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Widespread deoxygenation of temperate 
lakes
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The concentration of dissolved oxygen in aquatic systems helps to regulate 
biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality 
of drinking water5. The long-term declines in dissolved oxygen concentrations in 
coastal and ocean waters have been linked to climate warming and human activity6,7, 
but little is known about the changes in dissolved oxygen concentrations in lakes. 
Although the solubility of dissolved oxygen decreases with increasing water 
temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in 
warming lakes may be amplified by enhanced decomposition and stronger thermal 
stratification8,9 or oxygen may increase as a result of enhanced primary production10. 
Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles 
and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a 
decline in dissolved oxygen is widespread in surface and deep-water habitats. The 
decline in surface waters is primarily associated with reduced solubility under warmer 
water temperatures, although dissolved oxygen in surface waters increased in a 
subset of highly productive warming lakes, probably owing to increasing production 
of phytoplankton. By contrast, the decline in deep waters is associated with stronger 
thermal stratification and loss of water clarity, but not with changes in gas solubility. 
Our results suggest that climate change and declining water clarity have altered the 
physical and chemical environment of lakes. Declines in dissolved oxygen in 
freshwater are 2.75 to 9.3 times greater than observed in the world’s oceans6,7 and 
could threaten essential lake ecosystem services2,3,5,11.

The concentration of dissolved oxygen (DO) in aquatic systems influ-
ences biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emis-
sions4, the quality of drinking water5, and, ultimately, human health12. 
Many aquatic species require well-oxygenated habitats11,13 and cool 
water to survive warm summers2,11. Loss of deep-water DO degrades 
water quality by promoting the release of accumulated nutrients 
from sediments into water1,3, which can increase phytoplankton bio-
mass. This process can also facilitate harmful algal blooms5, which can 
compromise water supplies and harm human health12. Despite clear 
evidence of large-scale deoxygenation in ocean waters6,7, there are no 
systematic large-scale studies of this phenomenon in lakes3.

Concentrations of DO should decline with increasing water tempera-
ture owing to reduced gas solubility. However, other mechanisms can 
also alter DO, potentially amplifying or counteracting losses predicted 

from solubility changes alone. For example, the rates of heterotrophic 
respiration increase with temperature faster than those of primary pro-
duction9, and surface-temperature warming can increase the strength 
and duration of thermal stratification, reducing water circulation, and 
preventing deep-water DO replenishment8,14,15. Studies of individual 
lakes demonstrate that deep-water DO concentrations can decrease 
with lake warming3,8,15,16, and reduce access to cold-water habitats that 
are essential to many organisms11. However, given the many feedbacks 
and processes regulating DO, overall trajectories currently defy a priori 
prediction.

We addressed this crucial issue by compiling and analysing an 
extensive database of lake temperature and DO profiles to character-
ize widespread and long-term changes in DO concentration and its 
causes. We used data from 393 temperate lake and reservoir basins, 
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each with a minimum of 15 years of observation (median of 24 years) 
(Extended Data Fig. 1), and report population medians from long-term 
surface-water (epilimnion) and deep-water (hypolimnion) trends in 
temperature, DO concentration, and DO saturation during the late 
summer period when seasonal DO depletion is expected to be pro-
nounced17. Our analyses showed that lake DO concentrations have 
declined in both surface waters and deep waters from 1980 to 2017 
by 0.45 and 0.42 mg l−1, respectively. These rates represent losses of 
5.5% and 18.6% for surface and deep waters, respectively, and were 
substantially greater than those observed for the oceans, where total 
water-column DO has declined about 2% since 19606.

Although deep-water temperatures have been almost stable since 
observations began (−0.01 °C decade−1) (Fig. 1a), both deep-water 
DO concentration and the percentage saturation declined over time 
(−0.12 mg l−1 decade−1 and −1.2% decade−1, respectively) (Fig. 1b, c, 
Extended Data Table 1). Declines were unrelated to solubility as pre-
dicted changes based on solubility (slight increase of 0.01 mg l−1) were 
negligible compared with observed losses (median of −0.23 mg l−1) 
based on the last five years relative to the first five years of each time 
series (Fig. 2b). Despite essentially unchanging solubility, declining DO 
indicates that deep-water habitats have become increasingly inhos-
pitable for organisms with aerobic metabolism, including fishes. We 
quantified the potential effects of such declines on habitat availability 
by calculating trends in TDO3, the minimum water-column temperature 
in which DO was at least 3 mg l−1. This metric was developed to quantify 
oxy-thermal habitats for cold-water fisheries11. In lakes where DO was 
below 3 mg l−1 anywhere in the water column at least once in the time 
series (n = 369), TDO3 increased by 0.17 °C decade−1, with 68.0% of lakes 
having positive trends and declining habitats for many cold-water 
species.

