
Optimizing Use of Different Types of Memory for
FPGAs in High Performance Computing

Kai Huang
Dept. of ECE

Northeastern University
Boston, USA

huang.kai1@northeastern.edu

Mehmet Gungor
Dept. of ECE

Northeastern University
Boston, USA

gungor.m@northeastern.edu

Stratis Ioannidis,
Dept. of ECE

Northeastern University
Boston, USA

ioannidis@ece.neu.edu

Miriam Leeser
Dept. of ECE

Northeastern University
Boston, USA

mel@coe.neu.edu

Abstract—Accelerators such as Field Programmable Gate
Arrays (FPGAs) are increasingly used in high performance
computing, and the problems they are applied to process larger
and larger amounts of data. FPGA manufacturers have added
new types of memory on chip to help ease the memory bottleneck;
however, the burden is on the designer to determine how data
is allocated to different memory types. We study the use of
ultraRAM for a graph application running on Amazon Web
Services (AWS) that generates a large amount of intermediate
data that is not subsequently accessed sequentially. We investigate
different algorithms for mapping data to ultraRAM. Our results
show that use of ultraRAM can speed up overall application
run time by a factor of 3 or more. Maximizing the amount of
ultraRAM used produces the best results, and as problem size
grows, judiciously assigning data to ultraRAM vs. DDR results
in better performance.

Index Terms—FPGA, High Performance Computing, Big Data,
AWS

I. INTRODUCTION

There is growing interest in deploying FPGAs to accelerate
applications in High Performance Computing (HPC) and cloud
environments [1]–[4]. Many of the target applications fetch or
generate large amounts of data and increasingly, the bottleneck
to accelerating these designs is the data fetch time. This is
particularly true of applications where the data is not accessed
in sequential order, and thus streaming interfaces cannot be
exploited. To address this problem, FPGA vendors are increas-
ing the amount and types of memory integrated into high end
FPGA cards that target high performance applications. Block
RAM (BRAM) embedded with the FPGA fabric has been
available for many years. Off-chip DRAM has much larger
capacity than BRAM, but is orders of magnitude slower to
access. In the past few years, Xilinx has added ultraRAM to
their FPGAs [5], which is larger than BRAM but has similar
access times, and more recently High Bandwidth Memory
(HBM). This creates an additional burden for the application
developer, who now has to determine where best to store
data in order to minimize the amount of time spent fetching
data and maximize acceleration. We investigate an application
that generates a large amount of data, and use the FPGAs
provided by Amazon [6] to accelerate it. We investigate

This research is supported in part by the National Science Foundation under
grant CNS-1717213

tradeoffs between using ultraRAM and DDR on AWS F1
instances, including different algorithms for allocating data
to memory, and show that intelligent assignment of data to
different types of memory can provide distinct advantages.
Traditional caching algorithms used in processors are not the
best choice for memory allocation on FPGAs, and matching
the algorithm for memory allocation to the application can
result in significant time savings.

The main contributions of this paper is a thorough ex-
ploration of the use of ultraRAM vs. DDR for a specific
application, garbling K-means clustering. The study allows
us to explore different algorithms for allocating data to ul-
traRAM, along with how behavior changes as the amount of
data generated by the application grows. Tuning algorithm
to application and size will result in the best performance.
The rest of the paper is organized as follows. We present
background in Sec. II, our methodology in Sec. III, results
in Sec. IV, and conclude in Sec. V.

