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ARTICLE INFO ABSTRACT

Keywords: This study proposes a novel Long Short-Term Memory Neural Network (LSTM) architecture for the diagnosis of
Cardiovascular disease myocardial infarctions from individual heartbeats of single-lead electrocardiograms (ECGs). The proposed model
Electrocardiograms

is trained using an unbiased patient split approach and validated using 10-fold cross-validation over 148
myocardial infarction and 52 Healthy Control patients from the Physikalisch-Technische Bundesanstalt diag-
nostic ECG Database to generate an inter-patient classifier. We further demonstrate why special care must be
taken when generating the training and testing datasets by exploring the effects of various data-split techniques
that could mask the occurrence of overfitting and produce misleadingly high testing metrics of the model’s
performance. A thorough assessment of these results is provided using several standard metrics for different data
split methods to show their tendency to overfitting, data leakage, and bias introduced from previously seen heart
beats during the training phase. The design achieves near real-time diagnosis of 40 ms while providing an ac-
curacy of 89.56% (with a 95% Confidence Interval (CI) of +2.79%), recall/sensitivity of 91.88% (+£3.13% 95%
CI), and a specificity of 80.81% (+9.62% 95%CI). The fast processing makes the model readily deployable on
currently existing mobile devices and testing instruments. The achieved performance makes the proposed
method a new research direction for attaining real-time and unbiased diagnosis. While, the modular architectural
design of the LSTM network structure, which is amenable for the inclusion of other ECG leads, could serve as a
platform for early detection of myocardial infarction and for the planning of early treatment(s).

Long Short-Term Memory Neural Network
Myocardial infarction
Real-time processing

electrical activity and assess vital information about the organ’s health
[5]. Therefore, numerous papers have used the information present

1. Introduction

According to the Center for Disease Control and Prevention (CDC),
every 40 seconds someone in the USA suffers from a heart attack. There
are roughly 790 thousand myocardial infarctions per year in the United
States (although some sources list this number to be even higher) and
about 20% of them occur without warning or symptoms [1]. Altogether,
49 percent of Americans have relevant risk factors of heart diseases that
could lead to myocardial infarctions at an average medical cost of $11,
664 [2,3]. Therefore, as they remain a condition with significant
possible complications [4], their accurate and early diagnosis is of
utmost importance and necessity.

Electrocardiograms (ECGs) are a powerful tool used by physicians to
diagnose heart defects and abnormalities by looking into the heart’s

therein to attempt and diagnose myocardial infarctions and other car-
diac diseases [6-38]. As could be expected, the source of the information
being processed (ECG lead(s)) and the classification method used vary,
yielding varied results in terms of the different performance measures.
Three main types of data splits (beat split, file or record split and patient
split) are well reported in the literature, relying essentially on two
distinct types of classifiers, namely intra- and inter-patient classifiers,
which are detailed in the “Data” section.

The authors of [26] use deep convolutional neural networks to detect
myocardial infarctions using single lead ECGs (lead II) producing an
intra-patient classifier. Padmavathi Kora in [7] uses a Hybrid Firefly
algorithm to perform feature extraction to be then fed into either a
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support vector machine, a K-nearest neighbor classifier, or an artificial
neural network. They also report an intra-patient classifier that utilizes
single-lead ECG. Sharma and Sunkaria [8] introduce a 3-lead ECG
inferior myocardial infarction classifier for both intra- and inter- patient
classification. They used stationary wavelet transforms to produce fea-
tures later used by k-nearest neighbor or support vector machine clas-
sifiers. Liu et al. [9] achieve myocardial infarction classification by using
a multiple-feature-branch convolutional neural network on 12-lead
electrocardiograms. They present results for intra-patient and a modi-
fied version of inter-patient classification where they use the first 32
beats of every patient used for testing during the training phase. Support
vector machines are once more used in [10] on 12-lead ECGs to perform
intra-patient classification. Support vector machines are also used in
[11] along with multiple instance learning. In such study, the authors
attempted to detect myocardial infarction from ECG-level topic vectors
of a 12-lead ECGs and perhaps develop an intra-patient classifier (as the
most likely data split method appears to be file split). In [12] a bagging
tree classifier is used to detect myocardial infarctions and arrhythmia. In
this study the authors explored which of the ECG’s leads would be most
appropriate to identify the targeted diseases and arrived at the conclu-
sion that V4 was the most appropriate. However, although good testing
metrics are reported, the type of classifier achieved is not quite clear, as
the authors did not mention whether they attempted to produce an
intra- or inter- patient classifier, nor did they indicate how the data was
split into training and testing sets.

