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Abstract
We show, how the Riemann-Hilbert approach to the elastodynamic equations,

which have been suggested in our preceding papers, works in the half-plane case. We
pay a special attention to the emergence of the Rayleigh waves within the scheme.

1 Introduction

This paper is a complement to our previous work [11] where, following the general ideas of
Fokas’ method [4] -[8], we started to develop the Riemann-Hilbert scheme for solving the
elastodynamic equations in the wedge-type domains. In [11], we show that the problem
can be reduced to the solution of a certain matrix, 2 X 2 Riemann-Hilbert problem with
a shift posed on a torus. A detail analysis of this problem is our ultimate goal which we
hope to be able to present in our further publications. The aim of this paper is much more
modest. We want to show how the basic ingredients of the elasticity theory, such as the
Rayleigh waves, are produced in the framework of Fokas” method. To this end we shall
consider the simplest case, the problem in the half-plane. Of course, the problem can be
solved via the standard separation of variables. However, its analysis in the framework
of the Riemann-Hilbert method shows many of the features which are also present in the
more interesting and important case of the quarter plane.

The quarter plane case has already been outlined in [11]. In the next section we shall
remind the principal ingredients of the approach that has been developed there.

2 Lax Pair for the elastodynamic equation

The elastodynamic equation in an isotropic medium defined by the Lamé parameters \, ,
density p and frequency w can be written as the following system of two scalar equations:

h? R
Uy + 73 U + g Wa +h*u =0, (2.1)
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2 _ pw? 72 _ pw?
where h® = /\+2u’l = Note that

[>h (2.3)

The problem is two - dimensional in zz plane, and u and w are the x and 2z components
of displacement, respectively. For the half plane problem (z > 0) on the surfaces z = 0
the stress free boundary conditions are :

Too = p(uy +wy) = =T, T.. =My + (A +2p)w, = -T9, 2=0, (2.4)

xz ) zz )

where T2 and 7Y denote the given stresses which could be interpreted for example as

the stresses of the incident Rayleigh wave. The solution should also satisfy Sommerfeld’s
radiation conditions [17] which we shall specify latter on (see equation (2.23) below).
In fact, to make the problem well-posed one also has to add the surface wave radiation
conditions. However, we will postpone doing this until Section 4. In that section we
will show how one arrives at these condition, together with the Rayleigh surface waves,
just following the logic of the method we are presenting in this paper. Indeed, as we
have already indicated in the introduction, the appearance of the Rayleigh waves within
Fokas’s method is one of the principal methodological goals of this paper.

In [11], following the methodology of [6], we showed that equations (2.1), (2.2) are the
compatibility conditions of the following two Laz pairs, written for the auxiliary scalar

functions, ¢ = ¢(z,z; k) and ¢ = ¥(z,z; k) (see [11] and [10] for details),

1 1
(bz — ’l]i](b = ﬁ(\/ k? — h? — k)Tl - ﬁ(Tlx + ile)v (25>

by + VK2 — h2¢ = %(k —VE2—=hY)7m — %(m; +i712),

and

1 1
¢z - Zkgb = Z_Q(V k2 — 12 — k>7—2 - l_2(7—2z + iTQZ)? (26)

Ve + VEE = 2 = l_Q(k —VE? =121 — l_2(7—2m +iTy,),

where 71 (z,x) and 75(z, x) are the Lamé potentials given by the equations

1
T = §(UI + U)Z), Ty — §(w$ — uz), (27)

and ¢ and 1 satisfy the following asymptotic conditions ,

1

¢,¢=o(k), ko oot 2.8)



o, =0(1), k—o0.

