
in SageWM. The pair representations are generalized by
SageWM across pairs as they occur: that is, a generalization
is formed that includes either a sameObject or a
differentObject statement, depending on habituation
condition. This new abstraction is relatively portable, since
it has many fewer object details in common, and hence is
retrieved when test pairs are presented. Even if these test
pairs are not fully encoded (because of novel objects),
alignment with the abstraction leads to a projection of a
sameObject or differentObject statement as a candidate
inference (depending on whether habituation was for same or
different). When a test pair is compatible with the learned

relation, the candidate inference fits. When a test pair is
incompatible with the learned relation, the candidate
inference is contradicted, and this novelty, we hypothesize,
leads to greater looking times for the infant.

Discussion

The simulation captures the pattern of infant results across
the two experiments: When given six different example pairs
(Experiment 1), the simulation fails to form abstractions of
same and different during habituation, and therefore fails to
differentiate novel from familiar relations during test. When
given two pairs (Experiment 2), the simulation forms
abstractions of same and different during habituation, and
therefore arrives at distinct matching scores for novel vs.
familiar relations during test.

Thus, we have shown that a reasonable set of assumptions
about the visual encoding of infants, along with pre-existing
encoding algorithms and analogical process models, can be
used to simulate Anderson et al.’s (2018) results on
analogical learning in 3 month old infants. This provides
evidence for their proposed explanation, in terms of partial
infant encoding.

This simulation assumed that something like sameObject
and differentObject were already available to infants. How
might such relationships be learned, even perhaps during the
experiment? It is not unreasonable, given how ubiquitous
analogy and similarity appear to be in human cognition
(Gentner 2003), that infants can remember the qualitative
feeling of high-similarity or low-similarity for pairs that they
have just seen. In other words, the alignments during
analogical generalization could provide the basis for
introducing a simple qualitative value on similarity, e.g. high
or low (Forbus, 2019). For example, given habituation on
same trials, these similarity scores will tend to cluster quite
high, and given habituation on different trials, these similarity
scores will tend to cluster quite low (see Figure 3). Seeing a
score for a pair in the same role that is substantially different,
i.e. a different qualitative value, could also predict looking
times and reifying such a difference into a pair of
relationships would then make such information accessible in
future comparisons. This provides a possible explanation for
how such relationships can be learned.

Our general assumption is that the rather surprising
pattern—that 3-month-olds can from an abstraction from two
alternating pairs over six pairs but not from six different
pairs—results from inefficiencies in their visual encoding
process. In this simulation, we have focused on slow
encoding to capture this inefficiency. Another interesting
possibility is variable encoding. For example, different
subsets of geons might be computed over different exposures,
so that the perceived similarity of a pair over time would
depend on the particular orders in which geons were found.
Such models will be explored in future work.

Despite the vast amount of research on analogical
processing in children, there is very little research on how
children learn relations in the first place. One exception is



DORA (Doumas et al. 2008). DORA begins with
unstructured representations of objects as simple feature
vectors. When DORA compares two or more objects, it
forms explicit representations of any properties they share.
These properties are then combined into relations. This
contrasts with our model, in which the relations are formed
from online differences in qualitative similarity.

1
0.9
0.8
0.7 <A,A>, <B,B>
0.6 =
0.5
0.4
0.3
<A,B>, <C,D>
0.2
0.1
0
Normalized Score
Figure 3: Each point represents the normalized
similarity score for same vs. different pairs from
Experiment 2. Distributional properties of numerical
similarity estimates provide a possible signal for
introducing qualitative values and learning
same/different relationships.

Conclusion

Our results lend support to the idea that 3-month-old infants
have structure-mapping ability, but are limited by their
encodings of examples. Here we have shown that a
reasonable set of assumptions about encoding and the use of
analogical generalization within working memory simulate
the experiments from Anderson et al. (2018). The simulation
provides an explanation for why 3-month old infants are able
to learn, or not learn, same/different relations.

We see a number of paths for future work. First, we think
encoding variability may be an important factor in explaining
the conditions under which infants can learn. Second, we
want to simulate a wider range of experiments with this
model, including experiments with older infants (e.g. Ferry et
al. 2015). This will involve developing and testing plausible
models for how encoding skills change across development
with experience and building up models of long-term
experiences and generalizations that infants accumulate.
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