Competition for DNA binding between paralogous transcription factors
determines their genomic occupancy and regulatory functions
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ABSTRACT

Most eukaryotic transcription factors (TFs) are part of large protein families, with members of
the same family (i.e. paralogous TFs) recognizing similar DNA-binding motifs but performing
different regulatory functions. Many TF paralogs are co-expressed in the cell, and thus can
compete for target sites across the genome. However, this competition is rarely taken into
account when studying the in vivo binding patterns of eukaryotic TFs. Here, we show that direct
competition for DNA binding between TF paralogs is a major determinant of their genomic
binding patterns. Using yeast proteins Cbf1 and Pho4 as our model system, we designed a
high-throughput quantitative assay to capture the genomic binding profiles of competing TFs in
a cell-free system. Our data shows that Cbf1 and Pho4 greatly influence each other’s
occupancy by competing for their common putative genomic binding sites. The competition is
different at different genomic sites, as dictated by the TFs' expression levels and their
divergence in DNA-binding specificity and affinity. Analyses of ChiP-seq data show that the
biophysical rules that dictate the competitive TF binding patterns in vitro are also followed in
vivo, in the complex cellular environment. Furthermore, the Cbf1-Pho4 competition for genomic
sites, as characterized in vitro using our new assay, plays a critical role in the specific activation
of their target genes in the cell. Overall, our study highlights the importance of direct TF-TF
competition for genomic binding and gene regulation by TF paralogs, and proposes an
approach for studying this competition in a quantitative and high-throughput manner.

INTRODUCTION

Transcription factor proteins recognize specific DNA targets across the genome to regulate
gene expression. In order to control precise cellular functions, TFs cooperate and compete with
one another, forming complex gene regulatory networks (Zhou and O'Shea 2011; Jolma et al.
2015; Morgunova and Taipale 2017). Cooperative interactions between TFs, which are typically
driven by direct contacts between compatible protein domains, have been extensively studied
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(Wotton et al. 1994; Jolma et al. 2015; Morgunova and Taipale 2017). TF competition, however,
is still poorly understood, as few studies have directly addressed competitive interactions
between TFs and the role of competitive binding in gene regulation (Miyamoto et al. 1997; Noro
et al. 2011; Zhou and O'Shea 2011; Aow et al. 2013). TFs can compete for DNA binding
whenever their target sites have partial or complete overlap. In the case of paralogous factors,
i.e. TFs from the same protein family, competition is especially important. TF paralogs arose
from gene duplication and divergence during evolution (Fig. 1A), and are oftentimes associated
with increased organismal complexity (Laudet et al. 1999; Banerjee-Basu and Baxevanis 2001;
Amoultzias et al. 2007; Nitta et al. 2015; Murre 2019). Being conserved in their DNA-binding
domains (DBDs), paralogous TFs have similar DNA binding specificities and share a large
fraction of their putative target sites (Chen and Rajewsky 2007; Berger et al. 2008; Noyes et al.
2008; Singh and Hannenhalli 2008; Badis et al. 2009; Wei et al. 2010; Nakagawa et al. 2013;
Weirauch et al. 2014; Shen et al. 2018). Most eukaryotic TFs belong to large protein families
(Henikoff et al. 1997; Lin et al. 2008; Lambert et al. 2018), and co-expression of paralogs is
common (see Discussion).

Whenever two or more paralogs are present in the nucleus at the same time, they may compete
for DNA binding at their common target sites, with the potential for competitive binding being
maintained throughout evolution (see Discussion). This also implies that the TFs’ in vivo binding
patterns, as assayed by chromatin immunoprecipitation coupled with high-throughput
sequencing (ChlP-seq) and related techniques (Johnson et al. 2007; Rhee and Pugh 2012; He
et al. 2015; Skene et al. 2018), are implicitly capturing the effects of TF-TF competition,
although these effects are rarely studied explicitly on a genome-wide scale. Nevertheless, the
important role that competition can play in gene regulation has been investigated for certain TFs
and focusing on particular genomic sites. A prominent example is that of Hox proteins in
Drosophila, where paralogs with slightly different DNA-binding specificities, driven by co-factor
interactions, have been shown to compete at regulatory sites and tune gene expression during
development (Noro et al. 2011; Slattery et al. 2011; Crocker et al. 2015). The mammalian
nuclear hormone receptor superfamily is another example, where PPAR (peroxisome
proliferator-activated receptor) and TR (thyroid hormone receptor) proteins directly compete for
binding to response elements involved in regulating lipid metabolism, cell growth and
differentiation (Miyamoto et al. 1997). In Fungi, a well-known example of competitive TF-DNA
binding is that of S. cerevisiae basic helix-loop-helix (bHLH) proteins Cbf1 and Pho4, which
perform different regulatory functions in the cell despite having similar DNA-binding specificities
(Zhou and O'Shea 2011; Aow et al. 2013).

The result of competitive DNA binding between two paralogs can be difficult to predict. In the
trivial case where their DNA-binding domains (DBDs) remain highly conserved during evolution
and thus their specificity and affinity for DNA remain unchanged, we would expect the relative
genomic occupancies of the paralogs to be proportional to their concentrations in the nucleus
(Fig. 1A, upper panel), with any in vivo deviations from this pattern being due to the nuclear
environment. Oftentimes, however, the DBDs of paralogous TFs accumulate mutations over
time and the TFs start to diverge in specificity, especially at medium and low-affinity target sites
(Berger et al. 2008; Badis et al. 2009; Wei et al. 2010; Gordan et al. 2013; Shen et al. 2018).



The differences in specificity and/or affinity between paralogs, which are intrinsically encoded in
the DNA sequence, can lead to complex patterns of competitive binding (Fig. 1A, lower panel)
even in the absence of additional effects from the nuclear environment. Currently, though, our
understanding of competitive TF binding and its role in gene regulation is limited, and we lack
the ability to predict how competition influences the genomic binding of individual TFs, both in
vitro and in vivo.

Here, we use S. cerevisiae bHLH proteins Cbf1 and Pho4 as a model system to develop a high-
throughput approach for characterizing TF-TF competition in vitro and exploring its role in in vivo
binding and gene regulation. The bHLH domain is an essential DNA-binding domain that is
highly conserved across eukaryotes (Jones 2004). Genes encoding this domain arose in early
eukaryotes, and then duplicated and diversified to give rise to proteins involved in critical cellular
processes such as proliferation, differentiation, metabolism, and environmental response
(Sailsbery and Dean 2012; Murre 2019). The domain was first elucidated in Animals, where six
major bHLH groups (A-F) were identified (Atchley and Fitch 1997). Fungal bHLH proteins,
including Cbf1 and Pho4 (Robinson and Lopes 2000), are most closely related to group B—
which includes mammalian factors such as MYC, MLX, and MITF—and is believed to have
been present in the common ancestor of fungi and animals (Sailsbery et al. 2012; Sailsbery and
Dean 2012). This group of bHLHSs is characterized by a conserved BxR maotif at positions 5, 8,
and 13 in the basic region of the DNA-binding domain (where B = H or K, and x stands for any
amino acid) (Atchley and Fitch 1997; Sailsbery and Dean 2012) (Supplemental Fig. S1,
Supplemental Table S$1). Similarly to group B bHLHs from other eukaryotes, S. cerevisiae Cbf1
and Pho4 recognize canonical CAnnTG E-box binding sites, with a strong preference for
CACGTG (Atchley and Fitch 1997; Harbison et al. 2004; Maerkl and Quake 2007; Badis et al.
2008; Zhu et al. 2009). However, their quantitative binding levels to individual sites are different,
depending on the genomic sequence context (Fig. 1B,C, Supplemental Fig. S1B) (Gordan et
al. 2013).

In addition to their highly conserved DNA-binding domain and their similar DNA-binding
preferences, Cbf1 and Pho4 are an ideal system for our study because their competition for
DNA binding has been shown to be important for Pho4’s function in the cell. In particular, Pho4
plays an important role in the phosphate-responsive (PHO) signaling pathway (Ogawa et al.
2000; Zhou and O'Shea 2011). Pho4 is generally phosphorylated and located in the cytoplasm;
when inorganic phosphate (Pi) becomes limited, Pho4 is dephosphorylated and translocated
into the nucleus, where it binds a subset of CACGTG sites previously bound by Cbf1, leading to
activation of downstream genes, most of which belong to the PHO regulon (Schneider et al.
1994; O'Neill et al. 1996; Zhou and O'Shea 2011). It remains unclear, though, why Pho4
competes differently with Cbf1 at different genomic sites, and whether their direct competition
for DNA-binding can explain their binding patterns genome-wide. Insights into this system will
be relevant to the many other bHLH proteins that have duplicated and evolved into different
sub-families with distinct functions, yet have maintained similar DNA-binding preferences.

In this study, we aimed to decipher the competitive DNA-binding patterns of TF paralogs Cbf1
and Pho4 by directly measuring their competition for thousands of genomic binding sites using a



quantitative assay based on the protein-binding microarray (PBM) technology (Berger and Bulyk
2009; Siggers et al. 2011; Gordan et al. 2013; Shen et al. 2018). Furthermore, by comparing our
in vitro competitive binding measurements against ChlP-seq and gene expression data, we
aimed to determine whether the direct competition for DNA binding between TF paralogs is
relevant for the TFs’ genomic occupancies and gene regulatory patterns in the cell.

