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Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quan-
tum sensing and information applications. Due to the spatial localization of the defect states, these deep defects
can be considered as artificial atoms/molecules in a solid state matrix. Here we show that unlike single-particle
treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules,
accurately describe the many-body characteristics of the electronic states of these defect centers and correctly
predict properties that single-particle treatments fail to obtain. We choose the negatively charged nitrogen-
vacancy (NV−) center in diamond as the prototype defect to study with these techniques due to its importance for
quantum information applications and because its properties are well known, which makes it an ideal benchmark
system. By properly accounting for electron correlations and including spin-orbit coupling and dipolar spin-spin
coupling in the quantum chemistry calculations, for the NV− center in diamond clusters, we are able to: (i)
show the correct splitting of the ground (first-excited) spin-triplet state into two levels (four levels), (ii) calculate
zero-field splitting values of the ground and excited spin-triplet states, in good agreement with experiment, (iii)
determine many-body configurations of the spin-singlet states, and (iv) calculate the energy differences between
the ground and exited spin-triplet and spin-singlet states, as well as their ordering, which are also found to be in
good agreement with recent experimental data. The numerical procedure we have developed is general, and it
can screen other color centers whose properties are not well known but promising for applications.
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I. INTRODUCTION

Defects in solid-state systems are naturally formed and
can be implanted in a controllable fashion. Individual de-
fects deeply embedded in wide band-gap semiconductors are
known to have distinct localized electronic states within the
band gap and so they behave similar to atoms or molecules.
The prototype of such deep defects is the negatively charged
nitrogen-vacancy (NV−) center defect in diamond which has
been extensively used for sensing [1,2], for the demonstra-
tion of loophole-free Bell inequalities [3], and for a proof of
principle of quantum error correction [4,5], to name a few
among many important experiments and quantum information
science applications. Its tremendous success was culminated
in recent experimental realization of quantum entanglement
between the spins of the NV− centers over a kilometer range
[3]. Single spins of the NV− center defects were shown to be
optically initialized and read out with long spin-lattice relax-
ation and spin coherence times at room temperature [6–13],
and the electronic spin can be coherently controlled both
optically [14] and via microwave fields [15]. This prototype
defect inspired exploration of other defects, hopefully even
more suitable for quantum information science applications,
in diamond and other wide band-gap semiconductors such as
the silicon vacancies and NV center in silicon carbide [16–20],
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the silicon vacancy center in diamond [21–25], and rare-earth
defects in silicon [26] or yttrium orthosilicate [27].

Electronic and magnetic properties of deep defects have
been studied using either various levels of ab initio theory
or phenomenological molecular models based on group the-
ory. In the quest of unexplored, improved defects, ab initio
theory rather than the molecular model approach can play
an essential role in screening candidate defects for quantum
information science applications before experimental data
are available, because the latter approach requires parameter
values such as Coulomb interactions and dipolar spin-spin
coupling (SSC) and spin-orbit coupling (SOC) strengths. To
that end, the techniques need to be reliable and predict defect
properties as accurately as possible. Although single-particle
ab initio techniques are extensively used, they have serious
limitations for strongly correlated systems, especially for ex-
cited states. For example, density-functional theory (DFT)
(as well as the molecular model approach) could not cor-
rectly predict the ordering of the spin-singlet states of the
NV− center defect in diamond [28–31], which led to a long-
standing debate and conflicting results in the community
[30–34]. Recent experimental results resolved this conflict
[35–37]. Furthermore, DFT could not correctly predict either
the ordering or the energy difference between the excited
spin-triplet and spin-singlet states of the NV− center defect
[28,38,39]. The aforementioned incorrect predictions of DFT
highly influence our understanding of optical transitions be-
tween the triplet and singlet states referred to as intersystem
crossings [6,30,33,34], which are key mechanisms to initialize
and readout the spin-polarized states for quantum technology
applications.
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FIG. 1. (a) Side view and (b) top view of the NV− center defect in a 70-atom diamond cluster with C3v symmetry. (c) Top view of the
NV− center defect in a 162-atom cluster with C3v symmetry. The color scheme is as follows: carbon (cyan), nitrogen (blue), vacancy (gray),
hydrogen (pink). Carbon, nitrogen, vacancy, and hydrogen are denoted by C, N, V, and H, respectively. The rotation axis of the threefold
symmetry (C3) and the coordinate axes are shown. Here σ1, σ2, and σ3 indicate vertical mirror planes passing through the carbons nearest to
the vacancy with broken dangling bonds (labeled by 1, 2, and 3), the vacancy, and the z axis.

In order to remedy this limitation, quantum chemistry
calculations [38,40,41] were performed for the NV− center
defect in diamond clusters, but the electronic structure of
the defect states is not all consistent with experimental data
[35,36,42]. For example, the ordering of the excited triplet and
singlet states and the energy differences between the singlet
states (or the excited triplet and singlet states) does not agree
with experiment. As a middle ground, beyond-DFT ab initio
results were combined with model Hamiltonians within many-
body (perturbation) theory [19,25,43,44], finding agreement
with experimental data [35–37,42]. However, Refs. [25,43,44]
used fitting of the ab initio results to the model Hamil-
tonian parameters. More importantly, within these efforts
[19,25,43,44], accounting for the effects of SOC and SSC is
not straightforward. So far, zero-field splitting values induced
by SOC and/or SSC have not been studied within many-body
ab initio methods.

In this work, we investigate the electronic structure and
magnetic properties of an NV− center in diamond by sys-
tematically applying multiconfigurational quantum chemistry
methods (beyond DFT) to hydrogen-passivated diamond clus-
ters containing the defect. The critical ingredient for success
in quantum chemistry calculations is to include several defect-
localized unoccupied states beyond dangling bond states,
which differentiates our case from the previous quantum
chemistry calculations [38,40,41]. By considering full elec-
tron correlation among these extra defect states and the
dangling bond states, we determine excitation energies be-
tween the ground state and the excited spin-triplet and
spin-singlet states as well as the character of the states. Fur-
thermore, using the quantum chemistry methods, we examine
effects of SOC and SSC on the spin-triplet states and identify
characteristics of the split levels as well as the zero-field split-
ting values. This work is a quantum chemistry calculation of
the zero-field splitting by SOC and SSC for an NV− center in
diamond. Our calculated results of the electronic structure and
zero-field splitting are compared to recent experimental data
with which we find agreement ranging from good to excellent.

This paper is structured as follows. In Sec. II we provide
a brief overview of the NV− center in diamond. In Sec. III
we describe the structures of the clusters that are considered.

