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A B S T R A C T   

This study proposes a novel Long Short-Term Memory Neural Network (LSTM) architecture for the diagnosis of 
myocardial infarctions from individual heartbeats of single-lead electrocardiograms (ECGs). The proposed model 
is trained using an unbiased patient split approach and validated using 10-fold cross-validation over 148 
myocardial infarction and 52 Healthy Control patients from the Physikalisch-Technische Bundesanstalt diag
nostic ECG Database to generate an inter-patient classifier. We further demonstrate why special care must be 
taken when generating the training and testing datasets by exploring the effects of various data-split techniques 
that could mask the occurrence of overfitting and produce misleadingly high testing metrics of the model’s 
performance. A thorough assessment of these results is provided using several standard metrics for different data 
split methods to show their tendency to overfitting, data leakage, and bias introduced from previously seen heart 
beats during the training phase. The design achieves near real-time diagnosis of 40 ms while providing an ac
curacy of 89.56% (with a 95% Confidence Interval (CI) of ±2.79%), recall/sensitivity of 91.88% (±3.13% 95% 
CI), and a specificity of 80.81% (±9.62% 95%CI). The fast processing makes the model readily deployable on 
currently existing mobile devices and testing instruments. The achieved performance makes the proposed 
method a new research direction for attaining real-time and unbiased diagnosis. While, the modular architectural 
design of the LSTM network structure, which is amenable for the inclusion of other ECG leads, could serve as a 
platform for early detection of myocardial infarction and for the planning of early treatment(s).   

1. Introduction 

According to the Center for Disease Control and Prevention (CDC), 
every 40 seconds someone in the USA suffers from a heart attack. There 
are roughly 790 thousand myocardial infarctions per year in the United 
States (although some sources list this number to be even higher) and 
about 20% of them occur without warning or symptoms [1]. Altogether, 
49 percent of Americans have relevant risk factors of heart diseases that 
could lead to myocardial infarctions at an average medical cost of $11, 
664 [2,3]. Therefore, as they remain a condition with significant 
possible complications [4], their accurate and early diagnosis is of 
utmost importance and necessity. 

Electrocardiograms (ECGs) are a powerful tool used by physicians to 
diagnose heart defects and abnormalities by looking into the heart’s 

electrical activity and assess vital information about the organ’s health 
[5]. Therefore, numerous papers have used the information present 
therein to attempt and diagnose myocardial infarctions and other car
diac diseases [6–38]. As could be expected, the source of the information 
being processed (ECG lead(s)) and the classification method used vary, 
yielding varied results in terms of the different performance measures. 
Three main types of data splits (beat split, file or record split and patient 
split) are well reported in the literature, relying essentially on two 
distinct types of classifiers, namely intra- and inter-patient classifiers, 
which are detailed in the “Data” section. 

The authors of [26] use deep convolutional neural networks to detect 
myocardial infarctions using single lead ECGs (lead II) producing an 
intra-patient classifier. Padmavathi Kora in [7] uses a Hybrid Firefly 
algorithm to perform feature extraction to be then fed into either a 
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support vector machine, a K-nearest neighbor classifier, or an artificial 
neural network. They also report an intra-patient classifier that utilizes 
single-lead ECG. Sharma and Sunkaria [8] introduce a 3-lead ECG 
inferior myocardial infarction classifier for both intra- and inter- patient 
classification. They used stationary wavelet transforms to produce fea
tures later used by k-nearest neighbor or support vector machine clas
sifiers. Liu et al. [9] achieve myocardial infarction classification by using 
a multiple-feature-branch convolutional neural network on 12-lead 
electrocardiograms. They present results for intra-patient and a modi
fied version of inter-patient classification where they use the first 32 
beats of every patient used for testing during the training phase. Support 
vector machines are once more used in [10] on 12-lead ECGs to perform 
intra-patient classification. Support vector machines are also used in 
[11] along with multiple instance learning. In such study, the authors 
attempted to detect myocardial infarction from ECG-level topic vectors 
of a 12-lead ECGs and perhaps develop an intra-patient classifier (as the 
most likely data split method appears to be file split). In [12] a bagging 
tree classifier is used to detect myocardial infarctions and arrhythmia. In 
this study the authors explored which of the ECG’s leads would be most 
appropriate to identify the targeted diseases and arrived at the conclu
sion that V4 was the most appropriate. However, although good testing 
metrics are reported, the type of classifier achieved is not quite clear, as 
the authors did not mention whether they attempted to produce an 
intra- or inter- patient classifier, nor did they indicate how the data was 
split into training and testing sets. 

Real-time classification of myocardial infarctions is attempted in 
[13] and [14]. Liu et al. [13] use a multi-lead convolutional neural 
network to perform the inter-patient classification from a four-lead 
electrocardiogram. However, they require the whole patient’s ECG 
achieve a diagnosis. Meanwhile, Sopic et al. [14] introduce an 
event-driven classification technique to be used in wearable systems. 
They feed a random forest classifier with expert features extracted from 
a single lead (Lead 5) electrocardiogram to generate an inter-patient 
diagnosis. 

