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A B S T R A C T

Background: The endogenous circadian clock, which controls daily rhythms in the expression of at least half of the
mammalian genome, has a major influence on cell physiology. Consequently, disruption of the circadian system is
associated with wide range of diseases including cancer. While several circadian clock genes have been associated
with cancer progression, little is known about the survival when two or more platforms are considered together.
Our goal was to determine if survival outcomes are associated with circadian clock function. To accomplish this
goal, we developed a Bayesian hierarchical survival model coupled with the global local shrinkage prior and
applied this model to available RNASeq and Copy Number Variation data to select significant circadian genes
associates with cancer progression.
Results: Using a Bayesian shrinkage approach with the Bayesian accelerated failure time (AFT) model we showed
the circadian clock associated gene DEC1 is positively correlated to survival outcome in breast cancer patients.
The R package circgene implementing the methodology is available at https://github.com/MAITYA02/circgene.
Conclusions: The proposed Bayesian hierarchical model is the first shrinkage prior based model in its kind which
integrates two omics platforms to identify the significant circadian gene for cancer survival.
1. Background

The molecular circadian clock, regulates daily rhythms in the
expression of at least half of all protein-coding genes [1]. Thus, it is not
surprising that disruption of circadian rhythmicity is associated with
significant disease, including metabolic disorder and cancer [2].
Increased cancer incidence and progression are linked to disruption of
the molecular mechanism of the circadian clock [3]. At the core of the
mammalian circadian clock system is a cellular circadian oscillator,
which functions in most tissues at the single cell level [4], and is
comprised of clock genes that form a core feedback loop. In this core
loop, a heterodimer of the transcription factors CLOCK and BMAL1
activate the expression of Per and Cry genes, whose protein products
negatively feedback on their own expression by inhibiting CLOCK/-
BMAL1 activity. Several additional loops contribute to the robustness of
this core clock loop, including inhibition of CLOCK/BMAL activity by the
basic helix–loop–helix (bHLH) transcription factors DEC1 and DEC2
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[5–7], which are themselves rhythmically activated by CLOCK/BMAL
[8]. Both DEC1 and DEC2 have been associated with tumor progression
in human cancers, an increased or decreased expression of DEC1 and
DEC2 has been shown to regulate tumor progression [9]. However, the
mechanisms for this regulation are not fully understood.

A recent study compared clock gene expression from human tumor
and non-tumor samples from a range of cancer types that are publicly
available in the Cancer Genome Atlas (TCGA) and NCBI Gene Expres-
sion Omnibus (GEO). By comparing human tumor and non-tumor
samples from a range of cancer types, this study showed that clock
gene co-expression is consistently deregulated in tumors [10]. This
study supports the use of publicly available human datasets in under-
standing the role of the circadian clock in cancer development, pro-
gression, prognosis.

In the current era of precision medicine each subject is targeted for
treatment modeled on individual healthcare data. Accurate prognostic
prediction using molecular profiles is critical to develop precision
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medicine. However, cancer studies focus on one-dimensional omics data
have provided limited information regarding the etiology of oncogenesis
and tumor progression [11] To overcome this problem, recent work has
focused on integrating multi-platform data in cancer research; as for
example see Ref. [12] and references therein. Currently, TCGA is the
largest collection of genomic data, which also includes parallel tran-
scriptomics, and proteomics and patient demographic information. One
primary aim of TCGA is to have more accurate stratification and prog-
nosis of the disease by analyzing and interpreting molecular profiles for
hundreds of clinical tumors representing various tumor types and their
subtypes [13], at the DNA, RNA, protein and epigenetic level [8] To
improve therapeutic response which may be evident from the pheno-
typical measures such as survival of the cancer patients, genomic alter-
ations across these platforms has been identified. The presence of
hundreds of genetic alterations inside of a genome provides a comple-
mentary view of the underlying complex biological process and thus an
integrative analysis of multiple platform is required to achieve the
overreaching goal of cancer studies.

