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Abstract— This paper addresses the problem of online inverse
reinforcement learning for nonlinear systems with modeling
uncertainties and additive disturbances. In the developed ap-
proach, the learner measures state and input trajectories of
the demonstrator and identifies its unknown reward function
online. Sub-optimality introduced in the measured trajectories
by the unknown external disturbance is compensated for using
a novel model-based inverse reinforcement learning approach.
The learner estimates the external disturbances and uses them
to identify the dynamic model of the demonstrator. The learned
model along with the observed sub-optimal trajectories are used
for reward function estimation.

I. INTRODUCTION

Based on the premise that the most succinct representation
of the behavior of an entity is its reward structure [1], this
paper aims to recover the reward (or cost) function of a
demonstrator by monitoring its state and control trajectories.
The reward function estimation is performed in the presence
of modeling uncertainties and unknown disturbances via
inverse reinforcement learning (IRL) [1], [2].

IRL [1]-[12] and inverse optimal control (IOC) methods
[13] are extensively utilized to teach autonomous machines
to perform specific tasks in an offline setting. However,
these offline approaches are, in general, too computationally
intensive or require more data than online situations provide.
Inspired by the success of model-based real-time reinforce-
ment learning methods in, e.g., [14] and [15], and the
online IRL/IOC results for linear systems in [16] and [17],
this paper presents an online IRL technique for nonlinear
systems.

The main contribution of this paper is the development of
a novel method for reward function estimation for an agent
with unknown dynamics in the presence of disturbances. The
developed technique in this paper builds on the previous
work in [18] where a batch IRL method is utilized that relies
on optimal demonstrations, and as such, does not consider
external disturbances affecting the agent being observed. Ad-
dressing the complexities resulting for disturbance-induced
sub-optimality of the demonstrations is one of the major
technical contributions of this paper. In addition, the novel
continuous IRL results in smoother weight estimates and
admits Lyapunov-based performance guarantees.

Model-free IRL methods, in general, are entirely trajectory
driven, and require either optimal/near-optimal trajectories
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or requires sub-optimal trajectories to be rare occurrences
[6]. However, if the agent under observation is experiencing
external disturbances, then not all trajectories are optimal
with respect to the same cost function, which makes model-
free IRL difficult. Even if the unknown disturbances can
be estimated, removing the effects of these disturbances is
nontrivial in a model-free IRL setting.

The novelty in the technique developed in this paper is the
use of model-based IRL to compensate for the disturbance-
induced sub-optimality. If a dynamic model of the demon-
strator is unavailable, it needs to be identified from the
data. However, the disturbances make system identification
challenging, and the resulting models are typically poor. To
overcome this challenge, it is assumed that the learner and
demonstrator are co-located and as a result, experience the
same disturbance. One can then estimate the disturbance
using its effects on the learner and use the resulting esti-
mates to identify the dynamic model of the demonstrator. A
model-based IRL method can then be deployed to learn the
unknown reward function.

The paper is organized as follows: Section II explains
the notation used throughout the paper. Section III details
the problem formulation and how the additional challenges
related to disturbances are addressed. Section IV details
the disturbance estimator. Section V shows the developed
parameter estimator. Section VI explains the IRL algorithm.
Section VII shows a simulation example for the proposed
method and Section VIII concludes the paper.

II. NOTATION

The notation R" represents the n—dimensional Euclidean
space, and the elements of R™ are interpreted as column
vectors, where ()T denotes the vector transpose operator.
The set of positive integers excluding O is denoted by N. For
a € R, R, denotes the interval [a, c0), and R+, denotes the
interval (a,00). If a € R™ and b € R™, then [a;b] denotes

the concatenated vector € R™*", The notations I,, and

a
b
0,, denote the n x n identity matrix and the zero element of
R™, respectively. Whenever it is clear from the context, the

subscript n is suppressed.

III. PROBLEM FORMULATION

Consider two agents, Agent 1 and Agent 2, where Agent
1 is monitoring the behavior of Agent 2. Agent 1 has the
following dynamics

&y = fi(zr,ur) +di, (D

where z; : Ry, — R™ is the state, u; : R>q, — R™ is
the control, f; : R™ x R™ — R"™ are the dynamics, d; :



R>7, — R™ is a disturbance acting on Agent 1, and Ty is
the initial time. The dynamics for Agent 2 are

&y = fa(x2,u2) + da, 2

where z2 : R>7, — R™ is the state, us : R>qy — R™ is
the control, fo : R™ x R™ — R™ are the dynamics, and
dy : R>7, — R™ is a disturbance acting on the Agent 2.

