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ABSTRACT

Textual explanations have proved to help improve user satisfac-
tion on machine-made recommendations. However, current main-
stream solutions loosely connect the learning of explanation with
the learning of recommendation: for example, they are often sepa-
rately modeled as rating prediction and content generation tasks. In
this work, we propose to strengthen their connection by enforcing
the idea of sentiment alignment between a recommendation and
its corresponding explanation. At training time, the two learning
tasks are joined by a latent sentiment vector, which is encoded
by the recommendation module and used to make word choices
for explanation generation. At both training and inference time,
the explanation module is required to generate explanation text
that matches sentiment predicted by the recommendation mod-
ule. Extensive experiments demonstrate our solution outperforms
a rich set of baselines in both recommendation and explanation
tasks, especially on the improved quality of its generated explana-
tions. More importantly, our user studies confirm our generated
explanations help users better recognize the differences between
recommended items and understand why an item is recommended.
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1 INTRODUCTION

After extensive amount of research effort endeavored to advance
the recommendation algorithms [1, 8, 16, 27, 29], solutions that
explain the machine-made decisions have recently come under the
spotlight [9, 40]. Numerous studies have shown that explanations
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help users make more accurate decisions [3], improve their accep-
tance of recommendations [9], and build up confidence towards
the recommender system [31].

Textual explanations have been identified as a preferred medium
for explaining the recommendations [40], e.g., “This restaurant’s
decoration is unique and its sandwich is the best”. But due to the
lack of explicit training data, most existing solutions appeal to user
reviews as a proxy [4, 32, 34, 35, 37, 38, 41]: a good explanation
should overlap with user-provided reviews. This is backed by ex-
tensive prior research in sentiment analysis [23] that there is a
strong correlation between opinion ratings and associated review
content. But the approximation also inadvertently shifts the ob-
jective of explanation learning to generating or even memorizing
reviews, in a verbatim manner. It unfortunately drives the current
practice in explainable recommendation to decoupling the learn-
ing of recommendation and explanation into two loosely linked
sub-problems with their own objectives (e.g., rating prediction vs.,
content reconstruction) [20, 37, 41]. But we have to emphasize that
the content generated with fairly fluent language is not sufficient
to be qualified explanations, as a good explanation must elaborate
why the recommendation is particular to the user. Ideally, based
on the provided explanations, a user should reach the same conclu-
sion as the system does about why an item is recommended, i.e.,
explanation as a defense of the recommendation.

To tie the loose ends in explainable recommendation, one needs
to understand how users perceive and utilize the system-provided
explanations. A recent user behavior study based on eye-tracking
[5] finds that opinionated explanations at a detailed attribute-level
stimulate users to compare across related recommendations, which
in turn significantly increase users’ product knowledge, preference
certainty, and perceived recommendation transparency and quality.
Motivated by this finding, we believe the sentiment delivered by
the explanation text needs to reveal the details of how items are
scored and ranked differently by the system. We formulate this
as sentiment alignment between the explanation text and system’s
corresponding recommendation.

To demonstrate the importance of sentiment alignment, we com-
pare example output from two explainable recommendation algo-
rithms (one proposed in this work, and another from [20]) in Table
1. Both algorithms strongly recommended restaurant A over B, as
suggested by the corresponding large margins in their recommen-
dation scores. Note such scores are not presented to the users in
practice; even presented, they do not carry any detail about why an
item is preferred by the algorithm. With Algorithm 1’s explanations,
one can easily recognize restaurant A is recommended because of
better quality in its food and service. But on the contrary, it is much
harder to comprehend the recommendations based on the Algo-
rithm 2’s explanations, as the presented difference become subtle,
though their readability is comparable to Algorithm 1’s. Two major
reasons cost misaligned explanations in the second algorithm: 1)
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Table 1: Case study on two explainable recommendation algorithms’ output. Two restaurants are evaluated by the two algo-
rithms, with corresponding recommendation scores and explanation output. We manually labeled attribute words in italic

and sentiment words in bold.

Algorithm 1 (Our proposed model) Algorithm 2 (NRT [20])
Item . .
Score Explanation Score Explanation
A 4.2 the sushi is good, the rolls are fresh and the serviceis | 4.1 their prices are decent, but the portions are pretty
excellent. small.
B 2.1 it was a bit loud and the service was slow. 2.2 great food, clean, and nice atmosphere.

at training time, it only uses text reconstruction loss for explana-
tion learning; 2) at inference time, the explanation is generated
largely independently from the recommendation (as it only uses
the predicted rating as an initial input for text generation). The
failure to align sentiment conveyed in the explanation text with
the recommendations not only cannot help users make informed
decisions, but also makes them confused or even doubt about rec-
ommendations, which is totally against the purpose of explainable
recommendation.

