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Abstract
Modern stream processing applications need to store and up-
date state along with their processing, and process live data
streams in a timely fashion frommassive and geo-distributed
data sets. Since they run in a dynamic distributed environ-
ment and their workloads may change in unexpected ways,
multiple stream operators can fail at the same time, causing
severe state loss. However, the state-of-the-art stream pro-
cessing systems are mainly designed for low-latency intra-
datacenter settings and do not scale well for running stream
applications that contain large distributed states, su�ering a
signi�cantly centralized bottleneck and high latency to re-
cover state. They o�er failure recovery mainly through three
approaches: replication recovery, checkpointing recovery,
and DStream-based lineage recovery, which are either slow,
resource-expensive or fail to handle multiple simultaneous
failures.

We present SR3, a customizable state recovery framework
that provides fast and scalable state recovery mechanisms
for protecting large distributed states in stream processing
systems. SR3 o�ers three recovery mechanisms — the star-
structured recovery, the line-structured recovery, and the
tree-structured recovery — to cater to the needs of di�er-
ent stream processing computation models, state sizes, and
network settings. Our design adopts a decentralized architec-
ture that partitions and replicates states by using consistent
ring overlays that leverage distributed hash tables (DHTs).
We show that this approach can signi�cantly improve the
scalability and �exibility of state recovery.
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We realize the SR3 design on a prototype integrated with
the widely adopted Apache Storm framework. Large-scale
experiments using real-world datasets demonstrate SR3’s
scalability, fast recovery, and �exibility properties.
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1 Introduction
Stream processing is proposed and popularized as a “technol-
ogy like Hadoop but can give you results faster” [1], which
lets users query a continuous data stream and get results
shortly after receiving the data. Stream processing technol-
ogy has become a critical building block of many applica-
tions,such as identifying spam campaigns from social net-
work streams [2], making business decisions from marketing
streams [3], and predicting tornados and storms from radar
streams [4].

While in the early days most stream operators were used
for simple computations which are stateless, such as filter,
sort, today’s stream operators are capable of powering more
complex computations and evaluating more complex logic
which are stateful, such as mapWithState. This requires to-
day’s stream processing systems to o�er "state handling" —
i.e., operators that can remember past input and use it to
in�uence the processing of upcoming input.
However, stream processing applications may be highly

dynamic due to factors such as variable data rates, network
congestions, and application-speci�c data source character-
istics. Stream processing applications are also often subject
to instabilities and failures, where multiple streaming opera-
tors may fail at the same time, resulting in severe state loss
that may break or hinder the progress of stream application
work�ows.

∗Pinchao Liu contributed equally with Hailu Xu in this paper.
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Figure 1. Real-world examples of stateful stream processing.

In this paper, we explore customizable state recovery
mechanisms for protecting large distributed states in stream
processing systems, in order to cater the needs of di�erent
stream processing applications that have di�erent stream
processing computation models, state sizes, and network
environments.

Figure 1 shows real-world examples of stateful stream pro-
cessing. When we are shopping at e-commerce websites, our
user activities (e.g., clicks, likes, buys, reviews) are going to be
continuously logged by these sites. On the backend, many
stateful stream applications are concurrently running on top
of these user activity streams to create insights and make
business decisions. For example, Figure 1 top is a “micro-
promotion” application, which analyzes the live page views
of its products, groupby-aggregates them, and then sorts
them to �nd the top-k products with the most clicks to ap-
ply a discount. Here the “state” is the stored knowledge
base of key-value pairs consisting of product names and cor-
responding clicks. Figure 1 middle is a “product-bundling”
application, which extracts users’ buys, creates graphs of
vertices and edges to get an idea of what products are usually
purchased together, then makes online recommendations
such as “you like this, you may also like that”. Here the “state”
is the stored knowledge base of connected graphs consisting
of product names and bundlings. Figure 1 bottom is a “click
fraud-detection” application, which identi�es ad clicks as
fraudulent by deploying a space-e�cient probabilistic data
structure like a Bloom �lter [5] to memorize the IP addresses
or the cookies of previous clicks, and comparing them to the
new coming click stream to detect duplicate clicks in a short
time. Here the “state” is the stored knowledge base in the
Bloom �lter.

However, we are facing signi�cant challenges in managing
these large distributed states in stream processing systems.

• Challenge 1: how to recover from simultaneous failures
of multiple stream operators for a large number of con-
currently running applications? Streaming computa-
tions are, by nature, long-running. Their workloads,
as well as the runtime environment, may change in
unpredictable ways. A stream computation is usually
represented as a logical directed acyclic graph (DAG),
where vertices denote operators and edges denote data
dependencies between them. This means that if one
operator fails and loses state, the dependent operators
may also fail and lose their states. Multiple failures
may frequently happen due to node fails, bu�er IO er-
ror, or drive unfound. For example, in power outages, a
non-negligible percentage (0.5%-1%) of nodes does not
come back to life even after power is restored [6]. Mul-
tiple failures can also be easily a�ected by the location
of devices (i.e., in di�erent geo-distributed datacenters)
and the type of cloud services [7]. What makes it par-
ticularly challenging is that many stream processing
applications run concurrently on the same platform
and consume the same data source. We need to be able
to recover lost state for large numbers of concurrently
running applications on the same platform.

• Challenge 2: how to customize the failure recovery mech-
anism for di�erent types of stream processing applica-
tions? For example, Spark Streaming based systems [8,
9, 10, 11] treat streaming computations as a series of
batch computations, whereas Storm based systems [12,
13, 14] treat streaming computations as a data�ow
graph in which vertices asynchronously process in-
coming records. The state size for batch applications is
usually large, whereas the state size for stream appli-
cations are usually small. Therefore, di�erent stateful
stream processing applications need di�erent state re-
covery mechanisms that best meet their needs.

Since 2005, there has been a boom of stream processing
systems, including Storm [12], Trident [13], Spark Stream-
ing [15], Borealis [16], TimeStream [17], and S4 [18]. How-
ever, there is a lack of fast and scalable failure recovery
mechanisms for protecting the large distributed states for
these systems. The reasons are as follows: (1) they mostly
inherit MapReduce’s “single master/many workers” archi-
tecture, where the central master is responsible for all sched-
uling activities. As such, they do not scale well to a large
number of concurrently running applications due to the
inherent centralization bottleneck; (2) these systems o�er
failure recovery mainly through three approaches: replica-
tion recovery [19, 20], checkpointing recovery [8, 9, 12, 13,
17] and DStream-based lineage recovery [10, 11], which are
either slow, resource-expensive or fail to handle multiple
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simultaneous failures. Replication recovery adds high hard-
ware cost because multiple copies must concurrently run on
distinct nodes for failover. In distributed streaming, check-
pointing recovery is known to be prohibitively expensive,
leading users in many domains to disable this feature [21,
22, 23, 24, 25]. The third approach, DStream-based lineage
recovery, is slow when the lineage graph is long (i.e., the
streaming involves long sequences of operators) and falls
short in handling multiple simultaneously failures; and (3)
these systems are limited to a �xed computation model, e.g.,
asynchronous stream processing like Storm [12], synchro-
nous mini-batch processing like Spark [15], and they do not
have customizable state recovery mechanisms.
We make the following contributions in this paper. First,

we showhow existing techniques can lead to slow or resource-
expensive state recovery that is not scalable and identify the
causes (Sec. 2) of their shortcomings.
Second, we propose SR3, a customizable State Recovery

framework that provides fast and scalable failure recovery
mechanisms for protecting large distributed states in stream
processing systems (Sec. 3). SR3 does not rely on a central
master for recovering the state. The failure recovery pro-
cess is deployed on a DHT-based peer-to-peer (P2P) overlay,
scales to the size of the lost state, o�ers a signi�cant re-
duction in failure recovery time and can tolerate multiple
simultaneous node failures.