RESULTS

Measuring the direct competition for DNA binding between paralogous TFs using
‘competition PBM’

The genomic binding profiles of TFs in the cell are typically assessed using chromatin
immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) (Johnson et al. 2007),
as well as related assays such as ChIP-exo (Rhee and Pugh 2012) and Cut&Run (Skene et al.
2018). Since these assays measure TF binding in the cell, they implicitly capture any in vivo
effects of TF-TF competition. However, from ChIP data alone it is not possible to deconvolve the
effects of competition from those of cofactors, DNA accessibility, and other cellular factors that
influence TF binding. In order to isolate the effects of TF-TF competition and understand its
contribution to genomic occupancy and gene regulation, we developed and used a controlled
cell-free system where competitive binding can be easily quantified and modeled.

We developed a new assay, called ‘competition PBM’, that leverages the quantitative and high-
throughput nature of chip-based assays known as protein-binding microarrays (PBM) (Berger et
al. 2006), in order to measure the competitive binding profiles of paralogous TFs (Fig. 2A). Our
assay uses DNA libraries containing tens of thousands of putative genomic binding sites for the
competing TFs of interest (here, Cbf1 and Pho4), selected from in vivo-bound regions (here,
ChlP-seq peaks (Johnson et al. 2007; Zhou and O'Shea 2011)), based on the rationale that
these are the sites where TF-TF competition is most likely to occur. As in previous work
(Gordan et al. 2013; Shen et al. 2018), we selected candidate genomic binding sites using
universal PBM data, which contains comprehensive binding specificity measurements for all
possible 8-mers (Berger and Bulyk 2009), and we used a loose cutoff for calling binding sites in
order to cover a wide range of binding affinities (Methods). Given that paralogs differ in
specificity mostly at medium and low affinity sites, we expect competitive binding to be different
at these sites compared to the high-affinity sites that are bound similarly by TF paralogs (Shen
et al. 2018).

After selecting a large set of genomic sites where competition between the TFs of interest is
likely, we synthesized the DNA library on a chip and incubated it with the two proteins at
different concentrations relative to each other (Fig. 2B,C; Supplemental Table S2B). To
facilitate the interpretation of the data, we kept the concentration of one TF paralog constant (we
henceforth refer to this protein as the ‘main TF’) and varied the concentration of the competitor.
Using a fluorophore-conjugated antibody specific for the main TF, we measured its DNA-binding



level in the presence of various concentrations of the TF competitor, thus directly probing the
effects of competition.

Competition between Cbf1 and Pho4 determines their in vitro DNA-binding patterns

We performed competition binding assays using Cbf1 as the main TF and Pho4 as the
competitor TF, which corresponds to their physiological scenario: Pho4 is typically present at
very low (although detectable) levels in the nucleus; in phosphate-limited conditions, Pho4 is
translocated into the nucleus where it competes with Cbf1 for binding to E-box CACGTG sites
(O'Neill et al. 1996; Zhou and O'Shea 2011). Keeping the concentration of Cbf1 constant at
2uM, we measured its DNA binding in the presence of Pho4, with the competitor present at four
different concentrations: 0.05uM, 0.4uM, 2uM and 8uM (Fig. 2B; Supplemental Table S2C).
The lowest concentration of Pho4 was chosen to mimic the wild type Pi-rich conditions in yeast,
where Pho4 is present in the nucleus at a much lower level than Cbf1 and is not expected to
significantly compete with Cbf1 at any genomic site (O'Neill et al. 1996; Komeili and O'Shea
1999; Zhou and O'Shea 2011). Indeed, our in vitro data confirms that Pho4 has minimal effects
on Cbf1 binding when the two proteins are at 0.05uM and 2uM concentrations, respectively
(Supplemental Fig. S2A). Ideally, we would perform the competition PBM assays at protein
concentrations similar to those of active Cbf1 and Pho4 in the yeast nucleus. Since this
information is not available, we chose a concentration for the main TF that leads to moderate
DNA-binding levels, while the concentration of the competitor TF was set to cover a wide
dynamic range in order to capture various competition scenarios. As expected, increasing the
concentration of the competitor TF (Pho4) leads to decreased DNA binding by the main TF
(Cbf1). In fact, most genomic binding sites, especially in the medium to low affinity range, show
a decreased level of Cbf1 binding as the concentration of Pho4 increases (Fig. 2B), with a
corresponding increase in Pho4 binding (Supplemental Fig. S2B, left panel).

Importantly, the decrease in Cbf1 binding is different at different DNA sites. At some genomic
sites (such as the one marked with blue circles and arrows in Fig. 2B), Cbf1 is efficiently
outcompeted by Pho4, as illustrated by a large decrease in Cbf1 binding level as the Pho4
concentration increases. At the highest concentration of competitor (8uM), the binding level of
Cbf1 is only 2.6% of its binding level at the lowest competitor concentration (0.05uM), illustrating
the magnitude of the competition effects. In contrast, at the genomic site marked with red
arrows in Fig. 2B, even high levels of Pho4 competitor have non-significant effects on Cbf1-
DNA binding (p-values > 0.37; Supplemental Table S2D). Overall, our data shows that Pho4
competes with Cbf1 differently at different genomic regions, even in a simple cell-free system
where no other nuclear factors are present.

The observed differential competition is consistent with the divergence in DNA-binding
specificity and affinity between Cbf1 and Pho4 (Zhou and O'Shea 2011; Le et al. 2018). More
broadly, recent studies have revealed that paralogous TF pairs have diverged in their intrinsic
DNA-binding specificities, especially at medium and low affinity sites, with each paralog having
individual preferences for a subset of DNA sequences (Shen et al. 2018). In the case of Cbf1
and Pho4, we would expect Pho4 to outcompete Cbf1 efficiently at Pho4-preferred sites



(typically A/IC/GCACGTG) but not at Cbf1-preferred sites (typically TCACGTG) (Supplemental
Fig. S1B) (Fisher and Goding 1992). Indeed, this is reflected in our in vitro competition PBM
data. To illustrate how the individual preferences of Cbf1 and Pho4 play a role in their
competitive binding, we derived position weight matrix (PWM) motifs for Cbf1 from its binding
data under different competition scenarios (Fig. 2B; Methods). With competitor Pho4 at a low
concentration (0.05uM), Cbf1 has a motif logo that is highly similar to the one derived from
universal PBM data where Cbf1 was tested individually (Supplemental Fig. S2C). However,
when competitor Pho4 is present at a high concentration (8uM), the core TCACGTG stands out
in the Cbf1 motif due to Cbf1’s preference for TCACGTG versus Pho4’s preference for
A/C/GCACGTG. Cbf1’s preference for a T upstream of the core CACGTG is more and more
evident as the concentration of Pho4 increases (Fig. 2D, Supplemental Fig. S2D), which is
explained by the fact that A/IC/IGCACGTG sites are increasingly occupied by Pho4, and less by
Cbf1.

We also performed Cbf1-Pho4 competition assays by considering Cbf1 as the competitor and
studying its influence on Pho4-DNA binding (Fig. 2C). We kept the Pho4 concentration constant
at 2uM and measured its DNA binding levels with Cbf1 at four different concentrations (0.05uM,
0.4uM, 2uM, 8uM). As expected, we observed different effects of Cbf1 competition on Pho4
binding at different genomic sites. In addition, we found that the overall pattern of competitive
binding was different between Cbf1 (Fig. 2B) and Pho4 (Fig. 2C), with many Pho4 sites being
only moderately affected by Cbf1 competition. These patterns are consistent with the intrinsic
differences in DNA-binding preferences between Cbf1 and Pho4 (Supplemental Fig. S2E), with
many Pho4-specific binding sites having Cbf1 binding affinities in the negative control range.
Similarly to the Cbf1 binding motifs under different competition scenarios, the motif logos for
Pho4 show that, as the concentration of the competitor increases, the preference of Pho4 for A,
C, or G upstream of the core CACGTG becomes clearer (Supplemental Fig. S2D). Overall, our
new data shows that the direct competition for DNA binding between TF paralogs shapes their
genomic binding profiles in a manner that depends directly on the intrinsic specificity differences
between the paralogs.

In the current study, we expressed TFs as recombinant proteins with epitope tags (His or GST),
and we used fluorescent antibodies for the tags to quantify TF-DNA binding. To ensure that the
choice of tags did not influence TF binding or TF-TF competition, we also performed control
experiments where one TF (Cbf1) was expressed with different tags. We did not observe any
tag-specific effects (Methods, Supplemental Fig. S3A,B, Supplemental Table S2F-H).

Modeling competitive DNA binding by Cbf1 and Pho4

Our competition PBM data provides direct evidence that Cbf1 and Pho4 compete for binding to
their genomic sites in vitro. Next, we investigated the general principles that underlie this
process, focusing on how differences in protein concentrations and binding affinities may lead to
different competitive binding patterns. We tested whether a simple biophysical model of TF
occupancy (Gerland et al. 2002; Djordjevic et al. 2003) can explain the in vitro competition data.



Briefly, for given DNA site i, the probability that the site is bound by the main TF can be written
as:

= [TFll/Ké,i (1)

L 1+[TFY) /K +[TF?) /K3

where [TF!] and [TF?] are the concentrations of free main TF and free competitor TF,
respectively, and K ; and K7 ; are their equilibrium dissociation constants at site i.

