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The concentration of dissolved oxygen in aquatic systems helps to regulate
biodiversity'?, nutrient biogeochemistry?, greenhouse gas emissions*, and the quality
of drinking water®. The long-term declines in dissolved oxygen concentrations in
coastal and ocean waters have been linked to climate warming and human activity®’,
butlittle is known about the changes in dissolved oxygen concentrations in lakes.
Although the solubility of dissolved oxygen decreases with increasing water
temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in
warming lakes may be amplified by enhanced decomposition and stronger thermal
stratification®® or oxygen may increase as aresult of enhanced primary production’.
Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles
and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a
declinein dissolved oxygen is widespread in surface and deep-water habitats. The
declineinsurface waters is primarily associated with reduced solubility under warmer
water temperatures, although dissolved oxygen in surface watersincreasedina
subset of highly productive warming lakes, probably owing to increasing production
of phytoplankton. By contrast, the decline in deep waters is associated with stronger

thermal stratification and loss of water clarity, but not with changes in gas solubility.
Our results suggest that climate change and declining water clarity have altered the
physicaland chemical environment of lakes. Declines in dissolved oxygenin
freshwater are 2.75to 9.3 times greater than observed in the world’s oceans®’ and
could threaten essential lake ecosystem services®>>!,

The concentration of dissolved oxygen (DO) in aquatic systems influ-
ences biodiversity'?, nutrient biogeochemistry?, greenhouse gas emis-
sions*, the quality of drinking water’, and, ultimately, human health'.
Many aquatic species require well-oxygenated habitats™* and cool
water to survive warm summers>". Loss of deep-water DO degrades
water quality by promoting the release of accumulated nutrients
from sediments into water?, which can increase phytoplankton bio-
mass. This process can also facilitate harmful algal blooms®, which can
compromise water supplies and harm human health'. Despite clear
evidence of large-scale deoxygenation in ocean waters®’, there are no
systematic large-scale studies of this phenomenon in lakes>.
Concentrations of DO should decline with increasing water tempera-
ture owingtoreduced gas solubility. However, other mechanisms can
alsoalter DO, potentially amplifying or counteracting losses predicted

from solubility changes alone. For example, the rates of heterotrophic
respirationincrease with temperature faster than those of primary pro-
duction’, and surface-temperature warming canincrease the strength
and duration of thermal stratification, reducing water circulation, and
preventing deep-water DO replenishment®*%, Studies of individual
lakes demonstrate that deep-water DO concentrations can decrease
with lake warming>#1¢, and reduce access to cold-water habitats that
are essential to many organisms'. However, given the many feedbacks
and processes regulating DO, overall trajectories currently defy a priori
prediction.

We addressed this crucial issue by compiling and analysing an
extensive database of lake temperature and DO profiles to character-
ize widespread and long-term changes in DO concentration and its
causes. We used data from 393 temperate lake and reservoir basins,
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Fig.1| Trendsindissolved oxygen and temperature. a-c, Density plots of
trend magnitudes for temperature (°C decade™) (a), DO concentration
(mgl'decade™) (b)and DO percentage saturation (% decade™) (c). Thered
distributionindicates surface-water trends (n=393), and blue indicates

each with a minimum of 15 years of observation (median of 24 years)
(Extended DataFig.1), and report population medians from long-term
surface-water (epilimnion) and deep-water (hypolimnion) trends in
temperature, DO concentration, and DO saturation during the late
summer period when seasonal DO depletion is expected to be pro-
nounced”. Our analyses showed that lake DO concentrations have
declined in both surface waters and deep waters from 1980 to 2017
by 0.45 and 0.42 mg I, respectively. These rates represent losses of
5.5% and 18.6% for surface and deep waters, respectively, and were
substantially greater than those observed for the oceans, where total
water-column DO has declined about 2% since 1960°,

Although deep-water temperatures have been almost stable since
observations began (-0.01°C decade™) (Fig. 1a), both deep-water
DO concentration and the percentage saturation declined over time
(-0.12mg 1" decade™ and -1.2% decade™, respectively) (Fig. 1b, c,
Extended Data Table 1). Declines were unrelated to solubility as pre-
dicted changes based on solubility (slight increase of 0.01 mg1™) were
negligible compared with observed losses (median of —0.23 mg ™)
based on the last five years relative to the first five years of each time
series (Fig. 2b). Despite essentially unchanging solubility, declining DO
indicates that deep-water habitats have become increasingly inhos-
pitable for organisms with aerobic metabolism, including fishes. We
quantified the potential effects of such declines on habitat availability
by calculating trends in T;o;, the minimum water-column temperature
inwhich DO was at least 3 mgI™. This metric was developed to quantify
oxy-thermal habitats for cold-water fisheries". In lakes where DO was
below 3 mg I anywhere in the water column at least once in the time
series (n=369), Tpo; increased by 0.17 °C decade™, with 68.0% of lakes
having positive trends and declining habitats for many cold-water
species.