Real-time classification of myocardial infarctions is attempted in
[13] and [14]. Liu et al. [13] use a multi-lead convolutional neural
network to perform the inter-patient classification from a four-lead
electrocardiogram. However, they require the whole patient’s ECG
achieve a diagnosis. Meanwhile, Sopic et al. [14] introduce an
event-driven classification technique to be used in wearable systems.
They feed a random forest classifier with expert features extracted from
a single lead (Lead 5) electrocardiogram to generate an inter-patient
diagnosis.

More recently, [15] implemented an algorithm to detect and localize
myocardial infarctions from a single beat of 12-lead electrocardiograms.
They Dual-Q TQWT along with wavelet packet tensor decomposition
and a decision tree to achieve intra-patient classification. In [16], a
multi-branch fusion network is implemented and trained on paper ECG
to achieve significant detection accuracies and yield an inter-patient
classifier. While, finally, [17] trained a multi-lead residual neural
network to detect and locate myocardial infarctions from 12-lead ECGs.
However, although they set out to create an inter-patient classifier, they
end up with something in between intra and inter, as they split their
dataset along file lines and not patients, thereby contaminating their test
sets.

In our approach, a multilayer Long Short-Term Memory (LSTM)
neural network is developed to identify infarcted patients from a single
heartbeat of a single-lead (lead II) electrocardiogram. This task is
particularly challenging as detecting generalized cases of MI from Lead
IT alone is challenging because it only focuses on the inferior part of the
heart and therefore has a hard time detecting anterior, antero-septal,
posterior, and lateral MIs. However, we choose to do so as this lead is
extensively available in everyday exercise equipment and fitness
trackers, making the deployment of the proposed algorithm feasible and
of minimal added cost. Although various types of artificial neural net-
works have been used in the past to identify myocardial infarctions [6,
13,16,17,20-23], we choose to use LSTMs because they have a long and
proven track record at classifying time-varying signals such as text,
speech, and video [39-46]. Hence, the genesis of their use here to
identify heart defects and other cardiac conditions from electrocardio-
grams. By combining the resulting neural network with an algorithm
that detects the R-peaks in real time, the results indicate
near-instantaneous detection of myocardial infarctions. Through this
expedited diagnosis, this integrated method (LSTM with real-time
detection of R peaks) could become extremely beneficial for
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monitoring patients under cardiac stress and/or at risk of myocardial
infarctions while significantly improving the prospects for both the
correct diagnosis of the disease condition and for the planning of early
treatment.

2. Methods
2.1. Data

The data used in this study was obtained from The Physikalisch-
Technische Bundesanstalt (PTB) diagnostic ECG Database [47,48].
This database consists of 549 12-lead individual ECG records collected
from 290 subjects (209 men and 81 women) with ages ranging from 17
to 87 years old, of which only 148 myocardial infarction (MI) and 52
Healthy Control (HC) patients are used for this study. However,
although 12 leads are available, we only consider Lead II for this study as
it is widely used in wearable/portable devices and exercise equipment;
thereby positioning the proposed network to be readily deployable in
these existing devices and thus eliminating the need to create custom
ones. Each record has its associated diagnosis out of which we are
interested in the ones containing “acute myocardial infarction”, “old
myocardial infarction”, and “normal control”.

A 60 Hz stop-band and a 500-ms moving average filters are applied
to remove powerline and low-frequency noise. Once the data is filtered,
we apply an Independent Component Analysis (ICA) based algorithm
[49] to identify the locations of the ventricular depolarization events
(also known as R peaks) and thereafter separate each individual heart-
beat to be used in the training phase of the proposed multilayer LSTM
network. Each training sample is one second long (500 ms before and
500 ms after the ventricular depolarization event) of the ECG’s Lead II
data (the information from all other leads within each given record is
discarded).

After the data is segmented, it must be separated into groups to be
used for training and testing. There are three primary ways in which
electrocardiogram heartbeats are separated in the literature when used
to detect myocardial infarctions:

Beat-Split: The electrocardiograms in the datasets are split into its
constituent heart beats and these are further randomly added to one of
the sets (i.e. training, testing, validation, or cross validation sets). In this
particular data-split practice we only care that independent heart beats
seen during training are not also used for testing. However, individual
patients could have a set of heartbeats in the training and another set of
heartbeats, albeit different, in the testing set; making it the least
restrictive of all methods. This technique is used in the literature to
perform intra-patient classification [6-10,12,15,24-28,32-34].

File-Split: Also known as Record-Split. As each patient in a given
dataset may have multiple recording sessions (record), the individual
heart beats associated with each of the individual records can only be
present in one of the derived sets. That is, any given record cannot have
simultaneous representation in the testing and training sets [15,16,23].