In Sec. IV we discuss our procedure of applying the quantum
chemistry methods to the diamond clusters, while the tech-
nical detail with a flowchart is provided in the Appendix. In
Sec. V we present our results of the energy separations and
characteristics of the triplet and singlet states as well as the
zero-field splitting in comparison to other theoretical studies
and experimental data. In Sec. VI we provide our conclusion
and outlook.

II. OVERVIEW OF NV− CENTER DEFECT

The deep NV− center defect in diamond consists of a ni-
trogen atom substituting for carbon and a vacancy at its neigh-
boring carbon site, as shown in Fig. 1(a). The axis connecting
the vacancy and nitrogen sites is chosen to be the z axis.
The defect has a C3v point-group symmetry comprising two
threefold rotational symmetries (C3) about the z axis and three
vertical mirror planes σi (i = 1, 2, 3) each passing through the
nitrogen and nearest carbon atoms in the xy plane (Fig. 1).

For an NV− center in diamond, experimental zero-phonon
absorption spectra showed that the ground state is a spin-
triplet 3A2 state with an excitation energy of 1.945 eV to
the first-excited spin-triplet 3E [42] and that the excitation
energy between the lowest and first-excited spin-singlet states
(1E–1A1) is 1.190 eV [31]. Recent experimental data [35,36]
showed that the singlet 1A1 state has a higher energy than
the singlet 1E state. So far, there have been no direct mea-
surements on the excitation energy of the spin-singlet 1E
state relative to the ground 3A2 state. This excitation energy,
however, can be deduced from the experimental energy differ-
ence between the 3E and 1A1 states (which is in the range of
0.321 to 0.414 eV [36,37]) as well as from the 1A1–1E energy
difference.

III. CLUSTER STRUCTURES

To study the NV− center in diamond, we consider
two vacancy-centered clusters with hydrogen passivation,
C33H36N− (70-atom cluster) and C85H76N− (162-atom
cluster), which are created such that they have the correct C3v

symmetry. The geometries of the clusters are constructed from
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FIG. 2. (a) Top view of six defect orbitals (belonging to two A1 and four E IRRep) in the active space with an isosurface value of 0.06
for the CASSCF(6,6) calculation of the 70-atom cluster. The similar six active orbitals are identified for the 162-atom cluster. The LUSCUS
program [56] is used for visualization. (b) Nominal distribution of six electrons over the six active orbitals in the ground spin-triplet (3A2) state.
The actual occupation numbers of the aN1 , aC1 , ex , ey, e′

x , e
′
y, are found to be 1.9986, 1.3753, 0.9883, 0.9883, 0.3248, and 0.3248, respectively,

from the CASSCF(6,6) calculation. (c) Schematic flowchart of our computational procedure in which the italicized step is discussed in detail
in the Appendix.

the DFT-optimized, C3v-symmetric structure of a 215-atom
cubic supercell with an NV− center. The DFT calculation
of the relaxation is performed for the cubic supercell with
4 × 4 × 4 k points within the Perdew-Burke-Ernzerhof (PBE)
[45] generalized gradient approximation using QUANTUM

ESPRESSO [46]. Ultrasoft pseudopotentials with scalar
relativistic terms and nonlocal core corrections are used
until the maximum residual force is less than 0.005 eV/Å.
Figure 1 shows side and top views of the 70-atom cluster and
a top view of the 162-atom cluster where the z axis is along
the body-diagonal [111] direction in the cubic supercell. After
the geometry optimization, the C3v point-group symmetry
is retained at the NV− center in the supercell. For the DFT-
optimized supercell, the bond length between the nitrogen
atom and the carbon atoms nearest to the vacancy is 2.734 Å,
and the bond lengths between two nearest neighboring carbon
atoms closest to the vacancy is 2.676 Å. These bond lengths
agree well with the corresponding bond lengths reported from
other DFT calculations [47]. The shortest distance between
the vacancy and carbon (nitrogen) is 1.647 (1.690) Å. For

the clusters, the bond length between hydrogen and carbon
is set to a standard value, 1.09 Å, and no further relaxation is
carried out.

IV. QUANTUM CHEMISTRY METHODS

The quantum chemistry calculations are carried out in
two steps: (i) complete active space self-consistent field
(CASSCF) calculations with state average [48]; (ii) inclusion
of SOC and SSC. We use both the OPENMOLCAS [49] code
and the ORCA [50,51] code. The scalar relativistic effects are
included based on the Douglas-Kroll-Hess Hamiltonian using
relativistically contracted all-electron correlation-consistent
polarized double-zeta basis sets, cc-pVDZ-DK [52,53], for all
atoms in the clusters. A schematic flow chart of our computa-
tional procedure is shown in Fig. 2(c).

A. CASSCF calculations

In the CASSCF formalism [48], a many-body wave func-
tion is described as a linear combination of multiple Slater’s

014115-3



CHURNA BHANDARI et al. PHYSICAL REVIEW B 103, 014115 (2021)

determinants, each of which is made of single-electron
molecular orbitals. The coefficients of the Slater’s deter-
minants are referred to as configuration interaction (CI)
expansion coefficients. A CASSCF wave function is parti-
tioned into parts from inactive orbitals with double occupancy,
virtual orbitals with zero occupancy, and active orbitals with
occupancy between zero and two (i.e., 0, 1, or 2). In a
CASSCF calculation, for a given spin multiplicity, any pos-
sible electron configurations or correlation within the active
orbital space are included, while keeping the occupancies
of the inactive and virtual orbitals fixed. However, electron
excitation or correlations outside the active space are not in-
cluded. Both the CI coefficients and the molecular orbitals are
optimized through self-consistent calculations. Therefore, the
choice of the active orbitals is critical for accurate CASSCF
calculations. It was shown that the accuracy of CASSCF
calculations is greatly improved by including extra molecu-
lar orbitals beyond frontier orbitals in the active space [48].
CASSCF wave functions are described in terms of spin-free
basis states that correspond to all possible configurations gen-
erating the maximum Mz values, where Mz is an eigenvalue
of the Sz operator (i.e., the z component of the total spin S).
The state average is a technique to facilitate convergence of
the excited-state CASSCF wave functions [48].