II. BACKGROUND

A. FPGA Memory Types

We target FPGAs in the Amazon cloud, which are Xilinx
FPGAs that contain several different types of memory. The
FPGA is a Xilinx XCVU9P which contains 33.8 MBytes of
ultraRAM and 9.5 MBytes of Block RAM. In addition there
is 64 GBytes of external Dual Data Rate (DDR) memory.
As is typical in memory hierarchies, the Block RAM is the
smallest and fastest to access, ultraRAM has similar access
time to BRAM, and DDR is the largest but slowest. We do
not consider BRAM further. In this section we discuss DDR
and ultraRAM in more detail.

a) DDR: Double Data Rate (DDR) Synchronous Dy-
namic Random-Access Memory (SDRAM) is commonly used
in computer systems. AWS uses DDR4 SDRAM; each FPGA
card has 64 GigaBytes of external DDR. On AWS, we have
measured 52 clock cycles for DDR read and 32 clock cycles
for DDR write, making it more than an order of magnitude
slower than accessing ultraRAM.

b) ultraRAM: FPGAs have included on-chip memory in
the form of block RAM and distributed RAM for years, but
these types of on-chip memory can support at most tens of
megabytes. Traditionally, when more data is required external

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 21,2021 at 13:04:23 UTC from IEEE Xplore. Restrictions apply.

memory was used, but this increases the latency for memory
fetching. In 2016, Xilinx introduced ultraRAM into their high-
end Virtex UltraScale+ FPGAs. Every ultraRAM block is a
dual-port synchronous 288Kb RAM with fixed configuration
of 4,096 deep and 72 bits wide and two ports, which exhibit
some unexpected behavior [7]. Port A and B share the same
clock. Each port can independently perform either one read
or one write operation. Within a single cycle of the external
clock, the Port A operation always completes before Port B.
When both ports perform a write operation in the same clock
cycle with the same address (address collision), the Port B
write takes effect because the write on Port A is overwritten.
When Port A performs a read while Port B performs a write
with the same address, Port A gets the old data and then the
new data at Port B is written. For our design, we use one port
as a read port and one port as a write port. We do not read
and write to the same address at the same time.

Data is not automatically assigned to ultraRAM; this is
under the control of the designer. There are several ways
to initiate a Xilinx ultraRAM block instance in hardware: 1)
developers can instantiate a RAM inference template with a
parameter setting the memory type to ultraRAM, 2) developers
can instantiate a device primitive if developers want to have
tighter control over how individual components are connected,
or 3) developers can use the XPM template and let the Vivado
tools synthesize the source and create the appropriate memory
arrays. We use the third approach. Note that, after setting
the memory type, size and behavior ordering of the ports,
developers need to be careful about the latency of these ports to
meet synthesis constraints. Once these are met, we observed
a 3 clock cycle latency for reading and writing ultraRAM.
Applications can benefit from the use of ultraRAM due to its
large size and low latency.

B. AWS infrastructure

We use Amazon Web Services (AWS), which provides many
resources for cloud computing, including f1 instances that
include FPGAs from Xilinx to enable delivery of custom
hardware acceleration [6]. We use the f1.2xlarge with Virtex
Ultrascale+ XCVU9p FPGAs. This part includes 33.8 MBytes
of ultraRAM. The FPGA board includes 4x16 GB external
DDR4 memory.

Amazon provides complete hardware development and soft-
ware development toolkits targeting the FPGA including the
development environment, simulation, build and AFI creation
scripts. The development environment contains the register-
transfer level (RTL) hardware infrastructure that is built with
Xilinx IPs, and source code based on Advanced eXtensible
Interface (AXI) protocol. AWS-FPGA hardware infrastructure
connects the FPGA board, including external DDR memory,
to the host processor through a PCIe Gen3 bus. The Xillinx
interconnect IP with AXI protocol in the hardware design
enables data movement between host memory, FPGA on-
chip memory (including ultraRAM) and DDR memory on
the FPGA board. The software runtime library provides API

interfaces to transfer chunks of data to DDR memory and
interfaces to access on-chip memory in the FPGA.