Patient-Split: Each patient (with all of its available records) can only
be present in one of the following derived sets (i.e. training, testing,
validation, or one of the cross-validation sets). Here, data from patients
used for training cannot be used for testing, and vice versa. This tech-
nique better ensures that the results achieved during testing will more
adequately represent those of new unseen patients. This practice is used
in the literature to perform inter-patient classification and is the most
restrictive data-split method [8,9,13,14,16,33].

As we aim to train a classifier that can be used in real life applica-
tions, we use the most restrictive data split available, namely Patient-
Split, to ensure that the testing dataset best represents the population
at large. As such, once all the independent heart beats have been
segmented, each patient (along with all its segmented heartbeats) is
assigned to one of 10 distinct and non-overlapping groups, to be used for
ten-fold cross-validation. Imperatively, no one patient’s data is present
in more than one group at any given time. This is important, as having
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individual patients simultaneously represented in both the training and
testing phases results in overfitting that could yield to misleading high
testing metrics, and hence overestimating the performance of the algo-
rithm. Also, this type of data splitting is more amenable to real-world
applications, as the network would be trained on a dataset of recorded
patient data but will be used and deployed on patients not seen during
the training phase.

2.2. Network architecture

We use a three-layer LSTM network to differentiate between subjects
with myocardial infarctions (MI) and healthy controls (HC). Layer one
and two consist of 100 LSTM units with hyperbolic tangent activations,
while the third and last layer is a single LSTM unit with sigmoid acti-
vation function. Each training and testing sample is one second long and
centered on the ventricular depolarization event (500 ms before and
after the R-peak) of the ECG’s Lead II data. The design construct of the
LSTM model is shown in Fig. 1.

LSTMs, shown in Fig. 2, are a type of recurrent neural networks
(RNNs) that see the input signals as time-varying and can therefore make
temporal relation inferences about the signals being categorized.
Whereas, other common neural networks architectures used in the
literature such as convolutional neural networks (CNNs) can only make
spatial relations and are therefore limited by the size of their kernels.
This is not the case for RNNs as they can learn to remember events
indefinitely long in the past of the sequence and make decisions based on
it. Also, LSTMs dampen the effect of vanishing gradients present in the
original RNNs where events long in the past have diminishing influence
in current decisions.

It can be seen from Fig. 2 that an LSTM unit requires as an input its
previous state (s._1)), its last output (y(_1), and the current input vector
(x¢) to generate a new internal state (s;) and a new output (y;). There-
fore, an LSTM neuron can produce a classification prediction for every
input timestep thereby generating time-varying classifications that be-
comes more accurate and final as more sample points of the signal are
processed. This is especially evident in the output activations of the
network in Fig. 1, where the final classification label is produced during
the last 200 ms of the signal once the PQRST complex has been
processed.

This architecture was particularly chosen as it requires no previous
expert knowledge of the signal at hand, being able to come up with the
features it deems important on its own from the training data. It is also
narrower in terms of the required processing steps and hence less
complex than other architectures reported in the literature for
myocardial infarction classification, making it less prone to overfitting
over a limited amount of data as a more complex model gives the
network more flexibility to overfit.

The network itself was trained using stochastic gradient decent while
implementing L2 regularization [50] with A = 0.001, RMSProp updater
[51] (learning rate = 0.1, weight decay = 0.95, and epsilon = 10e—6)
with weight decay, and gradient clipping (5.0). The weights are

Biomedical Signal Processing and Control 68 (2021) 102683

Ye-1

Xt Ve

Fig. 2. LSTM unit structure.

initialized using the method proposed by Xavier Glorot [52]. The spe-
cific LSTM units used in our study were first described by Alex Graves in
[53] to label sequential data such as speech and hand-written text.

The network described herein, was trained and deployed in a 64-bit
Windows 10 PC with an AMD FX-8350 Eight-Core Processor, 32 GB of
DDR3 RAM, and an NVIDIA GeForce GTX1070. Each training iteration
(epoch) took approximately 5 h and covered around 60 K samples,
depending on the cross-validation split being used. The network archi-
tecture itself was implemented using DeepLearning4J version 0.9.1, a
deep learning library for Java.

3. Results and discussion
3.1. Main results

The network is trained using early stopping, for which after 10
epochs of no performance improvement we stop training and back up to
the best set of weights. We repeat this process for each of the cross-
validation folds. The mean training time is 34.4 epochs (+19.4 epochs
95% CI) when optimizing for accuracy and 27.4 (+12.64 95% CI) epochs
when the best J-Measure is the target. The maximum number of epochs
required to train any given fold was 75 and the minimum was 4. Clas-
sification of a single 1-s sample takes around 40 ms, which would be
appropriate for online classification as the time between fast heartbeats
is around 300 ms, well above the required processing time.