Third, SR3 provides three di�erent failure recovery mech-
anisms (Sec. 3). An important novel aspect of SR3 is that it
can host multiple distributed streams and o�er each applica-
tion the recovery mechanism that best �ts its requirements.
The goal is to cater to the needs of di�erent stateful stream
applications (e.g., di�erent stream processing computation
models, quality of service requirements, state sizes, and net-
work environments).

Fourth, we present the integration of SR3 onto the Apache
Storm framework and demonstrate its portability to other
stream processing systems (Sec. 4). The source code of SR3
will be made publicly available.

Finally, we make a comprehensive evaluation of the scala-
bility, fast recovery and �exibility of SR3 on a large cluster
using real-world stream processing applications’ datasets
(Sec. 5).

2 Related Work
Distributed stream processing systems need to support state-
ful processing and recover quickly from failures to resume
the normal processing. Table 1 summarizes the stateful stream
processing systems and their state-of-the-art state recovery
solutions.
2.1 State Management in Stream Processing

Systems
Existing state management solutions can be divided into
three representative categories: in-memory, remote storage,
in-memory+on-disk.

Category 1: in-memory. Many industrial stream processing
systems either do not support state (Heron [14], S4 [18], the
early version of Storm [12]), or they rely on in-memory data
structures such as hash tables and hash table variants to
store state. For example, Muppet [26] and Trident [13] store
state via hash tables. Spark Streaming [15] enables state
computation via Resilient Distributed Datasets (RDDs) [31],
the core data abstraction from Spark that distributes read-
only multiset data items. These techniques rely on a central
master for state management that results in a centralized
bottleneck and, therefore, may be di�cult to scale to large
states.
Category 2: remote storage. Some systems such as Mill-

wheel [27] and Data�ow [28] choose to separate state from
the application logic. They have the state centralized in a
remote storage [22, 32, 33] (e.g., a database management sys-
tem, HDFS or GFS) shared among applications, periodically
checkpointing it for fault tolerance. Using external storage
can scale well to large distributed states, but it signi�cantly
increases latency in the critical path of stream processing. For
example, Kafka can handle 100k–500kmessages/sec per node
at in-memory speed, however, the throughput of queries for
remote key-value storage is often close to 1-5k requests per
second — two orders of magnitude slower [29, 34].

Category 3: in-memory+on-disk. A few other systems such
as Kafka [29], Samza [30, 34], Spark Streaming [15], Flink [8,
9] try to overcome this issue by using a combination of “soft
state” stored in in-memory data structure along with “hard
state” persisted in some on-disk data stores (e.g., RocksDB [35],
LevelDB [36]). However, they sacri�ce programming model
transparency by requiring programmers to declare and main-
tain state using built-in data structures (e.g., Spark’s RDDs [31],
Muppet’s slates [26]). The on-disk data store (e.g., Kafka [29],
Samza [34], Data�ow [28]) incurs large I/O overhead due to
well-known high write ampli�cation [37]. Finally, scaling
to large distributed states and recovering from failures in
such systems is quite expensive, because when a single node
fails, the in-memory state and on-disk state for all dependent
nodes must be reset to the last checkpoint, and computation
must resume from that point, resulting in signi�cant time
and space overhead.

2.2 Failure Recovery in Stream Processing Systems
Existing stream processing systems o�er failure recovery
mainly through the use of three approaches: replication recov-
ery, checkpointing recovery, and DStream-based lineage recov-
ery, which are either not scalable, slow, resource-expensive
or incapable to handle multiple failures.
In the replication-based recovery approach, the system

maintains a completely separate set of hot failover nodes,
which processes the same stream in parallel with the pri-
mary set of nodes. The input records are sent to both. When
there is a failure or multiple failures in the primary nodes,
the system automatically switches over to the secondary
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Table 1. Overview of state management and state recovery solutions in stream processing systems.

System Data Struc-
ture

State Management State Recovery
Approach

Scale
to large
state

Handle
Multiple
Failures

State Re-
covery
Policy

State Recovery
Traits

Muppet [26] Slates [26] In-memory Checkpointing × × Static Slow
Trident [13] Hashtable In-memory Checkpointing × × Static Slow
Millwheel [27] Hashtable Remote storage Checkpointing × × Slow
Data�ow [28] Hashtable Remote storage Checkpointing × × Static Slow
Kafka [29] Hashtable In-memory+on-disk Checkpointing × × Static Slow
Samza [30] Hashtable In-memory+on-disk Checkpointing × × Static Slow
Flink [8] Hashtable In-memory+on-disk Checkpointing × × Static Slow
Flux [19] Hashtable In-memory+on-disk Replication × X Static High cost
Borealis [20] Hashtable In-memory+on-disk Replication × X Static High cost
Spark Stream-
ing [15]

RDDs [31] In-memory+on-disk DStream-based
lineage recovery

× X Static Slow for long
lineages

SR3 Hashtable In-memory DHT-based paral-
lel recovery

X X Dynamic Fast, low cost

set of nodes and the system can continue processing with
very little or no disruption. The replication recovery has
been used in systems such as Flux [19] and Borealis [20].
The failover is fast and it can handle multiple failures. How-
ever, the replication recovery scheme doubles the hardware
requirement.

In checkpoint-based recovery, all nodes periodically check-
point their states to remote storage such as HDFS or GFS.
Each node in the stream pipeline has an in-memory bu�er
to retains a backup of the data that it has forwarded to the
downstream nodes since the last checkpoint. The system
also maintains standby nodes. When a primary node fails, a
standby node retrieves the latest checkpoint from the per-
sistent storage, and its upstream node essentially replays
the backup records serially to this failover node to recreate
the lost state. The checkpointing recovery has been used in
systems such as TimeStream [17], Trident [13], Drizzle [38],
Flink [8, 9] and Multilevel Checkpointing [39]. It avoids the
2⇥ hardware cost. For example, Flink [8, 9] can retrieve the
checkpointed external state from remote database without
the secondary set of nodes. However, the failover is slower
than the replication recovery because it has to retrieve the
checkpointed state from the remote storage and replay the
bu�ered data on the last state to recompute the new state.
To achieve both fast recovery and small hardware over-

head, the DStream-based lineage recovery was proposed.
This approach has been used in Apache Spark-based sys-
tems [10, 11]. Its key abstraction is the Discretized Stream
(DStream, for short), a continuous stream of Spark RDDs [31].
The most recent state is stored in each node’s memory - us-
ing RDDs - together with the lineage graph, that is, the graph
of deterministic operators used to build RDDs. When nodes
fail in the system, instead of preparing a standby node for
failover, DStream re-runs the lost tasks in parallel on other re-
liable nodes in the cluster using the lineage graph. However,

the entire recovery processing is linear, that is, the lost tasks
need to be executed strictly in line with the original lineage
graph. As such, it may not work well for multiple failures
because the recovery process is executed strictly in line with
the original lineage graph. As such, the recovery process
may be slow and incur multiple uploads of checkpointed
state, incurring substantial network tra�c in geo-distributed
setting.