In order to determine the number and character of or-
bitals to be included in the active space, we start with a
qualitative analysis of the electronic structure of an NV−

center from a single-electron point of view. The NV− center
in diamond has four broken dangling bonds, as shown in
Fig. 1(a): three dangling bonds of the nearest neighboring
carbon atoms to the vacancy (d1, d2, and d3), and the dan-
gling bond of the nitrogen atom to the vacancy (dN ). They
form four single-electron molecular orbitals such as aC1 =
(d1 + d2 + d3)/3, aN1 = dN , ex = (2d1 − d2 − d3), and ey =
(d2 − d3)/

√
2 [29,54,55]. The first two orbitals transform as a

function of the A1 irreducible representation (IRRep), and the
other two orbitals transform as functions of the E IRRep under
the C3v point group. It is known that the aN1 orbital is deeply
buried under the valence band of the diamond lattice, whereas
the other three orbitals are within the band gap [28,29,54,55].
These three states are also referred to as in-gap defect states
[19]. Now let us count the total number of electrons in the
system. A carbon vacancy within diamond leaves four elec-
trons in four dangling bonds. One of these carbon atoms is
substituted with a nitrogen atom that has an extra electron (as
compared to a carbon atom). The defect further acquires an
additional electron and becomes negatively charged, resulting
in a total number of six electrons that fill the defect states in
accordance with the Hund’s rules. In the spin-triplet ground
state, the nominal occupancy is as follows: The defect state,
aN1 , which lies in the valence band, is doubly occupied, while
the remainder of the four electrons are distributed amongst
the in-gap states, with aC1 being doubly occupied, and the
degenerate orbitals (ex ey) being singly occupied.

Inspired by the single-electron picture, we initially perform
CASSCF calculations using the minimal active space con-
sisting of six electrons and the four dangling bond orbitals
(aN1 , aC1 , ex, and ey) for the 70-atom and 162-atom diamond
clusters with C3v symmetry, shown in Figs. 2(a) and 2(b).
These calculations are referred to as CASSCF(6,4) following

the number of electrons and orbitals used in the active space.
The excited-state wave functions obtained via CASSCF(6,4)
calculations are found to be inconsistent with physical and
chemical intuitions, and the corresponding excitation ener-
gies are highly overestimated compared to experiment. It is
important to carry out CASSCF calculations beyond the min-
imal active space in order to include dynamic correlation.
As a result, we expand the active space by including extra
unoccupied defect-localized states. Note that the important
criterion of extra unoccupied active orbitals in our case is
orbital localization near the vacancy, whereas the active space
is typically expanded based on an energy criterion only. The
most common practice is to identify these extra states in the
virtual space of the converged CASSCF(6,4) result. However,
no such defect orbitals are found in the virtual space. There-
fore, we introduce a series of CASSCF calculations discussed
in the Appendix (Fig. 6) in order to identify and include
extra defect orbitals in the active space. With this systematic
CASSCF procedure, we find two unoccupied defect orbitals
with E IRRep. In order to distinguish them from the dangling
bond orbitals, ex and ey, they are, henceforth, referred to as e′

x
and e′

y [Figs. 2(a) and 2(b)]. The inclusion of the second pair
of E orbitals (e′

x and e′
y) in the active space is important for

an accurate description of many-body correlations between
electrons localized near the vacancy. Such an effect is not
uncommon in quantum chemistry calculations for systems
with highly populated localized orbitals. A canonical example
is the double d-shell effect [57–60] in systems with late 3d
transition metal atoms (e.g., Ni). In this case, a second set of
3d orbitals (referred to as 3d ′ orbitals) must be included in the
active space (so that there are altogether 10 3d orbitals in the
active space) for accurate energy calculations [57–60]. For the
NV− center, we have a similar situation with defect-localized
orbitals occupied by a large number of electrons. This leads
to strong dynamical correlations that need to be taken into
account by including extra active orbitals (e′

x and e′
y) in ad-

dition to the normal dangling-bond orbitals expected from
the single-particle picture. With these two extra unoccupied
orbitals, as well as the four dangling bond orbitals, we form
an active space consisting of six electrons and six orbitals,
and carry out CASSCF(6,6) calculations for both the total
spin S = 1 and S = 0. Furthermore, in order to achieve high
accuracy and exact numerical degeneracy (up to ∼10 neV)
in states with E symmetry, we carefully maintain the IRRep
symmetry of all of the molecular orbitals and remove the
surface-dominant orbitals in the self-consistent calculations.

B. Spin-orbit coupling and spin-spin coupling

For the ground 3A2 state, the first-order SOC effect on
the zero-field splitting vanishes and higher-order terms are
negligibly small due to weak SOC. However, for the first-
excited 3E state, the first-order SOC effect becomes important
within the subspace of degenerate states and the SOC-
induced splitting turns out to be non-negligible. Therefore,
for the most accurate calculation of SOC-induced splitting,
we need to describe degenerate states the most accurately.
In order to achieve this, state average is carried out only
over the first-excited triplet pair (3E ) of the CASSCF(6,6)
wave functions. Then SOC is included in the converged
CASSCF(6,6) spin-triplet wave functions within the atomic
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FIG. 3. Schematic level diagrams of the spin-triplet and spin-singlet states for (a) the 70-atom and (b) the 162-atom diamond clusters
obtained using the quantum-chemistry method without SOC or SSC. Here full electron correlation within the six molecular orbitals
[Figs. 2(a) and 2(b)] are considered. The experimental values [31,35–37,42] are shown inside parentheses. The experimental zero-phonon
absorption energies are marked with ∗. All energy values are given in units of eV.

mean-field approximation [61], using the restricted active
space state interaction (RASSI) method [62] implemented in
OPENMOLCAS. For the CASSCF(6,6) energy eigenvalues and
the SOC-induced zero-field splitting, OPENMOLCAS is used
because it provides more accurate results due to purely sym-
metric orbitals and removal of surface-dominated orbitals (see
the Appendix).

The zero-field splitting by the SSC is expected for all spin-
triplet states. This feature is computed for the CASSCF(6,6)
wave functions using ORCA because it is not available in
OPENMOLCAS. The SSC is calculated as the two-electron
direct SSC over the CASSCF(6,6) wave functions using first-
order perturbation theory [63], as implemented in ORCA. The
CASSCF(6,6) wave functions using ORCA are obtained by
following the CASSCF procedure sketched in the Appendix
without orbital symmetrization, SUPERSYMMETRY keyword,
and removal of surface orbitals, because they are not available
in ORCA. We confirm that the zero-field splitting induced by
SSC is not sensitive to technical details of the calculations
(i.e., the cluster size, the size of the active space, and the
number of roots included in the state average).