In contrast to trends observed for deep waters, variation in
surface-water DO concentrations was well explained by changes
in gas solubility. Consistent with other global-scale lake studies'®,
median air temperatures warmed at 0.30 °C decade™ and median
lake surface waters warmed at 0.39 °C decade™. In addition, median
wind speed and precipitation declined (trends of —0.04 msdecade™
and —4.23 mm decade, respectively), whereas shortwave radiation
increased (1.88 W m2decade™) (Extended Data Table 2). Increases in
surface-water temperature were best explained by increases in the
spring and summer air temperature and by declinesin the summer wind
speed (Extended Data Table 3). The concentrations of surface-water
DO declined at —0.11 mg 1™ decade™ (Fig. 1b). Comparing the past five
years relative to the first five years of each time series showed that

deep-water trends (n=191). The x-axis range for each plot covers two standard
deviations from the median, or approximately 95% of data. The vertical dashed
linesindicate median trends, and the zero trend is highlighted by a black
verticalline.

the median change predicted owing to solubility loss was approxi-
mately 63% of the median observed declinein DO concentration, with
asolubility-predicted loss of 0.12 versus observed losses of 0.19 mg ™
(Fig. 2a).

Despite a strong influence of water temperature on DO concentra-
tion in surface waters, there was substantial variability among lakes
(Fig. 2a), and a large subset of lakes exhibited increases in both water
temperature and DO concentration (n = 87) (Fig. 3d). Analysis of the
interaction between DO concentration, surface temperature, and water
clarity (measured as Secchidepth, a proxy for trophic status'®) showed
that the DO concentration generally decreased with increasing tem-
perature. However, in lakes with low water clarity (Secchidepth<2m),
DO concentrationincreased when average mean summer surface-water
temperatures exceeded around 24 °C (Fig. 3c). Similarly, in a subset
of lakes with chlorophyll data (a proxy for phytoplankton biomass;
n=166), positive DO trends were observed when chlorophyllwas high
and surface temperatures exceeded around 25 °C, (Fig.3b; P< 0.001).
Thus, we suggest that eutrophication and warminginteract toincrease
surface-water DO concentration despite reduced gas solubility.

Lakes withiincreasing DO concentration in warming surface waters
had significantly higher surface-water temperatures (Fig. 3a; P=0.016)
and their watersheds contained a significantly higher proportion of
agriculture (P=0.046) and developed land cover (P=0.001) compared
with other lakes. When developed land exceeded approximately 50%
of a watershed and surface water temperature exceeded 25 °C, the
probability of awarminglake having anincreasing DO trend was about
31%. Combined, these analyses highlight a potential threshold above
which water temperatures and lake productivity interact to increase
DO concentration in surface waters despite declining gas solubility.
Although we lack data on the taxonomic composition of phytoplank-
ton, evidence indicates that phytoplankton blooms are increasing
globally®, in particular owing to cyanobacteria®. High temperatures
and increased nutrient loading can promote surface cyanobacteria
blooms whose photosynthesisleadsto DO supersaturation, particularly
in eutrophic lakes as temperatures exceed 23-25 °C'°?., Consistent
with thisinferred mechanism, we note that these same lakes exhibited
consistently low concentrations of deep-water DO (median: 0.64 mgI™)
relative to other lakes (median of 3.42 mg1™), as is expected when a
large phytoplankton biomass sinks and is decomposed in deep-water
habitats®. Deep water DO changes are described in more detail below.

Decadal-scale trendsin DO were associated with nonlinear changes
in surface-water temperature (Fig. 2c-f, Extended Data Fig. 2). For
example, although surface-water temperatures generally increased
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from 1980 onwards, there was a period of accelerated increase from
1990102000, with slower warming thereafter (Fig. 2c), consistent with
the ‘warming hiatus’ observed from 1998 to 2012%. This trend occurs
across the population of all lakes, as well as the subset of lakes sam-
pled continuously throughout this period. Similarly, surface-water DO
exhibited periodic deviations from an overarching trend of declining
DO concentration (Fig. 2d), mainly owing to the productive lakes exhib-
iting increasing DO levels in surface waters (Fig. 2d, red line). Exclud-
ing these lakes, analysis of the remaining sites showed a consistent
long-term decline in surface-water DO (Fig. 2d, blueline). Deep-water
temperatures exhibited apronounced multi-decadal oscillation since
1980 (Fig. 2e), as has been observed in some lakes previously?, whereas
deep-water DO concentrations declined consistently over time (Fig. 2f).