To measure performance, we have used Accuracy (1), F1-Score (2),
Precision (3), Recall (4), Specificity (5), and Youden’s J statistic (J-
Measure) as defined in (6).

Acc = (TP + TN)/(TP + TN + FP + FN) )
F1 = (2%TP)/(2* TP + FP + FN) (2)
Prec = TP/(TP + FP) 3
Recall = TP/(TP + EN) @
Spec = TN/(TN + FP) (5)
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Fig. 1. Network architecture.
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J = Recall 4 Spec — 1 6)

Where TP stands for true positives, TN for true negatives, FP for false
positives, and FN as false negatives.

Table 1 shows the detailed metrics obtained for both optimization
methods (accuracy and J measure) on the testing datasets in the 10-fold
cross-validation using the Patient-Split approach, and Fig. 3 shows the
training progression vs. the testing results of the 80 epochs during the
training phase.

It can be observed from these figures that the network starts to sta-
bilize in terms of testing accuracy early in the training, somewhere in
between epoch 20 and epoch 25. At that point the network keeps on
learning the training dataset, eventually reaching the high nineties
before being stopped at epoch 80. This could be due to a lack of sig-
nificant variability in the training set that would best represent the
population at large, a problem which could be addressed by adding more
patients into the training dataset.

Another significant fact to appreciate from Table 1 is that the Recall
measure is significantly larger than Specificity for either optimizing
condition. This is the case mainly because the dataset itself is greatly
unbalanced, being largely composed of myocardial infarction patients
with significantly less control subjects. To improve performance more
controls should be added to the dataset to increase data variability and
hence allow the model to better generalize.

3.2. Effects of improper data split

As a retrospective on the performance of various data splits methods
and for cautionary measures that should be taken into consideration on
the adequacy of data splits, we have trained the proposed model using
other state-of-the-art data split methods and show how each can affect
the testing results in the way these data splits are performed as detailed
in Section 2.

We first focus on the beat-split method (use to generate intra-patient
classifiers) and once again use 10-fold cross-validation. However, this
time around we only care that independent heart beats seen during
training are not also used for testing in accordance with the beat-split
method. This nonetheless has a side effect of allowing patients used
for training to also be used for testing (since the distinction is made only
on the individual heart beats). Fig. 4 shows the training evolution of this
particular test case.

These results show that the network’s performance on the testing
data continuously increases and closely tracks the training metrics.
However, the model’s performance on new patients should have stabi-
lized early in the training phase, as evidenced from the previous results.
Therefore, it is important to review all testing results in combined plots
to better understand the model as it is being trained. Fig. 5 shows the
testing results for the different types of data splits including beat-split
(DB), file-split (DF), and patient-split (DP).

It is evident from these plots that the network first starts to show
decreased performance on testing sets that use patient-split followed by
test sets generated with file-split. That is, the model seems to start
learning to classify the disease but eventually learns something else
(perhaps patient level characteristics that help it distinguish hard
heartbeats, taking advantage of the lower intra-patient variability). As
its performance starts to drop for patients never seen before (as it is the
case in DP) and then from files (records) not seen during training (DF) it
appears to learn features that are shared across files and eventually
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features shared across heart beats of the same patient; effectively
memorizing patients by learning to identify which beats belong to pa-
tients seen during training and assigning them the appropriate diagnosis
based on prior knowledge.

It is also important to point out that minor epoch-level differences
among the three split modes (DB,DF, and DP) are due to the nature of
training; where the classifier focuses on different features at different
timepoints as it descends down the multidimensional gradient in its
attempt to minimize the classification error. What should be taken from
the plots is the general direction/trend of the plotlines themselves and
not the local differences.

3.3. Randomizing labels of myocardial infarction patients and healthy
controls

Because the network could be learning many things, and not spe-
cifically memorizing patients, we take it one step further and randomize
the labels (MI/Controls) of each patient before retraining the model
using beat-split. This action effectively eliminates any existing link(s)
between biomarkers and disease label. Therefore, if the network model
was never about memorizing the patients but just about learning the
nature of the disease, we would not be able to attain a mean accuracy
greater than 50%, given that the new labels are uniformly and randomly
distributed.

This time around, we trained the network for 90 epochs to identify
any distinctive patterns that may arise. Fig. 6 shows the results of the
experiment.

These results clearly show that the proposed network is capable of
learning features that help it identify heart beats from previously seen
patients, effectively memorizing them, if adequate time is given.
Therefore, it is of paramount importance that an adequate data-splitting
method be used when creating the training and testing datasets, as
choosing an inappropriate one will mask overfitting and lead to erro-
neously high testing metrics that are not representative of the model’s
performance on the general population.