To determine that the circadian gene which plays an important role in
breast cancer progression and patient survival, we developed a Bayesian
shrinkage approach, coupled with a Bayesian accelerated failure time
(AFT) model, for integrative analysis of multiple platform of omics data.
We use DNA copy number variation and RNAseq data-sources to predict
patient survival. Using this approach, the clock gene and tumor sup-
pressor DEC1 emerged as a significant gene associated with survival
outcomes. While the concept of integration is very broad, and several
Bayesian models exist [14–17], we believe this is the first model to
include a shrinkage approach under the Bayesian regime to predict pa-
tient survival considering the circadian gene effects on the tumor
progression.

Limited works have been reported on shrinkage prior in the survival
settings [18,19]. Both work specified the horseshoe shrinkage prior [20]
on the regression coefficients in order to select the relevant biomarkers in
the data. Additionally, they worked with the parametric models [18],
assumed a Weibull distribution for the survival model and [19] assumed
a log normal distribution for the same, these works did not deal with
integration among multi-platform omics data. In this article, we propose
a Bayesian log normal regression model for the survival outcome and
exploit the local shrinkage parameter specification to achieve the desired
variable selection.

In Section 2, we provide the detail description of the model specifi-
cation, the global local Horseshoe prior specification on the regression
model parameters and how this prior specification helps recovering the
significant genes which are reflected via both RNASeq and CNV plat-
forms. Additionally, the Markov Chain Monte Carlo (MCMC) scheme to
generated posterior samples is developed. Section 3 describes the entire
TCGA data analysis using our proposed method. Section 4 presents some
simulation scenarios validating the model development. In Section 5 we
provide our concluding remarks.

2. Methods

2.1. AFT regression

We make use of the Accelerated Failure Time (AFT) model which
regresses the survival time on the predictors. The AFT model is given by,

log ti ¼
Xp
j¼1

x1ijβ1j þ
Xp
j¼1

x2ijβ2j þ εi; i ¼ 1;…; n; j ¼ 1;…; p; (1)

where i denotes the patient, j denotes copy number change or change in
2

gene expression. Likewise, ti is the survival time of i-th subject, x1ij is the
corresponding p-th copy number change in the data, and x2ij is the cor-
responding p-th mRNA expression measured by the RNAseq technology.
β1 ¼ �β11;…; β1p

�
is the vector of regression coefficients corresponding

to the copy number changes, similarly, β2 ¼ �β21;…; β2p
�
is the vector of

regression coefficients corresponding to the RNAseq; and ε is the error
vector. Assumption of ε ~ N (0, σ2I) gives raise to the log normal AFT
model.

Letting ci be the censoring time, the observed time may be denoted by
t*i ¼ minðti;ciÞ; the corresponding observed censored indicator is δi ¼ I{ti
� ci}, I{.} being the censoring indicator. Since the response is right
censored, we follow the data augmentation approach of [21] to impute
the censored data wik (see also [22]), wi ¼ log t*i ; if ti is event time; and
wi > log t*i ; if ti is right censored.

2.2. Shrinkage prior

We adopted the Bayesian shrinkage approach using the horseshoe
prior [20] on the regression coefficients. In the shrinkage framework, a
scale-mixture representation of the global local priors allows parameters
to be updated in blocks via an automatic Gibbs sampler [23] which
makes it convenient for large scale problems.

Horseshoe prior in its original setting offers to recover the significant
variables by specifying the same number of local shrinkage parameter as
the number of regression parameters. In essence, there are shrinkage
parameters for each of the regression coefficients such that the amount of
shrinkage of each the regression coefficients is controlled by the corre-
sponding local shrinkage parameter. In our setting, when there are two
platforms – CNV and RNASeq expression data available for each circa-
dian gene, a convenient way is to specify a local shrinkage parameter for
two regression parameters, one is for the CNV platform and the other is
for the RNASeq platform.