To obtain affinity dissociation constants (Kq) for the sequences of interest, we used the
approach of (Siggers et al. 2011) to derive Ky values from our custom PBM data by performing
binding experiments at multiple protein concentrations. We performed such experiments for
Cbf1 and Pho4, and we fitted the saturation curves to estimate the Ky for each TF at each DNA
site (Supplemental Fig. S4A). Next, we assessed the accuracy of our PBM-derived
dissociation constants by using them to compute binding energies (AAG) that we compared to
the energetic binding measurements for Cbf1 and Pho4 obtained from mechanical trapping of
molecular interactions (MITOMI) assays (Maerkl and Quake 2007). Such measurements are
available for a few hundred artificial DNA sequences, which we included in our DNA library. We
observed an excellent agreement between the two techniques (R?=0.83-0.88), over a wide
range of binding energies (Fig. 2E, Supplemental Fig. S4B; Methods). We also compared the
PBM-derived AAGs against binding energies predicted using a neural network model trained on
BET-seq (Binding Energy Topography by sequencing) data, which are available for
NNNNNCACGTGNNNNN sequences (Le et al. 2018). Similarly to our comparison against
MITOMI data, we found a strong agreement between PBM-derived and BET-seq-derived
binding energies (R?=0.72-0.74) (Supplemental Fig. S4C). Superior to previous studies,
though, here we extended our binding measurements to all CACGTG and non-CACGTG E-box
genomic sites potentially bound by Cbf1 and Pho4 (Supplemental Fig. S4D), and we
considered longer sequences flanking the E-box binding sites, which can significantly influence
TF binding (Supplemental Fig. S4C).

Next, we incorporated the competition between paralogous TFs into the equilibrium
thermodynamics model in equation (1), and we expressed the occupancies of each TF paralog
using standard binding isotherms (Methods, Supplemental Fig. S4E). Plugging in the PBM-
derived Ky values into equation (1), we can then predict Cbf1 and Pho4 binding under any
competition conditions. This standard biophysical model achieved high accuracy (R*=0.86-0.96)
in predicting the occupancies of Cbf1 and Pho4 under four different competition scenarios (Fig.
2F, Supplemental Fig. S4F), suggesting that for simple systems of two competing paralogs
without co-binding factors, the binding process is largely described by a standard biophysical
model. In addition, our results highlight the value of PBM experiments for individual TFs, as Kds
derived from such experiments are sufficient (at least in the case of Cbf1 and Pho4) to
accurately predict the equilibrium binding of the TFs in competition, even without having to
perform competition experiments. For more complex systems, the competition model can be
modified to account for additional interactions, such as dimerization partners and proteins
cofactors (see Methods and Discussion for further details), enabling generalization of our
competition study to other TF paralogs.



In vivo TF binding data reflect the competitive binding patterns characterized in vitro

Next, we asked whether the DNA binding patterns resulting from the competitive binding of Cbf1
and Pho4 in vitro are also reflected in their genomic occupancies in the complex environment of
the cell. To assess the in vivo effects of Cbf1 on the binding patterns of Pho4, we leveraged
available Pho4 ChIP-seq data from strains with constitutively nuclear-localized Pho4 (due to
PHOB80 deletion) and with Cbf1 present versus absent, i.e. yeast strains pho80A and
cbf1Apho80A, respectively (Fig. 3A) (O'Neill et al. 1996; Zhou and O'Shea 2011). As expected,
the Pho4 binding level is overall lower when Cbf1 is present versus absent (Supplemental Fig.
S5A), consistent with our in vitro observations. In addition, Cbf1 acts differently on Pho4 binding
at different genomic sites in vivo, which is again consistent with our in vitro competition data. To
illustrate the differential competition, we introduce here the notion of “resilience” of one TF
paralog to competition from another paralog, defined as the logarithm of the fold-change in DNA
binding of the main TF when the competitor is present at a high versus a low concentration
(Methods, Fig. 3B,F). Smaller values of the resilience indicate larger effects from the TF
competitor.

We first computed Pho4’s in vitro resilience to Cbf1 competition using two representative
competition scenarios: 2uM Pho4 + 0.05uM Cbf1 versus 2uM Pho4 + 2uM Cbf1 (Fig. 3C,
Supplemental Table S3), and we analyzed the in vivo binding of Pho4 and Cbf1 at genomic
sites with high versus low resilience. For example, at a high-resilience Pho4 target site
upstream of the PHO84 gene (CCACGTGC), we found that the ChIP-seq signal was highly
similar between the pho80A and cbf1Apho80A strains, i.e. in the presence versus the absence
of Cbf1, consistent with Pho4’s high in vitro resilience at this site (Fig. 3C; upper right panel). In
contrast, at a genomic site with low Pho4 in vitro resilience (TCACGTGC, located upstream of
the SER33 gene), Pho4 shows virtually no in vivo binding signal, i.e. no ChlP-seq peak, when
Cbf1 is present, but does show a ChIP-seq peak in the absence of Cbf1 (Fig. 3C; bottom right
panel). Similarly to the resilience measure computed based on our in vitro competition data, we
can use ChlIP-seq data to compute in vivo resilience scores (Methods). We found that genomic
sites with higher in vitro resilience also have higher resilience in vivo (Fig. 3D), demonstrating
that the DNA-binding patterns resulting from TF-TF competition in the cell are consistent with
our in vitro observations, despite the complexities of the cellular environment.

Considering Cbf1 as the main TF and Pho4 as the competitor, we analyzed available Cbf1
ChIP-seq data for the wild-type S. Cerevisiae strain EY57 under two phosphate conditions (“no
Pi” and “High Pi”) where Pho4 is present at high versus low levels in the nucleus (Fig. 3E). As
before, we computed the in vivo resilience from the ChlP-seq data, and the in vitro resilience
from representative in vitro competition scenarios (2uM Cbf1 + 0.05uM Pho4, versus 2uM Cbf1
+ Cbf1 2uM Pho). We again observed consistency between Cbf1’s resilience to Pho4
competition in vitro and in vivo, both at individual sites (Fig. 3G) and genome-wide (Fig. 3H).

In summary, analysis of in vivo ChlP-seq data confirms that Cbf1 and Pho4 compete in the cell
for genomic occupancy in a pattern consistent with our in vitro competitive binding data. The

significant contribution of TF-TF competition to the overall binding profiles of paralogous TFs
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indicates that, when interpreting data from in vivo assays such as ChlP-seq, we should keep in
mind that the measured binding levels will depend on the competition between the tested TF
and its paralogs present in the cell nucleus.

The Cbf1-Pho4 competition contributes to the differential regulation of Pho4 target genes
genome-wide

TFs exert their regulatory functions through direct interactions with DNA sites across the
genome. Since TF-TF competition is a critical determinant of TF-DNA binding, we asked
whether its influence is also reflected at the level of gene expression regulation. In the Cbf1-
Pho4 model system analyzed here, it is known that Pho4 functions as a transcriptional activator
and that, out of all the potential Pho4 target genes, only a subset are actually activated in
response to Pi starvation, i.e. only a subset are bona fide Pho4 targets under physiological
conditions. The remaining genes whose promoters contain putative Pho4 binding sites are
activated only when Cbf1 is absent in the nucleus, i.e. are Pho4 targets only in cbf1A (Zhou and
O'Shea 2011). The differences in expression patterns between these two subsets of genes
suggest that competition from Cbf1 might play a role in determining which genes are regulated
by Pho4 in the cell.

To analyze the influence of Cbf1 competition on gene regulation by Pho4, we focused on 28
Pho4 target genes whose promoter regions contain a single Pho4 binding site (Methods). Out of
the 28 genes, 18 are Pho4 targets in physiological conditions and 10 genes are Pho4 targets
only in cbf1A (Supplemental Table S4A) with the two sets of genes showing distinct expression
patterns in response to phosphate limitation when Cbf1 is present versus absent in the cell
(O'Neill et al. 1996; Zhou and O'Shea 2011) (Supplemental Fig. S5C). Comparing the in vitro
Pho4 binding levels at the promoters of the two sets of genes, we found no significant difference
(Fig. 4A, left panel), indicating that the intrinsic Pho4-DNA binding specificity cannot explain the
differences in gene expression patterns. Next, we asked whether the two sets of promoters
have different DNA accessibility levels, which could lead to differential Pho4 binding in vivo.
However, nucleosome occupancy data (Methods) argued against this hypothesis, as the two
sets of promoters have similar accessibility levels (Supplemental Fig. S5D). When taking into
account the influence of Cbf1 competition, we found that the two groups of Pho4 targets are
significantly different in their Pho4 binding levels, both in vitro (Fig. 4A, right plot) and in vivo
(Fig. 4B, right plot). This indicates that direct competition from Cbf1 enables differences in Pho4
occupancies at binding sites with indistinguishable intrinsic Pho4 binding preferences, which
subsequently contributes to the differential gene activation by Pho4 in the PHO signaling
pathway. Our results are consistent with those of (Aow et al. 2013), who found that the
competitive binding of Cbf1 and Pho4 at palindromic NNCACGTGNN sites explained the
expression patterns of a reporter gene with high accuracy.