V. RESULTS AND DISCUSSION

A. Excitation energies

Figure 3 shows schematic level diagrams of our calcu-
lated spin-triplet and spin-singlet states for the two clus-
ter sizes using OPENMOLCAS [quantum-chemistry methods,
CASSCF(6,6)]. Note that we use the ground-state geom-
etry without phonon modes and that we do not consider
structural relaxation of the electronic excited states. An ex-
perimental absorption spectrum of an NV− center in diamond
consists of a sharp zero-phonon line with a broad spectrum
of phonon side bands with several peaks [35,42]. With sig-
nificant electron-phonon coupling, a zero-phonon absorption
energy can noticeably differ from a vertical excitation energy.
The latter energy is always higher than the former energy. The
latter energy is commonly experimentally obtained from the
maximum-intensity peak of the broad phonon side-band spec-
trum. The broadness of the phonon side bands provides some

uncertainty in the maximum-intensity peak energy, which ren-
ders uncertainty in the experimental vertical excitation energy.
For comparison to experiment, we provide both experimental
zero-phonon absorption energies and experimental vertical
excitation energies in Fig. 3.

Our calculations show that the first-excited spin-triplet 3E
state is separated from the ground state (3A2) by 1.93 and
2.14 eV for the 70-atom and 162-atom clusters, respectively.
This energy separation does not depend much on the cluster
size and it is close to the experimental energies of zero-phonon
absorption, 1.945 eV, and of vertical excitation, 2.18 eV [42].
We find that the lowest-energy singlet state has a character
of 1E and that the first-excited singlet 1A1 state is located at
1.07 eV and 1.35 eV above the 1E state for the 70-atom and
162-atom clusters, respectively. The ordering and the charac-
ter of the singlet states agree with experiment, considering the
experimental energies of zero-phonon absorption, 1.190 eV
[31], and of vertical excitation, 1.26 eV [35]. Our results also
reveal the energy differences between the triplet and singlet
states. The 1E state lies at 0.34 eV and 0.25 eV above the
3A2 state for the 70-atom and 162-atom clusters, respectively.
As a result, the energy gap between the 3E and 1A1 states
becomes 0.52 and 0.54 eV for the 70-atom and 162-atom
clusters, respectively. Although the energy gap between the
3A2 state and the 1E state has not been directly experimentally
measured, the separation between the 3E state and the 1A1

state was measured to be 0.321–0.414 eV [36,37], which
is in good agreement with our results. The second-excited
(third-excited) triplet state has characteristics of 3A1 (3E ). The
second-excited singlet 1A2 state appears even above the third-
excited triplet 3E state. There are no experimental reports on
the higher-energy levels or separations.

Our calculated results show that for the four lowest states
(3A2, 3E , 1E , and 1A1) the energy eigenvalues do not depend
much on the cluster size, and that the small cluster-size de-
pendence arises from two types of the finite-size effects such
as shifts of one-electron levels and description of many-body
correlations. Although we cannot separate the two effects,
the comparison between the energies of the smaller active
space and the CAS(6,6) suggests that dynamic correlations
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TABLE I. Our calculated excitation energies with respect to the ground state (3A2) in units of eV for the two cluster sizes using the quantum
chemistry method (without SOC or SSC), in comparison to previous theoretical studies and experimental data. For our calculations, neither
the relaxation energy of the excited states nor vibration energies are included. In other words, we use the same geometry for the ground state
and all excited triplet and singlet states. Zero-phonon absorption energies are marked with ∗. The unmarked experimental value correspond to
the vertical excitation energy, i.e., the maximum-intensity peak energy of the phonon side band spectra [42]. The experimental energy of the
1E state relative to the ground-state energy is converted from the following two measurements: (a) the zero-phonon absorption energy between
the 1E and 1A1 states which is 1.190 eV [31]; (b) the energy difference between the 1A1 and 3E states which is 0.321–0.414 eV [36,37].

Reference\Electronic state 3E 3A1
3E 1E 1A1

1A2

Experiment [31,35–37,42] 1.945∗[42] 0.34∗–0.43∗ 1.51∗–1.60∗

∼2.18 [42] [36,37] [31]
C33H36N− CASSCF(6,6) 1.93 2.95 3.06 0.34 1.41 3.23
(This work)
C85H76N− CASSCF(6,6) 2.14 2.71 2.86 0.25 1.60 3.30
(This work)
C33H36N− CASSCF(6,8) [41] 2.48
C49H52N− CASSCF(6,8) [41] 2.57
C19H28N− CASSCF(8,11) [40] 0.98 1.22 0.44 1.00 1.13(1E )
C19H28N− MRCI(8,10) [40] 1.36 1.61 0.50 1.23 1.37(1E )
C42H42N− MCCI [38] 1.96, 1.93 0.63, 0.64 2.06
GW + BSE [43] 2.32 0.40 0.99 2.25(1E ′)
GW fit to model [44] 2.0∗ ∼0.5 ∼1.5 ∼3.0(1E ′)

2.1
CI-CRPA [19] 1.75∗ 0.49 1.41 3.09(1E ′)
(512-atom supercell) 2.02
Beyond-RPA [25] with 2.00 0.56 1.76
quantum embedding theory
C33H36N− DFT [39] 1.77∗ 0.44 1.67
DFT (512-atom 1.71∗ 0.9 0.0, 2.2
supercell) [28] 1.91
C42H42N− DFT [38] 1.27 0.42 2.10

1.26(1A′)
C284H144N− DFT [38] 1.90 0.48 2.03

1.26(1A′)

contribute more to the cluster-size dependence. We find
that the cluster-size dependence becomes more apparent for
higher-energy states, especially for the second- and third-
excited triplet states (3A1 and 3E ). Depending on the cluster
size, the energy separations change but the ordering of the
states does not change. A similar trend of the cluster-size de-
pendence was reported in the complete-active space approach,
using DFT Kohn-Sham orbitals and density-matrix renormal-
ization group [64]. This trend can be understood by the fact
that higher-energy levels have stronger electron correlations
which requires inclusion of more empty orbitals in the active
space. Since experimental data are available for mainly up to
the first-excited triplet 3E state, we do not further study an
effect of cluster size on the electronic structure.

B. Comparison to other ab initio studies

Let us now compare our calculated energies of the spin-
triplet and spin-singlet states (3A2, 3E , 1E , and 1A1) to the
previous ab initio theoretical studies. See Table I and Fig. 4.
In our analysis, we focus on the four lowest states because
only the level separations among them were experimentally
measured and because higher-energy states are more sensi-
tive to the cluster size and the size of the active space. (For
example, the higher-energy 1E ′ state that many-body theory

studies predicted [19,43,44] has not been observed [35].) We
first discuss comparison to other DFT calculations and then to
other quantum-chemistry studies as well as many-body theory
studies, separately.

Earlier DFT studies of an NV− center in diamond clusters
and periodic supercells [28,38,39,41,65,66] showed that the
calculated excitation energy of the 3E state more or less agrees
with our result and experiment except for Ref. [38]. However,
DFT-calculated energies of the singlet states are scattered in a
wide range and the ordering of the triplet and singlet states is
inconsistent with recent experiment. This trend is understand-
able considering that DFT poorly describes the singlet states
due to the lack of multiconfigurational and multireference
nature.

