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Abstract The long-term evolution of the East Asian Monsoon and the processes controlling its
variability under changing climate boundary conditions remain enigmatic. Here, we integrate new

and published high-resolution planktic and benthic foraminiferal isotope data with proxy records for
chemical weathering derived from diffuse reflectance spectroscopy at Ocean Drilling Program Site 1146
(South China Sea) to reconstruct the evolution of the summer monsoon between ~17 and 5 Ma. Our
records show that an overall warm and humid tropical climate prevailed over southeastern Asia during
the Miocene Climatic Optimum, suggesting northward expansion of the tropical rain belt in response to
greenhouse gas forcing. By contrast, monsoon seasonality increased during the middle Miocene Climatic
Transition in tandem with Antarctic glacial expansion and global cooling. Substantial weakening of the
summer monsoon between ~12.7 and 10.9 Ma supports that decreased weathering and riverine input

of nutrients and alkalinity contributed to carbonate depletion in the deep ocean during the Carbonate
Crash. Intensification of monsoonal circulation and strengthening of the biological pump through the
late Miocene promoted carbon burial, drawdown of atmospheric CO,, and climate cooling during the
Biogenic Bloom. These results underscore the dynamic evolution of the East Asian Monsoon throughout
the middle to late Miocene. Variations in local insolation forcing and in Southern Hemisphere ice volume,
influencing the latitudinal thermal gradient, evaporation-moisture budgets, and the strength of the
tropical convection, exerted major controls on the development of the monsoon.

1. Introduction

The long-term history of the East Asian Monsoon and the primary controls on its variability remain issues
of intense debate. While the seasonal development of the monsoon is intrinsically related to local insolation
forcing and the cross-equatorial migration of the Intertropical Convergence Zone (ITCZ), changes in re-
gional topography, in particular the Tibetan-Himalayan orogeny, have long been considered to have exerted
a major control on its evolution through the Cenozoic (e.g., An et al., 2001; Kutzbach et al., 1989; Raymo
& Ruddiman, 1992). However, the complexities of this vast region's orographic evolution and monsoon
dynamics coupled with the ambiguity of monsoon proxy reconstructions have led to widely diverging views
concerning the tectonic impact on monsoon circulation (e.g., Biasutti et al., 2018; Kapp & DeCelles, 2019;
Spicer et al., 2020).

Recent reviews of the literature support a progressive buildup of the Tibetan Plateau due to early terrane
accretion followed by complex deformation and sediment infill linked to the collision of India and Eurasia
since the Mesozoic, suggesting that the plateau was already elevated (4-5 km high) by the middle Miocene
(Kapp & DeCelles, 2019; Spicer et al., 2020, and references therein). There is also evidence that a relatively
rapid uplift of the Himalaya occurred in the latest Oligocene to middle Miocene, leading to a restructuring
of wind flow and monsoon precipitation in the early Neogene (Boos & Kuang, 2010; Ding et al., 2017; Spicer
et al., 2020). Paleontological and geological data suggested, however, that a monsoonal climate prevailed
over southern Asia since the early Paleogene (e.g., Ding et al., 2017; Spicer et al., 2017, 2020) and during
the Early Cretaceous (Farnsworth et al., 2019), long before the rise of the Himalaya, implying other driv-
ing processes including changes in the interhemispheric thermal gradient, moisture sources, atmospheric
circulation, and greenhouse gas concentrations. High-resolution climate simulations additionally indicat-
ed that monsoon circulation is largely driven by sea surface temperature gradients and that topography
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Figure 1. Late Miocene paleogeography (Ron Blakey, Colorado Geosystems) with locations of Ocean Drilling Program (ODP) and International Ocean
Discovery Program (IODP) sites referred to in this study. Site 1146 in the northern South China Sea is located offshore Pearl River's drainage basin. Figure made
with GeoMapApp (www.geomapapp.org) using the global multi-resolution topography (GMRT) synthesis of Ryan et al. (2009).

mainly redirects monsoon flow and impacts the spatial and temporal distribution of precipitation (Acosta
& Huber, 2020).

Reconstructing the past evolution of the East Asian Monsoon during warmer periods of Earth's climate
history is especially relevant to better understand the response of this large-scale, highly dynamic climate
feature to future climate warming. However, a major handicap to reconstructing the ancient monsoon is
the paucity of highly resolved, accurately dated records that can capture the full range of variability and
provide insights into the dynamics and forcing mechanisms of the monsoon. Here, we focus on the evolu-
tion of the East Asian Monsoon through the middle to late Miocene, an extended interval of global warmth,
characterized by the absence of large Northern Hemisphere ice sheets. This period, which postdates the
early Neogene phase of Himalayan uplift, encompasses several major transitions associated with stepwise
Antarctic ice sheet expansion and global cooling that ushered in fundamentally different regimes of cli-
mate variability. We present new planktic foraminiferal isotope data spanning the interval ~12.7-9 Ma from
Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) (Figure 1), which we inte-
grate with previously published records from the same site (Holbourn et al., 2005, 2007, 2010, 2013, 2018) to
derive a continuous, high-resolution (2-4 kyr time step) time series revealing the evolution of near-surface
and deep-water masses through the middle to late Miocene. We combine these results with diffuse reflec-
tance spectroscopy (DRS) derived proxy records for chemical weathering at Site 1146 to reconstruct the
long-term evolution of the East Asian Monsoon and to investigate relationships between high-latitude and
low-latitude climate change between ~17 and 5 Ma.