C. Related Work

Several researchers investigate how best to access memory
on FPGAs for efficient processing. In DynaBurst [8], on-chip
memory is used to overcome DDR row conflicts by organizing
the output data in on-chip memory before writing it to DDR
sequentially. This reduces DDR row conflicts and adapts the
burst length for each request to fully use the bandwidth.
DynaBurst does runtime memory management, while our
approach is done statically before processing. This paper only
considers BRAM and DDR; we also consider ultraRAM as on-
chip memory. UltraRAM and BRAM is used in research [9]
that proposes a two-level vertex caching method to improve
the performance of processing graphs on FPGAs by reducing
the data communication between FPGA and DDR. UltraRAM
is used as a Level 2 cache and BRAM is used as a level
1 cache for vertex caching. This method falls short for large
sparse graphs. It also uses traditional caching algorithms, while
we try to exploit the FPGA architecture to make best use of
the available FPGA memory. More recently, researchers have
investigated the use of High Bandwidth Memory (HBM) on
FPGAS to address the speed limitations of the communication
between FPGA and DRAM [10]. They showed that HBM can
increase overall system performance. The research also shows
how to reach near peak performance on HBM systems. In
future work, we plan to consider HBM to improve system
performance. HBM is currently not available on AWS f1
instances.

III. METHODOLOGY

A. Problem Abstraction

In this study, we investigate memory usage in a graph based
algorithm, accelerated on AWS F1 instances. We specifically
investigate K-means clustering implemented with garbled cir-
cuits [11], as this allows us to show how data size and memory
allocation times scale as problems grow. In this application, the
problem to be evaluated is represented as a Directed Acyclic
Graph (DAG), where each node represents either a garbled
AND or garbled XOR gate, and has two inputs and one
output wire. These wires represent encrypted values and are
128 bits wide. Values for input wires are transferred to DDR
memory attached to the FPGA from the host. Intermediate
values are generated as the application runs. We use 32 bit
values to represent addresses for wire values. One of these
bits is reserved to encode the type of memory used, in this
case ultraRAM or DDR, leaving 31 bits for addressing wires,
which allows us to grow our design up to 2 billion wires.

Note that, while some details are specific to the application
we are running, many other big data problems have similar
access patterns with a set of inputs and a set of intermediate
values generated as the application runs that can grow quite
large. Also, note that we process the graph in breadth first
order. Intermediate values are generated out of order in a K-
means stage, and may be used in the next layer or not for

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 21,2021 at 13:04:23 UTC from IEEE Xplore. Restrictions apply.

many layers. Other applications, such as sparse matrix and
graph processing, exhibit similar memory access patterns.

B. Allocating wires between ultraRAM and DDR

The hardware controller needs to store intermediate data
in either on-chip memory (ultraRAM) or external storage
(DDR). For small examples, the design can store all the
intermediate data in ultraRAM. For applications that can be
perfectly pipelined, only registers between pipeline stages
are required to complete the critical data path. However, for
applications with non-sequential access to data memory needs
to be carefully allocated. For large examples that contain
millions of operations and data points, it is not possible to
assign all intermediate values to ultraRAM. In this research we
investigate different methods for assigning intermediate data
to this memory hierarchy which can significantly impact the
overall performance of hardware acceleration. Note that we
only consider ultraRAM and DDR here. Also using BRAM
for intermediate values is the subject of future work. One issue
is how to determine at runtime where to find a particular value.
Currently we use a single bit of address; using two bits makes
the address space smaller that what we wish to consider.

In the AWS hardware infrastructure, AXI interconnect is
used to connect the external memory (DDR) with custom user
logic. The user logic requests the data through the AXI bus and
the latency is usually around 52 cycles. In contrast, ultraRAM
is accessed through primitives and the access time is about 3
clock cycles depending on the template settings.