More recently, [15] implemented an algorithm to detect and localize 
myocardial infarctions from a single beat of 12-lead electrocardiograms. 
They Dual-Q TQWT along with wavelet packet tensor decomposition 
and a decision tree to achieve intra-patient classification. In [16], a 
multi-branch fusion network is implemented and trained on paper ECG 
to achieve significant detection accuracies and yield an inter-patient 
classifier. While, finally, [17] trained a multi-lead residual neural 
network to detect and locate myocardial infarctions from 12-lead ECGs. 
However, although they set out to create an inter-patient classifier, they 
end up with something in between intra and inter, as they split their 
dataset along file lines and not patients, thereby contaminating their test 
sets. 

In our approach, a multilayer Long Short-Term Memory (LSTM) 
neural network is developed to identify infarcted patients from a single 
heartbeat of a single-lead (lead II) electrocardiogram. This task is 
particularly challenging as detecting generalized cases of MI from Lead 
II alone is challenging because it only focuses on the inferior part of the 
heart and therefore has a hard time detecting anterior, antero-septal, 
posterior, and lateral MIs. However, we choose to do so as this lead is 
extensively available in everyday exercise equipment and fitness 
trackers, making the deployment of the proposed algorithm feasible and 
of minimal added cost. Although various types of artificial neural net
works have been used in the past to identify myocardial infarctions [6, 
13,16,17,20–23], we choose to use LSTMs because they have a long and 
proven track record at classifying time-varying signals such as text, 
speech, and video [39–46]. Hence, the genesis of their use here to 
identify heart defects and other cardiac conditions from electrocardio
grams. By combining the resulting neural network with an algorithm 
that detects the R-peaks in real time, the results indicate 
near-instantaneous detection of myocardial infarctions. Through this 
expedited diagnosis, this integrated method (LSTM with real-time 
detection of R peaks) could become extremely beneficial for 

monitoring patients under cardiac stress and/or at risk of myocardial 
infarctions while significantly improving the prospects for both the 
correct diagnosis of the disease condition and for the planning of early 
treatment. 

2. Methods 

2.1. Data 

The data used in this study was obtained from The Physikalisch- 
Technische Bundesanstalt (PTB) diagnostic ECG Database [47,48]. 
This database consists of 549 12-lead individual ECG records collected 
from 290 subjects (209 men and 81 women) with ages ranging from 17 
to 87 years old, of which only 148 myocardial infarction (MI) and 52 
Healthy Control (HC) patients are used for this study. However, 
although 12 leads are available, we only consider Lead II for this study as 
it is widely used in wearable/portable devices and exercise equipment; 
thereby positioning the proposed network to be readily deployable in 
these existing devices and thus eliminating the need to create custom 
ones. Each record has its associated diagnosis out of which we are 
interested in the ones containing “acute myocardial infarction”, “old 
myocardial infarction”, and “normal control”. 

A 60 Hz stop-band and a 500-ms moving average filters are applied 
to remove powerline and low-frequency noise. Once the data is filtered, 
we apply an Independent Component Analysis (ICA) based algorithm 
[49] to identify the locations of the ventricular depolarization events 
(also known as R peaks) and thereafter separate each individual heart
beat to be used in the training phase of the proposed multilayer LSTM 
network. Each training sample is one second long (500 ms before and 
500 ms after the ventricular depolarization event) of the ECG’s Lead II 
data (the information from all other leads within each given record is 
discarded). 

After the data is segmented, it must be separated into groups to be 
used for training and testing. There are three primary ways in which 
electrocardiogram heartbeats are separated in the literature when used 
to detect myocardial infarctions: 

Beat-Split: The electrocardiograms in the datasets are split into its 
constituent heart beats and these are further randomly added to one of 
the sets (i.e. training, testing, validation, or cross validation sets). In this 
particular data-split practice we only care that independent heart beats 
seen during training are not also used for testing. However, individual 
patients could have a set of heartbeats in the training and another set of 
heartbeats, albeit different, in the testing set; making it the least 
restrictive of all methods. This technique is used in the literature to 
perform intra-patient classification [6–10,12,15,24–28,32–34]. 

File-Split: Also known as Record-Split. As each patient in a given 
dataset may have multiple recording sessions (record), the individual 
heart beats associated with each of the individual records can only be 
present in one of the derived sets. That is, any given record cannot have 
simultaneous representation in the testing and training sets [15,16,23]. 

Patient-Split: Each patient (with all of its available records) can only 
be present in one of the following derived sets (i.e. training, testing, 
validation, or one of the cross-validation sets). Here, data from patients 
used for training cannot be used for testing, and vice versa. This tech
nique better ensures that the results achieved during testing will more 
adequately represent those of new unseen patients. This practice is used 
in the literature to perform inter-patient classification and is the most 
restrictive data-split method [8,9,13,14,16,33]. 