3.4. Influence of MI location on detection rate

The location of the myocardial infarction has a great potential to
influence the detection rate of the proposed classifier. As we choose to
use a single ECG lead, the model proposed herein has a limited view of
the heart’s electrical activity and certain MI types could be obscured
from such a view.

In practice, we can encounter various types of MIs which themselves
affect the electrical activity of different sections of the heart. In the
database used for this study, there are four main types of infarction that
are described as follows:

Anterior MIs happen when the left anterior descending (LAD) coro-
nary artery is obstructed, which could lead to changes in leads V1
through V6 but might or might not show in Lead II, depending on where
the occlusion happens. Antero-Lateral MIs (a combination of Anterior
and Lateral) show up in leads V3 through V6, while Antero-Septal MIs
can be seen in leads V1 through V4. All along, these types of Anterior MIs
could produce changes in Lead II depending on the location of the LAD
occlusion [54].

Inferior MIs, account for about 40% of all MIs and generally involve a
blockage of the right coronary artery. When the Inferior region is the
main location of the infarction, leads II, III, aVF, and aVL show changes

Table 1
Testing results of the proposed LSTM method.
Optimization Acc F1 Prec Recall Spec J # Epochs
Acc 91.36 (+2.88%) 94.71 (£1.97%) 93.54 (£2.46%) 96.00 (£2.45%) 69.28 (£+8.41%) 65.28 (+8.41%) 34.40 (£19.40)

J 89.56 (42.79%) 93.45 (+1.94%) 95.30 (£2.86%)

91.88 (+3.13%) 80.81 (49.62%) 72.69 (+8.98%) 27.40 (£12.64)
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Fig. 4. Evolution of performance metrics of the beat splitting method for both the training and testing phase. (a) Accuracy, (b) J-Measure.

in their respective electrical activity [55].

Lateral MIs are rare in their pure form; they generally occur as part of
larger infarctions involving multiple areas, because the left ventricular
lateral wall is perfused by the left anterior descending artery and the left
circumflex artery. Leads [, III, aVL, aVF, V5, and V6 can all show elec-
trical changes associated with Lateral MIs [56].

Posterior MIs present subtle changes in ECGs, therefore making them
challenging to diagnose when they occur in isolation and often lead to
misdiagnosis. They commonly take place in combination with Inferior
and Infero-Lateral MIs. Purely posterior MIs can be hard to observe in
ECGs and might require the addition of extra leads not present in the
typical 12-lead ECGs (V7-V9) [57].

Fig. 7 shows the detection rates of the proposed MI detector ac-
cording to the location of the myocardial infarction as well as the
availability of samples for each of the cases.

It is evident from this figure that the cases where the model under-
performs (Lateral and Posterior) are ones where the electrical changes

associated with them are hard to observe from the lead used in this study
[56,57]. On the other hand, we must also be cautious of cases where the
model performs exceedingly well, especially Antero-Septo-Lateral and
Infero-Posterior, as the number of available samples for training and
testing is minuscule.

3.5. Behavior when encountering other pathologies

Although various pathologies are present in the PTB database, we
only used the data available form patients diagnosed with myocardial
infarctions and that from healthy controls for both training and testing.
However, much like in real life, the proposed model will encounter
samples from classes other than MI or HC. Therefore, we would benefit
from understanding or at least viewing how the classifier would respond
when presented with samples from these other classes.

In this section, we run all samples from every patient from the PTB
not used in this study through the already trained classifiers for each fold
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Fig. 7. Detection rate according to MI location.

of training and report the average detection rate along with the
respective standard deviation.

Fig. 8 shows the distribution of the classifier’s output for heartbeats
from patients with a main diagnosis other than myocardial infarction or
healthy control. In this figure the columns are associated with a given
reason for admission and each of them has two colors; orange represents
MI and blue represents HC. If a column is mostly composed of orange
that means that most of the heartbeats associated with that diagnosis are
classified as MI by the proposed model, while if mostly blue is present
the classifier saw them as HCs.

In this figure, we can see the primary reasons for admission present
in the PTB header files associated with each record. Going even deeper,
we can further break down how within each reason for admission the
classifier proposed herein treats each subject.

Bundle Branch Block: There are 20 independent records, belonging to
18 different patients, that list bundle branch block as a diagnosis. Of
them, 17 (from 15 different patients), this condition was listed as the
reason for the ECG and admission to the hospital and only 5 records
(from 4 distinct patients) had more than fifty percent (50%) of its
heartbeats classified as healthy controls.

Cardiomyopathy: There are 17 independent records (from 15
different patients) for which this condition was listed as the reason for

the ECG and admission to the hospital. Of these only 2 records had more
than fifty percent (50%) of its heartbeats classified as healthy controls
and they each belonged to different patients.