2. Materials and Methods
2.1. South China Sea ODP Site 1146

ODP Site 1146 (19°N 27.40'N, 116°E 16.37’E, water depth: 2,092 m) is located within a small rift basin on
the mid-continental slope in the northern SCS, offshore of the Pearl River (Figure 1; Wang et al., 2000).
During the middle to late Miocene, Site 1146 was situated in approximately the same location and water
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depth as it is today, and the connection between the SCS and the western Pacific Ocean remained fully
open (Hall, 1998; Wang et al., 2000). The location of Site 1146 within the monsoonal rain belt during boreal
summer, when the ITCZ migrates into the Northern Hemisphere, is ideal for monitoring long-term changes
in monsoonal climate. Today, the region is under the influence of a warm and wet summer monsoon and a
cold and dry winter monsoon with the seasonal reversal of monsoonal wind patterns closely linked to the
latitudinal swing of the ITCZ. The continuous sediment succession deposited at this site over the late early
to late Miocene consists of a relatively homogenous mixture of fine-grained, light brownish gray, hemipe-
lagic carbonate, and clastic sediments (Clift et al., 2014; Wang et al., 2000). The carbonate content within
the middle to upper Miocene sequence (Lithological Unit II) varies between 50 and 60 wt% and is in the
range of 30-50 wt% in the underlying upper lower to middle Miocene interval (Lithological Unit IIT) (Wang
et al., 2000). The main provenance of the clastic sediment sequence throughout the Miocene was from the
vast drainage basin of the Pearl River and its tributaries (Clift et al., 2014; Wang et al., 2000).

2.2. Sampling and Processing

The lower part of the Miocene sediment succession was previously sampled at ~10 cm intervals (~4 kyr
mean time resolution), mainly along Hole 1146A (Cores 1146A-61X to 1146A-50X, equivalent to ~17.3—
12.8 Ma). The composite middle to upper Miocene sediment sequence spliced from Holes 1146A and 1146C
(Cores 1146C-49X to 1146C-30X, equivalent to ~12.8-5 Ma) was sampled at ~5 cm intervals (~2 kyr mean
time resolution). Sediment samples were oven dried at 40°C and weighed before washing over a 63 um
sieve. Residues were oven dried at 40°C on a sheet of filter paper, then weighed and sieved into different
size fractions.

2.3. Revision of Sediment Splice

Within the upper Miocene interval, we made two adjustments to the shipboard sediment splice (Wang
et al., 2000) modified by Holbourn et al. (2007, 2013, 2018). The revised composite depths are referred to
as rmcd. (1) We deleted a duplication between 1146C-35X-5, 53 cm (331.43 mbsf) and 1146A-36X-2, 63 cm
(330.53 mbsf) corresponding to 350.33 and 352.63 rmcd, which resulted in a deduction of 2.30 m from the
splice. (2) We closed a gap between Cores 1146C-37X and 1146A-38X by inserting a 1.45 m segment between
1146A-38X-2, 75 cm (349.95 mbsf corresponding to 372.90 rmcd) and 1146A-38X-3, 70 cm (351.40 mbsf
corresponding to 374.35 rmcd) into the splice.

The tie point between the middle to upper Miocene composite section from Holes A and C and the under-
lying upper lower to middle Miocene sequence, which is mainly from Hole A, is at 1146C-49X-5, 113 cm
(460.58 mbsf, equivalent to 495.89 rmcd) and 1146A-50X-2, 37 cm (464.85 mbsf), corresponding to an
age of 12.77 Ma. Within the middle Miocene interval, we identified a small sedimentary hiatus in Core
1146A-52X-6, 53 cm (490.03 mbsf), which is visible in the core and core photograph as a slightly oblique
unconformity that coincides with a sudden jump of ~0.5 %o in the benthic foraminiferal §'*0 and §"°C re-
cords. The identification of this hiatus did not result in any change along the composite depth scale, but was
compensated by a short stratigraphic gap in the revised age model.

2.4. Chronology

The chronology of the Miocene sequence at Site 1146 is originally based on correlation of the benthic fo-
raminiferal (mainly Cibicidoides wuellerstorfi and/or Cibicidoides mundulus) isotope records (Holbourn
et al., 2005, 2007, 2013, 2018) to an eccentricity (E) and tilt (T) composite target with an equal weight of
eccentricity and obliquity, generated from the La2004 orbital solution (Laskar et al., 2004). We did not
include the precession parameter in this composite, as changes between dominant northern (ET—P) or
southern (ET+P) hemisphere precessional insolation forcing remain unresolved during the late Miocene.
In a few samples (~6%) within the upper lower to middle Miocene interval, other Cibicidoides species were
analyzed, where C. wuellerstorfi and C. mundulus were either absent or rare (Holbourn et al., 2005, 2007).
Within the interval ~12.8-5 Ma, minor changes were implemented to the original age models of Holbourn
et al. (2013, 2018), based on our revision of the sediment splice. Within the interval ~17.3-12.8 Ma, we
adjusted the astronomically tuned age model (Holbourn et al., 2005, 2007) to the composite chronology
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Figure 2. Temporal evolution of benthic foraminiferal 8'®0 and sedimentation rates over the interval ~17.3-5 Ma at ODP Site 1146. (a) Sedimentation rates
were calculated in 100 kyr bins, based on linear interpolation between age tie points, to compensate for abrupt short-term changes; (b) Eccentricity plus Tilt
(ET) tuning target from Laskar et al. (2004); (c) benthic foraminiferal §'*0 from Holbourn et al. (2005, 2007, 2013, 2018) on revised age model. Mean temporal
resolution is ~4 kyr between ~17.3 and 12.8 Ma and ~2 kyr between ~12.8 and 5 Ma. Red crosses indicate tuning tie points used to derive age model. Blue
arrows indicate main cooling steps. Orange shading indicates intervals of relative global warmth. Blue shading indicates interval of global cooling. Gray shading
indicates intense carbonate impoverishment in the deep tropical ocean known as the Carbonate Crash. MMCT: middle Miocene Climatic Transition; Thvera (T)
and Thvera-Gilbert (TG) cold stages after Shackleton et al. (1995).

of Integrated Ocean Drilling Program (IODP) Sites U1338 and U1337 (Holbourn et al., 2014, 2015, 2020;
Kochhann et al., 2016). The revised depths and ages of the tie points used to derive the chronology at Site
1146 are provided in Table S1 and are shown in Figure 2. The stable isotope data with revised depths and
ages are available at https://doi.org/10.1594/PANGAEA.931111.