The last condition in conjunction with systems (2.5), (2.6) yields in fact the more specific
asymptotic representation of the solutions ¢ and ¢ as k — co™. Indeed we have (cf. [10]),
that

¢——3n+0<1), 1/1——%7'2—0—0(1) k- 00 (2.9)

In these formulae, k — oo™ means that & — oo and Vk2 — h2, Vk2 — 12 — +k + ..
Introducing the new spectral parameter ¢ as follows,

h 1 h 1
k:§(<+z)’ kQ_h2:§(§_Z>’ (2.10)

( sooask—ootand ( = 0ask — oo,

so that,

one can rewrite the first Lax pair (2.5) as

zh 1
o~ (c+)o-an (21)
h 1 ~
s _Z - 2.12
ooty (c-¢) o= (2.12)
where @1, @ are the right-hand side parts of (2.5). In terms of ¢ they are :
T 1 , ~ T ) ,
Ql = _C_fll — E(Tlx + ZTlZ); Ql = C_}i — E(Tlx + ZTlZ). (213)

The normalization conditions (2.8) and (2.9) in terms of the new variable ( read,

»=0 (%) , ¢ — o0, (2.14)
gb——2‘n+0(() ¢—0. (2.15)

~ The new spectral parameter for the second Lax pair we shall denote . The variable
( is defined by the relations,

k:é(g-i-%), m:%(f—%) (2.16)

so that, . .
(—socask —ootand ( = 0ask — oo~



The second Lax pair reads as follows

il [~ 1
b5 () v 1)
o+ (c—z)w Q». (2.18)
where B N ;
Qe=—7 ~ plrtim)i Q= gl (7 Fi722), (2.19)

and it is supplemented by the normalization conditions
1 -
=0 (Z) , (¢ — o0, (2:20)

b= —2—72 +0() ¢(—0. (2.21)

The potentials 7 and 75 can be taken as the basic objects instead of the original
displacements u and w. Indeed, as it follows from (2.1) and (2.2), the functions u and w
can be reconstructed via 7, and 7 with the help of the following equations

2 2 2 2
U= — Tl:p+l_27—2za and w:—ﬁﬁz—l—Qsz

> (2.22)

respectively. Also, in terms of potentials 7 and 75, Sommerfeld’s radiation conditions can
be written as

o 01y
_ = _— fr— —= 2 2
J%EEOR (8 2h7’1> 0, hm R (8 ZlTQ) 0, R=+vVux*+ 2% (2.23)

The potentials 7 o satisfy the Helmholtz equations,
Tax + T1zz + h27_1 - 07 (224)

Togx + T2z, + l27—2 =0. (225)

This fact follows again from the basic elastodynamic system (2.1) - (2.2). It is important
to notice that the reverse statement is also true. That is, if the displacements u and
w are determined by (2.22), than equations (2.24) and (2.25) for 7y and 7 imply the
elastodynamic equations (2.1) and (2.2) for v and w. Moreover, the inverse formulae
expressing 7, and 7y in terms of u and w are given by (2.7).

The linear systems (2.11)-(2.12) and (2.17)-(2.18) can be thought of as the Lax pairs
for the equations (2.24) and (2.25), respectively. This Lax pair representation of the
Helmholtz equation has already been known and used for the analysis of the boundary
value problem for the Helmholtz equation in [7] and [10]. The very important novelty of
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the situation we are dealing with in this paper is that the boundary conditions, which
relations (2.4) impose on the functions 7y and 7 are completely different from the ones
which appear in the pure Helmholtz problem. The most distinct feature of these conditions
is that they mix the two Lax pairs together, and this in turn complicates dramatically
the analysis of the global relation (the main ingredient of Fokas” method [8]) in the case
of the quarter space. In the half space, however, the solution of the global relation can
be obtained in the closed form and by simple algebraic means.

3 Half space problem

The considerations of the previous section were general. We now apply the Lax pair
representation of the elastodynamic equation to the half plane problem. We will basically
repeat the constructions of the Section 3 of [11].

