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ABSTRACT

Network configurations are constantly changing, and each change
poses a risk of catastrophic network outages. Consequently, the net-
working community has put significant effort into developing and
optimizing configuration verifiers. However, we observe existing
configuration verifiers still have a significant drawback: they are
not optimized for configuration changes. That is, they always check
a snapshot of network configuration from scratch, even though the
configuration often changes slightly since the last verification. In
this paper, we demonstrate the benefits, opportunities, and chal-
lenges of incremental network configuration verification (INCV). We
also demonstrate the feasibility of INCV by introducing RealConfig,
an incremental configuration verifier that can check configuration
changes within one second.
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1 INTRODUCTION

Network configurations are constantly changing to support new
services, accommodate more devices, enhance network security,
etc. [11, 29, 40]. For example, Facebook conducts an average of 12.5
changes per device per week in their backbone network [40]; a large
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online service provider conducts tens of changes per month in over
half of their data center networks [19]; and two large universities
each changed over a million lines of configuration over 5 years [29].

Each configuration change poses a risk of introducing cata-
strophic network outages [4, 30, 32, 46]. For example, configura-
tion update errors account for 56% of network incidents in Alibaba
during 2016 and 2017 [32], and a survey of over 200 network op-
erators showed that 89% of respondents were unsure whether a
change to configuration will introduce bugs [30]. Consequently,
researchers and large-scale network operators have put significant
effort into developing and optimizing configuration (a.k.a. control
plane) verifiers [5, 7, 14, 16, 18, 26, 37, 41]. Configuration verifiers
statically analyze a snapshot of a network’s current or proposed
configurations to proactively identify forwarding policy violations
that manifest under various network conditions—e.g., internal link
failures and external route announcements.

We observe that existing configuration verifiers have a signif-
icant drawback: they are not optimized for configuration changes.
Existing verifiers analyze snapshots of network configurations from
scratch each time they change, even though configuration changes
are often (relatively) small: e.g., in 85% of the data center networks
operated by a large online service provider, the average change
only impacts one or two devices [19], and 90% of all changes made
in two large university campus networks impact a single type of
configuration stanza [29]. Consequently, a significant fraction of
the analysis that was performed for the previous configurations
is still relevant. Without properly reusing these results, a config-
uration verifier will be unnecessarily slow when checking small
changes in large-scale networks.

This paper asks: can we leverage the internal state and outcomes
of the previous verification process to significantly speed-up the
verification of configuration changes? We answer this question in
the affirmative by demonstrating the benefits, opportunities, and
feasibility of incremental network configuration verification (INCV).

Incremental verification has been extensively applied to data
plane verification [25, 27, 28, 43, 47], but INCV is significantly more
challenging. In particular, data plane changes (e.g., inserting and
deleting forwarding rules) have simple semantics and directly af-
fect the forwarding behavior of a single device, whereas control
plane changes (e.g., adding neighbors [15] or modifying routing
policies [45]) have complex semantics and can affect route selection
on several, or even all, devices in the network.

Existing configuration verifiers have proposed several methods
to model the relationship between configurations and forwarding
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behaviors (§3.2), but making these verifiers incremental requires
determining which previous routing/forwarding state is still valid
after a configuration change, and recomputing only the affected
state. This seems like a simple task, because distributed routing
protocols are designed to explicitly signal when previous state is
invalid and incrementally converge to a new state. However, for
scalability reasons, configuration verifiers do not model low-level
protocol messages and hence cannot leverage protocols’ built-in
signaling mechanisms to determine which state is still valid. Hence,
we need to augment and/or redesign existing configuration verifiers
to support incremental computation.

We categorize existing configuration verifiers along two dimen-
sions (Table 1): (1) whether they simulate the control plane to pro-
duce concrete data planes or analyze the control plane to charac-
terize the space of data planes the control plane may produce; and
(2) whether they check policies using general-purpose tools (e.g.,
constraint solvers) or domain-specific algorithms. For each category
in our taxonomy, we discuss how verifiers in that category might
be modified to support INCV.