Although changesin surface-water DO concentration were generally
well predicted by solubility changes, deep-water DO changes were more
strongly associated with changes in water clarity and water-column
density stratification (Fig. 4). For example, water clarity losses that
exceeded1 mwereassociated with substantial reductions in deep-water
DO saturation (Extended Data Fig. 3). Mechanistically, increases in
phytoplanktonbiomass or dissolved organic matter reduce water clar-
ity while increasing oxygen-consuming respiration®?*%, Increases in
phytoplankton biomass and dissolved organic matter are often caused
by changes in land use and recovery from acid deposition, respec-
tively?. However, there was no overarching decline in water clarity
across study lakes. Indeed, 51% of lakes had clarity increases and 49%
had decreases, and only 39% of lakes exhibited both water clarity loss
and DO saturation loss (Fig. 4a).

Deep-water DO decreased substantially in lakes where the water
column density difference between surface and deep watersincreased
by more thanaround 0.5 kg m™ (Fig. 4b, Extended Data Fig. 3b). Strong
increases in the density difference indicate intensified stratification
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withyear as the predictor variable. Grey regions represent one standard error
fromthe predicted line for temperature (°C) (c) and DO (mg1™) (d) over time for
surfacewaters. Thered linerepresents lakes in which both surface temperature
and DO wereincreasing (n=87),and the blueline denotes all other lakes
(n=332).e,f, Temperature (e) and DO (f) for deep waters.

that reduces vertical mixing and replenishment of deep-water DO
from the atmosphere, and may reduce nutrient upwelling to surface
waters>", Differences in water column density increase owing to
water clarity losses as well as other factors that increase heat gainin
near-surface waters, including climate warming®® and atmospheric
stilling?. Increased water column density differences may also be
associated with earlier onset of seasonal stratification and thus more
time for oxygen consumption before the summer sampling period®.
We found that changes in water-column density differences were best
explained by changesin deep-water temperature and climate charac-
teristics (Extended Data Fig. 4). Despite no overarching among-lake
trend in water clarity or deep-water temperature, stratification strength
increased in 84% of lakes that stratified, with 61% of basins exhibiting
both increased density difference and DO saturation loss (Fig. 4b).
Warming surface-water temperatures combined with unchanging
deep-water temperatures (Fig. 1a) increases the density difference in
lake water columns (median rate: 0.10 kg m~ decade™). We observed
unchanging deep-water DO in lakes where both clarity and stratifica-
tionwere unchanged (Fig. 4c, d). Therefore, we anticipate further DO
lossesin deep waters of lakes where water clarity continues to decline
or thermal stratification intensifies, whether owing to atmospheric
warming, stilling, or both?*%,

Despite a wide range of lake and catchment characteristics, the
overall trend of temperate lake deoxygenation is clear, with climate
changes and water clarity losses contributing to declinesin lake DO con-
centration substantially more rapid than those observed in the global
oceans®’. We find deep-water lake habitats are especially threatened,
and deep-water DO trends may portend future losses of cold-water
and oxygen-sensitive species?, increased internal nutrient loading
which exacerbates eutrophication®and the formation of harmful algal
blooms®, and potentially increased storage and subsequent outgassing
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of methane*. Although already rapid, future losses in lake DO may
accelerate owing to continued anthropogenic modifications of the
environment, including eutrophication?, salinization?® and hydrologi-
calmanagement®®, Many lakes have undergone active management to
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reduce nutrient loads, in part to mitigate phytoplankton growth and
deep-water oxygen loss?, but our findings suggest such actions will
probably require more rigorous efforts in the future to counter the
effects of climate and land-use change.
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Methods

Overview

Our methods here describe how we (1) compiled and quality-checked
data; (2) interpolated and delineated water layer strata; and (3) statisti-
cally analysed these data. Our statistical analyses focused on character-
izinglong-termtrendsin climate characteristics (air temperature, wind
speed, precipitation, and short-wave radiation), DO concentration and
saturation, water temperature, and deep-water habitat quality; identify-
ing and characterizing potential nonlinearity in DO concentration and
water temperature over time; characterizing the relationship between
DO concentration changes and solubility, chlorophyll, and land use;
identifying the predictors of changesin deep-water DO saturation, and
characterizing meteorological drivers of surface temperature trends.
These methods are described in detail in the following sections.

Data compilation and quality control

We compiled lake temperature and DO concentration water column
measurements from temperate lakes (23.5° to 60° latitude north
and south) collected by a wide range of government, university, and
not-for-profit sources (Extended Data Fig. 1, Supplementary Table 1).
To assess long-term trends in temperature and DO concentration,
we required profiles be made at least once annually during the peak
summertime stratification (defined as the late summer period, from
15July to 31 August for northern hemisphere lakes, and 15 January to
28 February for southern hemisphere lakes) offshore (for example,
nearest the deepest locationin each lake) for atleast 15 years. In some
larger lakes (n =6 lakes), we used profiles from two separate locationsif
thelake had more than one distinct basin and treated these as separate
waterbodies. For some analyses other than long-term trend analyses
weincluded lake time series dataless than 15 years long, but always at
least 10 years in duration (described below).