In the previous quantum-chemistry studies of an NV−

center in diamond clusters [38,40,41], either the excitation
energies are significantly different from experiment, or the
ordering of the singlet and triplet states is reversed. More
specifically, CASSCF(6,8) calculations discussed in Ref. [41]
showed that the excitation energy of the 3E state is 0.5–
0.6 eV (0.3–0.4 eV) higher than our result (experiment).
The singlet states were not investigated in that work. In the
CASSCF(8,11) calculations presented in Ref. [40], the exci-
tation energy of the 3E state is about 1.0 eV lower than our
result or experiment, and the singlet 1A1 state is slightly above
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FIG. 4. Comparison of our calculated spin-triplet and spin-singlet energies to the previous many-body theoretical studies
[19,25,38,40,43,44] as well as the experimental zero-phonon lines (ZPL) and vertical excitations (VE) [31,35–37,42]. The experimental VE
are energies of the maximum-intensity peak of the broad phonon side-band absorption spectra. The experimental ZPL and VE energies of the
1E and 1A1 states (relative to the ground state) are taken from the midpoint of the experimental range [36] of the separation between the 3E
and 1A1 states, while keeping the 1A1–1E energy difference fixed as the experimental value of 1.190 eV [31].

the triplet 3E state, which does not agree with our result or
recent experiment. This discrepancy arises from the following
two major differences. Firstly, the geometries of our clusters
(70-atom and 162-atom) are obtained from the DFT-optimized
geometry of bulk 215-atom supercell with an NV center, while
the geometry of the 48-atom cluster in Ref. [40] was obtained
from the geometry optimization of the finite cluster using
CASSCF, where the C3v symmetry was broken. Secondly,
we consider six orbitals localized near the vacancy with six
electrons in the active space, whereas Ref. [40] selected 11
orbitals (not shown in the reference) and eight electrons in
the active space for the 48-atom cluster from orbital stud-
ies of a 16-atom cluster. Their multireference configuration
interaction (MRCI) calculations [40] somewhat increase the
energies of the triplet and singlet states with the correct or-
dering of the excited triplet and singlet states. However, the
energy of the 3E state remains lower than our value by about
0.6 eV. Monte Carlo configuration interaction (MCCI) studies
[38] showed the energy of the 3E state in agreement with
our result and experiment. However, the ordering of the 3E
and 1A1 states is reversed. See Table I and Fig. 4. In the
MCCI studies [38], a 85-atom cluster with the DFT-optimized
geometry was used with orbitals which are not necessarily
localized near the vacancy. The discrepancies between our
results and all of the earlier quantum-chemistry calculations
mostly arise from the choice of orbitals in the active space.
One of the most common ways to choose active orbitals is
to use single-electron molecular orbitals in the vicinity of the
band gap such as orbitals near the highest occupied molecular
orbitals (HOMO) and lowest unoccupied molecular orbitals
(LUMO). For a hydrogen-passivated diamond cluster with an
NV− center, either this common practice within CASSCF or
MRCI, or an automatic choice of the active space in MCCI,

may result in nonphysical surface-dominated orbitals in the
CI basis set. As shown in Fig. 2(a), in our case, all six orbitals
in the active are localized near the vacancy defect.

An earlier many-body perturbation study [43] based on
the GW approximation with Bethe-Salpeter equation (BSE)
provided the singlet-singlet (1A1–1E ) energy difference about
0.6 eV lower than our result and recent experiment [35,36],
although the energy of the 1E state relative to the ground state,
as well as the ordering of the two singlet states are in agree-
ment with the recent experimental data. On the other hand,
recent many-body studies [19,25,44] showed more promising
results by using effective many-body model Hamiltonians
with parameters obtained from (or fitted to) ab initio cal-
culations in order to properly include many-body character
in the wave functions. For example, additional unoccupied
defect states (resonant to the conduction band) and doubly
occupied defect states (in the valence band) were included
in the configuration interaction constrained random phase ap-
proximation (CI-CRPA) method [19]. This is analogous to our
inclusion of unoccupied level 5 and 6 and doubly occupied
level 1 [Fig. 2(b)] in the active space for proper treatment
of electron correlation. Their results are closest to our result
among the previous studies that we have discussed (see Fig. 4
and Table I). Yet, there are some differences. In the fitting of
GW -calculated bands to the model Hamiltonian [44] (in the
CI-CRPA method [19]), the singlet-singlet energy difference
is about 0.2–0.3 eV (0.3–0.4 eV) lower than our result and
experiment. In the beyond-RPA implemented in the quantum
embedding theory [25], the energy difference between the
3E and 1A1 states is somewhat smaller than our result and
experiment. This discrepancy may arise from missing orbital
configurations in the 1E and 1A1 states in Refs. [19,25,44]
that are discussed in Sec. V C. Here we stress that it does

014115-7



CHURNA BHANDARI et al. PHYSICAL REVIEW B 103, 014115 (2021)

TABLE II. Characteristics of the calculated energy eigenstates for the 70-atom cluster using the configuration (spin-free) basis states. Here
the configuration basis states are all possible states generating the maximum Mz value from the six active orbitals (Fig. 2) for a given total
spin S, where Mz is an eigenvalue of Sz. Each box represents an orbital. Up and down arrows denote spin-up and spin-down electrons. Each
configuration represents a Slater’s determinant of the orbitals with 2S + 1 degeneracy. Percentages denote orbital configuration weights. Only
configurations with weights greater than 5% or above are listed. Weights greater than 10% are denoted as boldface.