We elaborate on one of the possible designs, which uses general-
purpose methods to simulate the control plane. Our focus on this
design is motivated by two observations:

First, data plane verification [25, 27, 28, 43, 47] is already fast,
e.g., APKeep [47] can incrementally check invariants in less than
a millisecond after a rule update. Thus, we may achieve INCV by
reducing it to a data plane verification problem, i.e., generating
data plane updates based on configuration changes, and checking
data plane updates against network policies. Clearly, the reduction
should also be incremental as generating the new data plane from
scratch can be quite inefficient.

Second, differential computation engines [2, 34] already enable
general and automatic incremental computation. One can model
a system in a declarative language, and the computation engine
can effectively track and re-use state for incremental computation.
Thus, we can model configuration semantics in a general way,
and incrementally generate data plane updates, rather than writing
customized algorithms to handle each type of configuration change.

We exploit these observations to create RealConfig, an incremen-
tal network configuration verifier. Based on large-scale synthetic
networks, we find for common changes like disabling a link or
changing a local preference or link cost, the time to compute data
plane changes ranges from 0.12 to 0.39 seconds, which is 20x to
92x faster than computing the data plane from scratch.

The rest of this paper proceeds as follows. First, §2 demonstrates
several opportunities and benefits of INCV. Next, §3 discusses the
challenges and possible approaches for INCV. §4 discusses in detail
one design to achieve INCV, which is embodied by our prototype
system, RealConfig. §5 quantitatively demonstrates the benefits of
INCV by applying RealConfig to large-scale synthetic networks.
Finally, §6 discusses remaining issues, and §7 concludes.

2 MOTIVATION

In this section, we identify important tasks in network configuration
management that could benefit from INCV.

Regular maintenance. Many networks experience small, frequent
configuration changes to support new services, accommodate new

customers/devices, and enhance network security. For example, two
large universities change up to 55 stanzas per router per month and
up to 19 stanzas per switch per month; router and switch configura-
tions are most frequently changed to accommodate new “customers”
(e.g., departments or specific users) [29]; on average, < 20 lines of
configuration are changed at the same time [35]. Similarly, Face-
book conducts an average of 12.5 changes per device per week in
their backbone and 2.5 changes per device per week in their data
centers [40]; the average backbone change impacts 157 lines of con-
figuration and the average data center change impacts 738 lines of
configuration, which is relatively small compared to the scale of the
backbone and data centers. Another large online service provider
similarly conducts tens of configuration changes per month in over
half of their data center networks, but the median change in 75% of
the networks modifies only three devices’ configurations [19].

Although many configuration changes are small, it is still im-

portant for network operators to verify the changed configurations
satisfy basic safety policies (e.g., no loops) and avoid unintended
side effects. Plankton, a state-of-the-art configuration verifier, can
verify reachability under single link failures for real networks with
63 devices in just a few seconds based on packet equivalence classes
(PECs) [37]. However, Plankton takes 3 minutes for synthetic fat tree
topologies with 245 devices running OSPF [36]. Only re-verifying
PECs that are impacted by a change, akin to realtime data plane
verification [25, 27, 28, 47], could substantially reduce verification
times and allow operators to receive instantaneous (e.g., on the
order of seconds) feedback on changes. In turn, operators can com-
plete routine maintenance more quickly.
Planning large-scale changes. Networks also occasionally ex-
perience large-scale changes. For example, a study of two large
university networks over five years identified instances of signif-
icant network growth (e.g., a single month in which the number
of routers increased by 30%), configuration clean-up (e.g., purging
unused ACLs), and network-wide deployment of new functionality
(e.g., IP multicast) [29]. Similarly, as part of an upgrade of Alibaba’s
WAN, ACLs were migrated from core routers to dedicated gateways,
which required re-configuring 30% of the WAN routers [41].

Planning large-scale changes is often a difficult, time-consuming
task: e.g., it took Alibaba’s network operators multiple weeks to
design, assess, and execute the aforementioned ACL changes [41].
INCV can greatly simplify and expedite the process: operators
can plan the upgrade in small steps, and incrementally verify the
(partial) plan after finishing each step. In this way, operators can
rapidly detect and fix bugs, which speeds up the planning process.
In contrast, if operators wait until the whole plan has been finished
before verifying the configurations, it can be difficult to localize
the exact changes responsible for any policy violations, thereby
prolonging the planning process.