3.1 Integration of the Lax Pairs. The integral representation
for the potential functions.

Rewriting (2.11, 2.12) as
e%(ﬁ-%)z—%(C—%)fﬂ<¢€—%(C+%)3+%(C—%)$)Z = Q, (3.26)

6%(<+%)Z—%(C—%)x(qbe—%(ﬁ%)ﬂr%((—%)x)m — 0, (3.27)
and then integrating, yields the following general formula for the solution of (2.11, 2.12):

8(C,7,2) = 3 CHD—E Do / - e 2 (DT 10, 42 + Ord). (3.28)
(z*,2%)
It is worth noticing, that the path independence of the line integral in the right hand side
is equivalent to the elastodynamic equation.
Choosing the contours of integration as shown in Figure 1, one obtains two distinct
solutions:

(bl(er? Z) - /x 6%@_%)(%’_1)@1(@*’%/,z>d:€/ (329>
¢2(<7I7z> - /x e%(c_%)(x,_x)él((wr/?Z>d'r,' (330)

The functions ¢, ¢ are analytic in the regions of the complex ( plane which are shown
in Figure 2. The difference,

qbl _¢27

is the solution of the homogeneous version of system (2.11, 2.12). Therefore,

1 — ¢ = MDA ar2y (3.31)
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q)l (x.2) ¢2

Figure 1: Contours L; and the solutions ¢;(z, z), i = 1,2 of the first scalar Lax pair

where the jump function p12(¢), j,k = 1,2 does not depend on x and z and, as a function
of ¢, is well defined on the boundaries of the regions in Figure 2, that is on the oriented
contour K also depicted in Figure 2.

A key point now is to look at relation (3.31) as at the Riemann-Hilbert problem of
finding the piecewise analytic function ¢(¢) whose boundary values on the contour K,
ie. ¢ = @1, ¢_ = ¢, satisfy the jump relation (3.31). Solving this Riemann-Hilbert
problem we obtain the following integral representation for the piece-wise analytic function

o¢)

1 e%(erl/s)zf%(sfl/s)x
/ p12(s)ds. (3.32)
K

$0) = 53 —

 2mi
Taking into account (2.15), we derive from (3.32) the integral representation for 7

N | —

n =

2 [ e CH1/Qz—5(¢~1/¢)x
(b = - [ ——— (. (3.33)
K

Similar representation we obtain for the potential 7 using the second Lax pair

(w0 — )

2 oRCrde-tE-1/0a
T /
K

= Ar <~ p12(€)dC. (3.34)

To complete the solution of the half space problem, we need to express the jump

function pi2(¢) and the similar function, pio(¢) (coming from the second Lax pair), in

1
2

terms of the given boundary data, i.e. in terms of the stresses 7.9 and 7. To this end,
we notice that equation (3.31) holds for all  and z and that p;5(¢) does not depend on x
and z; therefore, using this equation for z = 0 and z = 0 and remembering the definitions
(3.29), (3.30) of the solutions ¢ », one obtains the following formula for the jump function

P12:
pu(C) :/ e%(c_%)m/él(C7$/>0)d9€’- (3-35)
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Figure 2: Regions of analyticity of functions ¢;, ¢« = 1,3 of the first scalar Lax pair

The integrand, Q1(¢,0,2'), involves the boundary values of the potential function 7 and
its derivatives. However, not all of them can be determined by the boundary relations
(2.4). In order to determine the remaining data, we have to appeal to the central ingredient
of Fokas’ method, i.e. to derive the relevant global relation for the jump function pi(C).

Formula (3.35) can be rewritten in the form of the line integral of the conservative
vector field,

ih Ly, iy b 1y ~
p12(C) :/ e 2 (FOF 3070, a2 + Oda).
—oo<z' <00, 2/=0

Assuming that either ( = —it,t > 1 or ( = it,t < 1, the contour can be closed in the
upper plane 2z’ > 0. Therefore, pi2(C) is zero on these parts of the complex axis (,
p12(() =0, (=—it, t>1, and (=it, 0<t <1, (3.36)

which constitutes the global relation for our problem. Furthermore, the circular part of
the contour has to be analyzed taking into account the radiation condition. Applying the
stationary phase estimate as R — oo (z = Rcosf, z = Rsinf, 0 < 6 < ) to 7y (3.33)
yields two stationary phase points

¢ =sinf —icosf, (o= —(sinh —icosb). (3.37)

They belong respectively to C, and C; parts of K (see Fig3). These points provide the
following asymptotic estimates

1 9 .
]Cr ~ _.p(Cl)etheze ﬁe_”T/Zl\/Ea (338)
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Figure 3: Contour of integration K of the first scalar Lax pair; sections of the contour
where the jump function is zero are given by the dashed line.