C. Memory Allocation Algorithms

Our application can be abstracted as a netlist containing
gates each with input and output wires, constructing a DAG.
The DAG consists of several layers, that can be identified
recursively via a breadth-first traversal of the gates/nodes of
the DAG. The information carried on each wire is 128 bits
wide in our application. From the topology of the graph we
can determine the number of times a wire is used (frequency).
We define a wire’s lifetime to be the difference between the
layer number of the last time the wire is used and the layer
number where it is generated. We also consider whether a
wire is used soon after it is generated, independent of its
lifetime, in our traversal algorithms. Note that most layers
cannot be implemented at the same time due to hardware
constraints, and thus a layer is implemented as a sequence of
batches, where a batch is defined by the the number of gates
physically realized in hardware. Especially early in processing,
there may be hundreds of batches to implement a specific
layer. We do not consider the position of a gate in a layer in
terms of batch number, although such a consideration could
result in better memory allocation for large examples. We have
developed two main classes of memory allocation algorithm
based on frequency, lifetime and layer information. These
two algorithm types of algorithm, traversal and threshold, are
described below. First we describe preprocessing used by all
the algorithms.

1) Preprocessing: The algorithms visit each gate in the
order of gate execution, which in our application is breadth-
first (starting from gates accessing inputs). Before allocating
each wire to a memory location, we preprocess the netlist as
follows. First, the layer number for each gate is generated
during a breadth-first traversal. All gates assigned to layer
n can be computed in parallel given sufficient hardware
resources. The inputs required of these gates are generated
in layers 0 to n − 1. Second, preprocessing keeps track of
the following information regarding each wire: (a) how many
times the output wire will be used (i.e., how many gates use
it as input, (b) in which of the succeding layers it appears
(maintained only for traversal algorithms), and (c) what is
its lifetime (maintained only for threshold algorithms). This
information is computed while generating the layer numbers;
thus only a single breadth-first pass over the netlist is required
for preprocessing.

TABLE I: frequency of wires for K-means 100 points, 8
classes

frequency num of wires percentage
1 2646610 0.498
2 1691585 0.319
3 868713 0.164
4 3616 0.001
5 4081 0.001
...

...
...

100 8 0
101 8 0
200 16 0
400 496 0

Table I, lists the number of times wires are used for one
example we study. Approximately 80% of the wires will only
be used once or twice. It is important to reuse these memory
locations in future layers. We maintain a queue to record
the available ultraRAM locations and we also check, while
processing the netlist, when we can free a specific location
if a wire will never be used again. If there are no available
ultraRAM locations, we will store wires in DDR, the external
storage. Our goal is to store as many wires as possible in
ultraRAM.

2) Traversal: The traversal algorithm traverses the graph
in the order that nodes are visited during processing. During
that traversal, the type of memory where wires are stored
is determined. We explored several different policies during
traversal, including a greedy algorithm that stores wires in
ultraRAM if space is available, storing wires with short life-
times, and storing the most frequently used wires. Specifically,
we considered four policies:

• policy 1: store wires in ultraRAM if ultraRAM is not full
• policy 2: store wires used in the next layer only
• policy 3: store wires used in the next x layers, where
x = 5.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 21,2021 at 13:04:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Traversal Algorithm
1: generate the layer number each wire is created and last

used, record its frequency and whether it is used in the
next x layers

2: maintain an empty queue
3: record the max used ultraRAM location p
4: for operation s in netlist do
5: for input i in inputs do
6: if i will not be used again then
7: free its location if it is in ultraRAM, add the

address of i to queue
8: end if
9: end for

10: if output s will be used in next x layers or will be used
over y times then

11: if queue is not empty then
12: pop an address for output s
13: else if max used ultraRAM location smaller than

ultraRAM size and queue is empty then
14: use address p for s and increase max used ultra-

RAM location p
15: else
16: store s to DDR
17: end if
18: end if
19: end for

• policy 4: store wires used in the next x layers or used
over 4 times.

The pseudo-code for the traversal algorithm is shown in Al-
gorithm 1. The different policies are implemented by changing
the values of x and y. We investigated different choices and
recorded statistics including how many wires will be stored
in ultraRAM and how many total clock cycles will be spent
accessing memory.