Agent 2 is attempting to follow a policy that minimizes
the following performance index

oo
Hanut) = [ rlattinut) )i, G)
0

where z (+; xo, u(+)) is the trajectory generated by the optimal
controller u(-) for the undisturbed dynamics that minimizes
the performance index in (3) starting at ¢ and beginning at
time Tj. The main objective of this paper is to estimate the
unknown reward function, r, in the presence of disturbances
and uncertainties in the dynamics.

The following assumptions are used in the analysis of the
paper.

Assumption 1. The disturbances affecting both agents are
identical, i.e. di (t) = ds (t) = d(t), V.

Assumption 2. The unknown reward function r is quadratic
in the control, i.e.,

r(z,u) = Q(z) + u” Ru, 4)

where R € R™*™ s a positive definite matrix, such that
R = diag([r1, -+ ,7m])-

The continuous function () can be represented using a
neural network as Q(z) = (W¢) oq(x) + €q(x), where
W = [q,- - ,qL}T are ideal reward function weights, o :
R™ — R are known continuously differentiable features,
and e¢g : R™ — R is the approximation error.

Assumption 3. The dynamics for Agent 2 can be expressed
as

iy = f9(xa,un) + 0% op (20, uz) + d, )

where f§ :R™ x R™ — R" denotes the nominal dynamics,
0L oy is a parameterized estimate of the uncertain part of
the dynamics, 05 € RP*™ is a matrix of unknown constant
parameters, and oo : R” X R™ — RP are known features.

If Agent 1 and Agent 2 are co-located and of similar size
then the disturbances affecting them can be reasonably as-
sumed to be equal. Assumption 2 facilitates the IRL problem
formulation in Section VI, and Assumption 3 facilitates the
parameter estimation in Section V.

Due to the unknown disturbance d acting on Agent 2,
the trajectories of Agent 2 will no longer be optimal with
respect to its unknown reward function. As a result, a purely
data-driven implementation of IRL would yield incorrect
reward function estimates. Instead, in this paper, the state
trajectories for Agent 2 are measured and the reward function
is estimated using a model-based approach that compensates
for the trajectory deviations. The unknown disturbance, d, is

2

estimated by Agent 1 using its known internal model, and
Agent 1 implements a parameter estimator that incorporates
the disturbance estimates to calculate the unknown parame-
ters in the dynamics of Agent 2. Finally, both the disturbance
and parameter estimates are used by Agent 1 to estimate
the unknown reward function that Agent 2 is attempting to
optimize. Disturbance estimation, parameter estimation, and
inverse reinforcement learning, are performed in parallel and
in real-time.

IV. DISTURBANCE ESTIMATION

While the IRL method discussed in the following can
be developed using any disturbance estimator that results in
uniform ultimate boundedness of the disturbance estimation
error, the following exponential disturbance estimator (in-
spired by [19]) is used in this paper for ease of exposition.
Since the disturbance estimation is performed only by Agent
1, the subscripts in the dynamics that denote the agent
number will be omitted in this section for clarity.

The unknown disturbance acting on the agents is assumed
to be an additive disturbance that is generated from the
exogenous linear system

(= A(, (6)

d=C¢, )

where ¢ : Rsy — RV, 4 € RVXN ¢ € R™N and d :
R>7, — R™ is the disturbance.
The disturbance estimator is designed as

é:Aé+K(j;—(f(x,u)+d)), @®)

and

d=Cq, (©))

where K € R¥*" is a gain matrix.

The following theorem utilizes Lyapunov-based arguments
to establish exponential convergence of the disturbance esti-
mator.

Theorem 1. If (A — KC) is negative definite, then the
disturbance estimation error converges exponentially to zero.

Proof. For brevity, the details of the proof has been omitted
(see [20, Theorem 1]). O]

V. PARAMETER ESTIMATION

A parameter estimator, motivated by the authors’ previous
work in [21], is developed in this section. Since parameter
estimation is performed only for Agent 2, the subscripts that
denote the agent number in the dynamics will be omitted in
this section for clarity.



A. Parameter Estimator

Integrating (5) over the interval [t — T\, ¢] for some con-
stant T € R,!