In contrast to trends observed for deep waters, variation in 
surface-water DO concentrations was well explained by changes 
in gas solubility. Consistent with other global-scale lake studies18, 
median air temperatures warmed at 0.30 °C decade−1 and median 
lake surface waters warmed at 0.39 °C decade−1. In addition, median 
wind speed and precipitation declined (trends of −0.04 m s−1 decade−1 
and −4.23 mm decade−1, respectively), whereas shortwave radiation 
increased (1.88 W m−2 decade−1) (Extended Data Table 2). Increases in 
surface-water temperature were best explained by increases in the 
spring and summer air temperature and by declines in the summer wind 
speed (Extended Data Table 3). The concentrations of surface-water 
DO declined at −0.11 mg l−1 decade−1 (Fig. 1b). Comparing the past five 
years relative to the first five years of each time series showed that 

the median change predicted owing to solubility loss was approxi-
mately 63% of the median observed decline in DO concentration, with 
a solubility-predicted loss of 0.12 versus observed losses of 0.19 mg l−1 
(Fig. 2a).

Despite a strong influence of water temperature on DO concentra-
tion in surface waters, there was substantial variability among lakes 
(Fig. 2a), and a large subset of lakes exhibited increases in both water 
temperature and DO concentration (n = 87) (Fig. 3d). Analysis of the 
interaction between DO concentration, surface temperature, and water 
clarity (measured as Secchi depth, a proxy for trophic status19) showed 
that the DO concentration generally decreased with increasing tem-
perature. However, in lakes with low water clarity (Secchi depth < 2 m), 
DO concentration increased when average mean summer surface-water 
temperatures exceeded around 24 °C (Fig. 3c). Similarly, in a subset 
of lakes with chlorophyll data (a proxy for phytoplankton biomass; 
n = 166), positive DO trends were observed when chlorophyll was high 
and surface temperatures exceeded around 25 °C, (Fig. 3b; P < 0.001). 
Thus, we suggest that eutrophication and warming interact to increase 
surface-water DO concentration despite reduced gas solubility.

Lakes with increasing DO concentration in warming surface waters 
had significantly higher surface-water temperatures (Fig. 3a; P = 0.016) 
and their watersheds contained a significantly higher proportion of 
agriculture (P = 0.046) and developed land cover (P = 0.001) compared 
with other lakes. When developed land exceeded approximately 50% 
of a watershed and surface water temperature exceeded 25 °C, the 
probability of a warming lake having an increasing DO trend was about 
31%. Combined, these analyses highlight a potential threshold above 
which water temperatures and lake productivity interact to increase 
DO concentration in surface waters despite declining gas solubility. 
Although we lack data on the taxonomic composition of phytoplank-
ton, evidence indicates that phytoplankton blooms are increasing 
globally20, in particular owing to cyanobacteria21. High temperatures 
and increased nutrient loading can promote surface cyanobacteria 
blooms whose photosynthesis leads to DO supersaturation, particularly 
in eutrophic lakes as temperatures exceed 23–25 °C10,21. Consistent 
with this inferred mechanism, we note that these same lakes exhibited 
consistently low concentrations of deep-water DO (median: 0.64 mg l−1) 
relative to other lakes (median of 3.42 mg l−1), as is expected when a 
large phytoplankton biomass sinks and is decomposed in deep-water 
habitats22. Deep water DO changes are described in more detail below.

Decadal-scale trends in DO were associated with nonlinear changes 
in surface-water temperature (Fig. 2c–f, Extended Data Fig. 2). For 
example, although surface-water temperatures generally increased 
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Fig. 1 | Trends in dissolved oxygen and temperature. a–c, Density plots of 
trend magnitudes for temperature (°C decade−1) (a), DO concentration 
(mg l−1 decade−1) (b) and DO percentage saturation (% decade−1) (c). The red 
distribution indicates surface-water trends (n = 393), and blue indicates 

deep-water trends (n = 191). The x-axis range for each plot covers two standard 
deviations from the median, or approximately 95% of data. The vertical dashed 
lines indicate median trends, and the zero trend is highlighted by a black 
vertical line.
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from 1980 onwards, there was a period of accelerated increase from 
1990 to 2000, with slower warming thereafter (Fig. 2c), consistent with 
the ‘warming hiatus’ observed from 1998 to 201223. This trend occurs 
across the population of all lakes, as well as the subset of lakes sam-
pled continuously throughout this period. Similarly, surface-water DO 
exhibited periodic deviations from an overarching trend of declining 
DO concentration (Fig. 2d), mainly owing to the productive lakes exhib-
iting increasing DO levels in surface waters (Fig. 2d, red line). Exclud-
ing these lakes, analysis of the remaining sites showed a consistent 
long-term decline in surface-water DO (Fig. 2d, blue line). Deep-water 
temperatures exhibited a pronounced multi-decadal oscillation since 
1980 (Fig. 2e), as has been observed in some lakes previously24, whereas 
deep-water DO concentrations declined consistently over time (Fig. 2f).