Checking configuration changes as they are designed is anal-
ogous to continuous integration (CI), a widely adopted software
engineering practice in which software changes are continually
validated through automated testing. Any errors uncovered by the
tests are quickly brought to software engineers’ attention so the
errors can be corrected prior to deploying or further changing the
software. CI greatly automates the process of software develop-
ment, and we believe this idea can also be valuable to the process
of network (upgrade) planning.



Specification mining,. Specifications (i.e., policies) are a key input
to network verification, but it is often hard to accurately express
network specifications. A long-running network can contain very
complex configurations updated by different operators [10, 11, 35].
Over time, it becomes harder to determine what network behaviors
operators intend. Current approaches to specification mining re-
quire checking all possible policies, which can take a prohibitively
long time: e.g., for a network consisting of 158 routers and 189 links,
Config2Spec takes over 12 hours to infer all policies [12]. A major
reason for the high cost is the huge space of network conditions
(e.g., link failures), such that generating data planes with Batfish [1],
a state-of-the-art configuration analysis tool, can take a long time.
However, since each link failure only affects a small portion of the
data plane, and a small number of policies, INCV can exploit the
similarity among those conditions and significantly improve the
speed of specification mining. Our experiments show that even
without any domain-specific optimizations, incremental data plane
generation for link failures is 20x faster than non-incremental data
plane generation (§5).

3 CHALLENGES AND APPROACHES

Conducting INCV to simplify and/or expedite configuration man-
agement tasks is challenging. Unlike incremental data plane verifica-
tion, INCV requires reasoning about complex semantics. Moreover,
unlike non-incremental configuration verification, INCV requires
determining which previous routing/forwarding state is still valid.
This section discusses these challenges and considers various ways
to address them through modifications to existing verifiers.

3.1 Challenges of INCV

Reasoning about complex semantics. Network data planes typ-
ically perform simple actions (e.g., forward, drop, rewrite) on spe-
cific packets [44]. Consequently, data plane verifiers can easily
reason about network forwarding behaviors for specific equiva-
lence classes (ECs) and only reanalyze ECs or parts of forwarding
paths that are affected by data plane updates. In contrast, configura-
tions contain a large variety of statements with complex semantics
(e.g., link costs, local preferences, route aggregation, route redis-
tribution). Furthermore, configurations on one device can affect
the packet forwarding behaviors of multiple devices. This makes it
difficult to determine how forwarding behaviors will be affected by
a configuration change.

Determining which routing/forwarding state is still valid.
Configuration changes can cause previous route advertisements,
routing information base (RIB) entries, and forwarding rules (FIB
entries) to change. For example, adding a route policy to assign a
lower local preference to routes learned from a BGP neighbor can
cause the router to change its best path, which may trigger a chain
reaction of best path changes on other routers. Distributed routing
protocols can incrementally converge to a new state as they explic-
itly signal when previous state is invalid: e.g., OSPF sends link state
advertisements (LSAs) with new sequence numbers, and BGP sends
route withdrawals. However, configuration verifiers do not model
low-level protocol messages, due to scalability issues. Consequently,
configuration verifiers cannot leverage protocols’ built-in signaling

Uses general-purpose | Uses domain-specific

tools algorithms
ARC [18]
Minesweeper [7 Tiramisu [5
Analyze Bagpipep[42][ : ShapeShifteEr g’;]
ERA [14]
Batfish (original) [16] Batfish (current) [1]
Simulate Plankton [37] FastPlane [33]

C-BGP [38]
Table 1: Taxonomy of existing configuration verifiers.

mechanisms to determine which routing/forwarding state is still
valid following a configuration change.

3.2 Approaches to INCV

We now show how existing configuration verifiers handle complex
configuration semantics, and we discuss how these verifiers might
be modified to determine which routing/forwarding state is still
valid in order to support INCV.

We categorize existing configuration verifiers along two axes:
(1) whether they simulate the control plane to produce concrete
data planes or analyze the control plane to characterize the space
of data planes the control plane may produce; and (2) whether they
check policies using general-purpose tools (e.g., constraint solvers)
or domain-specific algorithms. Table 1 summarizes our taxonomy.