We also investigated Pho4’s in vitro resilience to Cbf1 competition, and found that it also
distinguishes between the Pho4 target genes in physiological conditions (blue) versus the target
genes unique to the Cbf1 knockout strain (red) (Fig. 4C). This implies that the Pho4 targets
under physiological conditions have promoter sites resilient to Cbf1 competition, so that they are



robustly activated by Pho4 in response to phosphate starvation. This set of genes include
PHOB84, which encodes a high-affinity Pi transporter and whose promoter contains a
CCACGTGC Pho4 binding site that is resilient to Cbf1 competition both in vitro and in vivo (Fig.
3C). In contrast, genes that are activated by Pho4 only in cbf1A are vulnerable to Cbf1
competition, so that the presence of Cbf1 in wild-type cells effectively prevents these genes
from being activated by Pho4. A representative example is SER33 (Fig. 3C), which is not part of
the PHO regulon and whose promoter contains a TCACGTGC that is poorly bound by Pho4
when Cbf1 is present. Consistent with the results above, we found that the in vitro DNA binding
probabilities of purified Cbf1 can also differentiate between the two sets of genes, with a trend
opposite to the Pho4 binding probability (Fig. 4D). Thus, competition from Cbf1 effectively
contributes to the specification of the functional Pho4 targets.

DISCUSSION

Despite the important role of TF-TF competition in gene regulation, studying this competition
based on existing DNA-binding data is difficult. /n vivo techniques that measure TF-DNA
binding, such as ChIP-seq, ChiP-exo, and Cut&Run (Johnson et al. 2007; Rhee and Pugh
2012; He et al. 2015; Skene et al. 2018) reflect the genomic occupancy of one TF in a particular
cellular context, and thus in a very specific competition scenario. From individual ChlP-seq data
sets it is impossible to infer how/whether the competition for DNA binding among TF paralogs
influences the genomic binding profile of the TF of interest. Data from carefully controlled
experiments where a TF is ChlP’ed in the presence versus the absence of a competitor TF are
rare, and even such data may not be quantitative enough or may not have the resolution to
allow investigation of the TF-TF competition effects. To complement the in vivo data, we
propose using high-throughput in vitro binding assays, such as the competition PBM approach
introduced here, which leverages the quantitative nature of on-chip protein-DNA binding
measurements (Berger and Bulyk 2009; Siggers et al. 2011; Gordan et al. 2013; Shen et al.
2018). By performing the competition experiments in a cell-free system where experimental
variables are well controlled, we were able to generate highly quantitative data that directly
reflects the influence of competition on TF binding to genomic sites in vitro. Next, using the in
vitro competition data as reference, we reinterpreted the in vivo ChlP-seq data and found
evidence of TF-TF competition in the cell, as well as confirming its role in gene regulation.

Overall, our results show that TF-TF competition is a sequence-specific process that translates
the intrinsic differences in DNA specificity between paralogous TFs, which can be thoroughly
and quantitatively characterized in vitro, into differential binding and gene regulation in the cell.
Our findings are in great agreement with previous small-scale studies of TF paralogs, such as
the Hox factors in Drosophila (Noro et al. 2011; Slattery et al. 2011; Crocker et al. 2015) and the
POU homeodomain factors in mammals (Ferraris et al. 2011). Similar to what we found for the
Cbf1/Pho4 system, the in vitro determinants of TF binding and competition—which in the case
of both Hox and POU factors include cooperating proteins—were recapitulated in vivo (Ferraris
et al. 2011; Noro et al. 2011). These results reaffirm that mechanistic in vitro studies can provide
important insights into TF-TF competition and its role in gene regulation.
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In the case of Cbf1 and Pho4, their potential for competitive DNA-binding seems to have been
maintained throughout evolution. Cbf1 and Pho4 are closely related to “group B” bHLH proteins
(Atchley and Fitch 1997; Sailsbery and Dean 2012), a large family of bHLHSs in animals that also
have similar binding preferences and likely compete with one another for binding to CAnnTG E-
box sites. Similar to fungi, animal B-type bHLHSs are involved in energy metabolism, lipid
metabolism, cell growth and proliferation (Jones 2004; Murre 2019). This functional
conservation raises the question: Were competitive Cbf1-like and Pho4-like sub-families already
present in the common ancestor of fungi and animals, or did this feature evolve during the
expansion of B-type bHLHSs in fungi?

Previous work in higher fungi showed that there are 12 distinct phylogenetic bHLH sub-groups,
F1-F12, with Cbf1 belonging to F3 and Pho4 belonging to F6 (Sailsbery et al. 2012). Cbf1 and
orthologs from the F3 group are involved in chromosome segregation and methionine
biosynthesis, while Pho4 and orthologs from the F6 group are involved in phosphate uptake and
sexual/asexual development. Some bHLHSs, such as Cbf1, are strongly conserved in higher
fungi and were likely present in the fungal ancestor. Pho4 is not universal in all fungi; however,
the Pho4-mediated phosphate regulation network is conserved and functional in early-diverging
fungi, such as Blastocladiella emersonii (Gomes-Vieira et al. 2018). To further investigate the
evolutionary origin of fungal Pho4 and Cbf1, and their relationship to animal B-type bHLHs, we
performed a bioinformatic analysis of Pho4 and Cbf1 in early-diverging fungi and animals
(Methods). We found that the progenitors of the Pho4-like and Cbf1-like sub-families were both
present in the ancestor of fungi and animals (Supplemental Fig. S1A). We identified Max-like
protein X (MLX) and Microphthalmia-associated transcription factor (MITF) sub-families in
animals as the likely descendants of these Pho4-like and Cbf1-like progenitors, respectively.
The conservation of specific amino-acids in each sub-family DNA-binding domain
(Supplemental Fig. S1A) suggests that binding preferences of these TFs and their competition
could be ancestral and conserved. A more recent example of competition between TF paralogs
that may have been maintained throughout evolution can be found in the SP family of Cys2His2
zinc finger proteins in birds and mammals. The SP3 and SP4 sub-families are paralogs and
DNA-binding competitors of SP1, and they have accumulated convergent substitutions at
homologous positions to SP1, several times during evolution, presumably to maintain
competitive binding (Yokoyama and Pollock 2012).

Paralogous TFs are oftentimes co-expressed in the cell. The yeast S. cerevisiae genome
encodes ~250 TF proteins belonging to 30 structural families (Weirauch et al. 2014; Ho et al.
2018). Excluding TFs with unknown structural families and zinc finger proteins, which represent
a special family with complex and diverged patterns of specificity, we estimate that ~31% of
yeast TFs (Supplemental Table S4B) are potentially competing with their paralogs for binding
to genomic target sites (in this analysis, we considered a TF gene as ‘expressed’ if the level of
the corresponding TF protein was above the 75" percentile of all proteins; Supplemental Fig.
S5E, Methods). In higher eukaryotes, we expect this fraction to be even higher. Indeed, an
analysis of the expression profiles of human TFs across 37 tissue types (Methods) revealed that
out of 58 TF families that contain more than one paralog (Lambert et al. 2018), 43 of them have
at least two family members co-expressed in at least one tissue type (Supplemental Fig. S5E,
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Supplemental Table S4B). MITF and MLX, which are the mammalian bHLH proteins most
closely related to S. cerevisiae Cbf1 and Pho4, are among the co-expressed family members,
with TFs from the MLX and MITF orthologous group (Huerta-Cepas et al. 2019) being co-
expressed in 15 out of the 37 tissues tested (Supplemental Table S4C). In a more stringent
analysis, where TFs from each family were further separated into clusters of proteins with highly
similar DNA-binding motifs (Lambert et al. 2018)(Methods), we found that 154 out of 158 TF
clusters with two or more members (~97%) contained at least two TF paralogs co-expressed in
at least one cell type (Supplemental Fig. S5E, Supplemental Table S4D). These data
reinforce that the potential for direct competition for DNA binding between paralogous TFs is
widespread in human cells.

Our study is most closely related to (Zhou and O'Shea 2011), who focused on the determinants
of Pho4 genomic binding and function—including competition from Cbf1—, and (Aow et al.
2013), who investigated the differential binding of Pho4 and Cbf1 and its role in activating
reporter gene expression, focusing on the 16 palindromic NNCACGTGNN sites. Our results
extend and complement these studies by providing a comprehensive and quantitative view of
the direct competition between Cbf1 and Pho4 genome-wide, using a PBM-based approach that
can easily be applied to other regulatory systems. Importantly, our approach does not rely on
existing TF-DNA binding affinity measurements, which is one limitation of the (Aow et al. 2013)
study. The PBM technology is straightforward to implement, and it uses commercially available
DNA chips that are both cost-effective and high-quality. Furthermore, as shown in this study and
in previous work by us and others (Siggers et al. 2011; Gordan et al. 2013; Afek et al. 2020),
PBM data can be used to infer protein-DNA binding energies and equilibrium dissociation
constants that are highly correlated with measurements from independent, small-scale assays.
As shown here, the PBM-derived affinities can then be used directly in biophysical models to
infer the occupancies of competing TFs at various concentrations. This alleviates the need to
perform high-throughput assays in order to measure the competitive binding patterns of the TFs
of interest, and makes our approach easy to generalize to systems with more than two
competitors.