1 P(Q) —iRh i 2 i
Iy ~ — P2 mirngio | 2 mim/a o 3.39
R R O (3:39)

The second asymptotic solution (3.39) does not satisfy the radiation condition (2.23);
therefore, in addition to the global relation (3.36), we have that

p12(¢) =0, CE€C. (3.40)

Taking into account (3.36) and (3.40), one finally obtains that the jump functions
should be defined on the “non zero” parts of the contour K which are indicated in Figure
3 by solid lines.

3.2 Analysis of the global relation

In this section we use the global relation (3.36) and the radiation condition (3.40) to

determine the jump function p2(¢) in terms of the known functions ng(z)), Y.



Let us rewrite (3.35) changing 2’ to = and substituting Q; from (2.13):
pal€) = [~ A (Lm0 - e 0 4 im0 ) [ Gy
After integration of 7, by parts one obtains
1 ! 0)+ (0| d 3.42
p12(C) = _Ooe 2h <+C m1(7,0) + h27'1z($ )| da. (3.42)

Then using conditions (2.4) at z = 0, equations (2.1), (2.2) and again integrating by parts,
one finally arrives at the formula,

p12(¢) = —b(C)®1(C) — d(¢)P2(¢) + Fi(C), (3.43)
where F} is defined by the given boundary data,
R 1 OO%C—*w(O)
=~ oo <g+<) /ooe (27O (2, 0)da (3.44)
1 < -
“ong 0062( )Tag(z))m(x 0)dz,

and &, ®, are the following integrals of the unknown u and w:

[Ny
Ny

0,(C) = / T Dy 0)de, D) = / T (e, 0)da (3.45)

—00 —00

The coefficient functions, b(¢) and d(¢), are given by the formulas:

R ] (3.16)

s
dQ)=—p—* 15 (Cz C2>' (3.47)

In terms of these functions the global relation on the parts I and II of the imaginary
( - axis reads

b(Q)P1(¢) + d(Q)P2(¢) = F1(C) (3.48)
Changing  to —= and using symmetries yields
OB+ dQI2:(6) = Fi () (3.49)

on the parts of the imaginary axis which are included into non zero p sections of K. Hence
the boundary conditions applied to the first Lax pair produces one equation to relate the
two unknown functions, i.e. ®; and ®,, on these parts of the contour K.
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Equation (3.48) also holds on C; where pj; = 0. Changing ¢ to —% and using symme-
tries yields

CHO®1(C) + d(Q)@o(C) = Fy (—%) , (3.50)

and hence we obtain an equation (actually the same as (3.49)) relating the two unknown
functions on the arc C, as well.

Repeating computations for the second Lax pair on the ¢ complex plane one obtains
that the global relation has similar form as (3.48)

3()81(0) + BC)P2(C) = Fa(0), (3.51)
e 5(¢) = —i (52 - é) , (3.52)
6(5):£(~2—C~%), (3.53)
B1(C) = /_ Zeé@c)wu(gg,mdm, Bs(C) = /_ Z (8702, 0)de, (3.54)
Fy(() = —gllz /: 28770 (2, 0)da (3.55)
e (g N %) /: 2 (770 (4. 0)de

Therefore, using the symmetries in the same way as for the first Lax pair, we can obtain
another relation between the unknown functions on the non-zero parts of the contour K
of ¢ plane.

Summarizing our analysis of the global relation, we see that we have arrived at two
algebraic linear equations - equations (3.49) and (3.51), for four unknown functions - the
functions ®;5(¢) and @ 5(¢). However, one can notice - see the definitions (3.45) and
(3.54), that these four functions are actually depend only on two functional parameters -
u(z,0) and w(x,0). This means, that just by counting the truly independent functions we
have as many equations as we have unknowns. In order to make use of this observation,
we are suggesting to transfer both Lax pairs onto the same complex plane.

3.3 Joint uniformization

Let us map the complex planes ¢ and ¢ to the complex plane € by the following formulae

=5 1(t-3)=r(c-g). (3.56)
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where

[ [?

Note that a > 1. Transformation of the contour K from (¢ plane to £ is given in Figure 4.