2.5. Planktic Foraminiferal Isotopes

For this study, new planktic foraminiferal stable isotope data (>1,600 samples) were generated at ~5 cm
intervals over the composite sequence spanning the interval ~12.7-9 Ma at Site 1146. Approximately 20
specimens of the mixed-layer dweller Trilobatus sacculifer were picked from the 250 to 315 um size frac-
tion for 80 and §"C analysis. Samples were sonicated in ethanol to remove fine clays, homogenized, and
subsampled (~80 ug CaCOs;) for analysis on the Brown University MAT252 IRMS coupled to a Kiel III
carbonate device. Samples were reacted by individual acid addition (99% H;PO, at 70°C). Repeated anal-
yses of Brown Yule Marble (n = 116, 10) yields —2.27 + 0.03 for §"*C and —6.48 + 0.07 for 5'°0. Carrara
Marble (n = 198, 10) yield 2.03 + 0.03 for §"°C and —1.89 = 0.05 for 5'®0. Statistics on replicate analysis of
homogenized samples are indistinguishable from those of the standards. All results were calibrated to the
National Institute of Standards and Technology (Gaithersburg, MD) carbonate isotope standard NBS 19 and
are reported as %o VPDB.

These new measurements complement previously published planktic foraminiferal isotope records
spanning the intervals ~15.7-12.8 Ma (Holbourn et al., 2010) and ~9-5 Ma (Holbourn et al., 2018). The
near-surface, mixed-layer species Globigerinoides obliquus or Globigerinoides subquadratus (size fraction
250-350 um) were measured over the interval ~15.7-12.8 Ma. Paired measurements in 51 samples indicated
no significant offset in 80 and 8"°C between these two species (Holbourn et al., 2010). Over the interval
~9-5 Ma, T. sacculifer (size fraction 250-315 um) was analyzed (Holbourn et al., 2018). The published data
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sets over the intervals ~15.7-12.8 Ma and ~9-5 Ma were integrated with our new records to provide contin-
uous, high-resolution isotope time series between ~17.3 and 5 Ma. All data are plotted and reported relative
to T. sacculifer. The G. obliquus/G. subquadratus isotope values were adjusted to those of T. sacculifer by
adding 0.23%. to 8"*C and 0.43%o to 8'*0. The stable isotope data with revised depths and ages are available
at https://doi.org/10.1594/PANGAEA.931111.

2.6. Time Series Analysis

Stratigraphic correlation of depth and time series, evenly spaced linear interpolation, detrending, and fil-
tering were performed with AnalySeries 2.0.8 (Paillard et al., 1996). Coherence and phase of planktic and
benthic §'°0 and 8"C time series were estimated with Blackman-Tukey cross-spectral analysis using a Bart-
lett window. Spectral analyses on unevenly spaced time series with the REDFIT function of Schulz and
Mudelsee (2002) were performed with Past4.04 (Hammer et al., 2001), using a Blackman-Harris window
of two segments, a frequency oversampling value of 2 and Monte Carlo simulation of confidence intervals
based on parametric approximation (chi-square test). We divided the time series into four distinct intervals
for analysis, based on changes in cyclicity and signal amplitude identified in the evolutive spectra at ~7,
9, and 10.8 Ma. For evolutive spectra, we used the wavelet transform function in Past4.04, which is based
on the algorithm of Torrence and Compo (1998), on an evenly spaced time series with 1 kyr resolution. We
used a Morlet wavelet, p = 0.05 significance level calculation from a chi-square test and displayed the cone
of influence that demarks the area affected by boundary effects.

2.7. Visible Light Spectroscopy Proxies of Continental Weathering and Erosion

During ODP Leg 184, shipboard DRS was performed with a Minolta CM-2002 instrument, using a wave-
length resolution of 10 nm across the wavelength spectrum of visible light (400-700 nm). Measurements
were taken immediately after retrieval of the cores at intervals of 5 cm following calibration to black and
white standards (Wang et al., 2000). DRS has been successfully used to evaluate changes in the mineral-
ogical composition of fine-grained marine sediments and to quantify the distribution of iron oxides and
oxyhydroxides such as hematite and goethite, clay minerals, carbonate, and organic matter (Balsam & Da-
muth, 2000; Balsam et al., 2007; Clift et al., 2008, 2014; Deaton & Balsam, 1991; Debret et al., 2011). In
particular, hematite and goethite strongly influence the color spectra of bulk sediment and can be detected
at extremely low concentrations (Giosan et al., 2002; Harris & Mix, 1999, 2002; Zhang et al., 2007). Intensely
red hematite is a characteristic iron oxide of arid areas, while the yellowish oxyhydroxide goethite is formed
in soils under more humid conditions (Kdmpf & Schwertmann, 1983; Schwertmann, 1971).

In this study, we used the ratio of percent diffuse reflection in the 560 and 430 nm bands as a proxy for the
abundance of hematite relative to goethite (Figures S1-S3), following Deaton and Balsam (1991) and Harris
and Mix (1999, 2002). This approach is applicable over the entire record between ~17 and 5 Ma, while end-
member-based unmixing of the DRS data could only be used over the interval between ~15.6 and 10.8 Ma,
which is not affected by episodes of secondary diagenetic alteration under oxygen-deficient sedimentary
conditions (Figure S3). For this shorter interval, we used endmember-based unmixing following the method
outlined in Heslop et al. (2007). We additionally calculated Crar, which is defined as the mineralogical ratio
of the greenish clay mineral chlorite and the sum of chlorite, hematite, and goethite and has been used as
an indicator of continental weathering and erosion (Clift et al., 2008). Details of this method are provided in
the Supporting Information and the data are available at https://doi.org/10.1594/PANGAEA.931111.