We also found great agreement between our PBM-derived binding energies (AAG) and the AAG
values predicted for NNNNNCACGTGNNNNN sites using a deep neural network model trained
on BET-seq data (Le et al. 2018), which is based on a combination of microfluidics and high-
throughput sequencing (Supplemental Fig. S4C). In contrast to the BET-seq data, which
covers a large number of artificial DNA sites, our PBM measurements focus on genomic sites
targeted by Cbf1 and Pho4 in the cell, which include variants of the CAnnTG E-box not tested
by BET-seq (Supplemental Fig. S4D). These variants are typically lower-affinity sites.
However, previous studies have shown that paralogous TFs diverged in specificity mainly at
medium and low affinity sites (Slattery et al. 2011; Crocker et al. 2015; Shen et al. 2018),
making these sites particularly relevant for TF-TF competition. In addition to including lower-
affinity CAnnTG variants, the DNA sequences used in our PBM library extend beyond the 5
neighboring bases of the E-box core binding sites (which were tested by BET-seq) to include
15-bp of genomic DNA on each side of the CAnnTG E-box. The additional genomic context can
affect the binding affinity of Cbf1 and Pho4, as shown in our analyses (Supplemental Figs.
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S4C, S6A) and previous work (Gordan et al. 2013), and can thus influence the competitive
binding of the two TFs. Similarly to our previous work on the DNA binding specificity of Cbf1
(Gordan et al. 2013), here we also observed that the flanking regions of the E-box binding site
have a significance influence on Pho4 binding specificity, likely exerted through DNA shape
(Supplemental Fig. S6). For both Cbf1 and Pho4, models of DNA-binding specificity benefit
significantly from including features that reflect the DNA shape of the flanking regions
(Supplemental Fig. S6A,B). In the case of Pho4, though, flanking shape features have a
smaller effect on the overall accuracy of our binding models (Supplemental Fig. S6B),
consistent with the findings of (Le et al. 2018) that the magnitude of non-additivity is smaller for
Pho4 than Cbf1 binding sites. Nevertheless, given that DNA shape readout contributes, albeit to
different extents, to the binding affinities of both Cbf1 and Pho4, it implicitly plays a role in their
competitive binding.

Our in vitro approach can be expanded beyond two competing TFs, to incorporate more of the
in vivo factors relevant for TF binding and regulation. The functionality of many TFs involves
interactions with other regulatory proteins. In our model system, both Cbf1 and Pho4 can
interact with other factors: Cbf1 forms a regulatory complex with Met4 and Met28 to regulate
sulfur metabolism genes (Kuras et al. 1997), while Pho4 cooperates with Pho2 in the regulation
of the genes in the PHO regulon (Ogawa et al. 2000; Zhou and O'Shea 2011). While in our
current study we found that the in vivo competitive DNA binding of Cbf1 and Pho4 is largely
determined by their intrinsic preferences for DNA, it is possible that interactions with co-factors
will further refine the genomic targeting of Cbf1 and Pho4 in the cell. In other systems, cofactors
may have even larger effects on paralogous TF competition, especially in cases where
cofactors enable latent specificities of TF paralogs (Slattery et al. 2011; Crocker et al. 2015). To
account for influences from cofactors, our protocols can be modified to incubate the competing
paralogs with all their contributing cofactors, as long as the cofactors can be expressed and
purified as recombinant proteins. In addition, the recent development of nextPBM (Mohaghegh
et al. 2019) makes it feasible to perform protein-DNA binding assays in the endogenous nuclear
environment, also facilitating the study of cellular contributors to competition. We expect such
extensions to be critical for deciphering the competitive binding of TF paralogs in eukaryotes.

METHODS
Protein expression and purification

Full-length S. cerevisiae CBF1 and PHO4 genes, cloned into the Gateway pDEST15 expression
vectors (Invitrogen) were obtained from (Gordan et al. 2013). Using the LR Clonase reaction
(Life Technologies Gateway cloning system), the CBF1 gene was transferred into the pDEST17
vector, for expression of N-terminal His-tagged Cbf1 protein. For PHO4, the pDEST15 vector
was used to express N-terminal GST-tagged Pho4 protein. The Cbf1 protein was also
expressed with a GST tag using the pDEST 15 vector, for use in control experiments of GST-
Cbf1 vs His-Cbf1 competition (see section “Competition PBM assay” below for details). Bacterial
cells (BL21-CodonPlus (DE3)-RIL, Agilent 230245) were grown in LB culture to an ODego of 0.8-

13



1.2 and induced with 1mM IPTG at 20°C overnight for protein expression. Next, the cells were
pelleted and lysed with lysozyme (Millipore Cat# 71110). The proteins were purified from the
soluble portion of the lysate using His resin or GST resin (GE Healthcare FF affinity column)
according to manufacturer’s instructions.

Design of DNA library for PBM assays

Our DNA library consists of: 1) yeast genomic regions containing putative DNA binding sites for
Cbf1 and Pho4; 2) negative control sequences not bound specifically by either Cbf1 or Pho4,
and 3) DNA sequences that were used in previous MITOMI experiments to measure equilibrium
dissociation constants and/or binding energies for Cbf1 and Pho4 (Maerkl and Quake 2007). Six
replicate DNA spots were used for each probe, randomly distributed across the array surface.
Microarrays using our custom DNA library were synthesized de novo by Agilent in 8x60k format
(8 chambers, 60,000 DNA spots per chamber).

Probes containing genomic sites. We analyzed publicly available Cbf1 and Pho4 ChlP-seq data
to identify all sites in the yeast genome where Cbf1 and Pho4 may bind and compete. Cbf1
ChIP-seq data in wild-type strain EY 57 (K699 MATa ade2-1 trp1-1 can1-100 leu2-3,112 his3-
11,15 ura3) under high phosphate condition, and Pho4 ChlP-seq data in the same strain under
no phosphate condition were downloaded from GEO (accession number GSE29506) (Zhou and
O'Shea 2011). Comprehensive, unbiased, 8-mer E-score data from universal PBM assays
(Berger and Bulyk 2009; Gordan et al. 2011) was used to scan the Cbf1 and Pho4 ChIP-seq
peaks and identify putative binding sites, called at a lenient E-score cutoff of 0.33 for two or
more consecutive 8-mers, similarly to our previous work (Gordan et al. 2013; Shen et al. 2018).
The cutoff was chosen to be lenient so that we include as many putative genomic sites as
possible in our DNA library. Using as guidance the results of (Berger and Bulyk 2009), who
reported that a false discovery rate of 0.01 typically corresponds to E-scores of 0.32-0.36, we
started our library design with an E-score cutoff of 0.36 and then we relaxed the cutoff to include
more DNA probes until we reached the capacity of the microarray, which occurred at a cutoff of
0.33. Next, the selected genomic DNA sequences were aligned using PWM models in order to
center the putative Cbf1/Pho4 binding sites. A total of 5,424 genomic regions were selected
using this procedure. In addition, we identified all CACGTG sites in the yeast genome and found
287 genomic sites that were not included in the ChlP-seq peaks, possibly due to occlusion by
nucleosomes or other influences from the cellular environment. We manually added these
additional CACGTG sites to our DNA library. In addition, we designed 300 negative control DNA
probes that served as a reference for non-specific Cbf1/Pho4 binding signals, similarly to our
previous work (Gordan et al. 2013; Shen et al. 2018). The negative control sequences were 36-
bp long and were selected randomly from accessible genomic regions in S. cerevisiae
(according to DNase-seq data from GEO data set GSM1705337), excluding the ChIP-seq peaks
of Cbf1 and Pho4 in order to exclude regions bound in vivo by our TFs of interest. The negative
control probes also satisfied the criterion that all 8-mers in the 36-bp regions had E-scores <
0.33, to ensure that these probes were unlikely to contain specific sites for Cbf1 or Pho4. The
final DNA probes were 60-bp long, consisting of 36-bp genomic regions followed by a constant
24-bp sequence (5-GTCTTGATTCGCTTGACGCTGCTG-3’) that was complementary to the
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DNA primer. The primer was used to double-strand the DNA on the microarray by primer
extension, as previously described (Berger and Bulyk 2009).

In analyzing the PBM data, we defined ‘specific’ Cbf1 binding sites as sites with a Cbf1 binding
level (i.e. fluorescence intensity signal) larger than the 99th percentile of negative control
probes, based on experiments where Cbf1 was tested individually (i.e. not in competition with
Pho4). Similarly, ‘specific’ Pho4 binding sites were defined as sites with a Pho4 binding level
larger than the 99th percentile of negative controls, based on experiments where Pho4 was
tested individually. These sites were used in the analyses shown in Fig. 2B, C.

MITOMiI-based probes. From the DNA libraries used in (Maerkl and Quake 2007), we selected
the NNNNGTG, CACNNN, and GTGNNN libraries for our PBM design. To the DNA sequences
in the original MITOMI libraries, which were 14-bp long, we added random 11-bp flanks on each
side to obtain 36-bp DNA sequences centered at the Cbf1/Pho4 binding sites, similar to the
genomic sequences described above. The random flanks were generated using a uniform
probability distribution over the four nucleotides. Given that the added 11-bp flanks could
influence the binding specificity/affinity of Cbf1 and Pho4, we designed 10 different random
flanks. When processing the data, we used the median measurements over the 10 flanks.