Although changes in surface-water DO concentration were generally 
well predicted by solubility changes, deep-water DO changes were more 
strongly associated with changes in water clarity and water-column 
density stratification (Fig. 4). For example, water clarity losses that 
exceeded 1 m were associated with substantial reductions in deep-water 
DO saturation (Extended Data Fig. 3). Mechanistically, increases in 
phytoplankton biomass or dissolved organic matter reduce water clar-
ity while increasing oxygen-consuming respiration19,22,25. Increases in 
phytoplankton biomass and dissolved organic matter are often caused 
by changes in land use and recovery from acid deposition, respec-
tively26. However, there was no overarching decline in water clarity 
across study lakes. Indeed, 51% of lakes had clarity increases and 49% 
had decreases, and only 39% of lakes exhibited both water clarity loss 
and DO saturation loss (Fig. 4a).

Deep-water DO decreased substantially in lakes where the water 
column density difference between surface and deep waters increased 
by more than around 0.5 kg m−3 (Fig. 4b, Extended Data Fig. 3b). Strong 
increases in the density difference indicate intensified stratification 

that reduces vertical mixing and replenishment of deep-water DO 
from the atmosphere, and may reduce nutrient upwelling to surface 
waters3,15. Differences in water column density increase owing to 
water clarity losses as well as other factors that increase heat gain in 
near-surface waters, including climate warming26 and atmospheric 
stilling27. Increased water column density differences may also be 
associated with earlier onset of seasonal stratification and thus more 
time for oxygen consumption before the summer sampling period22. 
We found that changes in water-column density differences were best 
explained by changes in deep-water temperature and climate charac-
teristics (Extended Data Fig. 4). Despite no overarching among-lake 
trend in water clarity or deep-water temperature, stratification strength 
increased in 84% of lakes that stratified, with 61% of basins exhibiting 
both increased density difference and DO saturation loss (Fig. 4b). 
Warming surface-water temperatures combined with unchanging 
deep-water temperatures (Fig. 1a) increases the density difference in 
lake water columns (median rate: 0.10 kg m−3 decade−1). We observed 
unchanging deep-water DO in lakes where both clarity and stratifica-
tion were unchanged (Fig. 4c, d). Therefore, we anticipate further DO 
losses in deep waters of lakes where water clarity continues to decline 
or thermal stratification intensifies, whether owing to atmospheric 
warming, stilling, or both26,27.

Despite a wide range of lake and catchment characteristics, the 
overall trend of temperate lake deoxygenation is clear, with climate 
changes and water clarity losses contributing to declines in lake DO con-
centration substantially more rapid than those observed in the global 
oceans6,7. We find deep-water lake habitats are especially threatened, 
and deep-water DO trends may portend future losses of cold-water 
and oxygen-sensitive species2, increased internal nutrient loading 
which exacerbates eutrophication3 and the formation of harmful algal 
blooms5, and potentially increased storage and subsequent outgassing 
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and DO were increasing (n = 87), and the blue line denotes all other lakes 
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of methane4. Although already rapid, future losses in lake DO may 
accelerate owing to continued anthropogenic modifications of the 
environment, including eutrophication22, salinization28 and hydrologi-
cal management28. Many lakes have undergone active management to 

reduce nutrient loads, in part to mitigate phytoplankton growth and 
deep-water oxygen loss28, but our findings suggest such actions will 
probably require more rigorous efforts in the future to counter the 
effects of climate and land-use change.
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Methods

Overview
Our methods here describe how we (1) compiled and quality-checked 
data; (2) interpolated and delineated water layer strata; and (3) statisti-
cally analysed these data. Our statistical analyses focused on character-
izing long-term trends in climate characteristics (air temperature, wind 
speed, precipitation, and short-wave radiation), DO concentration and 
saturation, water temperature, and deep-water habitat quality; identify-
ing and characterizing potential nonlinearity in DO concentration and 
water temperature over time; characterizing the relationship between 
DO concentration changes and solubility, chlorophyll, and land use; 
identifying the predictors of changes in deep-water DO saturation, and 
characterizing meteorological drivers of surface temperature trends. 
These methods are described in detail in the following sections.