We conducted quality control on the compiled data as follows. We first
removed impossible values, defined as those outside the range 0-40 for
bothtemperature (°C) and DO concentration (mgI™). We then removed pro-
filesfrom considerationif our initial quality control step process removed
greater than 95% of the profile or if the profile had less than three distinct
depth points. To reduce the potential effects of DO measurements made
whensensorssatonorinsediments, we removed the deepest measurement
forindividual profilesifthe maximum depthfor that profile exceeded the
maximum depth of 90% of the remaining profiles for agiven lake.

Not all profiles surveyed the entire water column. Some lakes had
some profilesin which the shallowest depth was greater than O (mean-
ing near-surface measurements were not made), yet temperature meas-
urements showed the nearest surface measurements were within the
epilimnion. In these cases, we made the assumption of uniform DO
and temperature from the surface to the shallowest measurement and
addeda O mdepth point. We did this by either changing the minimum
depth in the profile to 0 if it was less than 0.5 m, or adding a 0 depth
point and assigning temperature and DO values equal to that of the
minimum depth point if the minimum depth point was greater than
or equal to 0.5 m but less than or equal to 3 m. If the minimum depth
was greater than 3 m, we excluded the profile from analyses. If there
were several values of either temperature or DO for agiven depth, the
mean value at this depth was used. These operations and all further
analyses were conducted in R version 3.4.2%,

Intotal, the above QA steps removed 2,040 profiles out of a total of
25,023 (8.2%). After processing and removing eight non-temperate
lakes, we had 22,574 DO profiles with corresponding temperature
profiles. There was a median of 2.1 profiles per year (range: 1-38) and
23 years of data per lake (Supplementary Table 2).

Profileinterpolation and strata delineation
To generate a dataset with consistent depth resolution within and
among lakes, we interpolated each temperature and DO profile from

depth O mto the deepest depth of each profile atintervals of 0.5 musing
the pchip function of the R package pracma®. This interpolation proce-
dure preservesthe overall shape of the profile by preventing overshoot-
ing of datavalues®. Followinginterpolation, we calculated temperature
and stability characteristics using the R package rLakeAnalyzer®. We
delineated the epilimnion and hypolimnion using the meta.depths
function (slope = 0.1, seasonal = FALSE), which calculates the top and
bottom depths of the metalimnion®. If the range of temperatures in the
profileislessthan1°C, the meta.depths function does not return values
for the metalimnion (that is, the profile is not considered stratified).
Many lakes did not have a well-defined hypolimnion. Toidentify those
with a hypolimnion, we first removed lakes in which the meta.depths
function failed to calculate abottom metalimnion depth for more than
10% of profiles. We then calculated the mean of the maximum profile
depthsacross all profiles for each lake, to get amean profile depth for
the lake. If the mean value of the bottom of the metalimnion for a lake
was shallower than the calculated mean profile depth for that lake, it
was considered to have ahypolimnion. We defined ‘surface waters’ as all
depthsshallower than or equal to the top metalimnetic depth and ‘deep
waters’ asall depths deeper than the bottom depth of the metalimnion.

Characterizing trends in dissolved oxygen and temperature

We calculated the mean surface-water or deep-water temperature
and DO concentration and percentage saturation. For each lake, we
calculated the mean surface-water or deep-water DO concentration or
temperature for all profilesinagivenyear (in our defined late-summer
period) to obtain a mean annual value. We then calculated the per-
centage DO saturation from temperature, DO concentration, and lake
elevation data*. Mean annual surface-water and deep-water tempera-
ture and DO concentration measurements were then used to calculate
long-term trends for surface waters (n =392 lakes; median number
of years per lake: 24) and deep waters (n =260; median number of
years: 24). All trends were calculated using the nonparametric Sen’s
slopeinthe R package openair®. Supplementary Table 2 contains meta-
dataand trend information for all lakes with calculated trends. Trend
datawere notreported for lakes that had lessthan 15 years of dataata
givendepth, or deep-water trends inlakes that did not thermally stratify
(‘NA’).Inonelake (T Bird, ID 118), epilimnetic water was artificially aer-
ated and this depth layer was excluded from analysis.

For deep-water trends, lakes that were essentially anoxic (average
hypolimnetic DO < 0.5 mgI™?) had trend magnitudes that clustered
near O relative to other lakes. This was not unexpected as lakes with
essentially no hypolimnetic DO have little potential to lose additional
DO. When calculating median trends and for graphical depiction of
trends (Fig. 1), we removed these lakes (n = 69; difference =191).