2.3 Preliminary Work
Our previous work [40] introduced FP4S, a fragment-based
parallel state recovery mechanism that can handle many
simultaneous failures for stateful stream applications. The
key idea is to use erasure coding. For example, (32, 16)-Reed-
Solomon (RS) code [41] divides a data object into 16 blocks
and transforms these blocks into 32 coded blocks, guaran-
teeing that any 16 out of the 32 coded blocks are su�cient
to reconstruct the original data object. Each stateful oper-
ator’s state is divided into m fragments and then encoded
into n blocks and checkpointed to n nodes in the leaf set in
parallel (= > <), which guarantees that the original state
can be reconstructed from any m blocks and it can tolerate
a maximum of (= �<) failures at a time.
Nonetheless, our preliminary work exhibits major limi-

tations including: (1) Expensive hardware cost. Since it
leverages erasure codes to ful�ll state save and recovery, it
will generate redundant states and cause additional storage
space to save state fragments. For example, when using 16
raw fragments and 10 coded fragments to recover a 128MB
state, a total of 208 MB (62.5% increment) is required in
memory or disk to complete the state saving and recovery
process. This causes a lot waste of resources and may be
ine�cient in systems with limited hardware resources. (2)
High latency. Even though FP4S can tolerate many simul-
taneous failures by leveraging erasure codes, it incurs extra

254



SR3: Customizable Recovery for Stateful Stream Processing Systems Middleware ’20, December 7–11, 2020, Del�, Netherlands

computation overhead in generating coded fragments and
computing state from fragments. The extra computational
overheadmay cause a long delay when recovering large sized
state. For example, to recover a 128MB state from erasure
codes, FP4S incurs extra overhead in the erasure code com-
putation, which takes an additional 10s in recovering 128MB
state. Therefore, the entire latency for saving and recovering
128MB state in FP4S will take around 90s (80s+10s). The time
quickly increases with the increment of state size. (3) No
customization. FP4S provides a single recovery mechanism
for all stream applications. However, stream applications are
quite diverse. They may have di�erent QoS requirements,
state sizes, computation models, or run in di�erent network
environments. Therefore, a single recovery mechanism may
not work for handling all scenarios. For example, in diverse
network environments, the availability of network resources
varies dynamically depending on which stream application
work�ows are active at a given moment. therefore, the tech-
nique introduced in FP4S is not appropriate for supporting
diverse stream work�ows. In contrast, SR3 provides three
di�erent failure recovery mechanisms to cater the needs of
di�erent stateful stream applications.

3 Design
In this section, we de�ne the problem (Sec. 3.1) and dis-
cuss the background of DHT-based consistent ring overlay
(Sec. 3.2). We then introduce the SR3 framework, which in-
cludes the system overview (Sec. 3.3), the star-structured
recovery mechanism (Sec. 3.4), the line-structured recovery
mechanism (Sec. 3.5), the tree-structured recovery mecha-
nism (Sec. 3.6), and how SR3 determines which mechanism
to use (Sec. 3.7).

3.1 Problem Statement
We follow a generic stream query model [10, 21, 42, 43, 44].
A stream processing application’s query is a directed acyclic
graph (DAG) that speci�es the data�ow, denoted as Q = (V,
E). DAGs can be implemented via many execution models,
such as the partition/aggregate model which scales out by
partitioning tasks into many sub-tasks (e.g., Dryad [45]), the
sequential/dependent model in which streams are processed
sequentially and subsequent streams depend on the results
of previous ones (e.g., Storm [12]), and the hybrid model with
sequential/dependent and partition/aggregate components
(e.g., Spark Streaming [15], Naiad [21]).

A vertex v 2 V corresponds to a stream operator 5E that
consumes input streams i from its predecessor (upstream)
vertices and produces output streams o to its successor (down-
stream) vertices (o = 5E(i)). Each edge e 2 E represents a data
�ow between two vertices. The stream operator 5E can be
stateless or stateful. A stateless operator consumes one input
record at a time and outputs each result based solely on that
last input record. A stateful operator maintains state that

captures characteristics of some of the records processed so
far and updates it with each new input, such that the output
takes into account both historical records and the new input.
Stateless operators are easy to recover because, by de�nition,
input records are handled independently, and upon failure
we can simply start a new operator instance. In contrast,
stateful operators are much more di�cult to recover.
The problem is: how to achieve a scalable and fast failure

recovery framework that protects large distributed states for
concurrently running applications deploying diverse execution
models? These applications run concurrently on a shared
distributed environment. Their operators are stateful. The ap-
plications comprise several DAGs, deploy diverse execution
models, and vary on their requirements of CPU, memory,
and network bandwidth.

3.2 Background
For maintaining and recovering state, our solution leverages
peer-to-peer (P2P) overlay networks, more speci�cally, the
Distributed Hashtable (DHT)-based consistent ring overlay
with routing. The primary purpose of the P2P model (e.g.,
Pastry [46], Chord [47]) is to enable all nodes to work col-
laboratively to deliver a speci�c service. In such model, all
nodes have similar roles, both serving and requesting ser-
vices. For example, in BitTorrent [48], if someone downloads
some �le, the �le is downloaded to her computer in bits
and parts that come from many other computers in the sys-
tem that already have that �le. At the same time, the �le
is also sent (uploaded) from her computer to others who
ask for it. Similarly to BitTorrent, where many machines
work collaboratively to download and upload �les, our so-
lution enables all distributed nodes to work collaboratively
to achieve state management, relieving the task scheduler
(often implemented as a centralized service) from handling
state. For this purpose, we leverage the following three data
structures from DHT-based consistent ring overlays:

• Routing table: The routing table consists of node char-
acteristics (IP address, Node Id) organized in rows by
the length of common pre�xes in the representation of
a Node Id. When routing a message to nodeId, a node
forwards it to the node in its routing table with the
longest pre�x in common with nodeId. State are asso-
ciated with keys and nodes are responsible for a range
of keys. In a system where # nodes store state, it is
guaranteed that queries can be routed to the appropri-
ate nodeId within $ (;>6# ) hops. We use the routing
table for locating state and in the line-structured re-
covery mechanism (Section 3.5).