Data compilation and quality control
We compiled lake temperature and DO concentration water column 
measurements from temperate lakes (23.5° to 60° latitude north 
and south) collected by a wide range of government, university, and 
not-for-profit sources (Extended Data Fig. 1, Supplementary Table 1). 
To assess long-term trends in temperature and DO concentration, 
we required profiles be made at least once annually during the peak 
summertime stratification (defined as the late summer period, from  
15 July to 31 August for northern hemisphere lakes, and 15 January to 
28 February for southern hemisphere lakes) offshore (for example, 
nearest the deepest location in each lake) for at least 15 years. In some 
larger lakes (n = 6 lakes), we used profiles from two separate locations if 
the lake had more than one distinct basin and treated these as separate 
waterbodies. For some analyses other than long-term trend analyses 
we included lake time series data less than 15 years long, but always at 
least 10 years in duration (described below).

We conducted quality control on the compiled data as follows. We first 
removed impossible values, defined as those outside the range 0–40 for 
both temperature (°C) and DO concentration (mg l−1). We then removed pro-
files from consideration if our initial quality control step process removed 
greater than 95% of the profile or if the profile had less than three distinct 
depth points. To reduce the potential effects of DO measurements made 
when sensors sat on or in sediments, we removed the deepest measurement 
for individual profiles if the maximum depth for that profile exceeded the 
maximum depth of 90% of the remaining profiles for a given lake.

Not all profiles surveyed the entire water column. Some lakes had 
some profiles in which the shallowest depth was greater than 0 (mean-
ing near-surface measurements were not made), yet temperature meas-
urements showed the nearest surface measurements were within the 
epilimnion. In these cases, we made the assumption of uniform DO 
and temperature from the surface to the shallowest measurement and 
added a 0 m depth point. We did this by either changing the minimum 
depth in the profile to 0 if it was less than 0.5 m, or adding a 0 depth 
point and assigning temperature and DO values equal to that of the 
minimum depth point if the minimum depth point was greater than 
or equal to 0.5 m but less than or equal to 3 m. If the minimum depth 
was greater than 3 m, we excluded the profile from analyses. If there 
were several values of either temperature or DO for a given depth, the 
mean value at this depth was used. These operations and all further 
analyses were conducted in R version 3.4.229.

In total, the above QA steps removed 2,040 profiles out of a total of 
25,023 (8.2%). After processing and removing eight non-temperate 
lakes, we had 22,574 DO profiles with corresponding temperature 
profiles. There was a median of 2.1 profiles per year (range: 1–38) and  
23 years of data per lake (Supplementary Table 2).

Profile interpolation and strata delineation
To generate a dataset with consistent depth resolution within and 
among lakes, we interpolated each temperature and DO profile from 

depth 0 m to the deepest depth of each profile at intervals of 0.5 m using 
the pchip function of the R package pracma30. This interpolation proce-
dure preserves the overall shape of the profile by preventing overshoot-
ing of data values30. Following interpolation, we calculated temperature 
and stability characteristics using the R package rLakeAnalyzer31. We 
delineated the epilimnion and hypolimnion using the meta.depths 
function (slope = 0.1, seasonal = FALSE), which calculates the top and 
bottom depths of the metalimnion31. If the range of temperatures in the 
profile is less than 1 °C, the meta.depths function does not return values 
for the metalimnion (that is, the profile is not considered stratified).

Many lakes did not have a well-defined hypolimnion. To identify those 
with a hypolimnion, we first removed lakes in which the meta.depths 
function failed to calculate a bottom metalimnion depth for more than 
10% of profiles. We then calculated the mean of the maximum profile 
depths across all profiles for each lake, to get a mean profile depth for 
the lake. If the mean value of the bottom of the metalimnion for a lake 
was shallower than the calculated mean profile depth for that lake, it 
was considered to have a hypolimnion. We defined ‘surface waters’ as all 
depths shallower than or equal to the top metalimnetic depth and ‘deep 
waters’ as all depths deeper than the bottom depth of the metalimnion.

Characterizing trends in dissolved oxygen and temperature
We calculated the mean surface-water or deep-water temperature 
and DO concentration and percentage saturation. For each lake, we 
calculated the mean surface-water or deep-water DO concentration or 
temperature for all profiles in a given year (in our defined late-summer 
period) to obtain a mean annual value. We then calculated the per-
centage DO saturation from temperature, DO concentration, and lake 
elevation data32. Mean annual surface-water and deep-water tempera-
ture and DO concentration measurements were then used to calculate 
long-term trends for surface waters (n = 392 lakes; median number  
of years per lake: 24) and deep waters (n = 260; median number of  
years: 24). All trends were calculated using the nonparametric Sen’s 
slope in the R package openair33. Supplementary Table 2 contains meta-
data and trend information for all lakes with calculated trends. Trend 
data were not reported for lakes that had less than 15 years of data at a 
given depth, or deep-water trends in lakes that did not thermally stratify 
(‘NA’). In one lake (T Bird, ID 118), epilimnetic water was artificially aer-
ated and this depth layer was excluded from analysis.