We conducted several analyses to examine the potential of variability
inlake dataover time (thatis, not all lakes sampled all years of observa-
tion) or variability in space (that is, some regions sampled much more
heavily than others) to influence overall population level trends (see
the following sections and Extended Data Table1).

Spatial autocorrelation and effects of lake clusters
Because thelakesincluded in this study were not uniformly dispersed
over all continental land masses, we examined the potential of large
numbers of lakes in relatively concentrated regions to drive overall pat-
terns. Todo this, we first examined spatial autocorrelationintrendsin
lake temperature and dissolved oxygen concentration using Moran’s /
in the R package Ictools®**, This statistic ranges from -1 for data that
are perfectly dispersed to +1for datathat are perfectly autocorrelated.
Values near zero suggest randomly distributed data. We observed weak
but significant spatial autocorrelation in some variables (Moran’s /
values ranging from 0.02 to 0.27) (Extended Data Table 1).

Following this analysis, we examined the potential for thelarge num-
bers of lakes in some regions to dominate overall trends we reported.
Wetested for potential bias by examining trends for a subset of lakes.
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We identified four regions in the US with high numbers of lakes
(Maine =113 lakes, New Hampshire = 38 lakes, Missouri = 41lakes, and
Minnesota = 84 lakes). For each of these clustered regions, we ran-
domly subsampled 10% of the lakes. After creation of arandom subset,
we found that the overall trends are similar to the trends obtained
fromall lakes (Extended Data Table 1). These results demonstrate that
our observed population-level trends are not driven solely by trends
observedinour lake-richregions. Although our analysis focuses on tem-
perate lakes, we obtained data from a small number of non-temperate
lakes (n = 8). Including these non-temperate lakes in our analysis
(Extended Data Table 1) did not change our overall results.

Uncertainty estimates and temporal variationin trends

We conducted an analysis to compare trends, confidence intervals, and
significance of trends over two time periods: 1980-2017 (n =80) and
1990-2017 (n=197) to assess whether different lake observation years
influenced the overall trends in DO concentration and temperature
we observed. For each time period, we used a subset of lakes that had
dataforatleast 80% of years within the defined time period. Following
established methods'®, we calculated ayearly anomaly in temperature
and dissolved oxygen for each lake as the difference between each
year’s observation and the long-term mean. We then averaged these
anomalies across all lakes and used linear regression to calculate the
slope, significance, and confidence intervals of these averaged anoma-
lies (Extended Data Table1).

Characterizing trends in climate characteristics

We examined trends in air temperature, total precipitation, wind speed,
and shortwave radiation using the ERA-5 reanalysis from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)?¢. This
dataset provides a single gridded global product with a resolution of
0.25°latitude by 0.25° longitude over the period 1979-2019 available
as monthly averages (air temperature, wind speed, and shortwave
radiation) or totals (precipitation). We used ECMWF time-series data
fromthe gridded location closest to each lake and over the two-month
period around when lakes were sampled (July-August for Northern
hemisphere lakes,January-February for Southern hemisphere lakes).
We calculated temporal trends in mean summer air temperature, mean
summer wind speed, summer total precipitation, mean summer short-
wave radiation, mean winter air temperature, mean spring air tempera-
ture, mean autumn air temperature using the same methods we used
to examine lake temperature and DO trends (see above). We then con-
ducted amultiple regression analysis to assess which of these predictor
variables (trends in air temperature, total precipitation, wind speed,
or shortwave radiation) best explained surface-water temperature
trends (Extended Data Table 3).

Trends in climatic variables over the temperate zone

We delineated gridded latitude and longitudes at 2° intervals across
the entire temperate zone over land masses only as well as over large
regions, including Asia (defined by longitude >29.3°; latitude 23.5° to
60°); Europe and North America (longitude <29.3°; latitude 23.5° to
60°); South Americaand western Africa (longitude <0°; latitude <-23.5°
to-60°); and southern Africa, Australia, and Oceania (longitude > 0°;
latitude -23.5° to —60°). We then used data from the ERA-5 reanaly-
sis (see ‘Characterizing trends in climate characteristics’ section) to
calculate trends in climate variables over each of these regions
(Extended Data Table 2).

Multiple regression analysis of drivers of surface water
temperature trends

We conducted a multiple regression analysis of the meteorological
drivers of observed surface water temperature trends. Predictors in
the analysis included: summer air temperature trend, summer total
precipitation trend, summer wind speed trend, summer shortwave

radiation trend, winter air temperature trend, spring air temperature
trend, autumn air temperature trend, and mean winter temperature
(asaproxy forice cover'®). Allvariables were standardized by z-scores
to facilitate comparison of model coefficients across variables having
different units®. We verified that multicollinearity was not a problem
by checking that the variance inflation factor was well below ten for
all variables®. We used the leaps R package to select subset models
including all predictors and two-way interactions, and selected the
fitted model having the lowest Akaike information criterion (AIC)%.
Coefficients and P values for the selected model appear in Extended
Data Table 3.