State Configuration (weight) aN′
1y a

C′
1y e

′
xy e

C′
y e

′
yy e

′
xy

3A2(Ψ1,T ) ↑↓ ↑↓ ↑↑ ↑↑↑↑ ↑↑ (94%)

3E (Ψ2,T ) ↑↓ ↑↑↑↓ ↑↑↑↑ ↑↑ (38%), ↑↓ ↑↑ ↑↑↑↓ ↑↑ ↑↑ (31%), ↑↓ ↑↑ ↑↑↑↑↑↑ ↓↓ (7%), ↑↓ ↑↑ ↑↑↑↑↓↓↑↑↑ (5%)

(Ψ3,T ) ↑↓ ↑↑ ↑↑↑↓ ↑↑ ↑↑ (38%), ↑↓ ↑↑↑↓ ↑↑↑↑ ↑↑ (30%), ↑↓ ↑↑ ↑↑↑↑↓↓↑↑↑ (7%), ↑↓ ↑↑ ↑ ↑↑ ↑↑↑ ↓↓ (5%)

3A1(Ψ4,T ) ↑↓ ↑↓ ↑↑↑↑ ↑↑ ↑↑ (29%), ↑↓ ↑↓ ↑↑ ↑ ↑↑ ↑↑↑ (29%), ↑↓ ↑ ↑↑ ↑↓ ↑↑↑ ↑ ↑(9%), ↑↓ ↑ ↑↑↓ ↑↑ ↑ ↑↑↑ (6%), ↑↓ ↑ ↑↑↑ ↑↓ ↑ ↑↑↑ (6%),

↑↓ ↑↑ ↑↓ ↑ ↑↑ ↑↑↑ (6%), ↑↓ ↑↑ ↑ ↑↑↓ ↑↑ ↑ ↑(6%)

3E (Ψ5,T ) ↑↓ ↑↓ ↑ ↑↑↑ ↑ ↑↑↑ (22%), ↑↓ ↑↓ ↑↑ ↑ ↑↑↑ ↑ ↑(22%), ↑↓ ↑ ↑↑ ↑↑ ↑↓ ↑↑↑ (14%), ↑↓ ↑ ↑↑ ↑↓ ↑↑ ↑↑↑ (6%), ↑↓ ↑ ↑↑ ↑↑ ↑↑↑ ↓ ↑(5%)

(Ψ6,T ) ↑↓ ↑↓ ↑ ↑↑↑ ↑↑ ↑ ↑(22%), ↑↓ ↑↓ ↑↑ ↑ ↑↑ ↑↑↑ (22%), ↑↓ ↑ ↑↑ ↑↑ ↑↑↑ ↓ ↑(14%), ↑↓ ↑ ↑↑ ↑↓ ↑↑↑ ↑ ↑(6%) ↑↓ ↑ ↑↑ ↑↑ ↑↓ ↑↑↑ (5%)

1E (Ψ1,S) ↑↓ ↑↓↑↓ ↑↑ ↑↑ ↑↑ (34%), ↑↓ ↑↓↑↑ ↑↓ ↑↑ ↑↑ (34%), ↑↓ ↑ ↑↓ ↑↑↓ ↑↑ ↑↑ (12%), ↑↓ ↑↓ ↑ ↑↓ ↑↑↑ ↑↑ (7%)

(Ψ2,S) ↑↓ ↑↓ ↑ ↑↓ ↑↑↑ ↑↑ (69%), ↑↓ ↑ ↑↑↓ ↓ ↑↑↑ ↑↑ (12%)

1A1(Ψ3,S) ↑↓ ↑↓ ↑↓ ↑↑ ↑↑ ↑↑ (29%), ↑↓ ↑↓ ↑↑ ↑↓ ↑↑ ↑↑ (29%), ↑↓ ↑↑ ↑↓ ↑↓ ↑↑ ↑↑ (20%)

1A2(Ψ4,S) ↑↓ ↑↓ ↑ ↑↑↑ ↓ ↑↑↑ (32%), ↑↓ ↑↓ ↑↑ ↑ ↑↑↑ ↓ ↑(32%), ↑↓ ↑↑ ↑ ↑↑↓ ↓ ↑↑↑ (6%), ↑↓ ↑↑ ↑↓ ↑ ↑↑↑ ↓ ↑(6%)

not seem to be straightforward to include effects of SOC
and SSC within the formalisms used in Refs. [19,25,44] in
contrast to the quantum chemistry methods where such effects
can be added to the many-body wave functions without an
introduction of new fitting parameters (see Sec. V D).

C. Characteristics of energy eigenstates

We now discuss characteristics of our calculated triplet and
singlet energy eigenstates (Table II). Here we use configura-
tion basis states which are all possible states generating the
maximum Mz value from the six active orbitals for a given
total spin S, where Mz is an eigenvalue of the Sz operator.
The total wave functions in terms of true Sz eigenstates are
obtained when SOC is applied to the many-body (CASSCF)
wave functions within the RASSI method [62] using the
Wigner-Eckart theorem. The SOC effect is discussed later in
Sec. V D.

For the ground and first-excited triplet states, the config-
urations of our calculated eigenstates are similar to those
identified from the phenomenological molecular models
based on group theory [54,55,67], as long as we focus on
the configurations with weights greater than 10%. However,
for the singlet states, we find that the following addi-
tional configurations significantly contribute: ↑↓ ↑ ↑↓ ↑↑↓ ↑↑ ↑↑

and ↑↓ ↑ ↑↑↓ ↓ ↑↑↑ ↑↑ with 12% each for the 1E state and
↑↓ ↑↑ ↑↓ ↑↓ ↑↑ ↑↑ with 20% for the 1A1 state. Refer to Table II

for the notations. The former states indicate single excita-
tions from the doubly occupied aC1 level, while the latter state
indicates a double excitation from the aC1 level. These config-
urations have not been considered in Refs. [25,44,54,55,67].
Although the dominant configurations for the 1E and 1A1

states listed in Table II agree with those shown in Ref. [19],
our weights of the aforementioned single and double exci-
tations are significantly larger than those in Ref. [19]. The
inclusion of these excitations and their significant weights in
our work may be the sources of the discrepancy between our
result and those obtained in Refs. [19,25,44] and they may
also affect the intersystem crossing.

Furthermore, above the first-excited triplet 3E state and
the first-excited 1A1 state, we find the triplet 3A1 and 3E states
and the singlet 1A2 state. Due to the lack of experimental
data beyond the four lowest states, we only briefly mention
these higher-energy states. Our higher-energy states differ
from those in the literature [19,40,43,44,54,55]. As shown in
Table II, the main contributions to these states originate from
single excitations from the aC1 , ex, or ey orbital to beyond
the dangling bond orbitals (e′

x and e′
y) [Fig. 2(b)]. On the

other hand, the previous many-body and molecular-model
studies [43,44,54,55] were mostly obtained considering only
three or four dangling bond orbitals (aN1 , aC1 , ex, and ey). As
discussed earlier, the higher-energy states are more sensitive
to the size of active space and cluster size than the four lowest
states due to stronger electron correlation. Note that the 1E ′
state predicted in the literature has not been experimentally
observed [35].
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FIG. 5. Schematic diagram of our calculated energy level split-
ting of (a) the first-excited triplet 3E state and (b) the ground 3A2

state due to SOC and SSC in units of GHz (for 70-atom cluster). The
experimental values [68] are shown inside parentheses. States �1,...,9

are defined in Table IV.