• Leaf set: The leaf set for a node is a �xed number of
nodes that have the numerically closest nodeIds to
that node. This assists nodes in routing messages and
in rebuilding routing tables when nodes fail. We use
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Figure 2. The overview of SR3 design.

the leaf set for the star-structured recovery mechanism
(Section 3.4).

• Multicast: Any node in the overlay can create a com-
munication group; other nodes can join the group and
then multicast message to all members of the group.
Multicast messages are disseminated through a mul-
ticast tree. We use multicast for constructing in the
tree-structured recovery (Section 3.6).

3.3 The SR3 Overview
Figure 2 shows the overview of the SR3 system. It consists
of several layers as follows.
Layer 1: DHT-based overlay. In our system, we intro-

duce a new abstract concept called “node” to facilitate state
management. Each stream operator is associated with a node.
The association is unrelated to where operators execute; op-
erators at the same vertex may be associated with di�erent
nodes. Each node is randomly assigned a globally unique
identi�er known as the “nodeId” in a large circular node
ID space (e.g., 0-2128). We organize these nodes into a P2P
overlay network. The overlay is self-organizing and self-
repairing.
Layer 2: State partitioning and replication.The node’s

state is stored in an in-memory hashtable data structure. Pe-
riodically, we divide each node’s state into m shards, each of
which is then replicated to n replicas and distributed to peer
nodes. The peer nodes are preferably chosen as to enable
high bandwidth communication. The parameters of m and
n are determined by the adopted recovery mechanism (we
o�er three alternatives) and application characteristics. Our
design ensures that when a failure happens, di�erent sets
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Figure 3. The star-structured recovery process.

of available shards can reconstruct failed state in parallel,
thereby reducing the failure recovery time while tolerating
multiple simultaneous node failures.
Layer 3: State recovery.Applications di�er in state sizes,

execution models and QoS requirements such as latency and
throughput. Some applications, such as simulations that can
adjust to data errors, can tolerate lower accuracy in exchange
for e�ciency in accessing state and quick recovery other
tasks, such as state visualization for application debugging,
cannot.We design three state recoverymechanisms to satisfy
the needs from di�erent applications. SR3 tracks user-de�ned
requirements (e.g., latency sensitivity) and the application’s
characteristics (e.g., size of the state) to select the most ap-
propriate mechanism (see Sec. 3.4, Sec. 3.5 and Sec. 3.6 for
more details).
Layer 4: SR3API. SR3 is currently integrated into Apache

Storm [12]. We provide a high-level API that exposes to users
con�guration parameters and enables SR3’s portability to
other stream processing systems.

3.4 The Star-structured Recovery Mechanism
Figure 3 shows a straightforward implementation of star-
structured recovery mechanism. Each node has a routing
table and a leaf set. In this example, the state of node #5 is
divided into 3 shards and each shard has two replicas. They
are distributed to the leaf set to ensure that the original state
can be reconstructed from 3 shards of the 9 shards, where
each shard among these 3 shards is the one from the its 3
replicated shards. As shown in Figure 3, the nine shards B0,0,
B0,1, ..., B2,2 are stored in #0, #1, ..., #5 respectively. When
#5 fails, #0, #1, and #2 upload B0,0, B1,0, and B2,0 to #6 to
recompute the state of #5.

The bene�ts are: (1) the recovery process is fast. Di�erent
nodes from non-overlapping leaf set nodes can work in par-
allel to recompute the lost state, which is much faster than
retrieving the state from the remote storage (e.g., HDFS). (2)
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Figure 4. The line-structured recovery process.

We achieve data locality because the leaf set contains nodes
that are geographically close to the original node (e.g., within
the same rack in the same site) that have abundant upload
bandwidth.

3.5 The Line-structured Recovery Mechanism
The star-structured recovery works �ne when the state is
small. However, when the state is large, the replacing node
needs to do all the downloading and reconstructing work,
su�ering a centralized bottleneck that increases the recovery
latency, whichwe aim to avoid.We design the line-structured
state recovery to �x this issue, where shards are transmitted
and combined through a line covering the replacing node and
all providing nodes. As shown in Figure 4, the nine shards
B0,0, B0,1, ..., B2,2 are stored in #0, #1, ..., #5 respectively. When
#5 fails, #3 uploads B2,0 to #0. #0 merges B2,0 with B1,0, recon-
structs it, and then uploads the result to #1. #1 merges the
result with B0,0, reconstructs it, and uploads the �nal result to
#6 to replace of #5. The bene�t is that, the downloading and
computing load are well balanced among all involved nodes
which helps recover large state. However, it can only recover
one node at a time. When recovering multiple node failures,
it may incur multiple times of network tra�c and recovery
time. Besides, the line-structured recovery disregards the
bandwidth asymmetry in cloud environment.

3.6 The Tree-structured Recovery Mechanism
We design a shard-based parallel recovery mechanism to
tolerate multiple node failures, where shards are transmitted
and combined through a spanning tree covering the replacing
node and all providing nodes. This spanning tree is built on
top of a scalable application-level multicast infrastructure,
called Scribe [49]. The key idea is to divide the state into
many shards (e.g., based on key ranges), and use di�erent sets
of available replicas of shards scattered across leaf set nodes
to reconstruct unavailable shards in parallel. By doing this, all
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Figure 5. The tree-structured recovery process for single
failure.

nodes storing available shards can work as providing nodes
and each of them only needs to participate in the recovery
of some unavailable shards. This means a providing node
only needs to upload some of the shards it stores. Thus, the
amount of data a providing node uploads is reduced in a way
that respects bandwidth asymmetry. The downloading and
computing load are well balanced among all involved nodes
without any centralized bottleneck.

Figure 5 shows the recovery process from a single failure in
the tree-structured mechanism. #7 is the replacing node for
recovering the state when #5 fails. We can see that the state
is divided into 3 shards, B0, B1 and B2. Each shard is further
divided into 3 sub-shards and the replication factor is two.
So for one shard, it has 6 sub-shards in total. For example,
B2,0,1 denotes the second replica of the �rst sub-shard in B2,
and B2,1,0 denotes the second replica of the second sub-shard
in B2. In the tree-structured recovery process, the providing
node only needs to upload 3 out of the 6 total sub-shards to
reconstruct each shard. Here each shard refers to the shard
of di�erent partitions (di�erent colors in Figure 5).
Figure 6 shows the recovery process from two failures

in the tree-structured mechanism, where #6 and #7 are the
replacing nodes for recovering the state when #4 and #5
fail. Similarly, the state is divided into 3 shards, and each
shard is divided into 3 sub-shards and the replication factor
is two. The recovery from multiple failures is similar with
the recovery from a single failure, that is, the providing node
only uploads 3 sub-shards to construct each shard. The di�er-
ence is that every reconstructing node needs to reconstruct
multiple shards and sends them to multiple replacing nodes.