Characterizing trends in deep-water habitat quality

We used Tpo;" to quantify trends in oxy-thermal habitat relevant for
cold-water organisms. Tpo; represents the minimum temperature in
the water columnwhere DO concentration was greater than or equal to
3mgl™and hasbeenused to describe habitat availability for cold-water
fisheries™. To calculate trends in T, we excluded lakes where the DO
concentration was higher than3mglacross all depths in all profiles.
For the remaining lakes, we calculated T, for each profile. If agiven
profile did not have DO below 3 mg 1™, we assigned it the minimum
temperature in the profile. We then calculated an annual mean Tq;
for the late summer period and excluded lakes that had <15 years of
data. This left 369 lakes in which DO went below 3 mg ™ at least once.

Nonlinearity in DO and temperature over time

We conducted ageneralized additive mixed model (GAMM) analysis to
characterize overall response of lake temperature and DO concentra-
tion over time and to identify any nonlinearity. GAMMs fit a smooth
function of the predictor variables showing the relationship of the pre-
dictorstothe response variable*’. We conducted separate analyses for
four response variables, surface-water temperature, surface-water DO
concentration, deep-water temperature, and deep-water DO concentra-
tion. Foreach GAMM, our only predictor variable was the year, resulting
inmodels that show the changein the response variable over time. We
used the gamm4 function of the gamm4 R package to fit these models
using the default thin plate spline for smooth terms*. Gamm4 uses
penalized regression splines of moderate rank for the smooth function.
For two of these models we used a normal error distribution. Because
residuals for the deep-water temperature analysis were skewed, we
used a gamma distribution. Residuals in the deep-water DO analysis
were also skewed, but because there were a large number of 0 values
we used a Tweedie distribution instead of agamma distribution. We
limited this analysis to data from 1970 and later and included all lakes
with data in the specified time period (total lake n=417). To account
for the non-independent nature of the repeated measurements over
time within eachindividual lake, the slope and intercept were allowed
to vary randomly by lake*2.

We next conducted a GAMM to understand how surface water DO
concentration responded to temperature and productivity (n =419
lakes). We used Secchi disk depth as a surrogate for productivity'®. We
included fixed effects of mean summer surface water temperature,
mean Secchidepth, and theinteraction of these two terms in the model.
Weincluded arandomintercept and slope by year within each lake and
included a corresponding year fixed effect.

Relationship between dissolved oxygen concentration changes
and solubility

Todeterminetherelativeimportance of solubility in explaining changes
in DO concentration, we calculated the expected change in DO con-
centration due to solubility alone and compared this amount to the
observed DO change. To do this, we first calculated the difference
between the observed mean DO concentrationacross the last five years
and the first five years of record for each lake, requiring a minimum of
ten years of data per lake (n =415 lakes for surface (Fig. 2a, Extended



DataFig. 2); n=259 lakes for deep (Fig. 2b)). We then calculated the
expected change due solely to solubility and compared the observed
to expected DO changes. Specifically, we calculated the mean per-
centage saturation in the first five years by first calculating the mean
DO saturation for each water column layer (surface or deep waters),
and then calculated the mean of all of these values. We then used an
analogous approachto calculate mean temperature, DO concentration,
and mean DO concentration at100% saturationin the last five years of
record for each lake. Once we calculated these values, we multiplied
the mean DO concentration at 100% saturation by the decimal value
of percentage saturation in the first five years of record. This product
represents the expected DO concentrationif the percentage saturation
inthelast five years of record remained the same asit was in the first five
years of record. In other words, we removed the effect of temperature
sothatifallchanges were due solely to solubility, observed changesin
DO concentration would be identical to this value.

Relationship between dissolved oxygen trends and chlorophyll
We used multiple regression to test whether chlorophyll concentration
and surface-water temperature were predictors of lakes having both
increasing surface DO concentration and temperature trends. We first
calculated the long-term mean late-summer surface-water (epilimnetic)
chlorophyll concentration, which was available for 166 lakes having
atleast 10 years of chlorophyll measurements. We next predicted DO
concentration trends using chlorophyll and mean surface-water tem-
perature as independent variables. We first fit the linear regression
models, starting with afullmodel thatincluded the interaction of chlo-
rophyll and temperature. We then fit all subset models and selected
the model with the lowest AIC value®. Using this selected model, we
predicted DO concentration trends at three different mean epilimnetic
temperatures (21°C, 25 °C and 28 °C) across the observed values for
chlorophyll (Fig. 3b).