We propose to enforce sentiment alignment in both training
and inference time for improved explainable recommendation. In
particular, the learning of recommendation is modeled as a neural
collaborative filtering problem [8], and the learning of explanation
is modeled as a neural text generation problem [33]. We force the
recommendation module to directly influence the learning of ex-
planations by two means. First, we introduce two gated networks
to our neural language model to fuse the intermediate output from
the recommendation module to affect the word choice at every
position of an explanation. Use examples shown in Table 1 again:
given the currently generated content, the explanation module
should properly choose the attribute words and corresponding sen-
timent modifiers (e.g., adjectives) to make their conveyed sentiment
consistent with the recommendation module’s prediction on this
user-item pair. Second, a stand-alone sentiment regressor is added
in between the two modules’ output, such that its predicted sen-
timent score on the explanation text should be close to the given
recommendation score. When discrepancy occurs, the explanation
module is pushed to minimize the difference. At inference time,
all our treatments for sentiment alignment are kept. But since the
explanation module has been learnt, the sentiment score gap is
minimized by solving a constrained decoding problem. Because the
sentiment regressor can only be applied to a complete text sequence,
we use the Monte Carlo Tree Search algorithm [14] for decoding
with efficiency. Enforcing the alignment at inference time is vital,
as it avoids the issue of decoupled output in existing explainable
recommendation solutions.

We evaluate the proposed solution on both recommendation
and explanation tasks, with particular focuses on the text quality,
attribute personalization, and sentiment alignment of the generated
explanations. The experiments are performed on Yelp and Ratebeer
datasets in comparison with a rich set of popular baseline solutions.
Empirical results show that our solution improves the performance
on both tasks, with particularly improved explanation quality via
its enhanced sentiment alignment. We also have our solution scru-
tinized under extensive user studies against competitive baselines.
Positive user feedback suggests our explanations greatly help users
gain a clearer understanding of the recommendations and make
more accurate decisions.

2 RELATED WORK

User-provided reviews have been popularly used as a proxy of ex-
planations in explainable recommendations [4, 18, 38]. One typical
type of solutions directly extract representative text segments from
existing reviews as explanations. For example, NARRE [4] uses
attention to aggregate reviews to represent users and items for
recommendation, in order to choose the most attentive reviews as
explanations for each particular item. CARP [18] adopts the capsule
network instead of attention for the same purpose. Wang et al. [38]
extend the idea with reinforcement learning to extract the most
relevant review text segments that match a given recommender
system’s rating prediction. However, such explanations are lim-
ited to an item’s existing reviews, some of which may not even be
qualified as explanations (e.g., describing a personal experience).
Moreover, these models only focus on selecting reviews to identify
the items’ characteristics, instead of addressing the reasons for a
particular recommendation provided by the system. The lack of rel-
evance hurts users’ trust on both system-provided explanations and
recommendations, and thus undermines the value of explainable
recommendation.

Another family of solutions learn to generate explanations from
reviews. Many of them learn to predict informative elements re-
trieved from reviews as explanations [2, 7, 34, 37]. As a typical
example, MTER [37] predicts items’ attribute words and corre-
sponding users’ opinion words alone with its recommendations. Its
explanations are generated by placing the predicted words into pre-
defined templates, which however lack necessary expressiveness
and diversity of nature language. Such robotic style explanations
are usually considered less appreciated by users. To address this
deficiency, neural language models have been applied to synthesize
natural language explanations [19, 20, 22, 35]. For example, NRT
[20] models explanation generation and item recommendation with
a shared user-item embedding space, where its predicted recommen-
dation rating is used as part of the initial state for corresponding
explanation generation. MRG [35] integrates multiple modalities
from user reviews, including ratings, text, and associated images,
for explanation modeling, by treating them as parallel learning
tasks. Neither the template-based or generation-based solutions
paid enough attention to the sentiment alignment issue between
recommendations and explanations. Although they jointly model
recommendation and explanation (e.g., sharing embeddings), the
objectives of training each module are still isolated. DualPC [32]
realizes the importance of consistency between the two learning
tasks, and introduces a duality regularization based on the joint
probability of explanations and recommendations. However, the
correlation imposed by duality does not have any explicit semantic
meaning to the end users. In contrast, we require the output of mod-
els to be consistent in their carried sentiment, which is perceivable
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Figure 1: Model architecture of SAER. Sentiment alignment is explicitly enforced through three channels. First, SAER uses
a shared sentiment vector to connect the recommender and explanation generator by the sentiment gate and attribute gate.
Second, the sentiment regularizer samples generated explanations with Gumbel softmax and requires their carried sentiment
(calculated by a pre-trained sentiment regressor) to match with the recommender’s output score. Third, at inference time,
constrained decoding is performed to ensure the alignment in the generated explanation. SAER also uses adversarial training
to improve the explanations’ readability in its sentiment regularizer.

by an end user. Moreover, due to the required duality, DualPC has
to use an ad-hoc approximation to break the coupling between the
two models’ output at inference time, which unfortunately hurts
the learnt consistence between the two models. Our solution treats
explanation as a dependent of recommendation, and solves a con-
strained decoding problem to infer the most aligned explanation at
testing time accordingly.