) =rt=T)= [ f@6)um)d

d(v)dy.
T

+67 /f;T" (z(7),u(y)) dy + /t_ (10)

The expression in (10) can be rearranged to form the affine
system

X(t)=F(t)+0"S(t)+D(t), Vt € Rop, (11)
where
X (f) = {x(t) Sa(t=T), tellh+Too),
O, t < TO —+ T’7
pp) e i P2 @ um) v, te T+ T,00),
o, t<Ty+T,
(13)
S(t) = Jor o @ u0)) dy, t €T+ T 00),
o, t<Tp+T,
(14)
and
t
D(t) = {ﬁ_Td(V)dVa te[To+T,00), (15)
0, t<To+T.

The affine error system in (11) motivates the adaptive esti-
mation scheme that follows, in which a concurrent learning
[22] technique is developed that utilizes recorded data stored
in a history stack to drive parameter estimation.

A history stack, HPF, is a set of data points

Ny M
{(XiaFiaSini)}l X such that
Xi=F+0"S;+D; + &, Vie{l,---,M}, (16)
where & = D; — D;, and
P
- d d tello+T
D(t) := L—T (v)dv, €To+1T,00), a7
0, t<Ty+T.

HPF is called full rank if there exists a constant ¢ € R such
that

0<c¢<Amn {7}, (18)

where the matrix . € RP*P is defined as .7 := Z?; S;SE.

The concurrent learning update law to estimate the unknown
parameters is then given by

M T
Hzagrezsi <XZ' — F; —éTSi —bi) , (19)
=1

UIf the integration interval is selected to be too short, there may not be
enough information in the vector X; to achieve accurate parameter esti-
mation. If the integration interval is selected too long, parameter estimates
may not be available during transients where they are needed the most.
The development of a reasonable heuristic that guides the selection of the
integration interval is a topic for future research.

where oy € R is a constant adaptation gain, and T’y :
R>o — RPXP is the least-squares gain updated using the
update law

Ty = Belg — apl'p-# T, (20)

where 39 € R is a constant gain. Using arguments similar
to [23, Corollary 4.3.2], it can be shown that provided
Amin {Ty ! (0)} > 0, the least squares gain matrix satisfies

Dyl, < Tp () < Tol,, 21

where I'y and Ty are positive constants, and I,, denotes an
p X p identity matrix. If a full rank history stack that satisfies
(16) is not available a priori, then the data points can be
recorded online. The history stack #Z, if time-varying, is
called full-rank, uniformly in ¢ if ¢ in (18) is independent of
t.

From the Lyapunov analysis in Section V-B, it is observed
that the rate of decay for the parameter estimation error is
proportional to the minimum singular value of .. Therefore,
to promote faster convergence for the parameter estimates,
a minimum singular value maximization algorithm is devel-
oped. At each time ¢, the algorithm takes the current new
data point, (X * F*,8* D*), and checks if replacing the
new data point with any data point currently in the history
stack increases the minimum singular value of .. If the new
data point does increase the minimum singular value, that is,
Awin (L Si5T +875°7)

(1+9) ’
(22)
where Ay represents the minimum singular value of a
matrix and ¢ is a positive constant, then the new data point
replaces the data point currently in the H¥ that results in
the largest increase in the minimum singular value, if not the
new point is discarded.

Using Lyapunov arguments, it can be shown (see Section
V-B) that the parameter estimation error is directly related to
the error &; in (16). Due to the fact that newer values of D;
result in smaller &; due to the exponential convergence of
the disturbance estimates, a purging algorithm is developed
to eliminate inaccurate data from H'F.

The algorithm maintains two history stacks, a main history
stack and a transient history stack, labeled H'F and GPF,
respectively. As soon as GP'F is full and sufficient time
has elapsed since the last purge (see Section V-B), HIF
is emptied and G''F is copied into HF.

Amin ZSZSZT"‘FSJSJT <
Gall

B. Analysis

A Lyapunov based analysis, summarized in the following
theorem, is performed to show convergence for the parameter
estimator developed in Section V-A.

To facilitate the following Lyapunov analysis, the dynam-
ics for the parameter estimation error can be expressed as

. ~ M
é = 70&9].—‘9(?9 - Ozgrg Z Slgl,

i=1

(23)



by using (16) and (19), along with the error being defined
as 0 =0-—90.

The stability result is summarized in the following theo-
rem.

Theorem 2. [f the history stack HPE is full rank, uni-
formly in t, and d converges to zero exponentially, then

limy_, o0 [|0()]| = 0.

Proof. For brevity, the details of the proof has been omitted
(see [20, Theorem 2]). O

VI. INVERSE REINFORCEMENT LEARNING

The formulation of IRL in the following two sections
closely follows the authors’ previous work in [18]. In addi-
tion, since IRL is performed only on Agent 2, the subscripts
that denote the agent number in the dynamics will omitted
in the next sections for clarity.