‘Competition PBM’ assay

‘Competition PBM’ experiments were carried out following the standard PBM protocol (Berger et
al. 2006; Berger and Bulyk 2009) but incubating the competing TFs (here, Cbf1 and Pho4)
simultaneously with the double-stranded DNA molecules synthesized on the array. Briefly, after
performing the primer extension step (Berger and Bulyk 2009) to double-strand the DNA probes
on the microarray, each chamber on the array was blocked with 2% milk for 1 h. After mild
washing, the array was incubated for 1 h with protein binding mixtures, at the Cbf1 and Pho4
final concentrations shown in Supplemental Table S2B. Alexa488-conjugated anti-GST
antibody (Invitrogen, Cat# A-11131) and Alexa647-conjugated anti-His antibody (Qiagen, Cat#
35370) were used for Pho4 and Cbf1, respectively. After mild washing (Berger and Bulyk 2009),
the array was scanned using a GenePix 4400A scanner (Molecular Devices) at 2.5 micron
resolution. Standard analysis scripts (Berger et al. 2006; Berger and Bulyk 2009) were used to
extract and normalize the florescence intensity data, and then median values over replicate
DNA spots were computed for the unique DNA sequences. Previous studies have shown that
this design strategy results in highly reproducible PBM data, with R?=0.92-0.98 between
duplicate experiments (Shen et al. 2018; Penvose et al. 2019; Afek et al. 2020). We use the
term ‘binding level’ to refer to the fluorescence intensity signal observed at a DNA spot, which
results from the fluorophore-tagged antibody bound to the protein bound to the DNA at that
spot.

To ensure that the choice of epitope tags did not influence the intrinsic binding of TFs or their
competition, we performed a control experiment with GST-Cbf1 and His-Cbf1 in competition.
We used a DNA oligonucleotide array in 4x44k format (Agilent, AMADID 029393) that contains
putative Cbf1 binding sites (Gordan et al. 2013). Similar to the competition assay described
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above, we incubated the double-stranded array with protein binding mixture, with GST-Cbf1 and
His-Cbf1 at different concentrations between 0.2uM and 0.8uM (Supplemental Table S3C).
Alexa488-conjugated anti-GST antibody (Invitrogen, Cat# A-11131) and Alexa488-conjugated
anti-His antibody (Qiagen, Cat# 35310) were used to target GST-Cbf1 and His-Cbf1,
respectively, and competition binding data were collected as described above. As expected,
when GST-Cbf1 and His-Cbf1 were tested by themselves, we saw an excellent agreement
between their binding intensity levels (Supplemental Fig. S3A). In addition, for each
competition scenario tested, we found that GST-Cbf1 and His-Cbf1 competed with each other in
a linear pattern consistent with changes in their concentration (Supplemental Fig. S3B). These
data indicate that no bias was introduced due to the epitope tags, and emphasize the high
reproducibility of custom PBM experiments (R*=0.95-0.98, Supplemental Fig. S3A,B), even in
the case of proteins tagged with different epitopes.

Given the high reproducibility of custom PBM data, as described above, the high correlations
between custom PBM data and independently measured binding energies and Kd values
(R?=0.83-0.88, Fig. 2E; R?=0.84-0.99 (Shen et al. 2018; Afek et al. 2020)), as well as the
inclusion of replicate spots within our DNA libraries, in this study we did not perform duplicate
PBM experiments.

Comparing competition PBM data across experiments

To directly compare the fluorescence signal intensities between different competition PBM
experiments, i.e. between different chambers of the PBM arrays, we process the data as
follows. As listed in Supplemental Table S2B, for competition PBMs we varied the
concentration of the competitor TF over a wide range (0.05-8uM), while keeping the
concentration of the main TF constant (2uM). The rationale for this design was to enable direct
comparisons between different chambers with different concentrations of competitors, since the
concentration of the main TF remained constant. In practice, due to pipetting noise introduced
during the binding steps and/or the dilution of the protein samples, it is possible that different
chambers on the same microarray have slightly different concentrations of the main TF, which is
what we observed for Pho4. To determine whether the concentration of Pho4 was the same
across chambers, we used a subset of DNA probes that were non-specifically bound by Cbf1
but bound with low to medium affinities by Pho4; these probes, which we call ‘Pho4-specific’,
were chosen randomly among those with Cbf1 signal in the negative control range
(Supplemental Fig. S3C). If the Pho4 concentrations were the same (i.e. 2uM) in all four
chambers, then we would expect the Pho4-specific probes to have similar binding levels across
these chambers. However, in practice, we observed deviations from this expected trend (Fig.
S3D), consistent with small differences in the effective Pho4 concentrations. To alleviate this
problem, we used the standard binding isotherms to derive the correlation between Pho4
binding levels at different Pho4 concentrations. Based on this correlation, we estimated the
effective concentrations of Pho4 to be 2uM, 0.98uM, 2.17uM, 2.18uM respectively in the array
chambers with 0.05uM, 0.4uM, 2uM, 8uM Cbf1. Next, we adjusted the Pho4 binding levels in all
chambers based on a 2uM concentration, while keeping the concentration of Cbf1 unchanged
(see Supplemental Methods for details). After this correction, the Pho4 binding signals for
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‘Pho4-specific’ probes showed excellent agreement between different chambers
(Supplemental Fig. S3D), allowing us to use the competition data to directly assess the effects
of Cbf1 competition on the probes bound specifically by both TFs. We applied a similar
procedure to evaluate the concentration of Cbf1 across chambers, and found that the Cbf1
effective concentration was 2uM, after rounding, in all chambers. Thus, we did not apply any
correction to the Cbf1 binding signals.

Resilience to TF competition

The resilience of Cbf1 to in vitro competition from Pho4 was defined as the log fold change of
Cbf1 binding levels (fluorescence intensity, FI) when the concentration of the competitor
Cbf1FI at 2uM Cbf1+ 8uM Pho4

Cbf1FI at 2uM Cbf1+ 0.05uM Pho4
Pho4 FI at 2uM Pho4 + 8uM Cbf1

Pho4 FI at 2uM Pho4 + 0.05uM Cbf1

Cbf1ChIP— il i Pi . e .
/ seqpileup o P y '\ hile the resilience of of Pho4 was defined as
Cbf1 ChIP—seq pileup in high Pi

increased, e.g. log ( ). Similarly, Pho4’s in vitro resilience to Cbf1

binding was defined as log ( ). In vivo, the resilience of Cbf1 was

defined as log (

lo ( Pho4 ChIP—seq pileup in Apho80
g Pho4 ChIP—seq pileup in Apho80Acbf1

sorted the medium and high affinity binding sites of Cbf1/Pho4 (defined as sites with
fluorescence intensity in the upper half of the intensity range, where ratios of intensity signals
are not significantly affected by noise) in decreasing order of their in vitro resilience scores, and
we compared the distributions of in vivo resilience scores between sets of sites with high versus
low in vitro resilience (Fig. 3D,G; Supplemental Table S3A,B). Comparisons between sets of
sites were performed using one sided f-test.

). To compare in vitro versus in vivo resilience scores, we

PWM motif derivation

To derive motifs for the main TF at different concentrations of the competitor TF, we ranked
DNA sequences by their binding levels (i.e. by the fluorescence intensities of the main TF) for
each competition scenario. Next, we selected the top 200 DNA sequences, weighted them by
their TF binding levels, and used the weighted counts to construct position frequency matrices.
Motif logos were generated from the frequency matrices using EnoLogos (Workman et al.
2005).

DNA shape analyses

Similarly to our previous work (Gordan et al. 2013; Zhou et al. 2015; Shen et al. 2018), we
analyzed the extent to which the shape of genomic regions flanking the Cbf1/Pho4 core E-box
binding site contributes to TF-DNA binding specificity. We used DNAshape (Zhou et al. 2013) to
predict the minor groove width, roll, propeller twist and helix twist for all DNA sequences in our
PBM library. Next, we asked whether these DNA shape features significantly improve the
accuracy of Cbf1 and Pho4 DNA-binding specificity models when added to mono-nucleotide (1-
mer) features. Least squares estimation, as implemented in the R “stats” package (R core Team
2018), was used to train linear regression models of DNA-binding specificity from the PBM data.
The models was trained and tested on sequences on different lengths, from 10-bp (which
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includes only the E-box site and the immediate 2-bp flanks) to 36-bp (which includes the full
genomic context tested in our assays). For each length, we performed 5-fold cross-validation to
evaluate the model accuracy, assessed as the squared Pearson’s correlation (R?) between
measured and predicted binding levels. We repeated each cross-validation test 25 times using
25 random splittings of the data. A Mann-Whitney U test was applied to the R? values over the
25 runs in order to compare the accuracy of different models.

Analysis of ChiP-seq and nucleosome mapping data

ChlP-seq data for transcription factors Cbf1 and Pho4 were retrieved as raw reads from the
Gene Expression Omnibus (GEQ) database, entry GSE29506 (Zhou and O'Shea 2011). We
used the ChlP-seq data for Cbf1 in yeast strain EY57 (K699 MATa ade2-1 trp1-1 can1-100
leu2-3,112 his3-11,15 ura3; (Zhou and O'Shea 2011)) under two physiological conditions: no Pi
(sample “Cbf1_ChIP_NoPi”) and high Pi (sample “Cbf1_ChIP_HighPi”), and ChlIP-seq data for
Pho4 in two mutant yeast strains: a strain with constitutively expressed PHO4
(“Pho4_ChIP_dPHOB80”) and a strain with constitutively expressed PHO4 and knocked out
CBF1 (“Pho4_ChlP_dPHOB80dCBF1”). Raw sequencing files were aligned to the yeast genome
(sacCer2) using BWA (parameters -q 5 -1 32 -k 2 -t 4) (Li and Durbin 2009). The read coverage
across the entire genome was then computed using BEDTools (Quinlan and Hall 2010). For
comparisons with PBM data, the TF genomic occupancies at each genomic site of interest were
calculated as the ChlP-seq read pileups within the central 6-bp window, where the center of the
binding sites were located. Nucleosome data were downloaded from the supplemental files of
(Zhou and O'Shea 2011) as processed nucleosome occupancy probabilities.