For deep-water trends, lakes that were essentially anoxic (average 
hypolimnetic DO < 0.5 mg l−1) had trend magnitudes that clustered 
near 0 relative to other lakes. This was not unexpected as lakes with 
essentially no hypolimnetic DO have little potential to lose additional 
DO. When calculating median trends and for graphical depiction of 
trends (Fig. 1), we removed these lakes (n = 69; difference = 191).

We conducted several analyses to examine the potential of variability 
in lake data over time (that is, not all lakes sampled all years of observa-
tion) or variability in space (that is, some regions sampled much more 
heavily than others) to influence overall population level trends (see 
the following sections and Extended Data Table 1).

Spatial autocorrelation and effects of lake clusters
Because the lakes included in this study were not uniformly dispersed 
over all continental land masses, we examined the potential of large 
numbers of lakes in relatively concentrated regions to drive overall pat-
terns. To do this, we first examined spatial autocorrelation in trends in 
lake temperature and dissolved oxygen concentration using Moran’s I 
in the R package lctools34,35. This statistic ranges from −1 for data that 
are perfectly dispersed to +1 for data that are perfectly autocorrelated. 
Values near zero suggest randomly distributed data. We observed weak 
but significant spatial autocorrelation in some variables (Moran’s I 
values ranging from 0.02 to 0.27) (Extended Data Table 1).

Following this analysis, we examined the potential for the large num-
bers of lakes in some regions to dominate overall trends we reported.  
We tested for potential bias by examining trends for a subset of lakes.  
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We identified four regions in the US with high numbers of lakes 
(Maine = 113 lakes, New Hampshire = 38 lakes, Missouri = 41 lakes, and 
Minnesota = 84 lakes). For each of these clustered regions, we ran-
domly subsampled 10% of the lakes. After creation of a random subset, 
we found that the overall trends are similar to the trends obtained 
from all lakes (Extended Data Table 1). These results demonstrate that 
our observed population-level trends are not driven solely by trends 
observed in our lake-rich regions. Although our analysis focuses on tem-
perate lakes, we obtained data from a small number of non-temperate 
lakes (n = 8). Including these non-temperate lakes in our analysis 
(Extended Data Table 1) did not change our overall results.

Uncertainty estimates and temporal variation in trends
We conducted an analysis to compare trends, confidence intervals, and 
significance of trends over two time periods: 1980–2017 (n = 80) and 
1990–2017 (n = 197) to assess whether different lake observation years 
influenced the overall trends in DO concentration and temperature 
we observed. For each time period, we used a subset of lakes that had 
data for at least 80% of years within the defined time period. Following 
established methods18, we calculated a yearly anomaly in temperature 
and dissolved oxygen for each lake as the difference between each 
year’s observation and the long-term mean. We then averaged these 
anomalies across all lakes and used linear regression to calculate the 
slope, significance, and confidence intervals of these averaged anoma-
lies (Extended Data Table 1).

Characterizing trends in climate characteristics
We examined trends in air temperature, total precipitation, wind speed, 
and shortwave radiation using the ERA-5 reanalysis from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)36. This 
data set provides a single gridded global product with a resolution of 
0.25° latitude by 0.25° longitude over the period 1979–2019 available 
as monthly averages (air temperature, wind speed, and shortwave 
radiation) or totals (precipitation). We used ECMWF time-series data 
from the gridded location closest to each lake and over the two-month 
period around when lakes were sampled ( July–August for Northern 
hemisphere lakes, January–February for Southern hemisphere lakes). 
We calculated temporal trends in mean summer air temperature, mean 
summer wind speed, summer total precipitation, mean summer short-
wave radiation, mean winter air temperature, mean spring air tempera-
ture, mean autumn air temperature using the same methods we used 
to examine lake temperature and DO trends (see above). We then con-
ducted a multiple regression analysis to assess which of these predictor 
variables (trends in air temperature, total precipitation, wind speed, 
or shortwave radiation) best explained surface-water temperature 
trends (Extended Data Table 3).