)

Figure 4: Transformation of contour K from ( to £ complex plane.

The explicit formula for the map (& ) is given by the equation,

~ h 2 1
(=5 (6= S+ gv/ETDE@Ta) (359
so that
Criol ETDE T
¢ alg '

Transformation of the contour K is presented in Figure 5.
The branch points of (3.58) & = ia® and ¢ = 4, presented in Figure 5 as Af, A’ have

a2

the same image {“ = 2% (5 - ?> =1. It is given as A point on the 5 plane. On the other

hand, the intersection of the circle of radius a with the imaginary ¢ axis (point A which
is also marked as A; and Aj; to indicate left and right sides of the cut) has two different
images A; and As on ¢ plane. At these points

s a?—1+2ia 1 —a® + 2ia
= d
¢ 2r1 ¢ a?+1 7
and they belong to the unit circle: |§ | = 1. Symmetric low part of the contour has B
notations.
Since,
1 1 a? - 1 h a?
C__:_<5__)7 (_::_<§_—), 3.59
¢ a £ ¢ al 3 (3:59)



SR

Figure 5: Transformation of contour K from C~ to & complex plane.

the both ®;(¢) and ®1(C) become ®;(€) while the both ®,(¢) and ®5(¢) become By(€),
where

a2

9] 2 00
0,(6) = / ez 6T (0, 2)dw,  By(€) = / €2 = (0, z)da. (3.60)
Taking into account these transformations and changing b(¢), d(¢), F1(¢), B(C), 6(C), F»({)
to b(&),d(&), F1(§), B(£),d(E), Fo(€) yields the system of two algebraic equations for the
two unknown functions ®4(£) and ®5)&) on all parts of the contour K (§). Indeed, we have
that

2
~HOB(E) + d(e)a(e) = F1 (- ) (3:61)
2
(OB(©) - HOD() = F2 (- )
if £ € [ia?,i00) U [ia,ia®], U [—ia, —i], U [—i,40) U C,, and
b(&)P1(8) + d(§)P2(8) = Fi(8), (3.62)
2
(OB(©) - 5Dl = £ (-5 ).
if & € [i,ialy U [—ia, —ia®]y. Here [...],; means the right side of the cut [...], and the
functions b(§),d(&), 5(£),0(§) are given by the formulae.
~h2 2 2 l2 _ h2 h2 2 2
b(§) = 17 (% - Z—Q) A& =t E (% + %) : (3.63)
h2

0(¢) =

e

(E+5)+3 (o é)] O P ) L
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where

Q(¢) = gme 1)@ +ab). (3.65)
It is worth noticing that
(-6 = ), O (g) — Q). (3.66)

4 Analysis of the solution. Rayleigh waves

Summarizing our derivations, we see that on all parts of the £ - image of the contour
K, the functions ®;(§) and ®5(&) can be defined by solving a simple algebraic system.
Changing variable ¢ back to the variables ¢ and f , we obtain the jump functions p12(Q)
and 512(5 ), respectively. This would complete the solution of the half space problem. Let
us look at the solutions of the algebraic systems more carefully. Note that we need to
know functions ®;(£) and ®,(€) on the image of the contours K and K on the ¢ - plane
only, i.e. for £ € [ia?,i00)Ulia,ia?| U[—ia, —i|, U[—1,i0) UC, Hence, we need to consider
the system (3.61) only. It follows then that,

FOR () +dOF (¢ SR (~2) + bR (2
(8 = ( £>D(§) ( €>and<1>2(§): < §>D(§) ( £>,
(4.67)
where
D(€) = d(€)3(€) — BEHE) (168)

is the determinant of system (3.61). Our task now is to analyze its zeros.
By a straightforward calculation, we have that

b=~ (a+1) ne)

2 2 2 2
Do(f):i [(a—%) +2(%+z—2>

i(é;—g><r—f>»4@+JX8+aﬁ

a2 £2
(4.69)
Going back to the original spectral parameter k,
h (& a
k=—=(=4+ = 4.70
2(a+§), (4.70)

and recalling the definition of the parameter a, one can check that

! (§ - E) = VE, /@@ = VPR
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From this, it is easy to see that

4 2\ 2
%Do(g) = <k:2 —h?+ %) — k(k* — B*)VE2 + 12 — h2. (4.71)

Introducing the physical quantities (see [3] ),

2 2 2
C =g =g g = 2R (4.72)

we arrive at the final formula for the determinant Dy,

o= (2 5) i o2 1)
D) =0 +— (2—-) —4@@. (4.74)

Equation in the right hand side of this equivalence relation is the classical equation for
the velocity ¢ of the Rayleigh wave - see e.g., [3].