3. Results
3.1. Chronology

The Site 1146 chronology over the interval 12.8-5 Ma is based on minimal tuning of the benthic foraminif-
eral 5'%0 record to the orbital solution of Laskar et al. (2004), using 48 age tie points along the revised
sediment splice between Holes 1146A and 1146C (Table S1 and Figure 2). Modifications of the splice led
to minor revisions of the age models in Holbourn et al. (2018) and De Vleeschouwer et al. (2020), which
were both based on the splice version published in Holbourn et al. (2018). Revision of the chronology
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between ~17.3 and 12.7 Ma, based on correlation to the benthic foraminiferal isotope record of Site 1146
to the composite records of Integrated Ocean Drilling Program (IODP) Sites U1338 and U1337 in the east-
ern equatorial Pacific Ocean (Holbourn et al., 2014, 2015, 2020; Kochhann et al., 2016), resulted in minor
adjustments between ~15.8 and 12.7 Ma. However, the revised age model before ~15.8 Ma indicates a sub-
stantial extension of the stratigraphic interval represented at Site 1146. Based on the revised age model, the
Miocene sedimentary succession at Site 1146 has a basal age of ~17.3 Ma. The mean sedimentation rate is
~2.5 cm kyr™" with a maximum of 3.5 cm kyr™ and a minimum of 1 cm kyr™' over the interval 17.3-5 Ma
(Figure 2). Sedimentation rates notably show a marked decrease before ~16.6 Ma.

The benthic foraminiferal 80 series predominantly exhibits 41 kyr variability over the intervals ~14.7-
14.2, ~12.7-12.2, ~9.7-9.2, and ~7.7-7.2 Ma, reflecting the high-amplitude of obliquity variations and the
low-amplitude of the short eccentricity (100 kyr) cycle during these periods (Figure 3). The onset of the
MCO at ~16.9 Ma corresponds to a sharp decrease in benthic foraminiferal 8'*0 at high eccentricity, which
correlates to similar negative 8"*0 excursions in the Pacific Ocean (Integrated Ocean Drilling Program
(IODP) Site U1337; Holbourn et al., 2015) and the Indian Ocean (International Ocean Discovery Program
[IODP] Site U1443; Liibbers et al., 2019). Further important correlative 880 markers are the “hyperther-
mal” minimum at 15.6 Ma, the major increase between 13.91 and 13.84 Ma, associated with the main
expansion of the East Antarctic Ice sheet (Holbourn et al., 2005), and the last prominent “hyperthermal”
minimum at 10.8 Ma (“Tortonian thermal maximum” of Westerhold et al. [2020]). In addition, the interval
6-5 Ma includes several prominent transient §'*0 maxima, identified as Thvera (T) and Thvera-Gilbert (TG)
cold stages T8, TG4, TG12, TG14 TG20, and TG22 (Shackleton et al., 1995; Shackleton & Hall, 1997), which
provide excellent stratigraphic control in the uppermost part of the record (Figure 2). Higher frequency
(100 kyr eccentricity and 41 kyr obliquity) variability of benthic and planktic foraminiferal §"*C is superim-
posed upon low-frequency oscillations that broadly relate to the ~400 kyr long eccentricity cycle (Figure 3).
Comparison of the benthic and planktic foraminiferal §'*0 and 8**C records, plotted in the depth and time
domains, shows that the original spectral characteristics are preserved following the tuning procedure.

3.2. Planktic Foraminiferal Isotopes

During the end phase of the MCO (~15.7-14.7 Ma), G. obliquus/G. subquadratus mean 80 oscillates be-
tween —1.9%. and —2.7%o and exhibits relatively high amplitude variability (stdev mainly between 0.35%o
and 0.1%o) (Figures 3 and S4-S5). Mean 8'*0 decreases to —2.8 after 14.7 Ma, then shows a major stepwise
increase to —1.8, which is matched by a stepwise decrease in amplitude variability from 0.45%o to 0.1%o, over
the interval 14.7-13.5 Ma that includes the MMCT (14.7-13.8 Ma) and the last §"*C maximum of the Mon-
terey Excursion (CM6). From 13.5 to 12.8 Ma, mean 8'*0 remains between —1.6%o and —2.1%. with am-
plitude variability between 0.25%. and 0.05%o. After ~12.7 Ma, G. sacculifer mean 8'°0 fluctuates between
—1.8%0 and —2.1%. and displays extremely low amplitude variability (stdev below 0.15%o) until ~ 11.6 Ma
(Figures 3, 4, and S4-S5). A stepwise decrease in mean 8'°0 from —1.8%o to —2.4%o is coupled to a slight
increase in amplitude variability (stdv: 0.25%0-0.05%0) between ~11.6 and 10.9 Ma. This is followed by a
steep rise to —1.6%o. at ~10.8 Ma during the Tortonian thermal maximum, which corresponds to a major
decrease in benthic foraminiferal §'*0 (Figures 3, 4, and S4-S5). Mean 5'°0 decreases sharply to —2.6%o
following the Tortonian thermal maximum, then displays an increasing trend, reaching —1.9%. at 9.4 Ma
(stdv: 0.25%0-0.05%o0). From 9.4 to 7 Ma, mean values oscillate between —1.9%. and —2.2%o, (stdv mainly <
0.2%o), exhibiting a slightly increasing trend between ~7.7 and 7 Ma (Figures 3 and S4-S5). At ~7 Ma, mean
8'*0 shows a marked increase of ~0.3%, then values vary between —1.9%, and —1.4%. and display higher
amplitude variability (stdev mainly between 0.1%. and 0.25%0) until ~5.5 Ma. After a marked decrease to
—2.0%o at 5.5 Ma, mean values remain relatively low until 5 Ma.