Simulate the control plane using general-purpose tools. One
of the first configuration verifiers, Batfish (original) [16], as well
as a recently-proposed verifier, Plankton [37], adopt this approach.
Batfish (original) encodes configurations and routing algorithms
using LogicQL (LogicBlox’s Datalog language) [6], while Plankton
implements a variation of the simple path vector protocol [21] using
Promela (SPIN’s modeling language) [24]. Running the LogicQL
program using LogicBlox or executing the Promela program using
the SPIN model checker produces a data plane. The data plane is
fed to a constraint solver (Z3 [13]) or custom function to determine
whether the data plane satisfies the policies of interest.

Simulating the control plane has several advantages: (1) it pro-
duces a complete set of forwarding rules, enabling any forwarding
policy to be checked post hoc; (2) simulators scale to large/complex
networks better than tools that analyze the space of possible data
planes [37]; and (3) as we show in §4, generating concrete data
planes provides an opportunity to take advantage of innovations
in data plane verification. Similarly, using general-purpose tools
allows this category of configuration verifiers to take advantage of
existing optimization techniques in model checkers (e.g., SPIN) and
constraint solvers (e.g., Z3).

However, making such verifiers incremental requires a Datalog
engine or explicit-state model checker capable of incremental com-
putation. In particular, such a tool must be able to deduce which
program state—e.g., route advertisements, RIB entries, and forward-
ing rules—is no longer valid and which new computations must
be performed. To the best of our knowledge, no existing explicit-
state model checkers possess such capabilities, but we show in §4
that recent advances in differential computation [34] give rise to a
Datalog engine [2] supporting incremental computation.

Simulate the control plane using domain-specific algorithms.
To take advantage of domain-specific optimizations, the current



version of Batfish [1], as well as FastPlane [33] and C-BGP [38], use
custom algorithms to simulate the control plane. These algorithms
exploit the characteristics of network control planes to more effi-
ciently simulate the control plane. For example, FastPlane employs
a generalized form of Dijkstra’s algorithm for monotonic networks
where preference of routes decrease during route propagation.

However, making such configuration verifiers incremental re-
quires customizing the simulation algorithms to reuse part of the
state from a prior invocation. Different configuration changes—e.g.,
changing a link cost versus enabling route redistribution—can have
vastly different impacts on the control plane—e.g., re-computation
of shortest paths versus the introduction of additional routes—so we
must customize algorithms for each type of configuration change
to support incremental verification.

Analyze the space of possible data planes using general-pur-
pose tools. Configuration verifiers like Minesweeper [7] and Bag-
pipe [42] use general-purpose tools to analyze the space of possible
data planes the control plane may generate. In particular, they
model configurations, routing algorithms, and policies of interest
using a system of satisfiability modulo theories (SMT) constraints,
which can be checked with off-the-shelf SMT solvers (e.g., Z3).

In contrast to simulation tools, analysis tools avoid the need to
iteratively explore every possible network condition (e.g., every
combination of link failures). Additionally, as noted above, using
general purposes tools allows these verifiers to take advantage of
existing optimization techniques in constraint solvers.

Making such configuration verifiers incremental requires a means
to incrementally explore the search space—i.e., the space of pos-
sible data planes. Current SMT solvers offer multiple options for
incremental solving [3], each of which may be amenable to certain
types of configuration changes: e.g., disabling filtering rules can
be achieved through assumption-based solving. However, further
innovations in control plane modeling and/or SMT solving are nec-
essary to fully achieve INCV using constraint-based approaches:
e.g., changing a link cost requires modifying a constraint, which is
not supported by assumption- or stack-based incremental solving.

Analyze the space of possible data planes using domain-spe-
cific algorithms. Lastly, several configuration verifiers analyze
the space of possible data planes using domain-specific algorithms.
ARC [18] and Tiramisu [5] model the control plane as a graph and
use polynomial-time graph algorithms (e.g., max-flow) and custom
integer linear programs to analyze the space of possible data planes
and verify policy compliance. ShapeShifter [9] models the control
plane using routing algebra [22, 39] and uses abstract interpretation
to check forwarding policies. These domain-specific optimizations
allow these configuration verifiers to scale better than control plane
analysis tools that rely on constraint solvers.