3.7 Mechanism Selection
Which mechanism to use? Determining the optimal state
recovery mechanism is di�cult since it needs to consider
various factors and application speci�cs. Thus, we rely on a
heuristic approach that adapts mechanism based on (1) state
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Figure 6. The tree-structured recovery process for two fail-
ures.

sizes, (2) application QoS requirements, (3) network envi-
ronments (e.g., bandwidth bottleneck), and (4) computation
models (e.g., synchronous micro-batch processing model or
asynchronous stream processing model). SR3 focuses on fast
recovery (tens of second scale) for large distributed states
in concurrently running applications rather than real-time
recovery.
Figure 7 shows how we determine which mechanism to

use. In the case of stateless operator failures, it will simply re-
sume the whole execution pipeline since there is no overhead
for recovering states. In the case of stateful operator failures,
SR3’s state recovery mechanisms may not always outper-
form the traditional checkpointing recovery if the state size
is too small or if the application can tolerate the checkpoint-
ing overhead of writing state to the remote storage. Thus,
we use SR3 only with stateful operators for (1) applications
that have strict QoS requirements for low recovery latency
and (2) high probability of simultaneous failures that will
involve large distributed states, such as many concurrent
failures of Twitter trends due to servers’ failures after power
outages.
This information about application’s QoS requirements

and state size is typically available as part of the job submis-
sion information. If the state size is small, we choose star
recovery in priority. On the other hand, if the state size is
large, we further consider if the execution is constrained by
the network bottleneck. In the case of abundant bandwidth,
we choose line-structured recovery in priority by adjusting
the recovery path length to handle di�erent sizes of state
and latency requirements. In the case of limited bandwidth,
we further consider application’s QoS requirements. If it is
latency insensitive, we still choose line-structured recovery
in priority. Otherwise, we choose tree-structured recovery
in priority by dynamically tuning the runtime parameters
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Figure 7. Determining which state recovery mechanism.

such like tree fun-out, depth, number of replicas, or number
of nodes. Therefore, it can cater for di�erent runtime re-
quirement and handle di�erent sizes of state and concurrent
failures that occur simulteneously.

4 Implementation
We implement the SR3 system on top of Apache Strom [50]
(v.2.0.0) and Pastry [51] (v.2.1) software stacks. Instead of
implementing another distributed system core, we leverage
Storm’s excellent runtime system (e.g., basic API, code in-
terpreter, objects exchange layer) and Pastry’s DHT routing
substrate and event transport layer. Although some of the
implementation details may be related to certain speci�cs
of Storm, the overall architecture and designs of SR3 can
�t into many other stream processing systems (e.g., Tri-
dent [13], Spark Streaming [15], Kafka [29], Samza [30],
Flink [8], Wukong+S [52]). For example, Trident [13] can
avoid to write state to in-memory store or remote storage
such as Cassandra [53] by directly writing state into SR3 via
its APIs. The APIs of SR3 can be easily cooperated into many
other platforms so that they can replace the original state
failure handler by SR3.

In Storm [12], stream processing applications are deployed
and executed as topologies. The topologies contain the busi-
ness logics. These logics are formed as a DAG and imple-
mented by spouts and bolts. Spouts are the data sources of
the stream, which accept input data from raw data sources
like Twitter Streaming API [54], Apache Kafka queue [29],
etc. Bolts are the logical processing units. Spouts pass data
to bolts and bolts process and produce a new output stream.
IRichBolt is the common interface for implementing bolts.

We made three major modi�cations: (1) SR3 interacts with
the IRichBolt interface in Storm [12]. If SR3 is enabled, SR3
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Table 2. SR3 APIs.

List<>StateSplit(Sting state, Integer numberofShards, Integer
numberofReplicas)
This function is invoked to partition the state into shards and create repli-
cas. The inputs are the original state, number of shards, and number of
replicas for each shard. The output is a list of replicas that contain various
parts of the original state.
Boolean[] Save(List<>shard, DHTNetwork overlay)
This function is invoked to save shard into the overlay. It creates many
concurrent threads to save the replicas of shards.
Boolean StarDefine(String appName, Integer starFanout)
This function de�nes the star-structure recovery. Users can de�ne the star
fan-out.
Boolean LineDefine(String appName, Integer lengthofPath)
This function de�nes the line-structured recovery. Users can de�ne the
length of recovery path.
Boolean TreeDefine(String appName, Integer fanout, Integer
branchDepth)
This function de�nes the tree-structured recovery. Users can de�ne the
tree fan-out and the branch depth.
Integer Selection(String appName, String requirement, Long state-
Size, Long networkBW)
This function is invoked to select a speci�c mechanism for recovering state.
The inputs are the application’s name, runtime QoS requirements, the size
of state, and the available bandwidth. The output indicates which mecha-
nism is selected.
List<Shards>Recover(String stateName, DHTNetwork overlay,
Mechanism structure)
This function is invoked when a state recovery request is issued.

Table 3. Real-world application’s dataset.

Application Dataset Size

Bargain Index Google Finance [55] >1TB
Word Count Wikimedia Dumps [56] 9GB
Tra�c Monitoring Dublin Bus Traces [57] 4GB

periodically saves state into the DHT-based ring overlay for
all stateful operators (bolts). The recovery mechanisms and
aggregated state size are con�gurable in order to satisfy dif-
ferent real-world stream applications’ requirements; (2) we
implemented the star-structured mechanism and the line-
structured recovery mechanism on top of Pastry’s overlay,
and implemented the tree-structured mechanism on top of
Scribe’s topic-based publish/subscribe trees. We added sev-
eral new data structures: a list of operations for managing
shards (i.e., replicate, merge, and save), a list for tracking
the locations of each shard and routing shards, and a list for
recording the dependency path between nodes; and (3) we
implemented state version control by adding timestamps and
sequence numbers to the messages, thereby avoiding state
inconsistency during the state saving and recovery process.
The SR3 prototype will be publicly available at GitHub.

It adds 1800 lines of Java across 17 �les. We provide high-
level interfaces exposed to users for con�guring parameters.
Table 2 shows the details of SR3 APIs.

5 Evaluation
We evaluate SR3 on emulation testbed in a distributed net-
work environment. We explore its performance for a variety
of real-world stream processing applications. Our evaluation
answers the following questions:

• Does SR3 improve the state save and recovery perfor-
mance when deploying di�erent stream applications
with various sizes of states?

• Does SR3 support �exible state recovery in handling
various sizes of states with di�erent network environ-
ments?

• Does SR3 scale with the number of concurrently run-
ning stream applications?

• What is the runtime overhead of SR3?

5.1 Setup
Evaluation deployment. Emulation experiments are con-
ducted on a testbed of 50 virtual machines (VMs) running
Linux 3.10.0, all connected via Gigabit Ethernet. Each vir-
tual machine has 4 cores and 8GB of RAM, and 60GB disk.
Speci�cally, to evaluate SR3’s scalability, we use one JVM
to emulate an SR3 node and emulate up to totally 5,000 SR3
nodes in our testbed. Linux VMs are equipped with LANs
with high bandwidth diversity set by tra�c control.

Baseline. We used Apache Storm [12] as the stream pro-
cessing engine baseline. We use Apache Storm 2.0.0 [50]
con�gured with 10 TaskManagers, each with 4 slots (maxi-
mum parallelism per operator = 36). We use Pastry 2.1 [51]
with leaf set size of 24 and transport bu�er size of 32MB.