3 SENTIMENT ALIGNED EXPLAINABLE
RECOMMENDATION

The problem of explainable recommendation can be formulated as
follows: for a given pair of user u and item i, the model outputs
a personalized recommendation based on its computed score ry,;
and a word sequence xy; = {w1, wa,...,wWn} as its explanation.
To learn such a model, we assume an existing training dataset,
which includes a set of users U, items 7, ratings R, attributes
A, and explanation text X, denoted as as {U, I, R, A,X}. The
attributes and explanations can be prepared from user-provided
review corpora; and we will introduce the procedure we adopted
for this purpose later in the experiment section. We also define a
vocabulary set V = {w1, wg, ..., w|q|} for explanation generation.
We define attributes as items’ popular properties mentioned in the
review text, and thus they are a subset of vocabulary A c V.
Our model architecture for addressing explainable recommenda-
tion is shown in Figure 1. It consists of three major components: 1)
recommender, which takes a user and item pair (u, i) as input to
predict a recommendation score 7y, ;, which measures the affinity
between u and i; 2) explanation generator, which takes the (u, i) pair
as input and generates a word sequence %,,; = {w1, wa, ..., wp} as
the corresponding explanation; and 3) sentiment regularizer, which
measures sentiment alignment between the generated explanation
and recommendation. All three components closely interact with

each other at both training and inference time for improved expla-
nation generation, especially for enhanced sentiment alignment.
We name our solution Sentiment Aligned Explainable Recommen-
dation, or SAER in short. Next, we will zoom into each component
to introduce its design principle and technical details.

3.1 Personalized Recommendation

As our focus in this work is not to design yet another recommen-
dation algorithm, we adopted a latest neural collaborative filtering
solution for the purpose [8]. Arguably any latent factor models
that explicitly learn user and item representations [16, 37, 41] can
be adopted. In this section, we will only cover the most important
technical details of our recommender’s design, and leave interested
readers to its original paper for more details.

We stack two Multi-Layer Perceptron (MLP) networks to predict
the recommendation score 7y, ; for a given (u, i) pair. The first MLP
encodes the (u, i) pair to a latent sentiment vector s, ; € R% , and
the second MLP maps the sentiment vector s, ; into the numerical
rating 7y, ;. We refer to the first MLP as sentiment encoder and the
second one as rating regressor. Instead of using the predicted score
7u,i to influence explanation generation, we choose to inform the
explanation generator by the encoded sentiment vector s, ;. We
defer the details of this design to the next section.

In the recommendation module, we define the latent embedding
matrices for users and items as P € R? XIUl and 9" ¢ R ¥I7|
respectively, where d” is the dimension of the embedding vectors.
The sentiment encoder concatenates the embedding vector p}, and
q} as its input and passes it through multiple layers with leaky
ReLU activation to get the sentiment vector s, ; encoded. Besides
its use in the explanation generator, s, ; is then mapped by the
rating regressor through another set of multi-layer leaky ReLUs to
get the final recommendation score 7y, ;.



In addition to the popularly used Minimal Squared Error (MSE)
[4, 20] to train our recommender, we also introduce a pairwise hinge
loss to improve the trained recommender’s ranking performance.
Specifically, for each user u, we collect a set of personalized item
pairs By = {(i, j)|ru,i > ry,j}, where i and j are two items rated by
user u and one is preferred than another as observed in the training
dataset. We did not use the popular BPR loss [28], because it tends
to push ratings to extreme values, which is inconsistent with our
sentiment regularizer’s requirement to be explained later.

Based on the rating set R and personalized item pair set { By, },,cqy,
the loss for recommender training is defined as:

_ ! NN Ap
L' = ﬁ Z (ru,,—rujl) +Z 8
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where f > 0 is a hyper-parameter to control the separation margin,
i.e., it penalizes the model when the predicted difference between
fui and 7y, j is smaller than 8, and Ay, is the coefficient to control
the balance between MSE loss and pairwise hinge loss.

3.2 Explanation Generation

Motivated by the success of neural language generation, we appeal
to a Recurrent Neural Network (RNN) model with Gated Recurrent
Units (GRUs) [6] for explanation generation. To make the gener-
ation related to the user and item, we first map the input user u
and item i to their embeddings p7 and q;‘ with the latent matrices
P¥ e REXIUI and 0* € RE*I7 1 Jearnt by the explanation gen-
erator. We should note this set of embeddings are different from
those used in the recommender (i.e., P" and Q"), as they should
characterize different semantic aspects of users and items (ratings
vs., text). We hence use superscript x to indicate variables and pa-
rameters related to explanation generator. To generate explanation
text, the embeddings are concatenated and linearly converted into
the initial RNN hidden state; and then the GRU generates hidden
state hf € R% at position ¢ with previous state hy_, and input
word w;, and predicts the next word w41 recursively.

We initialize RNN with pretrained GloVe word embeddings V €
REXIVI [25].

Though similar model design has been used for explanation
generation [20, 32], this straightforward application of RNN can
hardly generate satisfactory explanations, where two issues are left
open. First, a good explanation is expected to be personalized and
specific about the recommendation; generic content, such as “this is
a nice restaurant” can never be informative. It is important to explain
the recommended item by the user’s most concerned attributes [36].
Second, the sentiment carried in the explanation, especially on the
mentioned attributes, should be explicit and consistent with the
recommendation (as shown in our case study in Table 1). There is
no guarantee that a simple RNN can satisfy both requirements.