Benthic and planktic foraminiferal 5"°C exhibit relatively consistent long-term (~400 kyr) and shorter-term
(~100 and ~41 kyr) variability between ~16 and 5 Ma (Figure 3). A salient feature of the 8"3C curves is the
prominent positive carbon-isotope excursion, known as the Monterey Excursion (Vincent & Berger, 1985;
Woodruff & Savin, 1991), which exhibits a pronounced ~400 kyr rhythm between ~16.7 and 13.5 Ma (Hol-
bourn et al., 2007). After ~13.5 Ma, mixed layer mean 8§°C decreases markedly (from ~2.8%. to 2%o) and
displays low-frequency oscillations (stdev mainly between ~0.05%. and 0.2 %o) until ~9 Ma (Figures 3, 4,
and S4-S5). This long-term trend is interrupted by a sharp, transient negative shift centered at 10.8 Ma
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during the Tortonian thermal maximum. From ~9 to 7.7 Ma, mixed layer §"°C shows a distinct increase
(mean oscillates between 1.8%o and 2.6%o; stdev mainly between 0.1%o and 0.4%o). Between ~7.7 and 7 Ma,
mixed layer 5"°C is characterized by a long-term decrease from ~2.7%o to 1.3%., which corresponds to the
global 8"*C decline, known as the Late Miocene Carbon Isotope Shift (LMCIS). Following the LMCIS, mean
8"3C fluctuates between 1.2%o and 1.8%o0 and displays higher amplitude variability (stdev generally between
0.1%0 and 0.6%). The gradient between planktic and benthic foraminiferal 8"*C (A8"°C), which provides a
measure of the strength of the global ocean's biological pump (Hain et al., 2014), shows an overall decline
from 1.6 to 1.1 between ~13 and 10 Ma, followed by a long-term increase after ~9 Ma, reaching maximum
values of 1.9 at ~6 Ma (Figures 5 and S6).

3.3. Temporal Evolution of Chemical Weathering Proxy: Hematite/Goethite

Between ~17 and 5 Ma, hematite/goethite, a chemical weathering proxy for aridity, exhibits distinct trends
that characterize different phases of climate evolution (Figure 5). During the MCO, hematite/goethite dis-
plays relatively low amplitude variability as well as the lowest mean values (~1.1) within the entire record.
In the early part of the MMCT, hematite/goethite shows a stepwise increase, reaching ~1.35 at ~13.8 Ma,
then fluctuates between 1.15 and 1.3 until ~12.7 Ma. A steep increase to ~1.5 after 12.7 Ma marks the onset
of an interval with the highest values within the entire record, corresponding to an extended period of arid-
ity that lasted until ~10.9 Ma. This interval is also characterized by higher amplitude oscillations between
~1.2 and ~1.5, indicating a more variable climate regime.

In the interval 15.6-10.8 Ma, not affected by episodic diagenetic alteration of iron oxides/oxyhydroxides,
endmember analysis of the reflectance spectra at Site 1146 enabled discrimination of a goethite 4+ hematite
end member (EM1) and a chlorite endmember (EM3), which were used to calculate the physical erosion
proxy Cgar (Figure S3). The EM1 record exhibits similar long-term trends as hematite/goethite. The MCO
interval 15.6-14.7 Ma is characterized by low amplitude variability and extremely low mean values (0-0.1),
whereas during the early part of the MMCT (14.7-13.8 Ma) amplitude variability is high (between 0 and
0.3) and EM1 displays an overall increasing trend. This is followed by a plateau with a long-term mean of
~0.3 until ~12.7 Ma. A marked increase after ~12.7 Ma marks the onset of an interval with sustained high
values, which fluctuate between 0.25 and 0.45 until ~10.9 Ma.

Between ~10.9 and 9 Ma, hematite/goethite exhibits a decrease from ~1.5 to 1.2, which is punctuated by
three intervals of unusually low values (~1.1), centered at 10.8, 9.8, and 9.0 Ma (Figures 4 and 5). The sedi-
ment within these intervals displays a greenish-gray color and contains pyrite, indicating an early diagenet-
ic reduction of iron oxides due to dysoxic conditions during sedimentation. This episodic diagenetic alter-
ation prohibits the estimation of weathering conditions in the terrigenous source area, based on hematite/
goethite. From ~9 to 7 Ma, hematite/goethite shows relatively low amplitude variability with mean values
between 1.2 and 1.3, except for a transient interval of dysoxic conditions at ~7 Ma (Figure 5). Between ~7
and 5.5 Ma, mean values increase, varying between 1.35 and 1.25, then shift to slightly lower values between
1.25 and 1.2 after 5.5 Ma.

3.4. Time Series Analysis

The Morlet wavelet power spectrum of planktic foraminiferal 80 over the interval 17-5 Ma indicates the
highest power at the precessional band and at the short and long eccentricity bands between ~15.6 and
13.8 Ma (Figure 3). However, the near-surface dwelling G. obliquus and G. subquadratus were analyzed

Figure 3. Response of foraminiferal §'*0 and §"°C from ODP Site 1146 to orbital forcing between ~17.3 and 5 Ma. (a) Wavelet power spectrum of mixed layer
81C; (b) wavelet power spectrum of benthic foraminiferal §°C; (c) mixed layer §'*C; new data between 12.7 and 9 Ma were integrated with previously published
data (Holbourn et al., 2010, 2018); (d) benthic foraminiferal 8*C from Holbourn et al. (2005, 2007, 2013, 2018); (e) wavelet power spectrum of mixed layer §'*0;
(f) wavelet power spectrum of benthic foraminiferal 8*0; (g) mixed layer §'*0; new data between 12.7 and 9 Ma were integrated with previously published

data (Holbourn et al., 2010, 2018); (h) benthic foraminiferal §'*0 from Holbourn et al. (2005, 2007, 2013, 2018). All data are plotted on revised age model. Blue
arrows indicate main cooling steps. Orange shading indicates intervals of relative global warmth. Blue shading indicates interval of global cooling. Gray shading
indicates intense carbonate impoverishment in the deep tropical ocean known as the Carbonate Crash. MCO: Miocene Climatic Optimum; MMCT: middle
Miocene Climatic Transition; CM6: last 8'*C maximum within Monterey Excursion; LMCIS: Late Miocene Carbon Isotope Shift. White dashed lines mark 23,
41,100, and 400 kyr orbital bands.
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Figure 4. Expanded view of interval 12.7-8.7 Ma at ODP Site 1146. (a) DRS-derived chemical weathering proxy record; dark brown smoothed curve based

on Stineman function; (b) new mixed layer 8°C; (c) benthic foraminiferal §"*C from Holbourn et al. (2013, 2018); (d) 21st June insolation at 20°N from