In addition, when we assume the log normal distribution for the
underlying time-to-event distribution the posterior samples generation
can be carried out using convenient Gibbs sampling [24] or the
variant. Often the presence of censored observation makes the poste-
rior distribution more complex, however, in this setting, a remedy is to
impute the right censored observation using the data augmentation
scheme of [21], a successful application of which in time-to-event data
has been shown in Ref. [25]. In what follows, the hierarchical
Horseshoe representation for the log normal accelerated failure time
(AFT) model is:

log tijβ1j; β2j; σ2 eN�αþ
Xp

j¼1
x1ijβ1j þ

Xp

j¼1
x2ijβ2j; σ

2
�

βkjjλj; τ; σ2 eNð0; λ2j τ2σ2Þ; k ¼ 1; 2

λj eCþð0; 1Þ; τeCþð0; 1Þ;
α eNð0; σ2

ασ
2Þ; σ2eπðσ2Þ ¼ 1

�
σ2

(2)

where, Cþ(0, 1) is the truncated Cauchy density given by f(x)¼ 1/{π(1þ
x2)}, x > 0.

2.3. Conditional distributions and posterior computation

In our AFT model for group correlation structure, most of the con-
ditional distributions are available explicitly, hence we can employ Gibbs
sampling [24] technique to explore the posterior distribution. In partic-
ular, the complete conditional distributions of β1, β2, and σ2 are given by:
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βk jw; α; λ; τ; σ2e N B�1XTðw� α1Þ; σ2A�1 ;

� �
B ¼ ðXTX þ D�1Þ;X ¼ ½X1;X2�

σ2jw; α; β1; β2; λ; τe Inverse Gamma
�
shape ¼ nþ pþ 1

2
;

scale ¼ 1
2
ðw� α� X1β1 � X2β2ÞT

ðw� α� X1β1 � X2β2Þþ
βT1D

�1β1 þ βT2D
�1β2

� �
αjw; β1; β2; σ2e N

�
A�11Tn ðw� X1β1 � X2β2Þ; σ2A�1

�
;

A ¼ �1T1þ σ2α
� �

;

where, D ¼ τ2diag
�
λ21;…; λ2p ; λ

2
1;…; λ2p

�
.

Due to the nature of the prior on λ and τ, a straightforward Gibbs
sampling approach may not be possible. An alternative approach, which
is based on the idea of slice sampling [26], has been discussed in the
online supplement of [27]. It follows that,

πðλjjβ1j; β2j; τ; σ2Þ∝
1
λj
exp

 
� 1
2

β21j þ β22j
λ2j τ

2σ2

!
1

1þ λ2j
Iðλj > 0Þ:

Defining φj ¼ 1=λ2j and introducing a latent parameter uj, the condi-
tional posterior distribution looks like,

πðuj;φjjβ1j; β2j; τ; σ2Þ∝exp
�
� 1
2

φjðβ21j þ β22jÞ
τ2σ2

�
I
�
0 < uj <

1
1þ φj

�
Iðφj > 0Þ:

Then the following scheme is used to sample the posterior distribu-
tion of λ:

1. Sample uj|φj ~ U{0, 1/(1 þ φj)}.
2. Sample φjjuj; β1j; β2j; τ; σ2etruncated Exponentialfðβ21j þ

β22jÞ =ð2λ2j τ2σ2ÞgIf0;1 =ðuj � 1Þg.
3. Compute in λj ¼ 1= ffiffiffiffiffiφj

p .

Updating τ can be carried out in the similar fashion. We introduce a
latent variable v and let ξ ¼ 1/τ2 to yield desired posterior samples:

1. Sample vjξeUð0;f1 =ð1 þ ξÞg:
2. Sample ξjv; β; λ; σ2e truncated Gammafðp þ 1Þ =2;

ð1 =2σ2ÞðPp
j¼1β

2
1j =λ

2
j þPp

j¼1β
2
2j =λ

2
j ÞgIf0; ð1 =v � 1Þg:

3. Compute in τ ¼ 1=
ffiffiffi
ξ

p
.

Finally, we update the censored responses from wieN�αþPp
j¼1x1ijβ1j þ

Pp
j¼1x2ijβ2j; σ

2
�
lower truncated at log t*i .