As we aim to train a classifier that can be used in real life applica
tions, we use the most restrictive data split available, namely Patient- 
Split, to ensure that the testing dataset best represents the population 
at large. As such, once all the independent heart beats have been 
segmented, each patient (along with all its segmented heartbeats) is 
assigned to one of 10 distinct and non-overlapping groups, to be used for 
ten-fold cross-validation. Imperatively, no one patient’s data is present 
in more than one group at any given time. This is important, as having 
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individual patients simultaneously represented in both the training and 
testing phases results in overfitting that could yield to misleading high 
testing metrics, and hence overestimating the performance of the algo
rithm. Also, this type of data splitting is more amenable to real-world 
applications, as the network would be trained on a dataset of recorded 
patient data but will be used and deployed on patients not seen during 
the training phase. 

2.2. Network architecture 

We use a three-layer LSTM network to differentiate between subjects 
with myocardial infarctions (MI) and healthy controls (HC). Layer one 
and two consist of 100 LSTM units with hyperbolic tangent activations, 
while the third and last layer is a single LSTM unit with sigmoid acti
vation function. Each training and testing sample is one second long and 
centered on the ventricular depolarization event (500 ms before and 
after the R-peak) of the ECG’s Lead II data. The design construct of the 
LSTM model is shown in Fig. 1. 

LSTMs, shown in Fig. 2, are a type of recurrent neural networks 
(RNNs) that see the input signals as time-varying and can therefore make 
temporal relation inferences about the signals being categorized. 
Whereas, other common neural networks architectures used in the 
literature such as convolutional neural networks (CNNs) can only make 
spatial relations and are therefore limited by the size of their kernels. 
This is not the case for RNNs as they can learn to remember events 
indefinitely long in the past of the sequence and make decisions based on 
it. Also, LSTMs dampen the effect of vanishing gradients present in the 
original RNNs where events long in the past have diminishing influence 
in current decisions. 

It can be seen from Fig. 2 that an LSTM unit requires as an input its 
previous state (s(t−1)), its last output (y(t−1)), and the current input vector 
(xt) to generate a new internal state (st) and a new output (yt). There
fore, an LSTM neuron can produce a classification prediction for every 
input timestep thereby generating time-varying classifications that be
comes more accurate and final as more sample points of the signal are 
processed. This is especially evident in the output activations of the 
network in Fig. 1, where the final classification label is produced during 
the last 200 ms of the signal once the PQRST complex has been 
processed. 

This architecture was particularly chosen as it requires no previous 
expert knowledge of the signal at hand, being able to come up with the 
features it deems important on its own from the training data. It is also 
narrower in terms of the required processing steps and hence less 
complex than other architectures reported in the literature for 
myocardial infarction classification, making it less prone to overfitting 
over a limited amount of data as a more complex model gives the 
network more flexibility to overfit. 

The network itself was trained using stochastic gradient decent while 
implementing L2 regularization [50] with λ = 0.001, RMSProp updater 
[51] (learning rate = 0.1, weight decay = 0.95, and epsilon = 10e−6) 
with weight decay, and gradient clipping (5.0). The weights are 

initialized using the method proposed by Xavier Glorot [52]. The spe
cific LSTM units used in our study were first described by Alex Graves in 
[53] to label sequential data such as speech and hand-written text. 

The network described herein, was trained and deployed in a 64-bit 
Windows 10 PC with an AMD FX-8350 Eight-Core Processor, 32 GB of 
DDR3 RAM, and an NVIDIA GeForce GTX1070. Each training iteration 
(epoch) took approximately 5 h and covered around 60 K samples, 
depending on the cross-validation split being used. The network archi
tecture itself was implemented using DeepLearning4J version 0.9.1, a 
deep learning library for Java. 

3. Results and discussion 

3.1. Main results 

The network is trained using early stopping, for which after 10 
epochs of no performance improvement we stop training and back up to 
the best set of weights. We repeat this process for each of the cross- 
validation folds. The mean training time is 34.4 epochs (±19.4 epochs 
95% CI) when optimizing for accuracy and 27.4 (±12.64 95% CI) epochs 
when the best J-Measure is the target. The maximum number of epochs 
required to train any given fold was 75 and the minimum was 4. Clas
sification of a single 1-s sample takes around 40 ms, which would be 
appropriate for online classification as the time between fast heartbeats 
is around 300 ms, well above the required processing time. 

To measure performance, we have used Accuracy (1), F1-Score (2), 
Precision (3), Recall (4), Specificity (5), and Youden’s J statistic (J- 
Measure) as defined in (6). 

Acc = (TP + TN)/(TP + TN + FP + FN) (1)  

F1 = (2 ∗ TP)/(2 ∗ TP + FP + FN) (2)  

Prec = TP/(TP + FP) (3)  

Recall = TP/(TP + FN) (4)  

Spec = TN/(TN + FP) (5) 

Fig. 1. Network architecture.  