Laskar et al. (2004); (¢) new mixed layer 5'*0; (f) benthic foraminiferal 50 from Holbourn et al. (2013, 2018). All data are plotted on revised age model; (g)
Eccentricity plus Tilt (ET) from Laskar et al. (2004). Orange shading indicates intervals of relative global warmth coincident with episodes of decreased bottom
water ventilation. Gray shading indicates intense carbonate impoverishment in the deep tropical ocean known as the Carbonate Crash.
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within this interval, which may result in higher amplitude variability than for the slightly deeper the mixed
layer dweller T. sacculifer. Within the interval ~14.7-14.1 Ma, we additionally note high spectral power in
the obliquity band, when obliquity forcing is dominant and short eccentricity shows low amplitude varia-
bility (Figure 3).

Spectral analysis of the T. sacculifer 80 record over individual time slices within the interval 12.7-5.0 Ma
reveals the lowest power at the precessional band between 12.7 and 10.9 Ma and the highest power at the
precessional band between 10.9 and 9.0 Ma (Figure S8). The 8'°0 record additionally exhibits significant
variability in the obliquity band between 12.7 and 10.9 Ma and between 7.0 and 5.5 Ma. Cross spectral anal-
ysis shows an out-of-phase relationship between planktic and benthic foraminiferal §'®0 at the precessional
band, with benthic 8*0 leading planktic §'*0 by ~120°-150° at the 23 and 19 kyr precessional bands (Fig-
ure S9). Although the lack of coherence does not allow phase relationship estimation at the 23 kyr preces-
sional band between 12.7 and 10.9 Ma, the phase lag of planktic §'°0 is also 150° at the 19 kyr precessional
band. Planktic and benthic foraminiferal §'®0 are in-phase at the 41 kyr obliquity band, with a phase lag of
T. sacculifer §'*0 at the obliquity band of ~30°-60° (Figure S9).

4. Discussion
4.1. Mixed Layer §"®0 as Proxy for Surface Hydrology and Monsoon Variability

A recent sediment trap study based on stable isotopes estimated a calcification depth of 30-65 m for T.
sacculifer in the northern SCS (Adejare Ladigbolu et al., 2020), indicating that this species lives in the lower
part of the mixed layer. Today, the depth and §'*0 composition of the mixed layer in the northern South
China exhibit a strong seasonal signal, which is coupled to the reversal of monsoonal winds and evapora-
tion-precipitation budgets. The relatively low amplitude variability of planktic foraminiferal Mg/Ca derived
temperatures (2°C-3°C) in comparison to the high amplitude variability of §'*0 during the Miocene (Hol-
bourn et al., 2010, 2018; Steinke et al., 2010) implies that the §'®0 signal is strongly imprinted by chang-
es in 8"®Ogeawater. The present-day precipitation-evaporation budget in the northern SCS is mainly driven
by the monsoonal seasonality of rainfall and river runoff from South China. The modern salinity differ-
ence between the monsoonal and pre-monsoonal seasons is ~0.7-1.0 psu at the location of Site 1146 (Yi
et al., 2020). This strong seasonality in precipitation/runoff amount is also reflected in the 50 of precipi-
tation/runoff within the Pearl River catchment (Ruan et al., 2018). Mean monthly weighted precipitation
8'%0 varies between —12%. and —6%o during the monsoonal season (May-September) and between —6%o
and 0%o in the pre-monsoonal season (January-April). The variability in the post-monsoonal season is ex-
tremely high with large regional differences between —12%. and —2%. (Ruan et al., 2018).

4.2. Hematite/Goethite as Proxy for Chemical Weathering and East Asian Monsoon Intensity

The composition of fine-grained detrital iron and clay minerals transported from land and incorporated into
marine sediments reflects weathering and erosion in the source area of the terrigenous discharge and has
often been used to reconstruct changes in Asian, African, and South American monsoonal climate (Boulay
et al., 2005; Chen et al., 2017; Colin et al., 2014; Gaillardet et al., 1999; Galy & France-Lanord, 1999; Harris

Figure 5. Comparison of East Asian Monsoon proxy records from ODP Site 1146 with atmospheric pCO, and SST latitudinal thermal gradients between 17
and 5 Ma. (a) Evolution of SST latitudinal thermal gradients from Herbert et al. (2016); (b) Evolution of atmospheric pCO, compiled from sources listed below.
Note different y-axes with corresponding symbols; (c) Gradient between planktic and benthic foraminiferal §"*C (A8"*C) as indicator of sequestration efficiency
of the biological pump; (d) End-member EM1 (interpreted as aeolian dust) derived from grain size analysis at ODP Site 1146 from Wan et al. (2007); (e) DRS-
derived chemical weathering proxy record; dark brown smoothed curve based on Stineman function; (f) Mixed layer §'%0; new data between 12.7 and 9 Ma
were integrated with previously published data (Holbourn et al., 2010, 2018); (g) Benthic foraminiferal 5'80 from Holbourn et al. (2005, 2007, 2013, 2018). All
1146 data are plotted on revised age model. Blue arrows indicate main cooling steps. Orange shading indicates intervals of relative global warmth. Blue shading
indicates interval of global cooling. Gray shading indicates intense carbonate impoverishment in the deep tropical ocean known as the Carbonate Crash.