Relationship between dissolved oxygen trends and land use

We used logistic regression to better understand the drivers of increas-
ing DO concentrationinlakes with increasing surface-water tempera-
tures, using land-use or land-cover datato model the probability of this
phenomenon*. Logistic regression predicts the probability of abinary
response outcome for different values of predictor variables. Predic-
tors in our logistic regression included the percentage of agriculture
and developed land cover inthe watershed and the mean surface-water
temperature over the last ten years of record because these land-use
characteristics have been associated with increased growth of some
phytoplankton taxain warmer lakes*?. Our binary response was: either
alake had bothincreasing surface temperature and DO concentration
(1) oritdid not (0). We tested for all two-way interactions and all main
effects. We used the National Land Cover Database 2011 to deriveland
cover metrics for US lakes*. We considered any land falling into any of
the developed classes as developed (developed-open space, devel-
oped-low intensity, developed-medium intensity, developed-high
intensity). We tested the goodness of fit of the final model using the
Hosmer-Lemeshow test, available in the ResourceSelection R package
(function hoslem.test)*. This test showed an acceptable goodness
of fit (P=0.166). The final number of lakes for analysis that had both
land-cover data and sufficient data to calculate trends was 326.

Identifying the predictors of changesin deep-water DO
saturation

We first used a random forest algorithm to obtain predictors of the
observed changein percentage saturation (thatis, drivers beyond pure
solubility effects) in deep waters*’. We used the percentage increase in
meansquared error as ameasure of predictor variableimportance. We
conducted therandom forest algorithm analysis using the randomFor-
est Rpackage*®. For each analysis, we only used lakes that had no missing
values for any of the predictor variables (n =224 lakes).

For the random forest algorithm, the response variable was the
change in mean DO percentage saturation in the past five years of
record relative to the first five years of record for each lake (ASat). A
positive ASat value indicated an increase in percentage saturation,
whereas anegative ASat value indicated a decrease in percentage satu-
ration. Predictor variables included mean hypolimnetic DO percent-
age saturation, DO concentration, temperature, and thickness of the
hypolimnion (In-transformed), mean Secchi depth, In-transformed
mean lake depth, log,,-transformed residence time, change in hypolim-
netic thickness, changein hypolimnetic temperature, changein Secchi
depth, and changein the density difference between surface and deep
waters. Mean lake depth and residence time were obtained from the
HydroLakes Database®. We calculated the density difference across
the water column using rLakeAnalyzer to calculate densities for each
interpolated depth pointin each water column profile®. If a given pro-
file was stratified, we then used the mean epilimnetic density and the
mean hypolimnetic density and calculated the difference between these
densities. Ifagiven profile was not stratified, we took the mean density
across the top two meters and the mean density across the bottom
two meters and calculated the difference between these densities. We
alsoincluded trends in the following ERA-5 meteorological variables:
summer, autumn and winter air temperature, summer shortwave radia-
tion, and summer wind speed. Finally, we included mean winter air
temperature as a proxy for ice cover',

Following the above analysis, change in the density difference
between surface and deep waters came out as an important predic-
tor. Although this could be explained by increased surface water tem-
peratures driven by meteorological variables, it is possible that other
changes, such as water clarity?, could also explain changes in density
difference. To disentangle the drivers of changes in water column den-
sity differences, we conducted another random forest analysis using
the same predictor variables as the above analysis but changing the
response variable to the change in the density difference. We did not
include theresponse variable from the first analysis (ASat). The six most
important variables are presented in Extended Data Fig. 4.

On the basis of the results of the random forest analysis, we con-
ducted amultiple regression analysisto predict change in percentage
saturation for different levels of predictor variables (In-transformed
mean lake depth, changein the density difference across the water col-
umn, and change in Secchidepth). We used a subset of lakes where mean
deep-water DO concentration exceeded 0.5 mg 1™ to avoid lakes with
little potential to lose DO. Predictor variables were selected because
they were the three most important variables identified by random
forests, except we substituted In-transformed mean lake depth for
In-transformed deep layer thickness. This substitution was made
because models using In of deep layer thickness demonstrated sub-
stantial nonlinearity in plots of residuals against fitted values. Models
built withIn meanlake depthgreatlyimproved these patterns and these
two variables were correlated (r=0.51). We first fit the multiple regres-
sionmodelsstarting witha fullmodel thatincluded all predictors and
two-way interaction terms. We then fit all subset models and selected
the model with the lowest AIC value*. Using this selected model, we
predicted ASat at three different values of each of the two predictors
changein Secchidepth (P<0.001) and change in water column density
difference (P<0.001), withInmeanlake depth held at the median value.