Dysrhythmia: There are 16 different files from 14 different patients
for which the main reason for admission was the condition of
dysrhythmia. However, dysrhythmia condition rarely appeared alone
and “Atrial Fibrillation” (AFib) was also evident in 8 (50%) of them
where more than fifty percent (50%) of the heartbeats in each of those
records were classified as belonging to the myocardial infarction class.
“Coronary Artery Disease” (CAD) also accompanied dysrhythmia. Only
one record from a single patient containing the main diagnosis of
dysrhythmia had more than fifty percent (50%) of its heartbeats clas-
sified as healthy controls.

Heart Failure (Types 2,3, and 4): There are very limited number of
records exhibiting heart failure; only one of each type from separate
subjects exist in the PTB. Each of this records had a very high percentage
(> 96%) of its constituent heartbeats classified as MI.

Hypertrophy: is present as the main reason for admission in seven (7)
ECGs from seven patients. Hypertrophy was never diagnosed alone and
only one patient’s record (being additionally diagnosed with hyperten-
sion) had 93% of its heartbeats classified as healthy. For all other re-
cords, at least 61% of the heartbeats where considered infracted.

Distribution of Classifier's Output for Diagnosis Not Covered in
Training
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Fig. 8. Distribution of classifier’s output for diagnosis not covered in training.
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Myocarditis: is observed in four (4) records form four (4) distinct
patients. Only one of these records had most (> 94%) of its heartbeats
classified as healthy. The record with most beats classified as MI
(> 84%) has an additional diagnosis of “Bundle Branch Block”.

Palpitation: are only present in one single record where over 95% of
the heartbeats are classified as infarcted. This record also had an addi-
tional diagnosis of Coronary Heart Disease.

Stable Angina: is the main reason for the admission of two separate
patients (for a total of two ECGs). One of them only has additional cold
and Hyperlipoproteinemia as a diagnosis and received a healthy clas-
sification for over 90% of its heartbeats. The other has CAD and hy-
pertension, resulting in over 95% of its heartbeats being classified as MI.

Unstable Angina: is only present in one record and 100% of the beats
are classified as MI.

Valvular heart disease: is listed as the main reason for the admission of
six (6) patients, for a total of six (6) ECGs. Every one of these records has
multiple associated diagnoses and over 75% of the heartbeats in each
record were classified as MI.

Atrial Fibrillation (AFib): is never listed as the main reason for the
admission of any patient but is listed as an associated diagnosis in
fourteen (14) separate records from eleven (11) patients. Every time
AFib is listed as a diagnosis for a given record, over 60% of the heart-
beats therein were classified as MI.

Unknown (UNK): The reason for the admission of 22 patients is listed
as unknown. From these, 27 separate records were recorded. Most of
them have over 90% of their heartbeats classified as MIs, about 22 re-
cords. Of the remaining five (5), four (4) have over 50% of the heart-
beats classified as MI and only one has over 90% of them classified as
healthy.

It seems to be evident from these broad statistics that the model
proposed in this study, although only trained to differentiate between
myocardial infarctions and healthy controls, appears to be detecting life
threatening heart ailments. This possibility would have to be further
explored in future studies that encompass broader datasets, as no
conclusive finding can be done over these limited samples.

3.6. Visualizing the errors

Although high classification metrics were achieved using the pro-
posed approach, it is important to understand where the proposed model
falls short and does not achieve the best performance. To start, Fig. 9
depicts interestingly different heartbeats from specific records were the

" FN

FP

M/\ iy
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classification accuracy was particularly low (<10%).

The heartbeat present in Fig. 9a belongs to a patient originally
admitted for an Anterior MI but the ECG was recorded over a year after
the infarction took place, to be more specific 396 days after. This
heartbeat was classified by the model as “Healthy Control” although the
truth value from the diagnosis was “Myocardial Infarction” making it a
false negative. Only eleven (11) out of the one-hundred and forty-two
(142) heartbeats for patient 120 were correctly labeled as MI instead
of HC.

Fig. 9b shows an example of improper lead placement or contact that
yielded a very noisy ECG recording. This heartbeat belongs to patient
180, a healthy control subject, and is part of record s0476_re. In this
record, there is a vast amount of noise present in Lead II, while leads 1
through 6 are fairly clean. However, as this classifier only uses the in-
formation from Lead II it is hindered by the noise and is challenged to
properly classify the detected heartbeats. Only one (1) out of the two-
hundred and forty-one (241) detected heartbeats is properly classified
as HC, while all others are improperly labeled as MI.

A truly interesting false positive case is present in Fig. 9c. This
heartbeat also belongs to patient 180, but this time the record is
s0561 re and there is no significant noise to contend with. In this
instance, the classifier was unable to properly classify around 63% of all
detected heartbeats, assigning them an MI label instead of the correct
HC.