3) Threshold: Our alternative class of algorithms combines
the lifetime and the frequency of the wires into a single
score associated with each wire. We assign the wires to
ultraRAM according to this score. The pseudo-code is shown
in Algorithm 2. We experimented with setting the score of a
wire to be to frequency/lifetime, although other scores
can also be applied. We sort these scores and choose a
threshold τ . When we traverse the netlist, we assign each wire
based on whether or not its score is over the threshold: wires
with scores higher than τ are placed in ultraRAM, if a position
is available, while low-score wires (lower than τ) are placed
by default in the DDR, even if a position is available for them
in ultraRAM. We determine the theshold τ based on either size
of available ultraRAM or percent of wires to fit in ultraRAM,
as described below. Note that we can bin rather than sort the
scores for a more efficient algorithm.

The optimal threshold τ is difficult to calculate efficiently.
It depends on the size of the ultraRAM and the number of
wires, as well as the overlaps of lifetimes of wires assigned to
ultraRAM. If we set the threshold too high, we assign too few

Algorithm 2 Threshold Algorithm
1: generate the layer number each wire is created and last

used, record its frequency and lifetime
2: calculate the score using frequency/lifetime
3: Sort all wires according to their scores in decreasing order
4: determine a threshold τ
5: maintain an empty queue
6: record the max used ultraRAM location p
7: for operation s in netlist do
8: for input i in inputs do
9: if i will not be used in the future then

10: free its location if it is in ultraRAM, add the
address of i to queue

11: end if
12: end for
13: if output s ≥ τ and there is space in ultraRAM then
14: store s to ultraRAM
15: else
16: store s to DDR
17: end if
18: end for

wires to ultraRAM and some memory spaces are never used.
If the threshold is too small, we may assign wires that will not
be used for several layers and we run out of ultraRAM space.
We experimented with setting the threshold τ as follows: for
f ≥ 1, and S the ultraRAM size, we select τ so that the
number of wires with score ≥ τ is f · S. In our experiments,
we select f to be 1.5, 2, 4, and 8. As a second heuristic, for
f ′ ∈ [0, 1], and W the total number of wires, we select the
threshold τ so that the number of wires with score ≥ τ is
f ′ ·W . In our experiments, we select f ′ to be 1/4, 1/2, and
3/4. We record the statistics for these different thresholding
implementations and compare them to the traversal algorithm.

IV. EXPERIMENTS AND RESULTS

We use the XCVU9P FPGA which includes 270 Mbits
of ultraRAM. Given our 128 bit data width, we are able to
create an ultraRAM memory array with 2 million distinct
addresses. We garbled different versions of the K-means
clustering algorithm. Different problem sizes we investigated
are shown in Table II.

We can calculate the theoretical lower and upper bounds of
the number of clock cycles required for memory accesses in
our application. The lower bound assumes that all data points
are stored in ultraRAM and the upper bound assumes that they
are all stored in DDR. These bounds for different problem
sizes are shown in Table III. Note, that for smaller problems
all data can fit in ultraRAM. These cases do not achieve the
lower bound for a couple of reasons. The main one is that
input wires are stored in DDR from the host, and reading that
first layer of wires adds memory access clock cycles.

In our results we report total number of clock cycles used
to access memory. As memory accesses and processing are
overlapped it is not immediately obvious how this translates

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 21,2021 at 13:04:23 UTC from IEEE Xplore. Restrictions apply.