D. Zero-field splitting

All of the spin-triplet states that we discussed earlier are
split due to SOC and/or SSC. Note that SOC plays an im-
portant role in the zero-field splitting only for the degenerate
levels in this system because of the weak SOC. Since ex-
perimental data do not exist for higher-energy states, we
present calculated zero-field splitting values of the ground 3A2

state and the first-excited triplet 3E state only. Figure 5 and
Table III show our calculated level splitting by SOC alone
and by SOC in combination with SSC (SOC+SSC) for the
3A2 and 3E states, separately, compared to experimental data
[68]. Table IV lists the corresponding eigenvectors �1,...,9

obtained from the quantum chemistry calculations including
SOC and SSC. The SOC-induced level splitting is obtained
for the 70-atom and 162-atom clusters, while the SSC-induced
splitting is obtained for the 70-atom cluster. Regarding the

SOC+SSC induced splitting for the 162-atom cluster, we use
the SSC-induced splitting for the 70-atom cluster since the
SSC-induced splitting does not depend much on cluster size.
Let us now discuss the 3A2 and 3E states separately.

The SOC does not split the 3A2 state to the first
order and its splitting by higher-order SOC is negligi-
ble. However, we find that the SSC splits the 3A2 state
into one lower nondegenerate level with Mz = 0 and one
higher doubly degenerate level with Mz = ±1 by −1.9 GHz
and 0.8 GHz, respectively. (See the eigenvectors �1,2,3 in
Table IV.) Therefore, the energy separation between them is
about 2.7 GHz, which is in excellent agreement with the ex-
perimental value of 2.88 GHz [68] as well as a previous DFT
calculation [47].

On the other hand, the SOC splits the 3E state into three
(degenerate) groups, each of which has eigenvalues of the z
component of orbital angular momentum Lz of ±0.46 (±0.53)
for the 70-atom (162-atom) cluster. The separation of the
levels is about 6.5 GHz for the 70-atom cluster (Fig. 5)
and about 8.1 GHz for the 162-atom cluster. Our calculated
level splitting values show a weak cluster-size dependence
and they are somewhat larger than the experimental value of
5.3 GHz [68]. A possible reason for this is the dynamic Jahn-
Teller effect [69,70] and the resulting quenching of SOC (i.e.,
Ham reduction factor [37,71,72]). Note that our calculations
are done for zero strain without electron-phonon coupling.
Quantum-chemistry calculations of electron-phonon coupling
and the dynamic Jahn-Teller effect are worth investigating in
the future. In addition to the SOC-induced splitting, the SSC
further shifts the lowest degenerate level upward by 0.8 GHz
(�4, �5 in Table IV) and moves the second degenerate level
downward by 1.9 GHz (�6, �7). In this case, the degener-
acy still holds. Interestingly, the amount of the downward
level shift is almost twice that of the upward shift. The trend
of the level-shift direction as well as the ratio between the
downward and upward shift amount are in good agreement
with experiment [68], although our shifted values are off by
a factor of 2 compared to experiment. We also find that the
SSC splits the third doubly degenerate level into two separate
levels (�8, �9): one level shifts downward by 3.1 GHz and the
other moves upward by 5.3 GHz. Again, the trend of the level
shift agrees with experiment [68], although the calculated shift
amount is greater than experiment by a factor of 2 or 3. This

TABLE III. Calculated SOC- and SSC-induced level splitting of the ground state (3A2) and the first-excited triplet (3E ) state from the
quantum chemistry method for the 70-atom and 162-atom clusters in comparison to experiment. The level splitting values for the 162-atom
cluster are shown in the parentheses. All energies are expressed relative to the lowest SOC-included energy in each triplet state (3A2 or 3E ).
One exception is the experimental zero-field splitting of the 3A2 state marked by † in which only the difference is known. The eigenvectors
including SOC, �1,...,9, are defined in Table IV.

SOC (GHz) SSC (GHz) SOC+SSC SOC (GHz) SOC+SSC
State (Theory) (Theory) (Theory, GHz) (Expt.) [68] (Expt., GHz) [68]

3A2 �1 0 −1.9 −1.9 0 0†

�2, �3 0 0.8 0.8 0 2.88†

3E �4, �5 0 0.8 0.8 (0.8) 0 0.47
�6, �7 6.5 (8.1) −1.9 4.6 (6.2) 5.3 4.36

�8 13.0 (16.2) −3.1 9.9 (13.1) 10.6 9.52
�9 13.0 (16.2) 5.3 18.3 (21.5) 10.6 12.62
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TABLE IV. Energy eigenvalues and eigenvectors corresponding to the ground- and first-excited triplet 3A2 and 3E states for the 70-atom
and 162-atom clusters calculated using the quantum chemistry methods including SOC and SSC. The energies are relative to the lowest
SOC-included energy of each triplet state (3A2 or 3E ), as listed in Table III and shown in Fig. 5. The energy values in the parentheses are for
the 162-atom cluster. Here �1,T , �2,T , and �3,T are our calculated eigenstates (without SOC and SSC) listed in Table II.

State Energy (GHz) Total wave function

3A2 �1 −1.9 (−1.9) �1,T |S = 1, Mz = 0〉
�2 0.8 (0.8) 1√

2
�1,T (|S = 1, Mz = 1〉 + |S = 1, Mz = −1〉)

�3 0.8 (0.8) 1√
2

�1,T (− |S = 1, Mz = 1〉 + |S = 1, Mz = −1〉)
3E �4 0.8 (0.8) 1√

2
(�2,T + i�3,T ) |S = 1, Mz = 1〉)

�5 0.8 (0.8) 1√
2
(�2,T − i�3,T ) |S = 1, Mz = −1〉)

�6 4.6 (6.2) �2,T |S = 1, Mz = 0〉
�7 4.6 (6.2) �3,T |S = 1, Mz = 0〉
�8 9.9 (13.1) 1

2 �2,T (|S = 1,Mz = 1〉 + |S = 1,Mz = −1〉) − i 1
2 �3,T (|S = 1,Mz = 1〉 − |S = 1,Mz = −1〉)

�9 18.3 (21.5) − 1
2 �2,T (|S = 1, Mz = 1〉 − |S = 1, Mz = −1〉) + i 1

2 �3,T (|S = 1,Mz = 1〉 + |S = 1,Mz = −1〉)

overestimated SSC contribution may partially arise from our
first-order perturbation treatment of SSC.