We have written the posterior sampling strategy in an R package
circgene format and make it available on github at the address https://
github.com/MAITYA02/circgene.
2.4. Posterior analysis

The goal is to identify potential common genes that affects survival
rates using copy number change and changes in mRNA expression. Fre-
quentist procedures such as lasso [28] or other extensions of lasso are
designed to provide a sparse solution of the parameter vector. A Bayesian
method, however, provides the posterior distribution of the parameter
from which a posterior summary is extracted to make inferences. Moti-
vated by this, researchers seek a unified proposal for obtaining good
choice of the posterior summary which in turn recovers important fea-
tures in high dimensional settings. Recently [29], proposed a k-means
3

clustering on the posterior space a successful application has been ach-
ieved in Ref. [22]. When a shrinkage prior such as the Horseshoe is used,
even though the posterior estimate of β are not exactly zero, the MCMC
sample obtained from posterior distribution of β is expected to produce
two subsets – one set will be clustered around zero corresponding to
noise variables and the other one will be away from zero corresponding
to signals. Hence, fitting a k-means algorithm with k ¼ 2, makes sense to
determine the cluster of significant predictors i.e. the cluster with smaller
size.

By construction, each gene is related to the survival by copy number
variation and RNASeq data. Hence, there are two regression coefficient
parameters for each gene corresponding to CNV data and RNASeq data
respectively. However, in order to carry out an integrative analysis and to
recover the common genes which are significant for both CNV data and
RNASeq data a single set of λ is specified. Recall that, λj controls the
shrinkage of the j-th gene, and specification of one λj for both β1j and β2j is
the key to accomplish recovering the common genes. As a consequence,
toward the goal of recovering common genes we fit a 2-means clustering
algorithm on the posterior mean of λ; the cluster which will have smaller
size can be mapped to the corresponding genes which are significant for
copy number change and mRNA data because of the structure of our
model formulation.

3. Results in TCGA data

The main goals of this study were to develop a Bayesian shrinkage
coupled with Bayesian accelerated failure time model to carry out an
integrative analysis and to select circadian genes that play important
roles in cancer progression. We focused on transcriptome data because of
its wide availability. For datasets of human cancer, we analyzed breast
cancer data from TCGA. We collected the desired dataset from a version
hosted by Broad Institute using the R package TCGA2STAT [30]. Overall,
we obtained 366 samples with very high censoring rate (84.4%). Mul-
tiple clock genes are reported to play role in cancer progression [31].
From the known reports we have selected 10 genes [32] to investigate
their importance in cancer progression. Earlier studies showed how the
expression pattern of circadian genes are altered in different cancer as
well as how different circadian genes get mutated in different types of
cancer [33].

To investigate the direction of the association of the gene expression
we first divide the expressions as measured by the CNV at their median
point and classified the genes into two groups viz. “High” and “low”

groups. The high values refer to the higher expression values of genes and
the low values refer to the lower expression values of those genes. Thus,
when the average survival times of the high group is higher than the low
group that implies that the survival is positively associated with the ex-
pressions of that gene. Similarly, it is said that the survival time is
negatively associated with the expressions of a gene when the average
high expression values are lower than the average low expression values
that is as expressions tend to lower then the survival times tend to go
higher. To confirm this, we produce their survival times summarized by
boxplots in Figs. 1 and 2, with red boxes denoting high group and green
boxes denoting the low group which means that their expression mea-
surements are lower than the other group. From this visualisation it is
evident that if the circadian genes are positively associated (Fig. 1) or
negatively associated (Fig. 2). A similar plot was obtained using RNASeq
data.