We enhance our generator design with two gated sub-networks
upon GRU to address the aforementioned issues. First, we design
a sub-network, named attribute gate, to guide attribute word gen-
eration with respect to the input user-item pair and the predicted
recommendation sentiment. The attribute gate is built based on
a pointer network (or copy mechanism) [30, 39], which decides
whether the current position should mention an attribute word
and the corresponding distribution of attribute words based on the
generation context. To make the choice of attribute word specific

Z max (0, ﬂ—(fu,i—fu,j))

to the item, for each item i we build an attribute set with all at-
tribute words that appear in i’s associated training explanation text:
Ai = {ak|ak € {xy,ilu € ‘L[}} To make the attribute choice depend
on the already generated content, we attend on the concatenation
of the current position’s RNN hidden state h} and sentiment vector
su,; to compute the distribution of these attribute words,

z, = [h}, su,,-]TWvaak,Vk, a € Aj; ¢ =softmax(zs), (1)

where W) € R (@ +d)xdy ang Vg, is the word embedding of at-
tribute aj. z; ;. is computed for every ay in A;, ie., z; = {21, 22
Zt | AA;| }- O¢ is the resulting attribute word distribution at position
t. For better performance, an extra linear transformation can be
applied to h} to compress it into a lower dimension before comput-
ing attention, which helps avoid overfitting attentions to the text
generation context but ignoring the sentiment context.

To decide if we need to generate an attribute word using Eq
(1) at position t, we compute the copy probability with respect to
the current context hy by ¢f = o(WXhY + bY), where o(-) is the
sigmoid function, W} € R% and b7 € R. ¢} allows us to mix the
vocabulary distribution predicted by GRU and attribute word choice
to get our final word distribution at position ¢.

Second, we design a sentiment gate to fuse the sentiment vector
sy,i to align sentiment in the generated explanation text. Our key
insight is that not all words convey sentiment, we need to choose
the right word at the right place to express consistent sentiment as
needed by the recommender. Similar to our attribute gate design,
we apply a soft gate to decide how each position is related to the
intended sentiment. At position ¢, the sentiment gate calculates a
ratio gy with respect to the RNN’s hidden state hy. The sentiment
vector sy; is then weighted and merged with hy},

g; = o(Wg'hi +by), my = tanh(hy +g7 (Wysui+b))  (2)

where W¥ € R% and b¥ € R produce a scalar gy. m} is the
sentiment fused latent vector to predict the vocabulary distribution
for position t. Because not all words are about sentiment, to better
differentiate the positions where the intended sentiment needs to
be expressed from the rest, we impose sparsity on the learned gate
value g} using L1 regularization at training time. In other words,
the gate is open only when necessary.

We compute the final word distribution by consolidating the
outputs of the two gated sub-networks (Eq (1) and (2)). First, the
sentiment fused latent vector m} is fed through a linear layer to
calculate the vocabulary distribution n; = softmax(Wymj + by),
where W € RIVXdy and bX € RIVI. Second, the vocabulary dis-
tribution #; and attribute word distribution {; are merged to obtain
the final word distribution with respect to the copy probability c},
ie,y: = (1—c)ns +cf s, where the value of wy in {; is 0 if wy is
not an attribute word.

The objective for explanation generation is to minimize the neg-
ative log-likelihood loss (NLL) on the training explanation set X,

L*=- Z Z logy:(we) +Ag Z Z lg7 |

xeX Wr€X xeX wr€Ex

where y;(w;) is the resulting probability of word w; and Ag is the
coefficient for the L1 regularization of the sentiment gate values.



3.3 Sentiment Alignment

Though our sentiment gate design (Eq (2)) introduces predicted
sentiment from the recommender to the explanation generator, it is
still insufficient to guarantee sentiment alignment, for three major
reasons. First, word-based NLL training cannot maintain the whole
sentence’s sentiment. For example, as the number of sentiment
words in an explanation is less than the number of non-sentiment
words, the training is affected more by those non-sentiment words.
This weakens its prediction quality on sentiment words. Second, the
explanation generator might utilize the sentiment vector differently
as the recommender does, so that the recommendation rating might
diverge from the sentiment carried by the explanation. Third, the
generation process at the inference stage works differently from
the training stage [26]: at inference time, the previously decoded
word is used as the input for the next word prediction, instead of
the ground-truth word as at the training time. Hence, the learnt
text pattern might not be fully exploited at the inference time.

We introduce the sentiment regularizer to close the loop between
the recommender and explanation generator. It uses a stand-alone
sentiment regressor to predict the sentiment rating #* on the gen-
erated explanation text X, ; for user-item pair (u, i), and requires
the explanation generator to match the rating #,,; from the recom-
mender accordingly. We do not have any particular assumption
about the sentiment regressor; and any state-of-the-art regression
models can be leveraged [23]. In this work, we employed an MLP
on top of a bidirectional RNN text encoder with inner attention for
rating regression, and denote it as fR(x) — rX. We pre-train this
regressor based on ground-truth {R, X'} in the training set; and fix
the learnt model thereafter.

To enforce sentiment alignment by the predicted ratings, we
introduce a new loss to the training of our explanation generator,

L= > Epiipuy [(Fui = FR @) &)
uel,iel

where P(%|u, i) is the probability of generating x for the given u
and i. We should note this loss is not necessarily restricted to the
observed (u, i) pairs in the training set; instead, it could be any pairs
of them, since both the recommender and explanation generator
can generate output on any given (u, i) pair. It thus enables data
augmentation for sentiment alignment.