MCO: Miocene Climatic Optimum; MMCT: middle Miocene Climatic Transition. Sources for pCO, reconstructions: (1) alkenone data from ODP Sites 925 and
929 (Stoll et al., 2019); (2) alkenone data from ODP Site 806 (Stoll et al., 2019); (3) alkenone data from Zhang et al. (2013), recalibrated by Stoll et al. (2019);

(4) alkenone data from Bolton et al. (2016), recalibrated by Stoll et al. (2019); (5) simulation 6, 50th percentile (Tanner et al., 2020); (6) alkenone data from
Badger et al. (2013); (7) Boron isotope data from Badger et al. (2013); (8) Boron isotope data from Greenop et al. (2014); (9) Boron isotope data from Raitzsch

et al. (2021); (10) alkenone BAYSPAR SST data from Super et al. (2018).
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and Mix, 1999, 2002; Z. Liu et al., 2003, 2007; Thiry, 2000; Tian et al., 2011; Wan et al., 2009, 2012; Zhao
et al., 2018). Monsoonal climate systems are characterized by distinctive detrital signals due to the intense
erosional power of their highly seasonal rainfall regime. However, these signals represent complex prox-
ies that carry information about weathering in the source area, erosion, and transport mechanisms (Clift
et al., 2008, 2014; Giosan et al., 2017; Stallard, 1992).

At Site 1146, where the terrigenous component is dominated by the sediment discharge from the Pearl Riv-
er, the abundance and ratio of the iron oxide-hydroxide minerals hematite and goethite reflect the hydro-
climate of lowland drainage areas (e.g., Clift et al., 2019; Harris & Mix, 1999, 2002). Under humid climate
conditions, soil colors change from red to yellowish brown, reflecting the mineralogical transformation
of hematite (Fe,0s) into goethite (FeOOH) (Schwertmann, 1971). Thus, high hematite/goethite values in-
dicate aridity in the terrigenous source region (Kdmpf & Schwertmann, 1983). Due to their very distinct
color reflectance spectra, the detection limit for both hematite and goethite with DRS is better than 0.1%,
and their ratio has been commonly used as an indicator of aridity/humidity in terrigenous loess-soil se-
quences and in the catchments of riverine terrigenous sediment discharge (Debret et al., 2011; Harris &
Mix, 1999, 2002; Ji et al., 2002, 2004; Zhang et al., 2007).

4.3. Evolution of East Asian Monsoon From ~17 to 5 Ma
4.3.1. Intensification of Seasonal Monsoon Regime During Middle Miocene Climatic Transition

Combined records of planktic foraminiferal 80 and hematite/goethite (Figures 5 and S3) suggest that a
year-round warm, humid tropical climate prevailed over southeastern Asia during the MCO. Abundant
precipitation likely drove intense chemical weathering between ~16 and 14.7 Ma, as shown by the lowest
hematite/goethite values within the entire ~17-5 Ma interval. Support for this interpretation is provided by
the relatively low mixed layer 80 mean values, suggestive of warm and fresh surface waters at Site 1146
and by the strong response of 8'*0 to precession, indicating that local insolation forcing mainly controlled
the strength of tropical convection and intensity of annual precipitation (Figures 3 and 5). Observations,
proxy data, and modeling simulations indicated that the tropical climate zone expands under global warm-
ing, driving a shift of the main ocean gyres and subtropical fronts toward higher latitudes and promot-
ing changes in global atmospheric circulation (e.g., Norris et al., 2016; Son et al., 2018; Yang, Lohmann,
Krebs-Kanzow, et al., 2020; Yang, Lohmann, Lu, et al., 2020). Globally elevated temperatures, high atmos-
pheric pCO,, and the markedly reduced latitudinal gradient during the MCO (Figures 5 and S10) would
have promoted tropical expansion and attendant displacement of the westerly winds, jet streams, and storm
tracks toward higher latitudes.

During the MMCT, stepwise global cooling and expansion of the EAIS would have induced a contraction
of the tropics and a shift of climatic zones toward the lower latitudes, leading to a reorganization of at-
mospheric convective cells and major changes in the intensity and seasonality of precipitation. An overall
increase in hematite/goethite coupled to a stepwise increase in mixed layer 8"*0 mean values between
~14.7 and 13.8 Ma suggests a long-term decrease in regional precipitation associated with stepwise glacial
expansion (Figures 5 and S3). Transient episodes of surface warming and freshening (8'®0 decreases) at
high eccentricity between ~14.7 and 13.5 Ma, previously interpreted as northward incursions of the ITCZ in
response to Antarctic ice growth and Southern Hemisphere cooling (Holbourn et al., 2010), reveal a highly
dynamic hydrological regime during the MMCT. This is also consistent with the strong response of mixed
layer 8'0 to precessional insolation forcing during this interval (Figure 3). These results can be explained
by a shift from a more equable, warm, and wet climate in a high CO, world during the MCO to a more vari-
able monsoonal regime during the MMCT with precipitation concentrated during the summer season. The
prevalence of cool and dry conditions during the winter season would have led to a decrease in chemical
weathering and to a reduced terrestrial input into the ocean.

4.3.2. Summer Monsoon Decline Linked to Middle to Late Miocene Carbonate Crash?

Substantially higher mean mixed layer 80 coupled to a decrease in amplitude variability together with
elevated hematite/goethite between ~13.5 and 12.7 Ma signal a shift to a drier climate regime (Figures 4,
5, and S4-S5). From ~12.7 to 10.9 Ma, hematite/goethite displays the highest values within the entire
~17-5 Ma interval, indicating considerable weakening of the summer monsoon and increased aridification
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(Figures 4 and 5). The simultaneous increase in the aeolian dust input at Site 1146 (Wan et al., 2007; Fig-
ure 5) also implies enhanced aridity in the Asian interior. Furthermore, mixed layer §'*0 exhibits extremely
low amplitude variability (§'0 standard deviation ~0.1%o) and shows little response to precession between
~12.8 and 11.6 Ma (Figure 3), supporting a general decline of the summer monsoon over this period. This
transition to substantially more arid conditions may have been linked to an overall decrease in the water
content of the atmosphere and attendant changes in moisture budgets following the final step at ~13.1 Ma
of middle Miocene Antarctic glaciation and global cooling (Figure 5). From ~11.5 to 10.9 Ma, transient §'*0
decreases as well as enhanced response to precession at eccentricity maxima (Figures 4 and 5), however,
point to an intermittent strengthening of the summer monsoon with heightened sensitivity to local insola-
tion forcing.