Gene expression analysis

Gene expression data from (Zhou and O'Shea 2011) was downloaded as normalized log ratios
from GEO, accession number GSE23580, for samples: “Wild type no vs high Pi conditions”,
“pho80A vs pho80Apho4A in high Pi conditions” and “pho80Achf1A vs pho80Apho4Acbf1A in
high Pi”. As described in (Zhou and O'Shea 2011), comparing wild type no Pi versus high Pi
conditions identifies genes induced in response to inorganic phosphate limitation. Here, we refer
to this set of genes as the genes induced by Pho4 under physiological conditions. Comparing
pho80A versus pho80Apho4A in high Pi conditions identifies genes induced by Pho4 when the
PHO signaling pathway is fully activated. We used this data to further validate the gene
regulatory role of Pho4 in the presence of Cbf1. Comparing pho80Acbf1A versus
pho80Apho4Achf1A in high Pi conditions identifies the influence of Cbf1 on the gene activation
role of Pho4. We used these data to illustrate how Cbf1 helps specify the true target genes of
Pho4 by competing for DNA binding sites at other genes with putative binding sites. (Zhou and
O'Shea 2011) reported the Pho4-regulated genes in the wild type strain and the pho80Achf1A
strain. We refer to the Pho4-regulated genes in physiological condition as “Pho4 targets in
physiological condition” (Fig. 4, blue). Genes that are induced in the pho80Acbf1A strain but not
in wild type are referred to as “Pho4 targets only in cbf1A” (Fig. 4, red). We identified the Pho4
binding site(s) potentially responsible for the regulation of each target gene using the following
criteria: 1) the site was located within 1000bp upstream of the gene TSS, and 2) the in vitro
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Pho4-DNA binding level at the site was higher than the binding level at any of the negative
control probes in the PBM experiment. Based on these criteria, there were 9 (out of 37) genes
with more than one Pho4 binding site in their upstream region, which made it difficult to explicitly
associate individual Pho4 binding events with gene regulation. Since the focus of our study was
not the interplay between multiple binding sites within the regulatory regions, for further analysis
we only considered the genes with a single Pho4 site identified. The list of genes and the
corresponding Pho4 regulatory sites can be found in Supplemental Table S4A.

Estimation of equilibrium dissociation constants (Kd) from PBM data

In a PBM experiment, the measured fluorescence intensities linearly reflect the amount of TF
protein bound at each DNA spot on the microarray slide, i.e. the amount of TF-DNA complexes.
Thus, we can write: [TF - DNA]* = aF', where [TF - DNA]' is the concentration of TF-DNA
complex at DNA spot i, F! is the fluorescence signal measured at spot i, and a is a constant
(Siggers et al. 2011). We can then express the equilibrium dissociation constant as:
i total i total __ i

Ké = [DNA]t[OYEC; . D[jﬁfl\;‘?]bound [TFlunbouna = %[TF]unbound = %eﬂ 3)
where Ftotl js the fluorescence intensity at saturated DNA spots (i.e. spots where all DNA
molecules are bound by the TF), and u = In ([TF];ota1), @s used in (Zhao et al. 2009). Next, we

can express the observed fluorescence signal F! as:
Ftotal

[ —
F=17 e HK] 2
To infer equilibrium dissociation constants in high throughput, we performed PBM experiments
for each TF of interest at four different total concentrations: 0.05uM, 0.2uM, 1uM, 8uM for Cbf1,
and 0.1uM, 0.4uM, 2uM, 8uM for Pho4. In equation (4), F! is observed, leaving u; (k = 1,2,3,4),
Ftotal and K} undetermined. We estimated these parameters iteratively. In the initial round,
Ur_To Was set to p, = In ([TF]orar), and Fot4 1y was set to the highest fluorescence signal we
observed on the entire slide. Next, the K parameter in round 0 (K_r,) at each DNA spot i was
estimated from the F! measurements at the four different concentrations using non-linear least
square estimation. Then, with F observations at thousands of DNA spots and K}_r, available in
our data (n is the iteration number), F®°t% r, ., and py,_r,.1 (k = 1,2,3,4) were estimated with
non-linear least square regression. And Ft°t% r, ., and uy_r,.1 (k = 1,2,3,4) were used again to
estimate Ké_rn+1 iteratively until all the parameters converged. For both Cbf1 and Pho4, the
parameters converged fast, within at most 30 rounds.

All the regression analyses were done using minpack in R. All loss functions were in natural log
scale, as in log space the PBM measurement error does not correlate with the binding signal
(Zhao et al. 2017). We compared our binding data against MITOMI data (Maerkl and Quake
2007) in terms of binding energies (AAG). Binding energies were computed from Kd values as

AAG =RT - In (KKd ), where T is the temperature (298 K) and R is the gas constant. We chose
dref

the DNA probe with highest affinity (i.e. smallest Kd) as K, ;... When comparing our estimated
AAG values against MITOMI data (Maerkl and Quake 2007), the range of AAG values was
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slightly different. For example, in Fig. 2E, Cbf1 AAG ranges from 0 to 6.5 kcal/mol in PBM, and 0
to 4.2 kcal/mol in MITOMI. Pho4 AAG ranges from 0 to 0.94 kcal/mol in PBM, and 0 to 1.3
kcal/mol in MITOMI. These differences were not unexpected given that we are using different
techniques and different protein samples. We found the best agreement for the MITOMI probe
group CACNNN for Cbf1 (R?=0.88) and GTGNNN for Pho4 (R?=0.83), as shown in Fig. 2E. Al
PBM-derived Kd and AAG values were computed over 36-bp sequences. In the comparisons
against MITOMI data, for each 14-bp sequence tested by MITOMI we used 10 random flanks in
our DNA library and we computed the median Kd and AAG value over the 10 flanks.

Biophysical modeling of competitive DNA binding

Using K; data for the main TF and the competitor TF (which we estimated in this study as
described above), we can directly derive the probability that a DNA site i is bound by the main
TF:

_ [rrmain) /gt

- i i i competitor
1+[TFmaln]/KtTi':L;lln_i_[TFcompetLtor]/Kd’ ! P

©)

where [TF™"] and [TFco™P¢tior] are the concentrations of free main TF and free competitor TF,

P;

respectively, and K7™ and K;°"P¢"°" are their equilibrium dissociation constants at site i.

Determining the concentrations of free proteins in any systems is not trivial. Thus [TF™"] and
[TFeompetitor] narameters were unknown. Here, we first estimated these parameters from our
data using non-linear least square regression, similar to the Kd estimation. Next, we used all the
estimated parameters in equation (5) in order to calculate the probabilities of binding under four
different competition scenarios (Supplemental Table S2B). All loss functions were in natural
log scale, since in log space the PBM measurement error does not correlate with the signal.

Evolutionary conservation analyses

We searched for bHLH orthologs across fungi and animals. The fungal species tree was taken
from (Gomes-Vieira et al. 2018) and modified to include new fungal genomes and diverse
holozoans (e.g., animals) as an outgroup. Proteomes were downloaded from NCBI Genome or
JGI Mycocosm, as indicated in Supplemental Table S1. We identified orthologs in each
genome using HMMER profiles downloaded from EggNog5, a database of annotated orthologs
created via phylogenetic and functional analysis of thousands of genomes (Huerta-Cepas et al.
2019).

Saccharomyces cerevisiae Cbf1 is part of a large orthologous group (KOG1318) that includes
Class B animal bHLHs, such as the MITF and USF sub-families. Starting from Saccharomyces
cerevisiae Cbf1 and Mus musculus Mitf, we used HMMER to identify fungal and animal
orthologs using the KOG1318 profile. During our analysis, it became clear that the Cbf1-like
progenitor duplicated to create Cbf1 and Rtg3 sub-families in Fungi. Thus, we downloaded the
HMMER profile for the Rtg3 sub-family (ENOG503P20B) and extended our analysis to identify
both Rtg3 and Cbf1 orthologs; see Supplemental Table S1. Last, we aligned all proteins to the
canonical bHLH domain (PF00010) and identified unique sequences features for each sub-
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family (Supplemental Fig. S1). Overall, our data suggest that fungal Cbf1 and animal MITF are
likely descended from the same Cbf1-like progenitor that was present in the common ancestor
of both fungi and animals.

Saccharomyces cerevisiae Pho4 is part of a yeast-specific ortholog group (ENOG502S1Z27),
whereas the Pho4 orthologs in Neurospora crassa (Nuc-1) and Aspergillus nidulans (PalcA) are
from a broader, fungal-specific ortholog group (ENOG502S7T4). We used the broad fungal
Pho4 profile to identify both new and known orthologs (Gomes-Vieira et al. 2018). Fungal Pho4
has a highly conserved and unique H**AEQK motif in its basic domain; see alignment in
Supplemental Table S1. We could not detect Pho4 in the animal outgroups, but fungal Pho4
had weak hits to animal orthologs in the MAX (KOG2483), Max-like protein X (MLX, KOG1319),
and MLX-interacting protein (MLXIP, KOG3582) sub-families. Upon closer inspection, only the
MLX and MLXIP sub-families have the H**AEQK motif. This suggests that fungal Pho4 and
animal MLX/MLXIP are likely descendants from the same Pho4-like progenitor that was present
in the common ancestor of both fungi and animals (Supplemental Fig. S1).