Hence our main conclusion: The zeros of the determinant D(&) of the linear system
(3.61) representing the global relation of the half-plane problem coincide with the images
& of the Rayleigh velocity ¢ under the map chain ¢ — k — £ .

Combining (4.70, 4.72) we obtain the value of &, in terms of the Rayleigh wave velocity

Cc as
{2y -

which means that

c c?

or, taking into account the expression of the transformation parameter a, in terms of «

and (3 as
gczi(% %-1) <i+ %5—1). (4.76)

Due to symmetries (3.66), there are two zeros: &, and a

Since 0 < ¢ < 8 < «, the roots lie on the mtervals (za ico) and (—i,i0) of £ plane.
This means, that the densities p12(¢) and j12(C) do have poles on the contours K and K|
respectively. This means we have to deform the contours K and K near the poles and go
around them. This is where the both - the Rayleigh surface waves and the surface wave
radiation condition, will show up in our approach. We are going now to explain this in
details.

14



Let us consider, for example, the part, I , of the 7y - integral (3.33) that contains the
top pole, (. = &./a, i.e.,

B2 [io0 pH(CH1/Q)z—B(C-1/)x
©odrn i ¢

I p12(¢)dC.

As is written, this integral does not exists, of course. It needs to be regularized. To this
end, let us denote p. the residue of p12(¢) at the pole ¢ = (. and rewrite /., as

I, =1+ 1%, (4.77)
where 2 pico J(C+1/¢)2—B(¢—1/¢)
h 100 6% + 2=5(¢— x D
W / — e g 4.78
Co A7 ; C (p12<C) C_ Cc) g? ( )
and 00, (C4+1/¢)z—2(¢-1/¢)
hz 00 ({4 z—5(¢— T .
o [ - Pe_qc. (4.79)
© Ar ), ¢ ¢ —Ce

(

/

S

—i

(a)
©
K
ia

Figure 6: Top pole on the imaginary axes

We note that the integral [ C(cl) has no singularities. Moreover, it can be easily estimated

as R = vx? + 22 — 0. Indeed, since the corresponding stationary point lies on the circle
part of the contour K we immediately conclude that

Hence this part does not contribute either to radiation part or to the surface wave part
of the potential 7y (z, z). Let us then concentrate on the indeed singular integral I C(f)
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A standard way to regularize the integral [ C(Z) would be to deform the contour around
the pole. Let us assume that x > 0 and suppose that we go around the pole from the right
(see Figure 6). Because of analyticity and exponential decay of the integrand in the first
quadrant of the complex plane outside of the unit circle, this part K may deformed to,
for example, the ray arg ( = 7/4 and integration by part produces the O (}%) asymptotic
behavior. Suppose now that we go around the poll from the left. We still have to close
the contour in the first quadrant because of the analyticity and decay. This time, the
leading term will be given by the residue of the integrant, i.e., we shall have,

I(z)_ih?Pc 5e (€eta®/Ee)z—ge (€e—a®/E)z | () ! R 4.80
T ) TO\R) T 0

In the case z < 0, the integrand is exponentially decay in the second quadrant and hence
the situation is reverse: if the contour goes around the pole from left we have the O (%)

asymptotic behavior of the integral [ C(Q) while going around the pole from the right would
produce the residue term (4.80) with the opposite sign. In other words, for the part I,
of the 71 - integral (3.33) we have that

‘h2 c i 1
I, = sign (z) Zggp ¢ 2 (Eeta?/&) g (€ema?/Ec)a | () (E) , R— o0, (4.81)

if x > 0 and the contour goes around the pole from the left or if z < 0 and the contour
goes around the pole from the right. At the same time,

I =0 G%) . R— o, (4.82)

if z > 0 and the contour goes around the pole from the right or if x < 0 and the contour
goes around the pole from the left.