Fig. 9d shows another instance of a false negative outcome. This
heartbeat belongs to records s0141lr of patient 43, a subject with a
lateral infarction. In this instance there are a couple of factors that made
the classification difficult: (1) the electrocardiogram was recorded over
eight (8) months after the infarction took place and a catheterization
was performed, and (2) the type of infarction in question was a “Lateral
MI”, which are difficult to diagnose from Lead II alone as electrical ac-
tivity changes associated with it might not be revealed in such a lead
[56].

3.7. Comparative assessment

As the type of data split used for training is seen to greatly affect the
performance metrics, we must restrict our comparative assessment
contrasting the proposed method to related studies that use the same
data split method in order to avoid unfair comparisons. Some relevant
studies covered in the literature are presented in Table 2. Herein, we
provide a simplified evaluation of their dataset generation techniques

“FP

a) patient120/s0331Ire

FN

c) patient180/s0561_re

T

b) patient180/s0476_re

4 /_/T/\

) d) patient043/s0141lre

Fig. 9. Examples of misclassified heartbeats.
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Table 2
Simplified analysis of relevant studies.

Study # Leads Sample Length Beat Split File Split Patient Split
[6] 1 0.65 s X

(7] 1 RR interval X

[8] 3 3s X X
[9] 12 1s X X
[10] 12 10s X

[12] 1 2 beats X

[13] 4 Whole record X
[14] 1 0.65 s X
[15] 12 0.65 s X X

[16] 12 7s X X
[17] 12 4s X

along with the number of leads used and the sample size required to
make a classification.

Given the unique way of assuming only a single heart beat and
single-lead electrocardiograms together with the adoption of patient
split method of analyzing data, to the best of our knowledge, there are
no other studies of myocardial infarction detection and classification
that can be completely and fairly compared to ours, as types of MI
classified vary and the datasets and dataset subsets are not equal to ours.
However, in Table 3 we provide an in depth comparison of some of the
available studies that generate inter-patient detection of MI. In this
table, we cover and provide the numbers of leads used, number of pa-
tients and heartbeats evaluate, the sample length required, the method
used, and the general performance metrics of each study.

Of all the studies presented herein, [8] and [14] are somewhat close,
although much more restrictive (they use subsets of the available data),
as they use electrocardiograms available from the PTB diagnostic ECG
Database [47,48].

Sharma and Sunkaria [8] focused on acute myocardial infarctions in
the inferior portion of the heart (IMI) leading them to a rather restricted
dataset of only 30 MI subjects and 52 HC. Moreover, they use three leads
of the available twelve, specifically leads II, III and aVF, as better rep-
resentatives of electrical activity in the inferior portion of the heart.
Sopic et al. [14] use random forest feed by expert features extracted
from Lead 5 of the available electrocardiograms using discrete wavelet
transforms. They use 52 MI subjects as they want to keep a balanced set
for training and testing due to the limited availability of healthy controls
(52). Just as in [8], this study is not directly comparable to ours as they
use a different ECG lead and a more restrictive, yet balanced dataset.

Although our results are not directly comparable, we achieve the
highest accuracy and recall, when comparing against either [8] or [14],
for either of the two optimization cases (best Accuracy or best balance
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between Specificity and Recall). However, our specificity and J-Measure
oscillate, providing the best number only when we train our network to
achieve the best balance between Specificity and Recall. The lower
specificity is likely due to the fact that we have a heavily unbalanced
dataset, as there are about three times more myocardial infarction
subjects than healthy controls in our datasets, and a higher accuracy will
tend to lead the network to prioritize properly classifying MI records
over HCs. We overcome this in this study, by optimizing, or targeting the
point in time at which the network is having the best balance between
specificity and recall instead of using the common practice of just tar-
geting the best accuracy. We also only require one lead of the electro-
cardiogram as does [14] but unlike them our lead is more commonly
sampled and simpler to record that lead V5. Neither [8] nor [14] pro-
vides the diagnosis time (or processing time), but study [14] provides a
hardware implementation which is commendable and could be used as
means to reduce the processing time.

From Table 3 we can also see that the detection accuracy is positively
correlated with the number of leads used, that is, more leads equals
greater accuracy. This is to be expected, as more electrocardiogram’s
leads equates to more views of the heart and more information is
gathered. The extra information collected from other leads is especially
useful to detect infarctions that are not visible or hard to see from a
single lead, as it is our case [56,54,57]. By using 12-lead ECGs, [9] and
[16] are able to achieve higher performance metrics than any other
single lead method.