Benchmark and applications. To demonstrate general-
ity across diverse computations and streaming operators, we
evaluate SR3 in state recovery with the real-world stream
applications (see Table 3). These stream applications contain
various streaming operators: stateless streaming transforma-
tions (e.g., map, filter), stateful operators (e.g., incremental
join), and various window operators (e.g., sliding window,
tumbling window and session window). We deploy these
benchmarks to generate real-world application in Apache
Storm to generate di�erent sizes of state and various topolo-
gies.
We compare SR3 with a state-of-the-art failure recovery

solution: the checkpointing recovery approach commonly
used in TimeStream [17], Storm [12], and Trident [13]. We
choose the checkpointing recovery approach as the base-
line approach because of two reasons: (1) the replication
recovery already costs 2⇥ hardware, and (2) the DStream-
based lineage recovery approach is not generalized for users.
Because DStream-based lineage recovery sacri�ces program-
ming model transparency by forcing programmers to man-
age state using RDDs [31].
Metrics. We focus on the performance metrics such as

latency of state save and recovery. The latency measurement
is separated by the state save and recovery. The latency is
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(a) The state recovery time by varying the
size of state with no bandwidth constraint.
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(b) The state recovery time by varying the
size of state with bandwidth constraint.
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state.

Figure 8. Performance evaluation of SR3 in terms of the time of state save and recovery in checkpointing, star-structured
recovery, line-structured recovery, and tree-structured recovery.
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Figure 9. Performance evaluation of SR3 in terms of the state recovery time in star-, line-, and tree-structured recovery.

evaluated by deploying di�erent size of state shards and
various size of states of stream application. To evaluate the
scalability of SR3, we measure how much state shards are
distributed in each node with deploying di�erent stream
applications. To the runtime overhead of SR3, we focus on
the CPU and memory utilizations during the state recovery.

5.2 SR3 vs Checkpointing Recovery
We compare the state recovery time of SR3 with Storm by
varying the size of state with no bandwidth constraint. As Fig-
ure 8a shows, SR3 generally achieves 35.5% ⇠ 65% less state
recovery time compared to Storm. More speci�cally, when a
state is relatively small (<32MB), the star-structured recovery
mechanism achieves the fastest recovery. Line-structured
recovery and tree-structured recovery take a little longer
due to the introduction of redundant calculations in their
state recovery paths. When the state grows larger than a
threshold (e.g., 64MB), line-structured recovery leads to the
longest recovery time due to the longest lineage path. On the

contrary, since tree-structured recovery has many paths for
recovering at the same time in parallel, the time is reduced.
Figure 8b shows the state recovery time comparison of

SR3 with Storm under bandwidth constraint. Note that the
upload bandwidth is limited to 100Mb/s per server. Results
show that SR3 generally achieves 29.8% ⇠ 42.5% less state re-
covery time compared to Storm. More speci�cally, when the
state is relatively large (> 64MB), due to the constraint of the
upload bandwidth, the star-structured recovery has a cen-
tralized bottleneck because all tra�c �ows to a single node,
which leads to the slowest state recovery. On the contrary,
the line-structured recovery and tree-structured recovery
avoid this bottleneck, and thus are much faster. However,
when the state becomes extremely large, the tree-structured
recovery performs the best because it has many paths to re-
cover state at the same time in parallel. This gives us insight
that we should decide which mechanism to use based on the
application characteristics, the network environment, and
the size of state.
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(a) The state recovery time with failures
in SR3 star-structured recovery.
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(b) The state recovery time with failures
in the SR3 line-structured recovery.
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(c) The state recovery time with failures
in SR3 tree-structured recovery.

Figure 10. State recovery time with di�erent number of failures.
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overlay when deploying 1,000 applica-
tions.
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Figure 11. Performance evaluation of SR3 in terms of load balance and scalability.

Figure 8c shows the state saving time comparison of SR3
with Storm. The state saving cost includes the time cost for
dividing the state into shards, replicating each state, and then
writing the shards into leaf set nodes. We write them into
the leaf set nodes serially to enable a fair comparison with
the checkpointing recovery. We can see that for a small state
(<64MB), it takes more time for SR3 to save the state, while
for large state (>64MB), it takes less time for SR3 to save
the state. This is because, for small state, the overhead of
partitioning and replication is not negligible compared to the
total time. However, in the case of large state, many nodes
in the leaf set take part in the partitioning and replication
that balance the workload.
Figure 9a shows the state recovery time by varying star

fan-out bit in SR3 star-structured recovery. Results show
that the state recovery time does not change much as the
star fan-out changes. This is because the depth of the star
structure always equals to one and thus the latency is only
related to the state size and the transmission speed. However,
in extreme cases, e.g., very large state size, increasing fan-
out will share the pressure on bandwidth and signi�cantly
reduce latency.

Figure 9b shows the state recovery time by varying the
path length in the SR3 line-structured recovery. Results show
that the state recovery time increases as the path length
increases. This is because the longer the path, themore stages
of the computation required, and the higher the latency.
However, when the state is too large to be �nished within
one or two stages, we need a longer path that has many
stages to distribute the computation.
Figure 9c shows the state recovery time by varying the

branch length in SR3 tree-structured recovery. Similar to
Figure 9b, given the same state size, the state recovery time
increases as the branch length increases. This is because
the longer the branch, the more stages of the computation
required, and the higher the latency.
Figure 9d shows the state recovery time by varying the

tree fan-out in SR3 tree-structured recovery. Note that the
tree fan-out n determines the fan-out of each node with
2= . Given the same state size, when the tree has larger fan-
out bit, the depth of the tree will be less and the recovery
involves fewer layers, which introduces lower latency for
recovering the original state. In addition, larger fan-out trees
can tolerate more concurrent node failures or shard loss.
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Figure 12. The CPU, memory, and network overhead of SR3.

Therefore, we should choose di�erent tree structures for
di�erent applications based on their latency requirements
and fault tolerance requirements.
Failure tolerance is evaluated with methods that use hu-

man intervention. Multiple simultaneous failures can be eas-
ily a�ected by the location of devices (i.e., in di�erent geo-
distributed datacenters) and the type of cloud services [7].
To cause simultaneous failures, we deliberately remove some
shards of application’s state in some nodes to evaluate how
fast SR3 can recover the state. Figure 10a, 10b, and 10c show
the average recovery time for di�erent number of simultane-
ous failures in the star-, line-, and tree-structured recovery
with 64MB state, where the replication factors are 2 and 3. In
these �gures, their two curves show that the recovery time
slightly increase with increasing number of shards failures.
This is because, when a shard fails, they can quickly retrieve
the relevant shards from other nodes which store replicas
and rebuild the failed shard. Note that the recovery time with
large replication factor (i.e., 3) is lightly less than the small
replication factor (i.e., 2). This is because, when one shard
fails, a larger replication factor can facilitate retrieval of re-
lated shards from other nodes that store the replicated shard.
In this way, a larger replication factor can reduce the re-
trieval time of failed shards. Moreover, in the tree-structured
mechanism, when a shard fails, it can quickly retrieve the
relevant shards from its leaf set and rebuild the failed shard,
and the tree architecture can evenly distribute the recovery
overhead for recovering multiple simultaneous failures.