Trends in climatic variables over the temperate zone
We delineated gridded latitude and longitudes at 2° intervals across 
the entire temperate zone over land masses only as well as over large 
regions, including Asia (defined by longitude ≥ 29.3°; latitude 23.5° to 
60°); Europe and North America (longitude <29.3°; latitude 23.5° to 
60°); South America and western Africa (longitude <0°; latitude ≤−23.5° 
to −60°); and southern Africa, Australia, and Oceania (longitude ≥ 0°; 
latitude −23.5° to −60°). We then used data from the ERA-5 reanaly-
sis (see ‘Characterizing trends in climate characteristics’ section) to  
calculate trends in climate variables over each of these regions 
(Extended Data Table 2).

Multiple regression analysis of drivers of surface water 
temperature trends
We conducted a multiple regression analysis of the meteorological 
drivers of observed surface water temperature trends. Predictors in 
the analysis included: summer air temperature trend, summer total 
precipitation trend, summer wind speed trend, summer shortwave 

radiation trend, winter air temperature trend, spring air temperature 
trend, autumn air temperature trend, and mean winter temperature 
(as a proxy for ice cover18). All variables were standardized by z-scores 
to facilitate comparison of model coefficients across variables having 
different units37. We verified that multicollinearity was not a problem 
by checking that the variance inflation factor was well below ten for 
all variables38. We used the leaps R package to select subset models 
including all predictors and two-way interactions, and selected the 
fitted model having the lowest Akaike information criterion (AIC)39. 
Coefficients and P values for the selected model appear in Extended 
Data Table 3.

Characterizing trends in deep-water habitat quality
We used TDO3

11 to quantify trends in oxy-thermal habitat relevant for 
cold-water organisms. TDO3 represents the minimum temperature in 
the water column where DO concentration was greater than or equal to  
3 mg l−1 and has been used to describe habitat availability for cold-water 
fisheries11. To calculate trends in TDO3 we excluded lakes where the DO 
concentration was higher than 3 mg l−1 across all depths in all profiles. 
For the remaining lakes, we calculated TDO3 for each profile. If a given 
profile did not have DO below 3 mg l−1, we assigned it the minimum 
temperature in the profile. We then calculated an annual mean TDO3 
for the late summer period and excluded lakes that had ≤15 years of 
data. This left 369 lakes in which DO went below 3 mg l−1 at least once.

Nonlinearity in DO and temperature over time
We conducted a generalized additive mixed model (GAMM) analysis to 
characterize overall response of lake temperature and DO concentra-
tion over time and to identify any nonlinearity. GAMMs fit a smooth 
function of the predictor variables showing the relationship of the pre-
dictors to the response variable40. We conducted separate analyses for 
four response variables, surface-water temperature, surface-water DO 
concentration, deep-water temperature, and deep-water DO concentra-
tion. For each GAMM, our only predictor variable was the year, resulting 
in models that show the change in the response variable over time. We 
used the gamm4 function of the gamm4 R package to fit these models 
using the default thin plate spline for smooth terms41. Gamm4 uses 
penalized regression splines of moderate rank for the smooth function. 
For two of these models we used a normal error distribution. Because 
residuals for the deep-water temperature analysis were skewed, we 
used a gamma distribution. Residuals in the deep-water DO analysis 
were also skewed, but because there were a large number of 0 values 
we used a Tweedie distribution instead of a gamma distribution. We 
limited this analysis to data from 1970 and later and included all lakes 
with data in the specified time period (total lake n = 417). To account 
for the non-independent nature of the repeated measurements over 
time within each individual lake, the slope and intercept were allowed 
to vary randomly by lake42.

We next conducted a GAMM to understand how surface water DO 
concentration responded to temperature and productivity (n = 419 
lakes). We used Secchi disk depth as a surrogate for productivity19. We 
included fixed effects of mean summer surface water temperature, 
mean Secchi depth, and the interaction of these two terms in the model. 
We included a random intercept and slope by year within each lake and 
included a corresponding year fixed effect.

Relationship between dissolved oxygen concentration changes 
and solubility
To determine the relative importance of solubility in explaining changes 
in DO concentration, we calculated the expected change in DO con-
centration due to solubility alone and compared this amount to the 
observed DO change. To do this, we first calculated the difference 
between the observed mean DO concentration across the last five years 
and the first five years of record for each lake, requiring a minimum of 
ten years of data per lake (n = 415 lakes for surface (Fig. 2a, Extended 



Data Fig. 2); n = 259 lakes for deep (Fig. 2b)). We then calculated the 
expected change due solely to solubility and compared the observed 
to expected DO changes. Specifically, we calculated the mean per-
centage saturation in the first five years by first calculating the mean 
DO saturation for each water column layer (surface or deep waters), 
and then calculated the mean of all of these values. We then used an 
analogous approach to calculate mean temperature, DO concentration, 
and mean DO concentration at 100% saturation in the last five years of 
record for each lake. Once we calculated these values, we multiplied 
the mean DO concentration at 100% saturation by the decimal value 
of percentage saturation in the first five years of record. This product 
represents the expected DO concentration if the percentage saturation 
in the last five years of record remained the same as it was in the first five 
years of record. In other words, we removed the effect of temperature 
so that if all changes were due solely to solubility, observed changes in 
DO concentration would be identical to this value.