Fig. 2. LSTM unit structure.  
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J = Recall + Spec − 1 (6)  

Where TP stands for true positives, TN for true negatives, FP for false 
positives, and FN as false negatives. 

Table 1 shows the detailed metrics obtained for both optimization 
methods (accuracy and J measure) on the testing datasets in the 10-fold 
cross-validation using the Patient-Split approach, and Fig. 3 shows the 
training progression vs. the testing results of the 80 epochs during the 
training phase. 

It can be observed from these figures that the network starts to sta
bilize in terms of testing accuracy early in the training, somewhere in 
between epoch 20 and epoch 25. At that point the network keeps on 
learning the training dataset, eventually reaching the high nineties 
before being stopped at epoch 80. This could be due to a lack of sig
nificant variability in the training set that would best represent the 
population at large, a problem which could be addressed by adding more 
patients into the training dataset. 

Another significant fact to appreciate from Table 1 is that the Recall 
measure is significantly larger than Specificity for either optimizing 
condition. This is the case mainly because the dataset itself is greatly 
unbalanced, being largely composed of myocardial infarction patients 
with significantly less control subjects. To improve performance more 
controls should be added to the dataset to increase data variability and 
hence allow the model to better generalize. 

3.2. Effects of improper data split 

As a retrospective on the performance of various data splits methods 
and for cautionary measures that should be taken into consideration on 
the adequacy of data splits, we have trained the proposed model using 
other state-of-the-art data split methods and show how each can affect 
the testing results in the way these data splits are performed as detailed 
in Section 2. 

We first focus on the beat-split method (use to generate intra-patient 
classifiers) and once again use 10-fold cross-validation. However, this 
time around we only care that independent heart beats seen during 
training are not also used for testing in accordance with the beat-split 
method. This nonetheless has a side effect of allowing patients used 
for training to also be used for testing (since the distinction is made only 
on the individual heart beats). Fig. 4 shows the training evolution of this 
particular test case. 

These results show that the network’s performance on the testing 
data continuously increases and closely tracks the training metrics. 
However, the model’s performance on new patients should have stabi
lized early in the training phase, as evidenced from the previous results. 
Therefore, it is important to review all testing results in combined plots 
to better understand the model as it is being trained. Fig. 5 shows the 
testing results for the different types of data splits including beat-split 
(DB), file-split (DF), and patient-split (DP). 

It is evident from these plots that the network first starts to show 
decreased performance on testing sets that use patient-split followed by 
test sets generated with file-split. That is, the model seems to start 
learning to classify the disease but eventually learns something else 
(perhaps patient level characteristics that help it distinguish hard 
heartbeats, taking advantage of the lower intra-patient variability). As 
its performance starts to drop for patients never seen before (as it is the 
case in DP) and then from files (records) not seen during training (DF) it 
appears to learn features that are shared across files and eventually 

features shared across heart beats of the same patient; effectively 
memorizing patients by learning to identify which beats belong to pa
tients seen during training and assigning them the appropriate diagnosis 
based on prior knowledge. 

It is also important to point out that minor epoch-level differences 
among the three split modes (DB,DF, and DP) are due to the nature of 
training; where the classifier focuses on different features at different 
timepoints as it descends down the multidimensional gradient in its 
attempt to minimize the classification error. What should be taken from 
the plots is the general direction/trend of the plotlines themselves and 
not the local differences. 

3.3. Randomizing labels of myocardial infarction patients and healthy 
controls 

Because the network could be learning many things, and not spe
cifically memorizing patients, we take it one step further and randomize 
the labels (MI/Controls) of each patient before retraining the model 
using beat-split. This action effectively eliminates any existing link(s) 
between biomarkers and disease label. Therefore, if the network model 
was never about memorizing the patients but just about learning the 
nature of the disease, we would not be able to attain a mean accuracy 
greater than 50%, given that the new labels are uniformly and randomly 
distributed. 

This time around, we trained the network for 90 epochs to identify 
any distinctive patterns that may arise. Fig. 6 shows the results of the 
experiment. 

These results clearly show that the proposed network is capable of 
learning features that help it identify heart beats from previously seen 
patients, effectively memorizing them, if adequate time is given. 
Therefore, it is of paramount importance that an adequate data-splitting 
method be used when creating the training and testing datasets, as 
choosing an inappropriate one will mask overfitting and lead to erro
neously high testing metrics that are not representative of the model’s 
performance on the general population. 

3.4. Influence of MI location on detection rate 

The location of the myocardial infarction has a great potential to 
influence the detection rate of the proposed classifier. As we choose to 
use a single ECG lead, the model proposed herein has a limited view of 
the heart’s electrical activity and certain MI types could be obscured 
from such a view. 