TABLE II: K-means Problem Size

data
points

classes # itera-
tions

total operations total wires # of ops in one itera-
tion

inputs

100 2 2 2687637 2694037 1343036 6528
100 4 2 5342175 5348575 2671580 6656
100 8 2 10652805 10659205 5325844 6912
1000 2 2 26627497 26691497 13312372 64128
1000 4 2 52950871 53014871 26472584 64256
1000 8 2 105595545 105659545 52750862 64512

TABLE III: Lower and Upper bounds

data points classes lower bound upper bound
100 2 8.06E+06 1.42E+08
100 4 1.60E+07 2.83E+08
100 8 3.20E+07 5.65E+08
1000 2 7.99E+07 1.41E+09
1000 4 1.59E+08 2.81E+09
1000 8 3.17E+08 5.59E+09

to overall performance savings. We investigated the savings
we expect to see comparing storing all values in ultraRAM
compared to storing all values in DDR. Even with overlap of
processing and memory fetches, our experiments show a 4.05
times improvement in overall execution time assuming all data
can be stored in ultraRAM. This is an upper bound on the
improvement we expect to see in application processing. We
believe that over 3x speedup is realistic.

For our implementation, we use K-means algorithm as a
practical application example, where the problem size can
scale easily. The operations in one iteration will be repeated.
Multiple iterations make the computation longer but do not
change the data movement in the system. Problem sizes are
shown in Table II.

For the traversal algorithm, we set the total ultraRAM
size to 2,000,000 wires. Total number of wires stored and
total number of memory cycles needed are shown in Tables
IV and V, respectively. Results for the threshold algorithms
are presented in Table VI. The best result for each set of
experiments is highlighted in red. For thresholding, we see
no difference when we set f ′ to 1/4, 1/2 or 3/4, so we report
results for 1/4.

In Table VII, we compare the best traversal algorithm
results with the best threshold algorithm results. For smaller
examples, with all wires fitting into ultraRAM, there is no
difference between algorithms and policies. For larger exam-
ples the traversal algorithm works best. In genera, the more
wires that are stored in ultraRAM, the fewer memory access
cycles required. In the largest example we ran, the policy
that supports traversal with wires used in the next several
layers and wires used frequently produces the most efficient
allocation. This is expected since, when the amount of data
generated is much larger than the ultraRAM size, if ultraRAM
is full, any wire generated will be sent to DDR. Given that
majority of the wires in our application are used less than 3

times, the shorter the average time wires reside in ultraRAM,
the more wires we can assign and thus the less total memory
access time is needed. We plan to continue to investigate larger
examples to confirm this trend.

A. Discussion

As different memory types get added to FPGA acceler-
ators, efficient use of such memories becomes increasingly
important, especially in big data applications. In this research,
we consider ultraRAM and DDR. AWS F1 instances have
BRAM as well. A future direction is to consider putting the
most frequently accessed wires in BRAM, the wires with
a short lifetime in ultraRAM, and the remaining wires in
DDR. One issue is how to identify where to find a wire.
We currently use the first bit of memory address to indicate
whether a wire is stored in ultraRAM or DDR, which keeps the
hardware controller interface straightforward. Adding another
bit to indicate memory location would halve the number of
addresses we can support and limit the size of problems. We
are investigating alternatives, however creating an additional
data structure for wire memory types that needs to be stored
exacerbates the memory access problem. In the future we plan
to also consider High Bandwidth Memory (HBM). Currently,
AWS F1 instances do not support HBM.

We investigated two algorithm classes, traversal and thresh-
old. In general, the more data that an algorithm places in
ultraRAM, the fewer memory accesses required to run an
application. For small problems where all the data fits in
ultraRAM the algorithm and policy did not make a differ-
ence. However, when the amount of data processed by the
application becomes very large, the approach used to assign
data to memory becomes important. We are continuing to
investigate larger applications. We investigated both traversal
and thresholding algorithms. With the traversal approach, we
expect that storing wires that will be used in the near future
and with higher frequency should be best for larger and larger
problems. Given that, for K-means, 80% of wires are used
once or twice, storing these wires in ultraRAM should give
the highest reuse of ultraRAM and hence the best performance.
This behavior may change with different applications with
different memory access patterns.