However, because the word distribution is categorical, the gen-
eration of % is not differentiable. It makes direct optimization with
respect to Eq (3) infeasible. As a result, we appeal to Gumbel softmax
[11] to obtain approximated gradient of sampling from a categorical
distribution. Briefly, Gumbel softmax reparameterizes the random-
ness in sampling by a gumbel distribution and simulates a relaxed
one-hot vector with softmax. As we need a strict one-hot vector
to represent each single word, we adopt the Straight-Through (ST)
Gumbel softmax estimator [11]. For each (u, i) pair in Eq (3), we
back-propagate the gradient from L to the explanation genera-
tor to improve the quality of sentiment alignment on the whole
sequence.

Unfortunately, this new sentiment alignment loss might also
attract the generation process to produce unreadable sequences,
which however match the intended sentiment ratings. For example,
the sentiment regressor may give a very positive rating to an un-
natural sentence “good good good good”, when the recommender
also happens to predict a high rating for this item. Giving a higher

weight to the NLL loss L* in explanation learning cannot address
this issue, as it cannot inform why a particular sequence should
not be generated.

To improve the readability of our generated explanation, we
introduce a text discriminator £, which learns to differentiate the
authentic explanations from the generated ones, to guide the expla-
nation generation as well. Our design allows any text classifier. In
this work, we used an MLP binary classifier on top of a bidirectional
RNN encoder for the purpose. We train the discriminator using
cross-entropy loss with the ground-truth explanations x as positive
and the generated explanations x as negative,

1P == D IofP() = Bgeun | log(1 - 2]
xeX uel,iel

Correspondingly, another objective of explanation generation is to
fool the discriminator, i.e., the adversarial loss,

L=~ Z Ep (¢ | log f2(%)]
uel,iel
This loss also requires sampled explanations % as the input, like
the alignment loss defined in Eq (3). The same Gumbel softmax
sampling technique is used for end-to-end training.

As we pointed out before, addressing the sentiment alignment
issue in training alone is still insufficient, we introduce a constraint-
driven decoding strategy to enhance the alignment at the inference
stage as well. Similarly as in training, we use MSE to quantify the
difference between the rating predicted from the explanation text
and that from the recommender. But at the inference stage, since the
explanation generator has been trained and fixed, the discrepancy
can only be minimized by varying the generation of explanation
text, e.g., trial and error.

Because the sentiment regressor can only be applied to a com-
plete sequence, the search space is too large to enumerate by the
generator. Hence, we treat generating explanation x at inference
time as a sequence of decision making, where each action is to
generate a word w; at position t, given its already generated pre-
fix as state. But we do not have feedback on the actions, until
we complete X; and the return for taking the series of actions
can be measured by Q(%;7y,;) = [Fui — FR(#)]2. To find a pol-
icy that minimizes return (since we want to reduce the discrep-
ancy), we need to estimate the value function under each state.
This is a well studied problem in reinforcement learning, and it
can be effectively addressed by Monte Carlo Tree Search (MCTS)
[14]. Basically, we estimate the value function using our trained
explanation generator for roll-out. When at position ¢ for gener-
ating %y, ;, we will sample n complete sequences for every action
w using the current prefix {w1, wy, ..., ws—1}, following the distri-
bution specified by the explanation generator: Xu,i,t(w) = {fck =
MCTSyi (w1, w2, ..., W1, W)}Z:r Then the value of taking action
w at position t can be estimated by,

1
O(wi, W, .o, Wp—1, Wi Py ) = ——
|Xu,i,t(W)| . Z

Fre €Xuyie (W)

Q(Xk» Fui)

Based on the estimated values, we can take the action that mini-
mizes the value. A recent study [10] suggests that top-k sampling
oftentimes avoids bland and repetitive content compared to more
commonly used greedy decoding strategies, such as top-1 or beam
search. Therefore, we integrate our MCTS with top-k sampling,



i.e., at each decoding position ¢, we sample k most likely words
according to word distribution y¢ and then use MCTS to select the
one that minimizes the estimated value under given state.

A vanilla implementation of MCTS is expected to be expensive
and slow in our problem, as it needs to complete the sequence at
each position from an RNN model for multiple times. Fortunately,
our sentiment gate design provides a short path for efficient sam-
pling: as sentiment is only carried by a small number of words,
there is no need to conduct such expensive sampling procedure at
every position. Instead, we only need to perform MCTS at positions
where sentiment is expressed. Hence, we set a threshold on the
sentiment gate’s value to decide when to perform MCTS. When the
gate’s value is below the threshold, we will directly sample from
the top-k words of the explanation generator’s prediction.

3.4 End-to-End Model Training

Putting together the three components in our proposed explainable
recommendation solution SAER, the overall objective of our model
training is formulated as:

J = min (ArL” + AL + 2gL® + AcLE + 2110 1%)

where © is the complete set of model parameters, and {A,, Ax, Ag, Ac }
are the corresponding coefficients to control the relative importance
of each component in model training. We also include an L2 regu-
larization for the model parameters ©, weighted by its coefficient
An- The parameters are then effectively estimated end-to-end with
stochastic gradient optimizer of Adam [13].