In practice, we can encounter various types of MIs which themselves 
affect the electrical activity of different sections of the heart. In the 
database used for this study, there are four main types of infarction that 
are described as follows: 

Anterior MIs happen when the left anterior descending (LAD) coro
nary artery is obstructed, which could lead to changes in leads V1 
through V6 but might or might not show in Lead II, depending on where 
the occlusion happens. Antero-Lateral MIs (a combination of Anterior 
and Lateral) show up in leads V3 through V6, while Antero-Septal MIs 
can be seen in leads V1 through V4. All along, these types of Anterior MIs 
could produce changes in Lead II depending on the location of the LAD 
occlusion [54]. 

Inferior MIs, account for about 40% of all MIs and generally involve a 
blockage of the right coronary artery. When the Inferior region is the 
main location of the infarction, leads II, III, aVF, and aVL show changes 

Table 1 
Testing results of the proposed LSTM method.  

Optimization Acc F1 Prec Recall Spec J # Epochs 

Acc 91.36 (±2.88%)  94.71 (±1.97%)  93.54 (±2.46%)  96.00 (±2.45%)  69.28 (±8.41%)  65.28 (±8.41%)  34.40 (±19.40)  
J 89.56 (±2.79%)  93.45 (±1.94%)  95.30 (±2.86%)  91.88 (±3.13%)  80.81 (±9.62%)  72.69 (±8.98%)  27.40 (±12.64)   
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in their respective electrical activity [55]. 
Lateral MIs are rare in their pure form; they generally occur as part of 

larger infarctions involving multiple areas, because the left ventricular 
lateral wall is perfused by the left anterior descending artery and the left 
circumflex artery. Leads I, III, aVL, aVF, V5, and V6 can all show elec
trical changes associated with Lateral MIs [56]. 

Posterior MIs present subtle changes in ECGs, therefore making them 
challenging to diagnose when they occur in isolation and often lead to 
misdiagnosis. They commonly take place in combination with Inferior 
and Infero-Lateral MIs. Purely posterior MIs can be hard to observe in 
ECGs and might require the addition of extra leads not present in the 
typical 12-lead ECGs (V7-V9) [57]. 

Fig. 7 shows the detection rates of the proposed MI detector ac
cording to the location of the myocardial infarction as well as the 
availability of samples for each of the cases. 

It is evident from this figure that the cases where the model under
performs (Lateral and Posterior) are ones where the electrical changes 

associated with them are hard to observe from the lead used in this study 
[56,57]. On the other hand, we must also be cautious of cases where the 
model performs exceedingly well, especially Antero-Septo-Lateral and 
Infero-Posterior, as the number of available samples for training and 
testing is minuscule. 

3.5. Behavior when encountering other pathologies 

Although various pathologies are present in the PTB database, we 
only used the data available form patients diagnosed with myocardial 
infarctions and that from healthy controls for both training and testing. 
However, much like in real life, the proposed model will encounter 
samples from classes other than MI or HC. Therefore, we would benefit 
from understanding or at least viewing how the classifier would respond 
when presented with samples from these other classes. 

In this section, we run all samples from every patient from the PTB 
not used in this study through the already trained classifiers for each fold 

Fig. 3. Evolution of performance metrics for the training and testing phase for the proposed LSTM model. (a) Accuracy, (b) J-Measure.  

Fig. 4. Evolution of performance metrics of the beat splitting method for both the training and testing phase. (a) Accuracy, (b) J-Measure.  
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Fig. 5. Evolution of performance metrics for the different data split methods. (a) Accuracy, (b) J-Measure. *DB->Beat-Split; DF → File-Split; DP → Patient-Split.  

Fig. 6. Evolution of performance metrics for randomized labels datasets. (a) Accuracy, (b) J-Measure.  
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of training and report the average detection rate along with the 
respective standard deviation. 

Fig. 8 shows the distribution of the classifier’s output for heartbeats 
from patients with a main diagnosis other than myocardial infarction or 
healthy control. In this figure the columns are associated with a given 
reason for admission and each of them has two colors; orange represents 
MI and blue represents HC. If a column is mostly composed of orange 
that means that most of the heartbeats associated with that diagnosis are 
classified as MI by the proposed model, while if mostly blue is present 
the classifier saw them as HCs. 

In this figure, we can see the primary reasons for admission present 
in the PTB header files associated with each record. Going even deeper, 
we can further break down how within each reason for admission the 
classifier proposed herein treats each subject. 

Bundle Branch Block: There are 20 independent records, belonging to 
18 different patients, that list bundle branch block as a diagnosis. Of 
them, 17 (from 15 different patients), this condition was listed as the 
reason for the ECG and admission to the hospital and only 5 records 
(from 4 distinct patients) had more than fifty percent (50%) of its 
heartbeats classified as healthy controls. 

Cardiomyopathy: There are 17 independent records (from 15 
different patients) for which this condition was listed as the reason for 

the ECG and admission to the hospital. Of these only 2 records had more 
than fifty percent (50%) of its heartbeats classified as healthy controls 
and they each belonged to different patients. 