However, making such verifiers incremental requires customiz-
ing each of the domain-specific algorithms these verifiers use to ana-
lyze the space of possible data planes. For example, ARC would need
to employ incremental depth-first search, max-flow, and shortest-
path algorithms to support incremental verification of forwarding
policies. BFA [31] introduces a method to make the max-flow al-
gorithm used by ARC incremental. However, BFA only supports
incremental verification of specific properties (k-reachability) after
specific changes (insertion and deletion of links).

In the next section, we choose one of these points in the design
space to demonstrate the feasibility of INCV.

4 ACHIEVING INCV

As demonstrated above, there are multiple possible avenues for
achieving INCV. This paper focuses on one such direction: us-
ing general-purpose tools to explicitly generate the data plane for
verification. Using general-purpose tools avoids the need to write
customized algorithms for different types of configuration change,
while explicitly generating data planes allows a diverse set of de-
bugging functionalities like dumping the full packet traces (what
rules they match, which path they take, etc.)

4.1 Key Enablers

A design that uses general-purpose tools to incrementally simulate
and verify the control plane is made possible by recent advances in
differential computation and realtime data plane verification.

Leveraging differential computation for incremental data
plane generation. As discussed in §3.1, the re-convergence of rout-
ing protocols after a change in configuration or network conditions
is inherently incremental. We observe differential computation, e.g.,
Differential Dataflow [34], can effectively track and re-use state
to automate incremental re-convergence. This computation model
enables us to incrementally generate data planes in a general way,
rather than write customized algorithms for each type of change.

Leveraging realtime data plane verification for incremental
policy checking. We argue that the data plane after a small con-
figuration change will not differ significantly. For example, when
the local preference is changed for an IP prefix received from one
interface, only the best routes falling within this IP prefix received
from the interface may change. Since realtime data plane verifiers
like APKeep [47] can check a data plane update in a millisecond
or less, we can quickly check the data plane change, which is a
batch of rule updates, using realtime data plane verifiers. In our
design, we break the data plane verification process into two stages:
updating the data plane model, and checking policies. Existing in-
cremental techniques mostly focus on how to make the first stage
incremental, but we show there are also opportunities to check
policies incrementally.

4.2 Our Design: RealConfig

Based on the above insights, we introduce our design, RealConfig,
for achieving INCV. Our design (Figure 1) consists of three compo-
nents chained in sequence. Each component operates incrementally.

Incremental data plane generator takes the configuration changes
as input, and returns the data plane changes. Configuration changes
consist of insertions or deletions of configuration lines, and data
plane changes consist of insertions or deletions of forwarding, fil-
tering, or rewriting rules.! Since packet filtering rules are explicitly
specified in configuration files, we can directly extract filtering
rule changes from the configuration changes. However, we must
incrementally generate the forwarding rules based on configuration
changes and protocol-specific routing algorithms.

"Modifications can be seen as deleting an old line/rule and inserting a new line/rule.
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Figure 1: The workflow of incremental network configuration verification in RealConfig.

RealConfig performs the incremental forwarding rule compu-
tations using Differential Datalog (DDlog) [2]. DDlog allows pro-
grammers to write programs in a dialect of Datalog, and synthe-
sizes an incremental implementation running on top of Differential
Dataflow (DD) [34]. We use DDlog instead of the native language
of DD, because DDlog offers useful high-level abstractions. For
example, DDlog offers bitvector type which can be used for declar-
ing IP prefixes. Currently, we model a basic set of configurations
including OSPF, BGP, static routes, access control lists, and route
redistribution. Other routing protocols can also be easily integrated
due to the generality of our modeling method.

Incremental data plane model updater takes the data plane
changes as input, and outputs the changes to the data plane model.
Here, the data plane model should be able to describe how each
packet is forwarded in the network. Consequently, changes in the
data plane model should describe what ECs are affected, and what
the old and new forwarding behaviors are for each affected EC.
State-of-the-art realtime data plane verifiers like APKeep [47] in-
crementally maintain a data plane model, and can be adapted for
use here. However, data plane verifiers are designed for checking
single-rule updates—i.e., for each rule update they update the model
and check policies—while we want to update the data plane model
according to a batch of rule updates (without checking polices be-
tween each individual update). The reason for not checking policies
for each rule update is that this only captures some potential tran-
sient failures, which are of less interest since we focus on checking
the correctness of the converged data plane state (e.g., FIB).