Analysis of paralogous TFs’ expression profiles

The list of TF families in the yeast S. cerevisiae was acquired from the Cis-BP database
(Weirauch et al. 2014). The protein abundance of all yeast TFs were obtained from (Ho et al.
2018), in units of molecules per cell. Next, we counted the number of families that have more
than one TF expressed in the cell with abundance higher than the Xth percentile among all TFs,
where X=0, 0.05... 0.95, 1. The results are presented in Supplemental Fig. S5E and
Supplemental Table S4B.

The expression profiles of TF families in 37 human tissues were obtained from (Lambert et al.
2018), as normalized transcripts per million (TPM). For each TF family, we counted the number
of TFs that have an expression level higher than the Xth percentile among all TFs, where X=0,
0.01, 0.02...0.99, 1. Next, we counted the number of families that have more than one TF
expressed above the threshold in at least one tissue type (Supplemental Table S4B). The
results of these analyses are shown in Supplemental Fig. S5E, where we plotted the counts of
TF families against the percentiles that we used as cutoffs. Next, we refined our analysis by
focusing only on paralogs with highly similar DNA-binding motifs, as represented by PWM
models and compiled by (Lambert et al. 2018). Briefly, Lambert et al. used hierarchical
clustering to group motifs into 585 clusters that covered 1211 TFs with known DNA-binding
motifs. Out of the 585 clusters, 421 had only one TF protein, mostly common (in 82% cases) a
zinc finger protein. Of the remaining 164 clusters, six contained proteins without available gene
expression data, leaving 158 clusters for analysis; each of the 158 clusters contained two or
more TF paralogs with highly similar DNA binding motifs, covering a total of 871 TFs from 36
families. Of these clusters of interest, 154 (~97%) contained at least two paralogs co-expressed
in at least one cell type, at a percentile cutoff X=75%. Results for all cutoffs between 0.01 and 1
are available in Supplementary Table 4D and Supplemental Fig. S5E.
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FIGURE LEGENDS

Figure 1. Paralogous TFs compete for DNA binding. (A) Schematic showing different TF-TF
competition scenarios. If paralogous TFs have identical DNA-binding preferences, then their
binding is determined by the levels of the TFs in the nucleus (top panels). However, most
paralogs have diverged in specificity, binding differently at different sites even in the absence of
other proteins (Berger et al. 2008; Badis et al. 2009; Wei et al. 2010; Gordan et al. 2013; Shen
et al. 2018); this divergence leads to complex patterns of competitive binding, which depend on
the TFs’ affinities and concentrations (bottom panels). (B) S. cerevisiae proteins Cbf1 and Pho4
s have similar, although not identical, DNA-binding specificities, as reflected by their position
weight matrix (PWM) models (Sandelin et al. 2004). (C) Direct comparison between the in vitro
binding levels of Cbf1 and Pho4 at their putative genomic binding sites, measured by genomic-
context PBM (Gordan et al. 2013). Each data point corresponds to a 36-bp genomic region
centered on a CACGTG site. Plot shows the fluorescence intensities from PBM assays, which
are proportional to the level of bound TF at each genomic site. We note that fluorescence
intensities are generally not directly comparable between PBM experiments for different proteins
(see Supplemental Discussion). However, for all proteins tested, here and in prior studies
(Berger et al. 2006; Siggers et al. 2011; Shen et al. 2018; Afek et al. 2020), the PBM
fluorescence intensities correlate quantitatively with binding energies and equilibrium
dissociation constants.

Figure 2. Characterizing the DNA-binding patterns of Cbf1 and Pho4 using ‘competition
PBM’. (A) Schematic of the competition PBM assay. Genomic DNA sites are selected from the
ChIP-seq peaks of the TFs of interest and synthesized on a DNA chip, similarly to previous work
(Siggers et al. 2011; Shen et al. 2018). The chip is then incubated with the TF paralogs of
interest, alone or in competition, and the binding is quantified using fluorophore-conjugated
antibodies. The effects of TF-TF competition are then quantified by comparing the binding of
one TF under conditions where the concentration of the competitor is varied. See Methods for
details. (B) DNA-binding levels for TF Cbf1, at 2uM concentration, in competition with Pho4 at
increasing concentrations: 0.05uM (x-axis), 0.4uM, 2uM, and 8uM (y-axes). The condition
shown on the x-axis (which includes Pho4 at the low concentration of 0.05uM) mimics the in
vivo environment in rich media, where Pho4 levels in the nucleus are very low, but still
detectable (Schneider et al. 1994; O'Neill et al. 1996; Zhou and O'Shea 2011). Each of the
2,014 data points corresponds to a putative Cbf1 binding site (defined as a site with Cbf1
binding intensity above negative controls; Methods) in its native genomic sequence context. All
sequences tested are 36-bp long, centered at the binding site. Data points below the diagonal
demonstrate the influence of Pho4 competition, which results in decreased Cbf1-DNA binding.
Blue circles and arrows point to a genomic site where Cbf1 binding decreases significantly with
increasing Pho4 levels. Red circles and arrows point to a genomic site where Cbf1 binding is
not significantly affected by increasing Pho4 levels. Data and statistics are available in
Supplemental Table S2. (C) Similar to panel (B), but for Pho4 as the main TF and Cbf1 as the
competitor TF. Each of the 3,341 data points corresponds to a putative Pho4 binding site
(defined as a site with Pho4 binding intensity above negative controls; Methods). Red circles
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and arrows point to a genomic site where Pho4 binding decreases significantly with increasing
Cbf1 levels. Blue circles and arrows point to a genomic site where Pho4 binding is not
significantly affected by increasing Cbf1 levels. See also Supplemental Table S2. (D) Motif
logos for Cbf1 derived from competitive binding data. Arrows mark the positions that are most
different between the two motifs. See Supplemental Fig. S2D for motifs derived from additional
competitive binding conditions. (E) Comparing PBM-derived binding energies (AAG) with
binding energies derived from independent MITOMI experiments (Maerkl and Quake 2007).
Each data point corresponds to one DNA sequence used in the MITOMI DNA libraries (the
CACNNN library for Cbf1, where the lowest binding energy corresponds to CACGTG; and
CACGTGNNN library for Pho4 (Maerkl and Quake 2007); Methods). See Supplemental Fig.
S4B for comparisons using additional MITOMI sequence sets. (F) Prediction accuracy for the
biophysical model of competitive DNA binding by Cbf1 and Pho4. Bar plot shows the squared
Pearson’s correlation coefficients (R?) between measured and predicted binding levels at
various concentrations of competitor. See Supplemental Fig. S4F for full comparisons.

Figure 3. In vivo ChlIP-seq data reflect the in vitro competitive binding patterns of Cbf1
and Pho4. (A) Data from S. cerevisiae strains pho80A and cbf1Apho80A (Zhou and O'Shea
2011) were used to assess the effect of Cbf1 competition on Pho4. (B) Definition of the term
“resilience” in the context of Pho4-Cbf1 competition. A smaller value of resilience indicates a
larger impact from TF competition. (C) Left: Genomic Pho4 binding sites tested in the
competition PBM assay, colored by Pho4’s resilience to Cbf1 competition. Right: Genome
browser tracks showing in vivo binding data at sites with high in vitro resilience (upper panel)
versus low in vitro resilience (lower panel). The site with high resilience is less influenced by
competition in vivo, while at the site with low resilience Pho4 is efficiently outcompeted by Cbf1.
(D) Comparisons between the in vivo resilience scores of genomic sites with low versus high in
vitro resilience. Plots show comparisons between the top vs. bottom N% of sites, sorted in
decreasing order of in vitro resilience, for N=50 (top), 33 (middle) and 25 (bottom). See
Supplemental Fig. S5B for a full comparison of resilience scores at individual binding sites. (E)
Data from S. cerevisiae EY57 cells grown in media with no inorganic phosphate and high
inorganic phosphate (Zhou and O'Shea 2011) were used to assess the effect of Pho4
competition on Cbf1. (F,G,H) Similar to panels (B,C,D), but showing the effects of Pho4
competition on Cbf1 binding.

Figure 4. TF-TF competition contributes to differential gene activation. Boxplots show the
in vitro and in vivo TF binding data for sets of genes with low versus high fold induction in
response to phosphate starvation (No Pi). Blue: genes that are activated by Pho4 under
physiological conditions, i.e. in a wild-type strain where Cbf1 is present at physiological levels
(Zhou and O'Shea 2011). Red: genes that are activated by Pho4 only when Cbf1 is absent from
the cell, i.e. in a cbf1A strain (Zhou and O'Shea 2011). The two sets of Pho4 target genes were
compared in terms of: (A) Pho4 in vitro binding (at 2uM concentration) in the absence of Cbf1
(left) and in the presence of Cbf1 at 2uM concentration (right), as measured by PBM and
competition PBM, respectively; (B) Pho4 in vivo binding, as measured by ChIP-seq, in the
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absence of Cbf1 (left, cbf1A strain) and in the presence of Cbf1 (right, wild-type strain); (C)
Pho4’s in vitro resilience to Cbf1 competition (computed between competition PBM conditions:
2uM Pho4 + 2uM Cbf1 versus 2uM Pho4 + 0.05uM Cbf1; Methods); and (D) Cbf1 in vitro
binding (at 2uM concentration), as measured by PBM. In vitro binding probabilities were
computed from PBM or competition PBM data (Methods). In vivo binding levels are shown as
read counts computed for Pho4 ChIP-seq peaks (Zhou and O'Shea 2011).
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Figure 4
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