Dysrhythmia: There are 16 different files from 14 different patients 
for which the main reason for admission was the condition of 
dysrhythmia. However, dysrhythmia condition rarely appeared alone 
and “Atrial Fibrillation” (AFib) was also evident in 8 (50%) of them 
where more than fifty percent (50%) of the heartbeats in each of those 
records were classified as belonging to the myocardial infarction class. 
“Coronary Artery Disease” (CAD) also accompanied dysrhythmia. Only 
one record from a single patient containing the main diagnosis of 
dysrhythmia had more than fifty percent (50%) of its heartbeats clas
sified as healthy controls. 

Heart Failure (Types 2,3, and 4): There are very limited number of 
records exhibiting heart failure; only one of each type from separate 
subjects exist in the PTB. Each of this records had a very high percentage 
(> 96%) of its constituent heartbeats classified as MI. 

Hypertrophy: is present as the main reason for admission in seven (7) 
ECGs from seven patients. Hypertrophy was never diagnosed alone and 
only one patient’s record (being additionally diagnosed with hyperten
sion) had 93% of its heartbeats classified as healthy. For all other re
cords, at least 61% of the heartbeats where considered infracted. 

Fig. 7. Detection rate according to MI location.  

Fig. 8. Distribution of classifier’s output for diagnosis not covered in training.  
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Myocarditis: is observed in four (4) records form four (4) distinct 
patients. Only one of these records had most (> 94%) of its heartbeats 
classified as healthy. The record with most beats classified as MI 
(> 84%) has an additional diagnosis of “Bundle Branch Block”. 

Palpitation: are only present in one single record where over 95% of 
the heartbeats are classified as infarcted. This record also had an addi
tional diagnosis of Coronary Heart Disease. 

Stable Angina: is the main reason for the admission of two separate 
patients (for a total of two ECGs). One of them only has additional cold 
and Hyperlipoproteinemia as a diagnosis and received a healthy clas
sification for over 90% of its heartbeats. The other has CAD and hy
pertension, resulting in over 95% of its heartbeats being classified as MI. 

Unstable Angina: is only present in one record and 100% of the beats 
are classified as MI. 

Valvular heart disease: is listed as the main reason for the admission of 
six (6) patients, for a total of six (6) ECGs. Every one of these records has 
multiple associated diagnoses and over 75% of the heartbeats in each 
record were classified as MI. 

Atrial Fibrillation (AFib): is never listed as the main reason for the 
admission of any patient but is listed as an associated diagnosis in 
fourteen (14) separate records from eleven (11) patients. Every time 
AFib is listed as a diagnosis for a given record, over 60% of the heart
beats therein were classified as MI. 

Unknown (UNK): The reason for the admission of 22 patients is listed 
as unknown. From these, 27 separate records were recorded. Most of 
them have over 90% of their heartbeats classified as MIs, about 22 re
cords. Of the remaining five (5), four (4) have over 50% of the heart
beats classified as MI and only one has over 90% of them classified as 
healthy. 

It seems to be evident from these broad statistics that the model 
proposed in this study, although only trained to differentiate between 
myocardial infarctions and healthy controls, appears to be detecting life 
threatening heart ailments. This possibility would have to be further 
explored in future studies that encompass broader datasets, as no 
conclusive finding can be done over these limited samples. 

3.6. Visualizing the errors 

Although high classification metrics were achieved using the pro
posed approach, it is important to understand where the proposed model 
falls short and does not achieve the best performance. To start, Fig. 9 
depicts interestingly different heartbeats from specific records were the 

classification accuracy was particularly low (<10%). 
The heartbeat present in Fig. 9a belongs to a patient originally 

admitted for an Anterior MI but the ECG was recorded over a year after 
the infarction took place, to be more specific 396 days after. This 
heartbeat was classified by the model as “Healthy Control” although the 
truth value from the diagnosis was “Myocardial Infarction” making it a 
false negative. Only eleven (11) out of the one-hundred and forty-two 
(142) heartbeats for patient 120 were correctly labeled as MI instead 
of HC. 

Fig. 9b shows an example of improper lead placement or contact that 
yielded a very noisy ECG recording. This heartbeat belongs to patient 
180, a healthy control subject, and is part of record s0476_re. In this 
record, there is a vast amount of noise present in Lead II, while leads 1 
through 6 are fairly clean. However, as this classifier only uses the in
formation from Lead II it is hindered by the noise and is challenged to 
properly classify the detected heartbeats. Only one (1) out of the two- 
hundred and forty-one (241) detected heartbeats is properly classified 
as HC, while all others are improperly labeled as MI. 

A truly interesting false positive case is present in Fig. 9c. This 
heartbeat also belongs to patient 180, but this time the record is 
s0561_re and there is no significant noise to contend with. In this 
instance, the classifier was unable to properly classify around 63% of all 
detected heartbeats, assigning them an MI label instead of the correct 
HC. 