However, due to our model’s complex structure, it is challenging
to fully unleash the optimizer’s potential on its own. Therefore,
we split the whole training process into five stages. First, estimate
the sentiment regressor on {X, R}, as it does not depend on the
other parts of our model. Second, pre-train the recommender on
{U, I, R} till convergent. This step is essential to learn a good sen-
timent encoder whose output will be used to inform the explanation
generator. Third, freeze the recommender and train the generator
on {U, I, A, X} with negative log-likelihood loss only. We found
in our experiments that generation learning was more difficult than
recommendation learning. First training the explanation genera-
tor separately can help align the training of both modules later.
Fourth, after the separate training converges, start joint training of
the recommender and explanation generator. This step allows the
model to align the sentiment representation from both modules. At
last, freeze the recommender, and turn on the sentiment regularizer
to further improve the explanation generator. At this stage, the
explanation discriminator and generator are trained in turn.

4 EXPERIMENTAL EVALUATION

We quantitatively evaluate our model’s performance on personal-
ized recommendation and explanation generation in two different
domains: restaurant recommendation on Yelp reviews ! and beer
recommendation on Ratebeer reviews [21]. Our model is compared
against a set of state-of-the-art baselines on both offline data and
user studies, where encouraging improvements in both recommen-
dation and explanation tasks are obtained.

https://www.yelp.com/dataset

Table 2: Statistics of the processed datasets.

Dataset | # Users #Items # Reviews # Attributes
Yelp 15,642 21,525 1,108,971 498
Ratebeer 3,895 6,993 1,073,762 333

4.1 Experiment Setup

4.1.1 Data Pre-Processing. As the attributes are not directly pro-
vided in these two review datasets, we use the Sentires toolkit [42]
to extract attribute words from reviews and manually filter out
inappropriate ones based on domain knowledge. Although reviews
are directly treated as explanations in many previous studies [4, 38],
arecent work [22] suggests a large portion of review content is only
about subjective emotion and thus does not qualify as explanations,
e.g., “I love the food”. An informative explanation should depict the
details of items, e.g., their attributes, to help users perceive the exact
reason behind recommendations, e.g., “the fish is fresh”. Therefore,
we restrict ourselves to sentences containing attribute words as
explanations in our experiments.

On top of the crafted explanations, we select 20,000 most frequent
words and map others to unknown to build the vocabulary. Finally,
as lots of users and items only have very few reviews in the datasets,
we apply recursive filtering as in [37] to refine the datasets and
alleviate this sparsity issue. The resulting statistics of the datasets
are summarized in Table 2.

4.1.2 Baselines. To evaluate the personalized recommendation
performance, we used the following recommendation baselines:

- NMF: Non-negative Matrix Factorization [17]. A widely used
latent factor model, which decomposes the rating matrix into
lower dimensional matrices with non-negative factors.

- SVD: Singular Value Decomposition [15]. It utilizes rating matrix
as input for learning user and item representations.

- NCF: Neural Collaborative Filtering [8]. It is a modified matrix
factorization solution which adopts neural networks to model
the nonlinear vector operations.

We also include two explainable recommendation baselines that
can output natural language sentences as explanations for compar-
ing both the recommendation and explanation quality:

- NARRE: Neural Attentional Regression model with Review-level
Explanations [4]. It learns the usefulness of the existing reviews
through attention, and incorporates the review to enrich user
and item representations for rating prediction. To fit in our eval-
uation, we select sentences from its most attentive reviews as
explanations.

- NRT: Neural Rating and Tips Generation [20]. A multi-task learn-
ing solution for rating regression and content generation. It uses
the predicted recommendation score to create initial states for
content generation.

4.2 Quality of Personalized Recommendations

We evaluate the recommendation quality both in terms of rating
prediction (by RMSE and MAE) and item ranking performance
(by NDCG@{3,5,10} [12]). The results are shown in Table 3. SAER
demonstrates better performance in all metrics on both datasets. In
particular, thanks to the introduced hinge loss for pairwise rank-
ing, SAER demonstrates improved ranking performance against all



Table 3: Evaluation of personalized recommendation in terms of rating prediction (RMSE, MAE) and item ranking (NDCG).

Yelp Ratebeer
Model | RMSE MAE NDCG@3 NDCG@5 NDCG@10 | RMSE MAE NDCG@3 NDCG@5 NDCG@10
NMF 1.1034  0.8164 0.3777 0.5067 0.7344 2.2228  1.6609 0.5143 0.6334 0.7766
SVD 1.0286  0.7975 0.3924 0.5246 0.7519 2.2942  1.6474 0.4952 0.6120 0.7593
NCF 1.0532  0.8251 0.3850 0.5150 0.7420 2.0857  1.5002 0.5421 0.6621 0.8004
NARRE | 1.0275  0.8035 0.3918 0.5230 0.7509 2.0714  1.4975 0.5464 0.6641 0.8030
NRT 1.0254  0.8017 0.3947 0.5262 0.7540 2.0743  1.4922 0.5436 0.6620 0.8008
SAER | 1.0190 0.7948 0.3953 0.5278 0.7553 2.0628 1.4842 0.5468 0.6648 0.8034

Table 4: BLEU scores of generated explanations.