5.3 Load Balance
SR3 has attractive load balance property because it distributes
state across all nodes in the overlay, which is especially ben-
e�cial when deploying a large number of concurrent applica-
tions. We use benchmarks in Table 3 to generate real-world
application’s state and topology. We evaluate SR3’s load bal-
ance by deploying 500 stream processing applications and
1,000 stream processing applications on 5,000 Pastry nodes,
respectively.We use amix of benchmark applications’ topolo-
gies (in Table 3) to replicate 500 to 1000 concurrently running

applications. The replication factor is set to be two. The state
for each application is 32 MB, and the size for each shard
is 512KB. As shown in Figure 11a, each node has around 25
shards (red dash line) when deploying 500 applications. As
shown in Figure 11b, each node has around 40 shards (red
dash line) when deploying 1,000 applications. This is because
the P2P model of SR3’s star- line-, and tree-structured recov-
ery ensures that all peers can participate in the state saving
process and the state recovery process.

Figure 11c shows the normal probability of the number of
shards stored per node. Results show that when deploying
500 applications, around 95% nodes store less than 50 shards
(25MB), and around 95% nodes store less than 100 shards
(50MB) when deploying 1,000 applications. This demon-
strates that the large volume of states from concurrently
running applications are almost evenly distributed in the
overlay with no centralized bottleneck. This demonstrates
that SR3 achieves good load balance when recovering state
for large numbers of concurrently running applications.

5.4 Overhead Analysis
We evaluate SR3 runtime overhead and compare them with
Storm’s checkpointing approach.
CPU overhead. Figure 12a shows the per-node CPU run-

time overhead comparison of SR3’s three state recovery
mechanisms with Storm’s checkpointing approach. The CPU
overhead of SR3 is around 26.8% ⇠ 44.3% less than the check-
pointing recovery. This is because SR3 evenly distributes the
recovery load across many peer nodes which reduces the
per-node overhead, while the checkpointing recovery only
relies on one or several centralized nodes for recovery.
Memory overhead. Figure 12b shows the per-node mem-

ory runtime overhead comparison of SR3’s three state recov-
ery mechanisms with Storm’s checkpointing approach. The
memory overhead of SR3 is around 30.9% ⇠ 35.6% less than
the checkpointing recovery. This is because checkpointing
recovery involves a coordination service such as Zookeeper
that needs to continuously maintain connections with all
other nodes while SR3 avoids it.

262



SR3: Customizable Recovery for Stateful Stream Processing Systems Middleware ’20, December 7–11, 2020, Del�, Netherlands

Network overhead. Figure 12c shows the additional net-
work tra�c imposed by SR3 with varying the number of
nodes without managing any state (showing purely the main-
tenance overhead). Results show that the number of bytes
sent per node increase only linearly, with an exponential
increase in the number of nodes. This is because most net-
work tra�cs are ping-pong messages used for maintaining
the overlay and routing (e.g., initialization and keep alive).
So in most cases, each node pings to a limited set of nodes
in the leaf set.

6 Conclusion
In this paper we have described and evaluated SR3, a state
recovery framework that provides fast and scalable failure
recovery mechanisms for protecting large distributed states
in stream processing systems. Unlike existing failure recov-
ery approaches in modern stream processing systems, which
rely on the central master to perform replication recovery,
checkpointing recovery, or DStream-based lineage recovery,
SR3 introduces a distributed state recovery framework by
leveraging DHT-based consistent ring overlay and routings.
SR3 provides three di�erent mechanisms to cater the needs
for di�erent stream applications that have diverse computa-
tion models and sizes of state.
An interesting question for future work is how to recov-

ery from stragglers. Stragglers are slow nodes. Stragglers
are inevitable in large clusters. The root causes for strag-
glers can be disk failures, CPU contention, memory pressure,
network congestion, or other internal factors such as un-
fair input partitioning. Left unchecked, stragglers will cause
serious problems such as state inconsistency. We plan to
explore speculation approach to address this challenge, in
which speculative backup copies of slow tasks could be run
in DHT’s leaf set nodes.

We will release SR3 as open source, together with all code
and data used to produce the results in this paper.

Acknowledgment
We sincerely thank our shepherd Prof. Vincenzo Gulisano
and the anonymous reviewers for their insightful suggestions
and comments that greatly improved this paper. This work
is supported by the National Science Foundation (NSF-SPX-
1919126, NSF-SPX-1919181, NSF-CAREER-1943071, NSF-CCF-
1934904).

References
[1] Shrinath Perera. A Gentle Introduction to Stream Processing. h�ps:

//medium.com/stream-processing/what- is- stream-processing-
1eadfca11b97. 2018.

[2] Tingmin Wu et al. “Twitter spam detection: Survey of new ap-
proaches and comparative study”. In: Computers & Security 76 (2018),
pp. 265–284.

[3] Roberto Mora Cortez andWesley J Johnston. “The future of B2B mar-
keting theory: A historical and prospective analysis”. In: Industrial
Marketing Management 66 (2017), pp. 90–102.

[4] Amy McGovern et al. “Using arti�cial intelligence to improve real-
time decision-making for high-impact weather”. In: Bulletin of the
American Meteorological Society (2017).

[5] Bloom �lter. h�ps://en.wikipedia.org/wiki/Bloom_filter.
[6] Haoyu Wang, Haiying Shen, and Zhuozhao Li. “Approaches for

resilience against cascading failures in cloud datacenters”. In: 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE. 2018, pp. 706–717.

[7] Erci Xu et al. “Lessons and actions: What we learned from 10k ssd-
related storage system failures”. In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 2019, pp. 961–976.

[8] Apache Flink. h�p://flink.apache.org/.
[9] Paris Carbone et al. “State management in Apache Flink®: consistent

stateful distributed stream processing”. In: Proceedings of the VLDB
Endowment 10.12 (2017), pp. 1718–1729.

[10] Matei Zaharia et al. “Discretized streams: Fault-tolerant streaming
computation at scale”. In: Proceedings of the twenty-fourth ACM
symposium on operating systems principles. ACM. 2013, pp. 423–438.

[11] Prateek Sharma et al. “Flint: Batch-interactive data-intensive pro-
cessing on transient servers”. In: Proceedings of the Eleventh European
Conference on Computer Systems. ACM. 2016, p. 6.

[12] Apache Storm. h�p://storm.apache.org/.
[13] Apache Trident. h�p://storm.apache.org/releases/current/Trident-

tutorial.html.
[14] Sanjeev Kulkarni et al. “Twitter heron: Stream processing at scale”.

In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM. 2015, pp. 239–250.