Longer sample lengths seem to also influence the performance of the
different models, but the relevance of this pattern is not very clear. In the
case of [13], by using the whole record to produce a classification, the
authors achieve higher performance metrics than those reported by [16]
who used more leads (12 in [16] vs. 4 in [13]). However, [16] is
detecting MI from ECG images, not digital signals like all other studies in
Table 3 are, and this could explain the difference in performance. The
authors of [13] also tailored their lead selection to the type of MI they
were trying to detect (Generalized Anterior MI) which makes it less clear
whether or not the sample length is the key factor yielding the perfor-
mance improvement. Therefore, it is hard to gauge the influence of
sample length in classifier performance due to the fact that such vary
from study to study along with classification method, number of leads,
and even dataset used. To the best of our knowledge there is no study
that explores the influence of sample length on MI detection rate.

One more significant factor to point out is that we are not able to
provide a statistical comparison of our method to other present in the
literature or those presented in this section, as they only provide the
average performance metrics of their validation approaches and do not
provide the standard deviations of such.

Overall, the results obtained are highly competitive in comparison to
state-of-the-art algorithms, although stringent conditions are set up in
the training phase to overcome overfitting, data leakage and bias from

Table 3
Comparative results of methods using patient split method.
Study Leads #Patients # Beats Sample Method Acc Recall Specificity J-Measure
used length
[8] 11, III, aVF 30MI, 52HC 3240 MI, 3037 3s SWT &SVM 81.71 79.01 79.26 58.27
HC
[9] 12 128MI, 52HC 48690MI, 1s MFB-CNN 98.79 98.73 99.35 98.08
10646HC
[13] aVL,V2, Records: 167MI, Not Specified Whole ML-CNN 96.00 95.40 97.37 92.77
V3,V5 80HC Record
[14] V5 52MI, 52HC Not Specified 0.65 s Random 83.26 87.95 78.82 66.77
Forest
[16] 12 Images: 483MI, Not Specified 7s MBFN-CNN 94.73 96.41 95.94 92.35
474HC
Proposed (Accuracy 1I 148MI, 52HC 50732MI, 1s LSTM 91.36 96.00 69.28 65.28
Optimization) 10123HC (+£2.88%) (£2.45%) (£8.41%) (£8.41%)
Proposed (J-Measure I 148MI, 52HC 50732MI, 1s LSTM 89.56 91.88 80.81 72.69
Optimization) 10123HC (£2.79%) (£3.13%) (£9.62%) (£8.98%)
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features seen in the training phase. The proposed method would have
performed even better if a balance between the normal controls and MI
subjects could have been reached through the collection of more data
from normal controls.

4. Conclusion

We propose a novel multilayer LSTM neural network for near-real
time and accurate infarction detection using one-second ECG samples
of Lead II ECGs. This study considered 148 myocardial infarction pa-
tients and 52 healthy controls which were split into 10 non-patient-
overlapping sets for 10-fold cross validation. The proposed algorithm,
which uniquely relies on a single heartbeat of single-lead (lead II)
electrocardiograms, achieved an accuracy of 89.56% (with a 95%
Confidence Interval of +2.79%), recall/sensitivity of 91.88% (£+3.13%
95%ClI), and a specificity of 80.81% (+9.62% 95%CI). It is important to
emphasize that in the approach considered, while deploying the patient
split method, care was taken that no heart beats or subjects (MIs and
HCs) seen in the training phase are considered in the testing phase.
Moreover, within the design construct of the model, we aimed to achieve
near real-time infarction detection yielding a processing time of only
40 ms to diagnosis, which is well within the time in between two
heartbeats of 300 ms assuming a fast heart rate. This fast-processing
characteristic of the model allows for its deployment on existing wear-
able/portable devices and other test instruments which could poten-
tially have significant societal and clinical impact in the lives of not only
at-risk patients but also for the population at large.

However, the immediate impact of accurately providing a real-time
infarction diagnosis would largely depend on the number of at-risk pa-
tients. A portion of myocardial infarction mortality rate is due to the lack
of immediate medical assistance resulting from lack of awareness and/or
absence of observable symptoms. By monitoring the ECG of patients
under cardiac stress and/or at risk of myocardial infarctions in near real-
time, we could speed up the time to diagnosis, plan for early treatment,
and extend the window of time for doctors to tackle the problem in case
of an emergency.

Furthermore, integrating the proposed approach to a standalone
software/hardware platform that would monitor a patient’s cardiac
activity, perhaps through the use of widely available fitness trackers and
other currently commercially available wearable devices, would be a
significant portion of our research efforts for the next step in the
development of this software-based design. Moreover, given the
implemented architecture of this LSTM model, we could also seek to
identify at which point of the heartbeat the presence of myocardial in-
farctions becomes evident, as the last LSTM layer can be set up to pro-
vide a per-timestep diagnosis.
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