Table 5: Performance of attribute prediction in generated ex-
planations.

Dataset Model BLEU-1 BLEU-2 BLEU-4
NARRE 20.46 5.72 2.12
NRT 26.25 8.84 2.97
Yelp SAER (topk) 27.43 9.53 3.18
SAER (reg + topk) | 28.69 10.29 3.37
SAER 28.88 10.44 3.44
NARRE 29.78 9.47 3.27
NRT 42.16 17.54 5.63
Ratebeer SAER (topk) 43.92 19.60 6.56
SAER (reg + topk) | 45.69 21.09 7.02
SAER 46.01 21.60 7.32

baselines, which only modeled recommendation as a rating predic-
tion task. The performance difference among NCF, NRT and SAER
is worth noting. Although their rating prediction modules all use
MLP, NRT and SAER additionally leverage the content information
for improved recommendation quality. Improvements from SAER
against NARRE and NRT demonstrate that our sentiment vector
and corresponding soft gate design better distill and exploit review
data for joint learning. Again, as our focus in this work is not on
improving recommendation quality, but more on explanation. Next,
we will dive into our extensive evaluations about the generated
explanation.

4.3 Quality of Generated Explanations

We evaluate the quality of our generated explanations from three
perspectives: text quality, attribute personalization, and sentiment
alignment. We introduce two variants of our model to better analyze
the effects of our sentiment regularizer and constrained decoding
strategy. 1) SAER (topk), it removes sentiment regularization and
decodes by top-k sampling, such that sentiment alignment is only
introduced by the soft gates, without the alignment loss, nor the
constrained decoding; 2) SAER (reg + topk), it uses sentiment regu-
larization (i.e., the alignment loss) and decodes by top-k sampling,
such that sentiment alignment is only enforced at training time.

4.3.1 Quality of Generated Text. We measure the quality of gen-
erated explanation text with BLEU [24], and report the results in
Table 4. The extraction-based NARRE performed clearly worse than
other generation-based models. This is because the synthesized nat-
ural language explanations are not limited to the existing review
content and is more flexible to customize for a particular user-item
pair. NRT uses the predicted ratings in the initial state for content
generation, in comparison to the sentiment vectors used in SAER.
The performance gap between NRT and SAER (topk) suggests that
our sentiment vectors are more expressive and the two soft gates

Yelp Ratebeer
Model Precision Recall | Precision Recall
NARRE 0.1415 0.1906 0.2176 0.2245
NRT 0.1791 0.1997 0.3443 0.1720
SAER (topk) 0.2024 0.2297 0.3523 0.2554
SAER (reg + topk) 0.1992 0.2319 0.3549 0.2614
SAER 0.2115 0.2391 0.3702 0.2677

Table 6: Sentiment alignment evaluation of decoded expla-
nations by RMSE. PD is the RMSE between explanation rat-
ing and predicted rating, and GT is the RMSE between expla-
nation rating and ground-truth rating.

Yelp Ratebeer
PD GT PD GT
NARRE 1.0932  1.4950 | 2.0996  2.9641
NRT 0.6676  1.2086 | 2.3302  3.1304
SAER (topk) 0.6908 1.2216 | 2.1727  3.0026
SAER (reg + topk) | 0.6242  1.1849 | 1.6985 2.6769
SAER 0.5505 1.1503 | 1.5911 2.6042

can better guide explanation generation throughout the process,
than only affecting RNN’s initial state. The additional gain brought
by the sentiment regularizer in SAER (reg + topk) and constrained
decoding in SAER highlights the benefits of sentiment alignment
in both training and inference time.

4.3.2  Attribute Personalization. Aninformative explanation should
cover the users’ most concerned aspects. We evaluate such perfor-
mance in terms of attribute personalization. For each user-item pair,
we evaluate precision and recall of attribute word in the algorithms’
explanations against ground-truth explanations. The results in Ta-
ble 5 show the improvement brought by our attribute gate, which is
proved to be effective in predicting users’ most concerned attributes.
As the two baselines do not pay attention to items’ attributes when
generating the explanations, their quality in providing attribute-
level explanations is much worse.

4.3.3 Sentiment Alignment Between Ratings and Explanations. Of-
fline evaluation of sentiment alignment is not easy, since it should
be evaluated by the end users who receive the recommendation and
explanation. In addition to depending on user studies to evaluate
this aspect (reported in the next section), we also use our pre-trained
sentiment regressor for an approximated offline evaluation. For a
generated explanation, we infer its carried sentiment by our senti-
ment regressor. We then compute the RMSE between the inferred



Table 7: Agreement rate between the model’s predicted item
ranking and the users perceived ranking based on the pro-
vided explanations.

Model | gap>0.5 gap<0.5
Agrgeinem NRT | 64.76%  52.62%
ate SAER | 73.10% 61.90%

rating from explanation and that predicted by the recommenda-
tion module (marked as PD). This measures sentiment difference
between the recommendation and corresponding explanation. We
also compare the inferred rating against the ground-truth rating
(marked as GT) as a reference. The results are presented in Table 6.
Without our sentiment regularizer, SAER (topk) can already signifi-
cantly outperform the baselines on Yelp, which demonstrates the
utility of our two gated network design for sentiment alignment.
And the alignment loss and constrained decoding further push
SAER’s explanations closer to its recommendations. Compared
to the ground-truth rating, sentiment carried by the explanation
is closer to the recommender’s prediction. We hypothesize that
this can be caused by the difficulty to predict ground-truth rating:
as reported in Table 3, the accuracy of the recommender’s rating
prediction is at around the same level.