[15] Spark Streaming. h�ps://spark.apache.org/streaming/.
[16] Daniel J Abadi et al. “The design of the borealis stream processing

engine.” In: Cidr. Vol. 5. 2005, pp. 277–289.
[17] Zhengping Qian et al. “Timestream: Reliable stream computation in

the cloud”. In: Proceedings of the 8th ACM European Conference on
Computer Systems. ACM. 2013, pp. 1–14.

[18] Leonardo Neumeyer et al. “S4: Distributed stream computing plat-
form”. In: 2010 IEEE International Conference on Data Mining Work-
shops. IEEE. 2010, pp. 170–177.

[19] Mehul A Shah, Joseph M Hellerstein, and Eric Brewer. “Highly avail-
able, fault-tolerant, parallel data�ows”. In: Proceedings of the 2004
ACM SIGMOD international conference on Management of data. ACM.
2004, pp. 827–838.

[20] Magdalena Balazinska et al. “Fault-tolerance in the Borealis dis-
tributed stream processing system”. In: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. ACM. 2005,
pp. 13–24.

[21] Derek G Murray et al. “Naiad: a timely data�ow system”. In: Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM. 2013, pp. 439–455.

[22] Arvind Arasu et al. “Stream: The stanford data stream management
system”. In: Data Stream Management. Springer, 2016, pp. 317–336.

[23] Daniel Peng and Frank Dabek. “Large-scale incremental processing
using distributed transactions and noti�cations”. In: (2010).

[24] Mayank Pundir et al. “Zorro: Zero-cost reactive failure recovery
in distributed graph processing”. In: Proceedings of the Sixth ACM
Symposium on Cloud Computing. ACM. 2015, pp. 195–208.

[25] Joseph E Gonzalez et al. “Graphx: Graph processing in a distributed
data�ow framework”. In: 11th Symposium on Operating Systems
Design and Implementation. 2014, pp. 599–613.

[26] Wang Lam et al. “Muppet: MapReduce-style processing of fast data”.
In: Proceedings of the VLDB Endowment 5.12 (2012), pp. 1814–1825.

[27] Tyler Akidau et al. “MillWheel: fault-tolerant stream processing at
internet scale”. In: Proceedings of the VLDB Endowment 6.11 (2013),
pp. 1033–1044.

[28] Tyler Akidau et al. “The data�ow model: a practical approach to
balancing correctness, latency, and cost in massive-scale, unbounded,

263



Middleware ’20, December 7–11, 2020, Del�, Netherlands Hailu Xu⇤, Pinchao Liu⇤, Susana Cruz-Diaz, Dilma Da Silva, and Liting Hu

out-of-order data processing”. In: Proceedings of the VLDB Endowment
8.12 (2015), pp. 1792–1803.

[29] Apache Kafka. h�p://kafka.apache.org/.
[30] Shadi A Noghabi et al. “Samza: stateful scalable stream processing

at LinkedIn”. In: Proceedings of the VLDB Endowment 10.12 (2017),
pp. 1634–1645.

[31] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing”. In: Proceedings of the
9th USENIX conference on Networked Systems Design and Implemen-
tation. USENIX Association. 2012, pp. 2–2.

[32] Sirish Chandrasekaran et al. “Telegraphcq: Continuous data�ow
processing for an Uncertain world.” In: Cidr. Vol. 2. 2003, p. 4.

[33] Daniel J Abadi et al. “Aurora: a new model and architecture for data
stream management”. In: the VLDB Journal 12.2 (2003), pp. 120–139.

[34] Apache Samza. h�p://samza.apache.org/.
[35] RocksDB. h�p://rocksdb.org/.
[36] LevelDB. h�ps://github.com/google/leveldb/.
[37] Siying Dong et al. “Optimizing Space Ampli�cation in RocksDB.” In:

CIDR. Vol. 3. 2017, p. 3.
[38] Shivaram Venkataraman et al. “Drizzle: Fast and adaptable stream

processing at scale”. In: Proceedings of the 26th Symposium on Oper-
ating Systems Principles. 2017, pp. 374–389.

[39] Adam Moody et al. “Design, modeling, and evaluation of a scalable
multi-level checkpointing system”. In: SC’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE. 2010, pp. 1–11.

[40] Pinchao Liu et al. “FP4S: Fragment-based Parallel State Recovery for
Stateful Stream Applications”. In: 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE. 2020, pp. 1102–1111.

[41] Irving S Reed and Gustave Solomon. “Polynomial codes over certain
�nite �elds”. In: Journal of the society for industrial and applied
mathematics 8.2 (1960), pp. 300–304.

[42] Tyler Akidau et al. “The Data�ow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-scale, Un-
bounded, Out-of-order Data Processing”. In: Proc. VLDB Endow. 8.12
(Aug. 2015), pp. 1792–1803. ����: 2150-8097.

[43] Paris Carbone et al. “Apache Flink: Stream and Batch Processing in
a Single Engine”. In: IEEE Data Eng. Bull. 38.4 (2015), pp. 28–38.

[44] Wei Lin et al. “STREAMSCOPE: Continuous Reliable Distributed Pro-
cessing of Big Data Streams”. In: Proceedings of the 13th Usenix Con-
ference on Networked Systems Design and Implementation. NSDI’16.
Berkeley, CA, USA: USENIX Association, 2016, pp. 439–453. ����:
978-1-931971-29-4.

[45] Michael Isard et al. “Dryad: distributed data-parallel programs from
sequential building blocks”. In:ACM SIGOPS operating systems review.
Vol. 41. ACM. 2007, pp. 59–72.

[46] Antony Rowstron and Peter Druschel. “Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer sys-
tems”. In: IFIP/ACM International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer. 2001, pp. 329–
350.

[47] Ion Stoica et al. “Chord: A scalable peer-to-peer lookup service for
internet applications”. In: ACM SIGCOMM Computer Communication
Review 31.4 (2001), pp. 149–160.

[48] Bram Cohen. “Incentives build robustness in BitTorrent”. In:Work-
shop on Economics of Peer-to-Peer systems. Vol. 6. 2003, pp. 68–72.

[49] Miguel Castro et al. “SCRIBE: A large-scale and decentralized application-
level multicast infrastructure”. In: IEEE Journal on Selected Areas in
communications 20.8 (2002), pp. 1489–1499.

[50] Apache Storm 2.0.0. h�ps://storm.apache.org/2019/05/30/storm200-
released.html.

[51] Pastry. h�ps://www.freepastry.org/FreePastry/.
[52] Yunhao Zhang, Rong Chen, and Haibo Chen. “Sub-millisecond state-

ful stream querying over fast-evolving linked data”. In: Proceedings

of the 26th Symposium on Operating Systems Principles. 2017, pp. 614–
630.

[53] cassandra. h�ps://cassandra.apache.org.
[54] Twitter streaming APIs. h�ps : / /developer. twi�er.com/en/docs/

tutorials/consuming-streaming-data.
[55] Google Finance Data API. h�p://finance.google.com/finance/feeds/.
[56] Wikimedia Dumps. h�ps://dumps.wikimedia.org/.
[57] Dublin Bus GPS sample data from Dublin City Council. h�ps://data.

gov.ie/dataset/.

264