VI. CONCLUSION AND OUTLOOK

We have developed a systematic numerical procedure to
compute the electronic structure and magnetic properties of
an NV− center defect in diamond clusters, using the (multi-
configurational) quantum chemistry methods, where electron
correlation is properly included. We found that the crucial
constituent in the procedure is to identify and include extra
unoccupied defect orbitals (beyond the four dangling bond
orbitals) in the active space. Our quantum chemistry cal-
culations showed that the first-excited spin-triplet 3E state
is separated from the ground state (3A2) by 1.93–2.14 eV,
while the first-excited spin-singlet 1E state is separated from
the lower-energy 1A1 state by 1.07–1.35 eV. In addition, we
found that the 3E state is separated from the 1A1 state by
0.52–0.54 eV. Our calculated triplet-triplet, singlet-singlet,
and triplet-singlet excitation energies as well as the ordering
of the triplet and singlet states are in good agreement with
experiment. We found additional configurations which signifi-
cantly contribute to the 1E and 1A1 states, which have not been
considered before. Furthermore, SOC and SSC were included
in our many-body wave functions, finding that the SSC splits
the 3A2 state by 2.7 GHz and that a combination of the SOC
and SSC splits the 3E state into two degenerate levels and
two nondegenerate levels. The SSC-induced splitting of the
3A2 state and the SOC-induced splitting of the 3E state are in
good agreement with experiment. When both SOC and SSC
are included in the 3E state, the calculated trend of the level
splitting agree well with experiment and the splitting amount
is mostly deviated from experiment by a factor of two.

The numerical procedure that we developed in this work
can be applied to other deep defects in wide band-gap
semiconducting materials such as group-IV defects and
transition-metal defects in diamond or silicon carbide, or
rare-earth defects in silicon or complex oxides, as long as a
sufficient number of defect-localized orbitals is judiciously
chosen for the active space while retaining the defect sym-
metries and orbital degeneracy as accurately as possible. This
procedure may also be extended to obtain radiative transition

rates between the states and can be applied to deep defects
with external perturbations such as electric fields and strains.
Therefore, our findings open an avenue to be able to screen
other defects desirable for specific applications beyond to
accurately predict the properties of their excited states.
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APPENDIX: PROCEDURE OF IDENTIFYING ACTIVE
ORBITALS AND PERFORMING CASSCF(6,6)

In order to identify extra unoccupied defect orbitals be-
yond the four dangling bond orbitals as discussed in Sec. IV,
we carry out the following systematic procedure for the
70-atom and 162-atom clusters with the total spin S = 1.
Figure 6 summarizes the CASSCF procedure using OPEN-
MOLCAS. Note that extra unoccupied defect orbitals cannot
be found from the CASSCF(6,4) calculation. The doubly oc-
cupied aN1 orbital is known to have a lower energy than the
doubly occupied aC1 orbital and the former is buried in the
bulk valence band. Therefore, excluding the aN1 orbital, we
envision a CASSCF(4,6) calculation where six active orbitals
consist of three dangling bond orbitals (aC1 , ex, ey), two un-
occupied defect orbitals with E IRRep, and one unoccupied
defect orbital with A1 IRRep. Keeping this in mind, we first
perform a CASSCF(4,6) calculation (with state average over
six roots) using four active electrons and initial six active
orbitals guessed by OPENMOLCAS. Then converged orbitals
from the CASSCF(4,6) calculation are fully symmetrized
with C3v symmetry, using the LIBMSYM program [73] that is
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FIG. 6. Schematic diagram of our practical procedure to iden-
tify two extra unoccupied defect orbitals and to preform the
CASSCF(6,6) calculations of an NV− center defect in the hydrogen-
passivated 70-atom and 162-atom diamond clusters, using OPEN-
MOLCAS. Here initial orbitals in the active space are listed within
brackets, where nominal occupation numbers for the spin-triplet
ground state are shown inside parentheses. The nominal occupation
numbers differ from the actual occupation numbers. The orbitals
inside double brackets are final converged orbitals. LIBMSYSM is an
orbital-symmetrization program [73] and the function of SUPERSYM-
METRY keyword is defined in the text of the Appendix.

interfaced with OPENMOLCAS. The LIBMSYM program can deal
with higher point-group symmetries than twofold symmetry.
Now each molecular orbital in the inactive, active, and virtual
spaces has its own pure IRRep symmetry. Among these sym-
metrized orbitals, we identify two extra unoccupied orbitals
localized near the defect with ex and ey symmetries, as well
as one unoccupied defect orbital with a1 symmetry. In order
to distinguish these extra orbitals with ex and ey symmetries
from the singly occupied dangling bond orbitals (ex and ey),

the former orbitals are referred to as e′
x and e′

y orbitals. Now
using these extra three unoccupied defect orbitals as well as
the three dangling bond orbitals as initial six active orbitals,
we carry out another CASSCF(4,6) calculation with restricted
orbital rotations throughout iterations, in other words, or-
bital rotations (or optimization) are allowed only among the
orbitals belonging to the same IRRep. This restriction can
be achieved using SUPERSYMMETRY keyword in OPENMOL-
CAS code. The steps of libmsym and SUPERSYMMETRY are
crucial to maintain purely-symmetric orbitals throughout the
self-consistent calculations and more importantly to retain the
perfect degeneracy of the converged CASSCF energy eigen-
values (the accuracy of ∼10 neV) belonging to the IRRep
E . Such high accuracy is required for an accurate calcula-
tion of zero-field splitting induced by SOC. After the second
CASSCF(4,6) calculation, the two unoccupied defect orbitals,
e′
x and e′

y, remain in the active space.
In our molecular cluster models for an NV− center, the

hydrogen-passivated surface is artificial since it does not ex-
ist in a diamond lattice. Therefore, orbitals localized at the
surface are not associated with the defect in a diamond lat-
tice. In order to reduce an effect of such surface-dominated
orbitals on the orbital optimization, we remove several tens
of surface-dominated orbitals near the active space from the
converged orbitals in the second CASSCF(4,6) calculation.
More surface orbitals are removed for a larger cluster. Af-
ter this step, we now carry out a CASSCF(6,6) calculation
with SUPERSYMMETRY keyword using the identified e′

x and
e′
y orbitals [from the CASSCF(4,6) calculation] as well as

the four dangling bond orbitals as initial active orbitals. We
check that the energy levels (root energies) obtained from
the CASSCF(6,6) calculation do not change as the number
of removed surface orbitals varies, as long as enough number
of surface orbitals are removed near the active space.

The similar procedure to Fig. 6 is carried out for the
total spin S = 0 with state average over six roots for both
70-atom and 162-atom clusters. Then we perform another
CASSCF(6,6) calculation with state average over four roots,
using the converged CASSCF(6,6) orbitals, in order to retain
the perfect degeneracy of the CASSCF energy eigenvalues in
the E IRRep and the localization of the active orbitals. We
emphasize that the orbital symmetrization is more important
for the spin-singlet states than for the spin-triplet states.
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