5 USER STUDY

We conduct extensive user studies on Amazon Mechanical Turk
to evaluate our explanations’ utility to real users. We chose the
restaurant recommendation task based on the Yelp dataset, as it is
more familiar by general users.

We design two separate tasks. The first task focuses on eval-
uating if the generated explanations can help users make more
informed decisions about the recommendations. In this task, we
randomly pair items with different ratings predicted by a tested
algorithm, and ask participants to read the corresponding explana-
tions before choosing the item they perceived as the better one. We
then evaluate the agreement rate between participants’ choices and
the algorithm’s predictions. Specifically, without showing the ac-
tual predicted scores to participants, we present the corresponding
explanations and require them to answer the following question:

“After reading the provided explanations, which restaurant would
you like to visit? You are expected to judge the quality of the recom-
mended restaurant based on the provided explanations, and then
choose the one with better quality.”

In this experiment, we only adopted NRT as the baseline, because
NARRE’s explanations are item-based and thus not personalized
for individual users.

To demonstrate the explanations’ sentiment sensitivity towards
recommendations, i.e., whether a user can correctly tell the differ-
ence between the two recommended items by reading the expla-
nations, we group the results by the gap between the two items’
predicted scores, and choose 0.5 as the threshold. We collected 420
responses for each model in each group, resulting 1,680 responses
in total. The results are presented in Table 7. Both models’ explana-
tions are reasonably discriminative when the rating gap is larger.
But it is more challenging to explain the difference when the rec-
ommendation scores are close. When the gap is smaller than 0.5,
the agreement rate on NRT's results dropped to around 50%, which
suggests users can barely perceive the differences by reading the

Table 8: Up-vote rate of explanations’ helpfulness.

Model Positive  Negative

NARRE 23.33% 42.86%

Up-vote NRT 50.69% 26.98%

Rate GT 46.77% 46.76%

SAER 57.58% 41.76%

Paired SAER v.s. NARRE 0 0.6786
t-test SAER v.s. NRT 0.0046 0

SAER v.s. GT 0 0.9810

explanations. In contrary, users can better tell the difference from
SAER’s explanations for making informed decisions.

The second task studies whether the explanations can help users
comprehend the reason of a recommended item. In particular, we
ask the participants to compare explanations of the same recom-
mended item but provided by different algorithms, and then select
the most useful ones. We categorize the items as recommended
(top ranked items) or not recommended (bottom ranked items) to
study if the model can provide the correct explanations for both
categories. For each item, we shuffle the explanations from different
models for participants to select from. To help participants better
judge the explanation quality, we also provide the restaurant’s name
and cuisine type. Specifically, we ask one of the following questions
according to whether the item is recommended:

- Positive recommendation: “Which of the following explana-
tions help you the most to understand why you should pay attention
to the recommended restaurant?”

- Negative recommendation: “Which of the following explana-
tions help you the most to understand why our system believes the
restaurant is NOT a good fit for you?”

We choose NARRE, NRT and ground-truth explanations for com-
parison; and compare them by their received helpfulness votes.

We collected 904 responses for positive recommendations and
752 for negative. Table 8 reports the up-vote rates of the explana-
tions from different models and the results of paired t-test. In posi-
tive recommendations, the generation-based methods, i.e., SAER
and NRT, are preferred; and SAER significantly outperforms others.
This reveals that the common and concise syntax and vocabulary
of synthesized language are preferred in the explainable recom-
mendation scenario, because users can more easily understand the
explanations. On the negative recommendations, however, the re-
sults are mixed. SAER is still preferred over NRT, but worse than
NARRE and ground-truth. The key reason is the inherent data
bias: the Yelp dataset contains much more positive reviews than
negative ones. Such imbalance makes SAER reluctant to generate
negative explanations and less trained for negative content. Hence,
its generated explanations cannot strongly justify the negative rec-
ommendations. But from a different perspective, this result also
echoes the importance of aligned sentiment in explainable recom-
mendation.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a new explainable recommendation solu-
tion which synthesizes sentiment aligned neural language explana-
tions to defend its recommendations. The alignment is obtained at
the word-level by two customized soft gates, and at the sequence-
level by a content-based sentiment regularizer, at both training and



inference time. Offline experiments and user studies demonstrate
our model’s advantages in both personalized recommendation and
explanation tasks.

This work initiates the exploration of the critical role of senti-
ment in explainable recommendation. It leaves several valuable
paths forward. Our sentiment regularizer design enables semi-
supervised explainable recommendation via data augmentation.
Considering the extreme sparsity of recommendation data, it can
exploit the dominant amount of unobserved data for improved
performance. Besides, recommendation eventually is a list-wise
ranking problem; thus, it is vital to offer explanations that can
reveal the relative order among the recommended items, i.e., a
list-wise explanation.
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