Fig. 9d shows another instance of a false negative outcome. This 
heartbeat belongs to records s0141lr of patient 43, a subject with a 
lateral infarction. In this instance there are a couple of factors that made 
the classification difficult: (1) the electrocardiogram was recorded over 
eight (8) months after the infarction took place and a catheterization 
was performed, and (2) the type of infarction in question was a “Lateral 
MI”, which are difficult to diagnose from Lead II alone as electrical ac
tivity changes associated with it might not be revealed in such a lead 
[56]. 

3.7. Comparative assessment 

As the type of data split used for training is seen to greatly affect the 
performance metrics, we must restrict our comparative assessment 
contrasting the proposed method to related studies that use the same 
data split method in order to avoid unfair comparisons. Some relevant 
studies covered in the literature are presented in Table 2. Herein, we 
provide a simplified evaluation of their dataset generation techniques 

Fig. 9. Examples of misclassified heartbeats.  
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along with the number of leads used and the sample size required to 
make a classification. 

Given the unique way of assuming only a single heart beat and 
single-lead electrocardiograms together with the adoption of patient 
split method of analyzing data, to the best of our knowledge, there are 
no other studies of myocardial infarction detection and classification 
that can be completely and fairly compared to ours, as types of MI 
classified vary and the datasets and dataset subsets are not equal to ours. 
However, in Table 3 we provide an in depth comparison of some of the 
available studies that generate inter-patient detection of MI. In this 
table, we cover and provide the numbers of leads used, number of pa
tients and heartbeats evaluate, the sample length required, the method 
used, and the general performance metrics of each study. 

Of all the studies presented herein, [8] and [14] are somewhat close, 
although much more restrictive (they use subsets of the available data), 
as they use electrocardiograms available from the PTB diagnostic ECG 
Database [47,48]. 

Sharma and Sunkaria [8] focused on acute myocardial infarctions in 
the inferior portion of the heart (IMI) leading them to a rather restricted 
dataset of only 30 MI subjects and 52 HC. Moreover, they use three leads 
of the available twelve, specifically leads II, III and aVF, as better rep
resentatives of electrical activity in the inferior portion of the heart. 
Sopic et al. [14] use random forest feed by expert features extracted 
from Lead 5 of the available electrocardiograms using discrete wavelet 
transforms. They use 52 MI subjects as they want to keep a balanced set 
for training and testing due to the limited availability of healthy controls 
(52). Just as in [8], this study is not directly comparable to ours as they 
use a different ECG lead and a more restrictive, yet balanced dataset. 

Although our results are not directly comparable, we achieve the 
highest accuracy and recall, when comparing against either [8] or [14], 
for either of the two optimization cases (best Accuracy or best balance 

between Specificity and Recall). However, our specificity and J-Measure 
oscillate, providing the best number only when we train our network to 
achieve the best balance between Specificity and Recall. The lower 
specificity is likely due to the fact that we have a heavily unbalanced 
dataset, as there are about three times more myocardial infarction 
subjects than healthy controls in our datasets, and a higher accuracy will 
tend to lead the network to prioritize properly classifying MI records 
over HCs. We overcome this in this study, by optimizing, or targeting the 
point in time at which the network is having the best balance between 
specificity and recall instead of using the common practice of just tar
geting the best accuracy. We also only require one lead of the electro
cardiogram as does [14] but unlike them our lead is more commonly 
sampled and simpler to record that lead V5. Neither [8] nor [14] pro
vides the diagnosis time (or processing time), but study [14] provides a 
hardware implementation which is commendable and could be used as 
means to reduce the processing time. 

From Table 3 we can also see that the detection accuracy is positively 
correlated with the number of leads used, that is, more leads equals 
greater accuracy. This is to be expected, as more electrocardiogram’s 
leads equates to more views of the heart and more information is 
gathered. The extra information collected from other leads is especially 
useful to detect infarctions that are not visible or hard to see from a 
single lead, as it is our case [56,54,57]. By using 12-lead ECGs, [9] and 
[16] are able to achieve higher performance metrics than any other 
single lead method. 

Longer sample lengths seem to also influence the performance of the 
different models, but the relevance of this pattern is not very clear. In the 
case of [13], by using the whole record to produce a classification, the 
authors achieve higher performance metrics than those reported by [16] 
who used more leads (12 in [16] vs. 4 in [13]). However, [16] is 
detecting MI from ECG images, not digital signals like all other studies in 
Table 3 are, and this could explain the difference in performance. The 
authors of [13] also tailored their lead selection to the type of MI they 
were trying to detect (Generalized Anterior MI) which makes it less clear 
whether or not the sample length is the key factor yielding the perfor
mance improvement. Therefore, it is hard to gauge the influence of 
sample length in classifier performance due to the fact that such vary 
from study to study along with classification method, number of leads, 
and even dataset used. To the best of our knowledge there is no study 
that explores the influence of sample length on MI detection rate. 