Relationship between dissolved oxygen trends and chlorophyll
We used multiple regression to test whether chlorophyll concentration 
and surface-water temperature were predictors of lakes having both 
increasing surface DO concentration and temperature trends. We first 
calculated the long-term mean late-summer surface-water (epilimnetic) 
chlorophyll concentration, which was available for 166 lakes having 
at least 10 years of chlorophyll measurements. We next predicted DO 
concentration trends using chlorophyll and mean surface-water tem-
perature as independent variables. We first fit the linear regression 
models, starting with a full model that included the interaction of chlo-
rophyll and temperature. We then fit all subset models and selected 
the model with the lowest AIC value43. Using this selected model, we 
predicted DO concentration trends at three different mean epilimnetic 
temperatures (21 °C, 25 °C and 28 °C) across the observed values for 
chlorophyll (Fig. 3b).

Relationship between dissolved oxygen trends and land use
We used logistic regression to better understand the drivers of increas-
ing DO concentration in lakes with increasing surface-water tempera-
tures, using land-use or land-cover data to model the probability of this 
phenomenon44. Logistic regression predicts the probability of a binary 
response outcome for different values of predictor variables. Predic-
tors in our logistic regression included the percentage of agriculture 
and developed land cover in the watershed and the mean surface-water 
temperature over the last ten years of record because these land-use 
characteristics have been associated with increased growth of some 
phytoplankton taxa in warmer lakes5,21. Our binary response was: either 
a lake had both increasing surface temperature and DO concentration 
(1) or it did not (0). We tested for all two-way interactions and all main 
effects. We used the National Land Cover Database 2011 to derive land 
cover metrics for US lakes45. We considered any land falling into any of 
the developed classes as developed (developed–open space, devel-
oped–low intensity, developed–medium intensity, developed–high 
intensity). We tested the goodness of fit of the final model using the 
Hosmer–Lemeshow test, available in the ResourceSelection R package 
(function hoslem.test)46. This test showed an acceptable goodness 
of fit (P = 0.166). The final number of lakes for analysis that had both 
land-cover data and sufficient data to calculate trends was 326.

Identifying the predictors of changes in deep-water DO 
saturation
We first used a random forest algorithm to obtain predictors of the 
observed change in percentage saturation (that is, drivers beyond pure 
solubility effects) in deep waters47. We used the percentage increase in 
mean squared error as a measure of predictor variable importance. We 
conducted the random forest algorithm analysis using the randomFor-
est R package48. For each analysis, we only used lakes that had no missing 
values for any of the predictor variables (n = 224 lakes).

For the random forest algorithm, the response variable was the 
change in mean DO percentage saturation in the past five years of 
record relative to the first five years of record for each lake (ΔSat). A 
positive ΔSat value indicated an increase in percentage saturation, 
whereas a negative ΔSat value indicated a decrease in percentage satu-
ration. Predictor variables included mean hypolimnetic DO percent-
age saturation, DO concentration, temperature, and thickness of the 
hypolimnion (ln-transformed), mean Secchi depth, ln-transformed 
mean lake depth, log10-transformed residence time, change in hypolim-
netic thickness, change in hypolimnetic temperature, change in Secchi 
depth, and change in the density difference between surface and deep 
waters. Mean lake depth and residence time were obtained from the 
HydroLakes Database49. We calculated the density difference across 
the water column using rLakeAnalyzer to calculate densities for each 
interpolated depth point in each water column profile31. If a given pro-
file was stratified, we then used the mean epilimnetic density and the 
mean hypolimnetic density and calculated the difference between these 
densities. If a given profile was not stratified, we took the mean density 
across the top two meters and the mean density across the bottom 
two meters and calculated the difference between these densities. We 
also included trends in the following ERA-5 meteorological variables: 
summer, autumn and winter air temperature, summer shortwave radia-
tion, and summer wind speed. Finally, we included mean winter air 
temperature as a proxy for ice cover18.

Following the above analysis, change in the density difference 
between surface and deep waters came out as an important predic-
tor. Although this could be explained by increased surface water tem-
peratures driven by meteorological variables, it is possible that other 
changes, such as water clarity25, could also explain changes in density 
difference. To disentangle the drivers of changes in water column den-
sity differences, we conducted another random forest analysis using 
the same predictor variables as the above analysis but changing the 
response variable to the change in the density difference. We did not 
include the response variable from the first analysis (ΔSat). The six most 
important variables are presented in Extended Data Fig. 4.