Data availability

Raw data used in this study are available in published datasets
for all lakes except numbers 99,100, 101 and 104 via the Freshwa-
ter Research and Environmental Database (number 3; https://doi.
org/10.18728/568.0), the INRAE data repository (numbers 102, 127;
https://doi.org/10.15454/BUJUSX), or the Environmental Data Initiative
(all others; https://doi.org/10.6073/pasta/841f0472e19853b06767292
21aedfb56)°-52, For numbers 99,100,101 and 104, permission was not
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Extended DataFig.1|Locations oflakes used in this study. Red circles denote the study lakes.
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Extended DataFig.2|Results of GAMM analysis of trends zoomed out to concentration (mgl™). Theerrorbarsare +1 standard error from the smoothed

visualize distribution of residuals. a, Surface-water temperature (°C). estimate (asin Fig.2c-f).
b, Deep-water temperature (°C). ¢, Surface-water DO (mg1™).d, Deep-water DO
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Extended Data Table 1| Trends among subsets of temperate lakes, all temperate lakes, and all lakes including eight
non-temperate lakes, as well as two time periods: 1980-2017 and 1990-2017

. Trend including eight
;f;‘i:f::xzamplmg Treod fot all temperate |, oo oerate iakegsh 1980-2017 1990-2017
N (n=400) Moran's I value | P value

Surface water temperature trend (°C decade™) 0.34 0.39 0.38)0.31 (0.12 to 0.51); P=0.003 0.34 (0.03 to 0.66); P=0.035 0.266<0.001
Deep water temperature trend (°C decade™) -0.02 -0.01 -0.02|NS; P=0.477 NS; P=0.707 0.123<0.001
Surface water dissolved oxygen (mg I" decade™) 0.1 011 -0.11[-0.10 (-0.16 t0 -0.04): P=0.001 |-0.17 (-0.28 to -0.05): P=0.006 0.18]<0.001
Deep water dissolved oxygen (mg I"' decade™) -0.16 012 -0.12|-0.12 (-0.20 t0 -0.05); P=0.002 |-0.15 (-0.27 to -0.04): P=0.012 0.036]0.16
Surface % dissolved oxygen saturation trend 0.174]<0.001
Deep % dissolved oxygen saturation trend 0.017]0.521

Moran’s | values and associated P values describe autocorrelation in select response variables. For temporal subsamples, 95% confidence intervals are included in parentheses.
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Extended Data Table 2 | Trends in climate characteristics over study lakes, the entire temperate zone, and temperate zones
in selected regions, 1980-2017

Entire North South Europe and Southern Africa,
Lake |[temperate [temperate |temperate North Australia, and
Variable (units) sites  [zone zone zone Asia [America South America [Oceania
Air temperature (°C decade'l) 0.30 0.30 0.33 0.16] 0.35 0.31 0.20 0.11
Wind speed (m s? decade'l) -0.04 0.00 0.00 0.00] 0.00 0.00 0.01 -0.01
Summer Precipitation (mm decade’l) -4.23 -0.56 -0.78 0.76] -1.94 0.00 -3.14 322
Shortwave radiation (W m? decade'l) 1.88 1.06 1.39 -1.26f 1.70 1.04 1.04 2.14




Extended Data Table 3 | Coefficients and P values for the selected multiple regression model predicting lake surface
temperature trends

P Significance

Variable Coefficient value |level

Summer air temperature trend 0.1863| 0.002 ok
Summer wind speed trend -0.2479| <0.001 ook
Summer total precipitation trend 0.0423| 0.448

Summer shortwave radiation trend 0.0386| 0.556

Mean winter temperature -0.0842| 0.199

Winter air temperature trend 0.0962| 0.049 *
Spring air temperature trend 0.1502| 0.007 ok
Fall air temperature trend -0.0362( 0.464

Summer wind speed trend * Summer total precipitation trend 0.1681| <0.001 ook
Summer total precipitation trend * Spring air temperature trend 0.1718| <0.001 ook
Summer total precipitation trend * Fall air temperature trend 0.0872| 0.062 )
Summer air temp trend * Summer wind speed trend -0.1400] 0.001 ok
Summer wind speed trend * Summer shortwave radiation trend 0.2832] <0.001 koK
Summer wind speed trend * Winter air temperature trend -0.1053| 0.004 ok
Summer wind speed trend * Mean winter air temperature 0.1469| <0.001 ook
Summer wind speed trend * Spring air temperature trend 0.1456| 0.006 ok
Summer wind speed trend * Fall air temperature trend 0.1215| 0.006 ok
Summer air temp trend * Spring air temperature trend -0.0761| 0.091 .
Summer shortwave radiation trend * Mean winter air temperature -0.1725| 0.003 ok
Summer shortwave radiation trend * Spring air temperature trend 0.1684| 0.003 ok
Winter air temperature trend * Spring air temperature trend 0.0953| 0.057

Winter air temperature trend * Fall air temperature trend 0.1074| 0.012 *
Mean winter air temperature * Fall air temperature trend 0.1004| 0.101

Spring air temperature trend * Fall air temperature trend -0.1454( 0.002 ok

*P<0.1; *P<0.05; **P < 0.01; ***P < 0.001.
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