The thresholding approach met but did not out perform the
traversal approach for large problems. There are several ways
to improve thresholding, which we will explore, including to
consider where in a layer a wire is used. There is a tradeoff

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 21,2021 at 13:04:23 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: traversal algorithm total number of wires stored in ultraRAM

data points # classes p1 p2 p3 p4
100 2 1.34E+06 1.29E+06 1.32E+06 1.32E+06
100 4 2.66E+06 2.56E+06 2.61E+06 2.61E+06
100 8 5.30E+06 5.21E+06 5.21E+06 5.21E+06
1000 2 1.33E+07 1.28E+07 1.31E+07 1.31E+07
1000 4 2.64E+07 2.54E+07 2.59E+07 2.59E+07
1000 8 5.26E+07 5.07E+07 5.17E+07 5.17E+07

TABLE V: traversal algorithm memory access clock cycles

data points # classes p1 p2 p3 p4
100 2 1.22E+07 1.58E+07 1.39E+07 1.39E+07
100 4 2.40E+07 3.12E+07 2.75E+07 2.75E+07
100 8 4.75E+07 6.20E+07 5.45E+07 5.45E+07
1000 2 1.21E+08 1.56E+08 1.38E+08 1.38E+08
1000 4 2.83E+08 3.41E+08 3.04E+08 3.04E+08
1000 8 1.16E+09 1.07E+09 1.02E+09 1.02E+09

TABLE VI: threshold algorithm number of wires stored in ultraRAM and memory access clock cycles

data # classes 2S (# of
wires)

2S (clock cy-
cles)

8S (# of
wires)

8S (clock cy-
cles)

first 1/4 (# of
wires)

first 1/4
(clock cycles)

100 2 1.34E+06 1.22E+07 1.34E+06 1.22E+07 1.05E+06 4.48E+07
100 4 2.66E+06 2.40E+07 2.66E+06 2.40E+07 2.09E+06 8.87E+07
100 8 4.16E+06 1.77E+08 5.30E+06 4.75E+07 4.16E+06 1.77E+08
1000 2 1.04E+07 4.44E+08 1.33E+07 1.21E+08 1.04E+07 4.44E+08
1000 4 4.36E+06 2.27E+09 2.07E+07 8.79E+08 2.07E+07 8.79E+08
1000 8 8.71E+06 4.52E+09 4.13E+07 1.75E+09 4.13E+07 1.75E+09

TABLE VII: Best Memory Access Clock Cycles Comparison

data # classes # wires stored
in ultraRAM

best traversal
clock cycles

wires stored
in ultraRAM

best threshold
clock cycles

lower bound upper bound

100 2 1.34E+06 1.22E+07 1.34E+06 1.22E+07 8.06E+06 1.42E+08
100 4 2.66E+06 2.40E+07 2.66E+06 2.40E+07 1.60E+07 2.83E+08
100 8 5.30E+06 4.75E+07 5.30E+06 4.75E+07 3.20E+07 5.65E+08
1000 2 1.33E+07 1.21E+08 1.33E+07 1.21E+08 7.99E+07 1.33E+09
1000 4 2.64E+07 2.83E+08 2.07E+07 8.79E+08 1.59E+08 2.64E+09
1000 8 5.17E+07 1.02E+09 4.13E+07 1.75E+09 3.17E+08 5.59E+09

in thresholding regarding the amount of time assigning a wire
location and the efficiency of the result. Our goal is to have
an algorithm that is both efficient to run and produces high
quality results.

V. CONCLUSIONS AND FUTURE WORK

We have investigated using ultraRAM on AWS F1 in-
stances to accelerate processing of applications with big data,
specifically those that can be abstracted as a directed graph.
Our results clearly show a large advantage obtained using
ultraRAM. As problem sizes grow and the amount of data
stored in DDR increases, the policy used to choose between
what goes in ultraRAM and what goes in DDR has increasing
importance regarding overall application speed. Our results
show that choosing the policy that best matches the application
is important. For large amounts of data, keeping data with

many accesses and data with short lifetimes in ultraRAM gives
the best results.