RealConfig uses a modified version of APKeep. We choose AP-
Keep because it can incrementally maintain the minimum number
of ECs, which makes it more scalable than other data plane verifiers,
especially when there are rules with multiple matching fields (e.g.,
ACL rules). APKeep models the forwarding behaviors of ECs by
maintaining a set of logical ports (encoding a specific forwarding
action) for each device, and a map from each port to the set of ECs
that forwarded to this port (taking the action of the port). We extend
APKeep to work in batch mode: given a batch of rule updates, Real-
Config determines an order of rule updates, and invokes the model
update algorithm of APKeep for each rule update according to this
order. As we show in §5, the update order can significantly affect
the update speed; we leave the optimal scheduling of model updates
as future work. After updating the model, RealConfig outputs all
the affected ECs and their old and new forwarding behaviors, i.e.,
the previous and current ports of the affected ECs.

Incremental network policy checker takes the data plane model
changes as input, and outputs changes in policy satisfaction. Changes
in policy satisfaction includes policies that become violated and
policies that become satisfied following a configuration change. The
latter helps operators test whether a repair plan works. The poli-
cies include both network invariants, e.g., loop-freedom, blackhole-
freedom, and operator intent, e.g., reachability, waypoint, load bal-
ance, etc. A reachability policy specifies what packets can traverse
between two end points, e.g., “only HTTP traffic should be allowed
between subnet A and subnet B”.

Compared to universal invariants (e.g., loop-freedom), policies
like reachability only “register” to a small set of packets. For exam-
ple, each reachability policy is only related to some packets, e.g.,
HTTP packets. Therefore, there are opportunities to incrementally
check policies: i.e., only check policies related to the affected ECs.
This can significantly improve the efficiency of policy checking,
because real networks can have a large number of policies [12].

To incrementally check all-pairs reachability, RealConfig tracks
the relationship between ECs, node pairs, and forwarding paths
with two maps: (1) a map from each EC to the set of paths the
EC traverses; (2) a map from each node pair (s, d) to the ECs that
can be sent from s to d. After receiving the affected ECs from the
model updater, RealConfig identifies all affected paths and modifies
these paths according to their new forwarding behaviors. Then,
RealConfig identifies the pairs affected by the modified paths (based
the end points of the paths), and updates the ECs of those pairs.
By checking all-pair reachability, RealConfig can output each node
pair (s, d) whose set of ECs changes.

5 PRELIMINARY RESULTS

Setting. We use a fat tree topology with 180 nodes and 864 links.
We run OSPF or BGP on this topology. For BGP, each node is a
different AS, and establishes peer relation with all its neighbors.
We make three types of changes to the configuration of each node:
(1) LinkFailure: failing a link by deactivating the corresponding
interface; (2) LC: changing the OSPF link cost of one interface from
1 to 100 (less preferred); (3) LP: changing the BGP local preference
for routes received at one interface from 100 to 150 (more preferred).
The experiments are run on a server with two 12-core Intel Xeon
CPUs @ 2.3GHz (a single core is used) and 256G memory.

Data plane generation. We compute the data plane state with the
most-recent version of Batfish [1] and RealConfig from scratch, and



Table 2: Average data plane generation time for the fat tree
network. LinkFailure means failing a link by deactivating
an interface; LC/LP means changing link cost or local pref-
erence depending on whether it is OSPF or BGP.

RealConfig

Batfish
Full | LinkFailure | LC/LP

Protocol ‘ Full

0.39s (1.1%)
0.19s (4.8%)

0.39s (1.1%)

0.12s (3.1%)

OSPF 7.13s 36.11s
BGP 3.81s 3.92s

Table 3: Model update and property checking for the fat
tree network running BGP. #Rules: number of affected rules;
#ECs: number of affected ECs; #Pairs: number of affected
node pairs; T1: model update time; T2: policy checking time.