To identify clock genes associated with breast cancer survival, we
used Bayesian shrinkage coupled with Bayesian accelerated failure time
(AFT) on the TCGA data set. We obtain the posterior estimates averaging
over 100,000 markov Chain Monte carlo (MCMC) samples after 10,000
samples as burnin. Using the method described in Section 2.4 on the
posterior samples, we found that NPAS2, PER1, PER2, CRY2, CRY1,
CSNK1E, and DEC1 are positively correlated with patients survival for
breast cancer patients as shown by Fig. 1, where as PER3, TIMELESS and
MT2 are found to be negatively correlated with patient survivals (Fig. 2).

https://github.com/MAITYA02/circgene
https://github.com/MAITYA02/circgene
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Fig. 1. Displayed boxes show that NPAS2, PER1, CRY2, CRY1, CSNK1E, and DEC1 are positively associated with patients survival. The left (green) boxes belong to the
lower CNV measurements which means that the measurements are lower than the median point. The right (red) boxes belong to the higher CNV measurements which
means that the measurements are more than the median point. The plotted boxes are the survival times of the individuals. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Displayed boxes show that PER3, TIMELESS and MT2 are negatively associated with patients survival. The left (green) boxes belong to the lower CNV
measurements which means that the measurements are lower than the median point. The right (red) boxes belong to the higher CNV measurements which means that
the measurements are more than the median point. The plotted boxes are the survival times of the individuals.
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Finally, we integrated CNV and RNAseq expression data together to find
out DEC1 is positively correlated with breast cancer patients survival. To
see this we refer the readers to the posterior 95% Bayesian credible in-
tervals for each gene reported in Table 1. One can note that the credible
intervals cover the point 0 for all genes including DEC1, however, the
intervals due to DEC1 include a bigger length of the positive part of the
real line than that of other intervals which make the gene DEC1
significant.

It is known that DEC1 regulates the expression of factors associated
with tumor growth and apoptosis, and is therefore linked to tumor pro-
gression. DEC1 is known to regulate breast cancer cell proliferation by
5

stabilizing cyclin E protein, which delays the progression of cell cycle S
phase [34]. Our analysis using TCGA tumor samples supports a key role
for DEC1 in tumor progression and suggests that DEC1 expression levels
can be used to predict survival rates in breast cancer patients.

To asses the convergence in the MCMC chain we provide the trace
plots of β11 and β19 in Figs. 3 and 4 respectively. We notice good mixing
in both posterior samples. The corresponding Gelman-Rubin conver-
gence diagnostics are 1 and 1, which are less than 1.1 confirming that a
convergence has been achieved. Similar trace plots can be obtained for
other parameters which we skip here for brevity.



Table 1
95% Bayesian credible intervals for coefficients.

Gene Interval for CNV data Interval for RNASeq data

NPAS2 (-1.06, 1.36) (-0.01, 0.16)
PER1 (-0.35, 1.50) (-0.03, 0.07)
PER2 (-0.72, 1.53) (-0.13, 0.05)
PER3 (-1.85, 0.44) (-0.06, 0.10)
CRY2 (-0.78, 1.28) (-0.10, 0.09)
CRY1 (-0.63, 1.57) (-0.15, 0.11)
TIMELESS (-1.67, 0.79) (-0.05, 0.02)
CSNK1E (-0.22, 1.33) (-0.02, 0.03)
DEC1 (-1.00, 5.57) (-1.98, 8.48)
MT2 (-0.83, 0.16) (-0.00, 0.00)

Fig. 3. Trace plots of β11.

Fig. 4. Trace plots of β19.
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4. Results in simulated data

In this Section we provide some simulation studies with a similar
setting as in the breast cancer data example in Section 3. We consider two
design matrices – X1 and X2 both with dimension 300 � 10, assuming X1
and X2 correspond to CNV and RNASeq respectively, which replicates
similar settings of the breast cancer data in TCGA. For the sake of
6

simplicity the columns (genes) of the matrices are generated from un-
correlated Gaussian distribution with unit variance covariance matrix.
We consider three true scenarios for the coefficient vector β – two of the
genes for each X1 and X2 are significant and five of the genes for each X1
and X2 are significant. The true values of the significant coefficients are
generated from an Uniform distribution with parameters (�1.5, 1.5).
Then the survival times of the subjects are generated according to
equation (1) in log scale with σ2 ¼ 1. The censoring rate is induced
assuming a Gamma distribution. The censor rate in a particular example
can be created by appropriately setting the parameters of the Gamma
distribution (see also [19]). In this way we consider three censored sit-
uation depending on how many subjects are censored. In each setting we
produce 100 simulated datasets and fit our proposed model developed in
Section 2. In Table 2 we report the results averaged over 100 datasets.