Future work includes applying the best policy to a complete,
implementation of garbled circuits on an application with a
large amount of data, and showing the speedup achieved.
In addition, we plan to investigate using HBM in our de-
sign. A more complicated memory allocation to accommodate
specifics of the hardware design will need to be exploited.
There is always a tradeoff between sophistication of the policy
and run time devoted to preprocessing, which we will continue
to explore.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the
National Science Foundation (grant CNS-1717213), Amazon
Web Services, and Xilinx.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 21,2021 at 13:04:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,”
in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). Taipei, Taiwan: IEEE, Oct. 2016, pp.
1–13. [Online]. Available: http://ieeexplore.ieee.org/document/7783710/

[2] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia,
and P. Chow, “Enabling Flexible Network FPGA Clusters in a
Heterogeneous Cloud Data Center,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays - FPGA ’17. Monterey, California, USA: ACM Press, 2017,
pp. 237–246. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
3020078.3021742

[3] J. Sheng, C. Yang, A. Sanaullah, M. Papamichael, A. Caulfield,
and M. C. Herbordt, “HPC on FPGA clouds: 3D FFTs and
implications for molecular dynamics,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL).
Ghent, Belgium: IEEE, Sep. 2017, pp. 1–4. [Online]. Available:
http://ieeexplore.ieee.org/document/8056853/

[4] M. Leeser, M. Gungor, K. Huang, and S. Ioannidis, “Accelerating
Large Garbled Circuits on an FPGA-enabled Cloud,” in 2019
IEEE/ACM International Workshop on Heterogeneous High-
performance Reconfigurable Computing (H2RC). Denver, CO,
USA: IEEE, Nov. 2019, pp. 19–25. [Online]. Available:
https://ieeexplore.ieee.org/document/8945639/

[5] Xilinx, “UltraRAM: Breakthrough Embedded Memory Integration on
UltraScale+ Devices,” Jun. 2016. [Online]. Available: https://www.
xilinx.com/support/documentation/white papers/wp477-ultraram.pdf

[6] Amazon, “Enable faster FPGA accelerator development and deployment
in the cloud.” [Online]. Available: https://aws.amazon.com/ec2/
instance-types/f1/

[7] Xillinx, “Ultraram: Breakthrough embedded memory integration
on ultrascale+ devices.” [Online]. Available: https://www.xilinx.com/
support/documentation/white papers/wp477-ultraram.pdf

[8] M. Asiatici and P. Ienne, “DynaBurst: Dynamically Assemblying
DRAM Bursts over a Multitude of Random Accesses,” in 2019
29th International Conference on Field Programmable Logic and
Applications (FPL). Barcelona, Spain: IEEE, Sep. 2019, pp. 254–262.
[Online]. Available: https://ieeexplore.ieee.org/document/8892073/

[9] Z. Shao, R. Li, D. Hu, X. Liao, and H. Jin, “Improving
Performance of Graph Processing on FPGA-DRAM Platform by
Two-level Vertex Caching,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. Seaside
CA USA: ACM, Feb. 2019, pp. 320–329. [Online]. Available:
https://dl.acm.org/doi/10.1145/3289602.3293900

[10] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and
G. Alonso, “High Bandwidth Memory on FPGAs: A Data Analytics
Perspective,” arXiv:2004.01635 [cs], Apr. 2020, arXiv: 2004.01635.
[Online]. Available: http://arxiv.org/abs/2004.01635

[11] K. Huang, M. Gungor, X. Fang, S. Ioannidis, and M. Leeser,
“Garbled Circuits in the Cloud using FPGA Enabled Nodes,” in 2019
IEEE High Performance Extreme Computing Conference (HPEC).
Waltham, MA, USA: IEEE, Sep. 2019, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/8916407/

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on July 21,2021 at 13:04:23 UTC from IEEE Xplore. Restrictions apply.