Change ‘ #Rules ‘ Order ‘ #ECs ‘ T1 ‘ #Pairs ‘ T2
LinkFailure | ¥26/-28 | +- | 28 | 3ms [ 286/10224 | o
| (032%) | -+ | 54 |10oms | (279%) |
p | se| 4o | 54 | ems | 132710224 |
| (0.64%) | -+ | 108 | 20ms | (1.29%) |

then make the three types of changes and incrementally generate
the data plane state with RealConfig. Table 2 shows that Batfish is
faster than RealConfig for from-scratch full computation. However,
RealConfig is much faster for configuration changes: even without
domain-specific optimizations, the incremental computation time
is only 1% to 6.5% of the full computation time of RealConfig. Note
Plankton uses 41.2 seconds? for OSPF on the same size of topology
[37], which is ~ 2 orders of magnitude slower than RealConfig. The
above results demonstrate the feasibility of using a general-purpose
computation engine to incrementally generate data plane state.

Model update. Column 2 of Table 3 shows that less than 1% of all
forwarding rules are affected by the configuration changes, for the
fat tree topology running BGP. We try two simple orders to update
the model, i.e., insertion-first and deletion-first. From Column 4 and
5, we can see the number of affected ECs and the time to update
the data plane model are heavily related to the update order. The
reason is that insertion-first will make the model updater directly
modify the forwarding behavior of ECs, i.e., moving them from
old ports to new ports; while deletion-first will make the model
updater first move them from the old ports to a special “drop” port
(since the packets belonging to the ECs will be dropped after the
rule is deleted), and then from the “drop” port to the new ports. The
update time is less than 10ms for both configuration changes if we
apply insertion updates first.

Policy checking. Column 6 and Column 7 of Table 3 report the
number of affected node pairs, and the time for checking these pairs,
respectively. We can see that only 2.79% and 1.29% of all pairs are
affected for link failure and local preference change, respectively. As
a result, the time of policy checking is only ~60ms, and the overall
data plane verification time (model update and policy checking) is
less than 100ms. This demonstrates the benefits of incrementally
checking affected policies.

2The experiments run on a single core of an Intel Xeon CPU @ 3.4GHz, and the time
includes policy checking.

6 DISCUSSION

Nontermination of Datalog evaluation. The evaluation of our
Datalog model may never terminate, i.e., looping forever without
reaching any fixed-point. This often reveals some unexpected bugs,
e.g., when BGP is misconfigured and cannot converge [23], or when
BGP has multiple converged states which can lead to route update
racing [45]. To detect these bugs without waiting until Datalog
times out, we need a way to detect the recurring state, i.e., a state
that has been reached before during Datalog evaluation; we leave
this as future work.

Domain-specific optimization. Currently, RealConfig does not
leverage any previously-proposed domain-specific optimizations,
such as leveraging symmetries in the network topology and configu-
rations to reduce the size of the network model [8, 20], or leveraging
the independence of different ECs to parallelize verification [17, 37].
Such optimizations can also be applied to RealConfig to further
improve its speed; we leave this as future work.

Alternative approaches to INCV. In §3.2 we discussed how var-
ious categories of verifiers might be modified to support INCV,
and in §4 we presented a detailed design based on one of these
approaches. However, several of the other approaches discussed in
§3.2 also have significant potential: e.g., as a framework based on
Tiramisu [5] that uses incremental graph algorithms, or a frame-
work inspired by Minesweeper that uses a control plane encoding
that is more amenable to the current incremental solving capa-
bilities of SMT solvers. We believe exploring these alternatives is
important future work for the research community.

7 CONCLUSION

Conducting incremental network configuration verification (INCV)
by (partially) reusing the internal state and outcomes of previous
verification processes is an important, yet previously untapped, op-
portunity for efficiently validating configuration changes. However,
leveraging this opportunity requires augmenting and/or redesign-
ing existing configuration verifiers to support incremental com-
putation. In particular, advances must be made in model checkers,
constraint solvers, computation engines, and/or domain-specific
algorithms to intelligently determine which previous conclusions
are still valid. Our prototype system, RealConfig, demonstrates the
feasibility of one point in the design space that leverages recent
advances in incremental computation and realtime data plane veri-
fication. Our experiments show that INCV can speed-up data plane
computation time by 20X to 92X compared to computing the data
plane from scratch. In the future we plan to (1) integrate domain-
specific optimizations and recurring state detection into RealConlfig,
(2) conductive experiments on real network configuration updates,
and (3) explore alternative approaches to INCV to fully realize the
potential of INCV.
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