A. Inverse Bellman Error

Under the premise that Agent 2 implements a feedback
controller that would be optimal in a disturbance-free en-
vironment, the state and control trajectories, z(-) and u(-),
satisfy the Hamilton-Jacobi-Bellman (HJB) equation

H (:c t), Vs (V* (z ()T, u (t)) =0,Vt € Rao, (24)

where the unknown optimal value function is V* : R" — R
and H : R™ x R®™ x R™ — R is the Hamiltonian, defined
as H(z,p,u) := p? f(x,u) + r(z,u). The goal of IRL is
to accurately estimate the reward function, 7. To aid in the
estimation of the reward function, let V :R" x RP — R,

(x, WV) — Wxoy (z)+€y (x) be a parameterized estimate

of the optimal value function V*, where WV € RP are
the estimates of the ideal value function weights Wy, oy :
R" — R are known continuously differentiable features,
and ey : R" — R is the resulting approximation error. Using
9 WV, WQ, and WR, which are the estimates of 6, W7,
W§, and Wi = [r1,- - ,rm]T, respectively, in (24), the
inverse Bellman error ¢’ : R” x R™ x RL+P+m  RP 5 R
is obtained as

5 (x,u, W,é) =WIV,ov (@) YV(x,u,0)+ Wgag (z)
+Wioy (u), (25)
where o, (u) = [u},---,u?] and Y(z,u,0) =

[f"(x,u) —&—g(x,u,é)} where g(a:,uﬁ) = éTa(x,
(5). Rearranging, (25) becomes

5 (m,u,W’,é) = (W’)TU’ (m,u,é) ,
where W/ = {WV; WQ; WR} and o’ (x,u, é) =
[anv (x) Y(x, u, é), o (z);04 (u)w .

u) from

(26)

B. Inverse Reinforcement Learning Formulation

Using the formulation of the inverse Bellman error in
Section VI-A, and control signals, trajectories, and pa-
rameter estimates stored in a history stack, denoted as

HIEL the inverse Bellman error, evaluated at time instances
ti,ta,...,tn, can be formulated into the matrix form

A =3S'W, (27)
where A/ = [0 (t1) ;- -+ 50% (En)]s
O (m O, u(t), W,o@), S =

(G ()5 @) ()], and 5(0) =
o' (a:(t),u(t), é(t)).

The HJB equation in (24) implies that whenever W =
W*, the inverse Bellman error is zero. As a result, candidate
solutions of the IRL problem can be obtained by solving
(27) for W so that A’ = 0. The linear system is now a
homogeneous system of linear equations, and it can only
be solved up to a scaling factor. Since optimal state and
control trajectories are invariant with respect to scaling of
the cost function, the scaling ambiguity is to be expected.
Since optimal control behaviours are scale-invariant, there
is no loss of generality in resolving the scale ambiguity by
assigning a fixed known value to one of the reward function
weights.

Taking the first element of WR to be known, the inverse
BE in (26) can then be expressed as

o <$7u, W, é) =WwTg" (m,u,é) +riou (u),  (28)

where W = {WV;WQ;WE ], the vector Wg denotes

Wg with the first element removed, o, (u) denotes the
ith element of the vector o, (u), the vector o, denotes

o, with the first element removed, and o” x,u,é) =

[vzav (@)Y (2,u,0);00 (z) ;05 (u)} :
The closed-form nonlinear optimal controller correspond-
ing to the reward structure in (3) provides the relationship

(9 @) (Vaov (@ ()T Wy
+ (9 (@(1)))" Vaev (@ (1))

which can be expressed as

—2Ru (t) =
(29)

—2’/‘1U1 (t) + Aul = O'Q1WV
A,- = U;WV + 2diag (ug, -+ , Um) WI;,
where ¢'(z) = V,f(z,u), 0,1 and A,, denote
the first rows and o, and A,- denote all but the
first rows of og(x) = (¢'(x)" (Veoy (z))T and
Au(z) = (¢'(x))" Vaey(z), respectively, and R~ =
T
diag ([r2, - -, rm]). For simplification, let o := [o”, {09”,

where

0 T
_ 1xm—1
0= {Om“”’ {2diag([uz7"' ,um])H '



Updating matrix form in (27) by removing the known
reward weight results in the linear system

— Y =3SW - A, (30)
where 3 = (67 (t1);---;6f (ty)],  and
Sl = o (u(t1));--- 500 (u(tn))],  where
or(r) = olzn)u(),0()), oulr) =
[r1001(7); 2711 (7); 0(m—1)x1]-

The recursive update law is then designed as
W= ar'ss? (—iW _ zul) . 31)

In (31), a € Ry is a constant adaptation gain and IT" :
Ry — REHPEM=UX(L+P+m=1) jg the least-squares gain
updated using the update law

I = A — al'S73T, (32)

where § € Ry is the forgetting factor.