To obtain the posterior operating characteristics, for each simulation
we consider 10,000 MCMC samples after discarding 1000 burnin sam-
ples, no thinning was considered. After fitting our developed method (see
Section 2) to the simulated datasets we processed the posterior samples
using the method described in Section 2.4 to compute four different
matrices to assess the performance of the developed method –



Table 2
Simulation results based on 100 simulated datasets. All results are in proportion.

Censoring True
Model

True
Model

Estimated False
Positive

False
Negative

Rate Size Selection Model
Size

Rate Rate

28% 2 1.00 2.00 0.00 0.00
35% 5 0.46 4.98 0.53 0.53
88% 2 1.00 2.00 0.00 0.00
82% 5 0.39 4.61 0.32 0.40
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● True Model Selection: Proportion of times the true model or the
data-generating model is identified by our method.

● EstimatedModel Size: Average model size of the model identified by
our method.

● False Positive Rate: Proportion of coefficients identified as signifi-
cant by our method when in fact they were not present in the true
model. Any method with lower false positive rate is preferred.

● False Negative Rate: Proportion of coefficients which were not
identified as significant by our method when in fact they were present
in the true model. Any method with lower false negative rate is
preferred.

The simulation results are summarized in Table 2. One can note that
the performance of the proposed method is well in terms of selecting the
true model. The good performance is especially evident when the data
generating model or the true model is sparse. For instance, when the 28%
samples are right censored, the true model size is 2, the true model is
recovered in each of the 100 simulated datasets. As a consequence, the
false positive rate and false negative rate are 0. The good performance
continues even when 88% data is censored, which is similar to the Breast
cancer data (84.4% censored data). However, the performance degrades
when the true model is not sparse; this can be justified because Horseshoe
prior is widely known to produce parsimonious solution.

5. Discussion and conclusion

To the best of our knowledge, this study is the first in its kind to
analyze breast tumor samples data from TCGA for integrating omics data
and selecting the circadian gene important in cancer progression. In this
work we have exploited shrinkage nature of the global local Horseshoe
prior in order to integrate the two platforms – copy number variation and
RNAseq data to uncover the important genes associated with the patient
survivals. By virtue of the unique specification of the global parameters
and local parameters of the Horseshoe prior the analysis made it possible
to identify the common genes which are important via the both types of
the measurements of the gene expressions. The TCGA data of circadian
gene measurements for the brain cancer patients discover the DEC1 as
the associated gene with the patient survival which has already been
known in the literature for its role in cancer patients.

In Section 2.3 the MCMC chain is constructed on the conditional
distributions of the primary parameters α, β, and σ2 by virtue of which
straightforward Gibbs sampling is carried out. Nonetheless, this con-
struction is only possible if one has the full data likelihood computed. In a
censored data scenario the data likelihood is typically consists of some
censored observations which preclude to carry out Gibbs sampling. To
mitigate this issue we augmented the full data and sampled the censored
observations from truncated space. As we have noted above, the posterior
sampling achieved good convergence in the application we have
considered. Alternatively, a pseudo marginal sampling approach [35]
can also be explored if good mixing is obtained. For instance, the like-
lihood can be estimated unbiasedly using Poisson estimator [36] or the
difference estimator [37]. Then the regression coefficients α and λ and
the variance parameter σ2 can be updated using the Metropolis Hastings
scheme using a suitable proposal distribution. However, λ and τ can still
be updated using the method described in Section 2.3. In this
7

implementation if n ≫ p one can use two step Metropolis Hastings
approach, developed in Ref. [38] when updating the regression param-
eters to avoid observing a long MCMC chain for convergence.
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