On the basis of the results of the random forest analysis, we con-
ducted a multiple regression analysis to predict change in percentage 
saturation for different levels of predictor variables (ln-transformed 
mean lake depth, change in the density difference across the water col-
umn, and change in Secchi depth). We used a subset of lakes where mean 
deep-water DO concentration exceeded 0.5 mg l−1 to avoid lakes with 
little potential to lose DO. Predictor variables were selected because 
they were the three most important variables identified by random 
forests, except we substituted ln-transformed mean lake depth for 
ln-transformed deep layer thickness. This substitution was made 
because models using ln of deep layer thickness demonstrated sub-
stantial nonlinearity in plots of residuals against fitted values. Models 
built with ln mean lake depth greatly improved these patterns and these 
two variables were correlated (r = 0.51). We first fit the multiple regres-
sion models starting with a full model that included all predictors and 
two-way interaction terms. We then fit all subset models and selected 
the model with the lowest AIC value43. Using this selected model, we 
predicted ΔSat at three different values of each of the two predictors 
change in Secchi depth (P < 0.001) and change in water column density 
difference (P < 0.001), with ln mean lake depth held at the median value.

Data availability
Raw data used in this study are available in published datasets 
for all lakes except numbers 99, 100, 101 and 104 via the Freshwa-
ter Research and Environmental Database (number 3; https://doi.
org/10.18728/568.0), the INRAE data repository (numbers 102, 127; 
https://doi.org/10.15454/BUJUSX), or the Environmental Data Initiative 
(all others; https://doi.org/10.6073/pasta/841f0472e19853b06767292
21aedfb56)50–52. For numbers 99, 100, 101 and 104, permission was not 

https://doi.org/10.18728/568.0
https://doi.org/10.18728/568.0
https://doi.org/10.15454/BUJUSX
https://doi.org/10.6073/pasta/841f0472e19853b0676729221aedfb56
https://doi.org/10.6073/pasta/841f0472e19853b0676729221aedfb56
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granted from original data providers to make raw data publicly avail-
able. Original dataset sources and contact information for all sites are 
described in Supplementary Table 1. Supplementary Table 2 contains 
reported trends in dissolved oxygen and temperature for all lakes with 
more than 15 years of observations.
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Extended Data Fig. 1 | Locations of lakes used in this study. Red circles denote the study lakes.
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Extended Data Fig. 2 | Results of GAMM analysis of trends zoomed out to 
visualize distribution of residuals. a, Surface-water temperature (°C).  
b, Deep-water temperature (°C). c, Surface-water DO (mg l−1). d, Deep-water DO 

concentration (mg l−1). The error bars are ±1  standard error from the smoothed 
estimate (as in Fig. 2c–f).



Extended Data Fig. 3 | Drivers of deep-water change in percent dissolved 
oxygen saturation. a–f, Partial dependency plots from a random forest 
algorithm of deep-water changes in the percentage of dissolved oxygen 
saturation (ΔSat) in the past five years of record relative to the first five years of 
record for each lake. Plots are ordered by predictor variable importance, 
decreasing in importance from the top left to the bottom right. Vertical red 

lines indicate zero change in predictor variable and hash marks on the x axis 
indicate lake distribution deciles. Partial dependencies indicate the 
relationship between predictor and response variables when holding other 
variables at their mean value. Lakes that experienced no change in either water 
clarity or density difference between surface and deep waters exhibited little 
change in deep-water saturation (see Fig. 4).
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Extended Data Fig. 4 | Drivers of the change in density difference between 
surface and deep waters. a–f, Partial dependency plots from a random forest 
algorithm of deep-water change in water column density difference in the last 
five years of record relative to the first five years of record for each lake. Plots 
are ordered by predictor variable importance, decreasing in importance from 

the top left to the bottom right. Vertical red lines indicate zero values for 
predictor variable and hash marks on the x axis indicate lake distribution 
deciles. Partial dependencies indicate the relationship between predictor  
and response variables when holding other variables at their mean value.



Extended Data Table 1 | Trends among subsets of temperate lakes, all temperate lakes, and all lakes including eight 
non-temperate lakes, as well as two time periods: 1980–2017 and 1990–2017

Moran’s I values and associated P values describe autocorrelation in select response variables. For temporal subsamples, 95% confidence intervals are included in parentheses.
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Extended Data Table 2 | Trends in climate characteristics over study lakes, the entire temperate zone, and temperate zones 
in selected regions, 1980–2017



Extended Data Table 3 | Coefficients and P values for the selected multiple regression model predicting lake surface 
temperature trends

*P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001.
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