C. Analysis

A Lyapunov based analysis is performed to show conver-
gence for the IRL method in Section VI-B.

A time-varying history stack, H!#L, is called full rank,
uniformly in ¢, if there exists a ¢ > 0 such that V¢ € R,

0< 0 < Amin {iT(t)i(t)} : (33)

Using arguments similar to [23, Corollary 4.3.2], it can be
shown that if Apin {I"l (O)} > 0, and if H'2L is full rank,
uniformly in ¢, then the least squares gain matrix satisfies

Ll pim—1 <T(t) <Tlpipim—1,

where I and T are positive constants, and I,, denotes an nxn
identity matrix.

To facilitate the following Lyapunov analysis, the dynam-
ics for the weight estimation error can be described by

(34)

W= —al's?” (EVT/ n AQ) : (35)
using the fact that W =W*-W, along with (31) and the
equation —,,; = XW* + Ay, where Ay denotes the errors
resulting from poor 6 estimates incorporated in .

The stability result is summarized in the following theo-
rem.

Theorem 3. If HPE and HIEL are full rank, uniformly in
t, and d converges to zero exponentially, then t — W (t) is
uniformly ultimately bounded (UUB).

Proof. For brevity, the details of the proof has been omitted
(see [20, Theorem 3]). ]

VII. SIMULATION

To demonstrate the performance of the developed method,
a nonlinear optimal control problem is constructed using [13]
in order to have a known value function for comparison.
Agent 1 has the following nonlinear dynamics

. . 2
T1, = Tly, T1, = %1, 71, + 377, + Sug +d.

Agent 2 under observation has the following nonlinear dy-
namics

"k?l = T2,

. m _ 92I21

Lo, = 913721 (5 + tan 1(51'21)) + 1 T 2;$2
2

+ 0329, + 3us + d, (36)

where ;, denotes jth state variable for Agent i. The param-
eters 61,05, and 63 are unknown constants to be estimated
and d is the unknown disturbance. The exact values of these
parameters are ¢, = —1,0, = —%, and 03 = 4. The
disturbance, d, acting on the agents is generated from the
linear system in Section IV, where A = [0,1; —1,0] and C' =
[0,0;1,0], and the chosen gain matrix is K = [1,0.5;0,5].

The performance index that the agent is trying to minimize
is

Taoua() = [ @3, +udi

resulting in the ideal reward function weights Q =
diag(g1, ¢2) = diag(0, 1) and R = 1. The observed state and
control trajectories, and the disturbance estimates are used
in the estimation of unknown parameters in the dynamics,
along with the optimal value function parameters and the
reward function weights. The optimal controller is uj =
—3x2,, while the optimal value function is V* = x%l (v1 +
vy tan~!(5x2,)) + vsa3,, resulting in the ideal function

parameters v; = 5, vo = 1, and v3 = 1. Figs. 1 and 2

—
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Fig. 1. Estimation error for the unknown parameters in Agent 2’s dynamics.
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Fig. 2. Estimation error for the unknown parameters in the reward function
for Agent 2.

show the performance of the proposed method. Fig. 1 shows
convergence of the unknown part of Agent 2’s dynamics, and
Fig. 2 shows convergence of the unknown reward function.
Fig. 3 shows the convergence of the disturbance estimates.
The parameters used for the simulation are: 77 = 1.2s,
N =100, M = 150, 8 = By = 0.5, a = ay = /N,
and a time step of 0.0005s.
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Fig. 3. Estimation error for the unknown disturbance acting on the two
agents.

VIII. CONCLUSION

A novel IRL framework is developed in this paper for
reward function estimation in the presence of modeling errors
and additive disturbances. To compensate for disturbance-
induced sub-optimality of observed trajectories, a model-
based approach is developed that relies on a disturbance
estimator.

Future work will focus on the development of output
feedback IRL methods that utilize both state and parameter
estimation methods, and extensions of the developed method
for disturbances that affect the agents through a control
effectiveness matrix. The authors will additionally explore
the use of implicit disturbance estimation techniques that
would result in bounded, but nonzero disturbance estimation
errors.
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