One more significant factor to point out is that we are not able to 
provide a statistical comparison of our method to other present in the 
literature or those presented in this section, as they only provide the 
average performance metrics of their validation approaches and do not 
provide the standard deviations of such. 

Overall, the results obtained are highly competitive in comparison to 
state-of-the-art algorithms, although stringent conditions are set up in 
the training phase to overcome overfitting, data leakage and bias from 

Table 2 
Simplified analysis of relevant studies.  

Study # Leads Sample Length Beat Split File Split Patient Split 

[6] 1 0.65 s ×

[7] 1 RR interval ×

[8] 3 3 s × ×

[9] 12 1 s × ×

[10] 12 10 s ×

[12] 1 2 beats ×

[13] 4 Whole record   ×

[14] 1 0.65 s   ×

[15] 12 0.65 s × ×

[16] 12 7 s  × ×

[17] 12 4 s  ×

Table 3 
Comparative results of methods using patient split method.  

Study Leads 
used 

#Patients # Beats Sample 
length 

Method Acc Recall Specificity J-Measure 

[8] II, III, aVF 30MI, 52HC 3240 MI, 3037 
HC 

3 s SWT &SVM 81.71 79.01 79.26 58.27 

[9] 12 128MI, 52HC 48690MI, 
10646HC 

1 s MFB-CNN 98.79 98.73 99.35 98.08 

[13] aVL,V2, 
V3,V5 

Records: 167MI, 
80HC 

Not Specified Whole 
Record 

ML-CNN 96.00 95.40 97.37 92.77 

[14] V5 52MI, 52HC Not Specified 0.65 s Random 
Forest 

83.26 87.95 78.82 66.77 

[16] 12 Images: 483MI, 
474HC 

Not Specified 7 s MBFN-CNN 94.73 96.41 95.94 92.35 

Proposed (Accuracy 
Optimization) 

II 148MI, 52HC 50732MI, 
10123HC 

1 s LSTM 91.36 
(±2.88%)  

96.00 
(±2.45%)  

69.28 
(±8.41%)  

65.28 
(±8.41%)  

Proposed (J-Measure 
Optimization) 

II 148MI, 52HC 50732MI, 
10123HC 

1 s LSTM 89.56 
(±2.79%)  

91.88 
(±3.13%)  

80.81 
(±9.62%)  

72.69 
(±8.98%)   
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features seen in the training phase. The proposed method would have 
performed even better if a balance between the normal controls and MI 
subjects could have been reached through the collection of more data 
from normal controls. 

4. Conclusion 

We propose a novel multilayer LSTM neural network for near-real 
time and accurate infarction detection using one-second ECG samples 
of Lead II ECGs. This study considered 148 myocardial infarction pa
tients and 52 healthy controls which were split into 10 non-patient- 
overlapping sets for 10-fold cross validation. The proposed algorithm, 
which uniquely relies on a single heartbeat of single-lead (lead II) 
electrocardiograms, achieved an accuracy of 89.56% (with a 95% 
Confidence Interval of ±2.79%), recall/sensitivity of 91.88% (±3.13% 
95%CI), and a specificity of 80.81% (±9.62% 95%CI). It is important to 
emphasize that in the approach considered, while deploying the patient 
split method, care was taken that no heart beats or subjects (MIs and 
HCs) seen in the training phase are considered in the testing phase. 
Moreover, within the design construct of the model, we aimed to achieve 
near real-time infarction detection yielding a processing time of only 
40 ms to diagnosis, which is well within the time in between two 
heartbeats of 300 ms assuming a fast heart rate. This fast-processing 
characteristic of the model allows for its deployment on existing wear
able/portable devices and other test instruments which could poten
tially have significant societal and clinical impact in the lives of not only 
at-risk patients but also for the population at large. 

However, the immediate impact of accurately providing a real-time 
infarction diagnosis would largely depend on the number of at-risk pa
tients. A portion of myocardial infarction mortality rate is due to the lack 
of immediate medical assistance resulting from lack of awareness and/or 
absence of observable symptoms. By monitoring the ECG of patients 
under cardiac stress and/or at risk of myocardial infarctions in near real- 
time, we could speed up the time to diagnosis, plan for early treatment, 
and extend the window of time for doctors to tackle the problem in case 
of an emergency. 

Furthermore, integrating the proposed approach to a standalone 
software/hardware platform that would monitor a patient’s cardiac 
activity, perhaps through the use of widely available fitness trackers and 
other currently commercially available wearable devices, would be a 
significant portion of our research efforts for the next step in the 
development of this software-based design. Moreover, given the 
implemented architecture of this LSTM model, we could also seek to 
identify at which point of the heartbeat the presence of myocardial in
farctions becomes evident, as the last LSTM layer can be set up to pro
vide a per-timestep diagnosis. 
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