When we do the similar analysis (see Figure 7) with the part I.—1 of the 7 - integral
(3.33) containing the bottom pole (!, i.e. with the integral

B2 [0 o B (CH+1/Q)2—h(¢~1/¢)

ICc_l = E » C plQ(C)dC7

we would arrive at the estimates,

h2 c 1 ) 1
Icgl _ Sign (I) ZQgp e£(£c+a2/5c)2+2’7(gc—a?/gc)% + O <§) s R — oo, (483)

if x < 0 and the contour goes around the pole from the left or if x > 0 and the contour
goes around the pole from the right, and

1
[1=0 <}_z> . R— o, (4.84)
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(@) (b)

Figure 7: Bottom pole on the imaginary axes

if x < 0 and the contour goes around the pole from the right or if z > 0 and the contour
goes around the pole from the left.
Observe, that

while

where k. is the Raylelgh wave number (note that k. > h). Hence, equations (4.81 ) and
(4.83) can be written as equations,

. 2 ” 1
I, = sign (x) %e—\/’f%—h%—w +0 (E) , R— oo, (4.85)

and 12 )
I—1 = sign () %e\/ ke—h*z+ite L 0 <}—%> , R — o0, (4.86)

respectively, and written in this form they clearly represent the Rayleigh surface waves
propagating along the surface z = 0. The direction of their propagation depends on the
particular choice of the way we are going around the poles ¢, and ;!. Let us choose the
contour of integration as it is indicated in Figure 8. From the above analysis it follows that
the only bottom pole will contribute and the potential 7 will then exhibit the Rayleigh
surface wave behavior described by the equation

'h2 c 2 2 - w ].
71(x, z) = sign (x) %e\/ Re—hZzticr 1 0 (E) , R — oc.
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This formula ensures that the potential 7; satisfies the surface wave radiation condition

(a) (b)

Figure 8: Final contour of integration: choice (a) corresponds x > 0, choice (b) corre-
sponds z < 0

(see [18] ) in a small parabolic sector near the surface depicted in Figure 9 :

xh_)rgox <% — ikc7'1> = 0. (4.87)
Together with the radiation condition which, as we have already shown, the solution 7y
also satisfies, (4.87) guarantees that the solution we just constructed is exactly the one
whose existence and uniqueness are proven in [18].

The similar analysis of the potential 7 (x, z) yields the presence of the Rayleigh surface
waves described this time by the formula

-h2 c I3 ) 1
To(x, z) = sign (x) %ea}gg(&)zﬂcx + 0 (E) , R — 0.

Note, that since &, € (ia?,io0),
ih
@Q(ﬁc) <0.

Remark. We have explained the intrinsic reason of appearance of the Rayleigh waves
within Fokas’s scheme. The Sommerfeld radiation condition, which we imposed at the
very beginning in the setting of the boundary value problem we are studying, can be also
motivated entirely by the method’s logic. Indeed, as we saw in Sections 3.1 and 3.2, the
radiation condition allows us to set the algebraic equations for the unknown functions ® o
in the circular part of the contour K which is not covered by the global relation.

In conclusion, we want to mention that in the quarter-space problem the oriented
contour consists of the contour K appearing in this paper and a similar, but rotated by
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0=r "¢

X

Figure 9: Narrow sector near the surface z = 0

ninety degree contour which corresponds to half space problem for z > 0. As a result ,
the no-jump section of the circular part of quarter-space contour becomes only a second-
quadrant part Cy instead of C; ( which corresponds to Cy 4+ C3) in this paper. But a
fourth-quadrant part C); in the quarter-space problem has a "double” jump because it
is included in both > 0 and z > 0 problems. Moreover, we expect Rayleigh wave
contributions in the quarter-space problem as "pole/residues” contributions located on
non-zero horizontal and vertical parts of the quarter-space problem contour.
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