The ~12.7-10.9 Ma interval, characterized by the driest conditions within the entire middle to late Mio-
cene, also coincided with extended episodes of intense carbonate depletion in the deep ocean that affected
all major tropical basins, and are together termed the Carbonate Crash (Dickens & Owen, 1999; Farrell
et al., 1995; Lyle et al., 1995; Mayer et al., 1985, 1986). Such a global reduction in the carbonate flux to the
deep sea sediment reservoir needs to be compensated either by extensive carbonate deposition on shelves or
in epeiric seas, or by a decrease in the flux of calcium and HCO;™ (alkalinity) to the ocean (Milliman, 1993).
However, the major sea-level fall associated with Antarctic ice expansion substantially reduced the surface
area of shelves and shallow seas available for carbonate deposition. Global cooling, on the other hand,
would have resulted in a contraction of the tropical rain belt, thus, decreasing the HCO;™ input from mon-
soonal low-latitude rivers. In addition, aridification in Europe and central Asia between ~13 and 11 Ma
(Bohme, 2008; Tang & Ding, 2013) likely reduced the HCO;™ flux to the ocean further, as midlatitude rivers
have a high dissolved inorganic carbon content in relation to their relatively small freshwater discharge (Cai
et al., 2008). The gradient between benthic and planktic foraminiferal §°C additionally displays a long-term
decrease during this interval, indicating weakening of the biological pump (Figures 4 and 5). Thus, data
from our study support that a decline of the summer monsoon and attendant decrease in the riverine input
of nutrients and alkalinity to the ocean within a global context of cooling and drying contributed to sustain
carbonate depletion in the deep ocean between ~12.7 and 10.9 Ma.

4.3.3. Strengthening of Summer Monsoon From ~10.8 to 9 Ma

The interval ~10.8-9 Ma, corresponding to the recovery phase from the Carbonate Crash, is characterized
by an intensification of the summer monsoon, as shown by an overall decrease in hematite/goethite and
substantially lower mixed layer mean 8'®0 values at Site 1146 (Figures 4, 5, and S4). The end of the most
intense phase of the Carbonate Crash coincided with an abrupt warming episode, the Tortonian thermal
maximum, characterized by a sharp drop of ~1%. in benthic foraminiferal §'*0 associated with a major §°C
decrease at ~10.8 Ma. At Site 1146, the marked increase in mixed layer 8'®0 during this transient warming
is most likely due to early diagenesis at the sea floor, as this interval corresponds to a distinct pyrite-rich,
bluish-green layer with calcite (Wang et al., 2000), likely associated with a decline in SCS deep water ox-
ygenation (Holbourn et al., 2013). The color reflectance red-green parameter (a*) within this interval also
shows a drastic decrease to green values and magnetic susceptibility decreases from ~40 to ~10 SI units,
due to pyrite formation (Holbourn et al., 2013; Wang et al., 2000). This strongly affects the Crar and hema-
tite/goethite spectral reflectance records, limiting their potential as weathering/erosion proxies (supporting
information).

The distinctive warm event at ~10.8 Ma was recently documented in a well-resolved isotope record from
Site U1443, drilled on the Ninetyeast Ridge in the Indian Ocean (Liibbers et al., 2019), underpining its su-
pra-regional occurrence. It coincides with an unusual orbital congruence (maxima in 100, 400 kyr eccentric-
ity and maximum in 2.4 Myr amplitude modulation of eccentricity, Figures 4 and 5), and is reminiscent of
eccentricity-paced hyperthermal events during the MCO (Holbourn et al., 2013). The benthic foraminiferal
8'80 minimum at ~10.8 Ma occurs within a background of orbitally paced 8'*0 and 8"°C variations, demon-
strating high sensitivity of the ocean-climate system to eccentricity and obliquity forcing throughout this
period. Several of the more muted warming events between ~10.8 and 9 Ma also coincide with changes in
sediment color, indicating episodes of decreased bottom water ventilation at ET maxima (Figures 4 and 5).
Our results indicate that dynamic changes in tropical hydrology and ocean circulation between ~10.8 and
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9 Ma led to a progressive intensification of the summer monsoon and an increased input of alkalinity to the
ocean, which were instrumental in the recovery from the Carbonate Crash.

4.3.4. Late Miocene Biogenic Bloom

A rise in benthic and planktic foraminiferal 8"°C after ~9 Ma marks the onset of a prolonged, positive
excursion, which consists of four distinct 8"°C cycles paced by 400 kyr long eccentricity and lasts until
7.7 Ma (Figure 3). This prominent positive excursion was originally identified as §"°C maximum CM?7 in
low-resolution isotope records from several ocean basins (Woodruff & Savin, 1991). The global occurrence
and extended duration of the §"°C shift imply that it was associated with fundamental changes in the carbon
cycle. At Site 1146, the 8'3C excursion coincides with a marked increase in sedimentation rates and in the
gradient between benthic and planktic foraminiferal §"°C (Figures 5 and S6), suggesting enhanced biogenic
accumulation and terrigenous input. Coeval increases in carbonate and opal accumulation were previously
identified in the eastern equatorial Pacific Ocean and at upwelling locations in the Atlantic and Indian
Oceans (e.g., Dickens & Owen, 1999; Diester-Haass et al., 2004; Farrell et al., 1995), and are collectively
known as the Biogenic Bloom.

At Site 1146, low mean mixed layer 80 together with low hematite/goethite indicate that a strong summer
monsoon regime prevailed between ~9 and 7 Ma (Figures 5 and S4). The development of a vigorous con-
vective monsoonal circulation at low latitudes was likely favored by a steeper latitudinal thermal gradient
(Figure 5). Relatively high benthic foraminiferal 5'®0 between ~9 and 7 Ma also suggests an expanded
Antarctic ice sheet and colder Southern Ocean temperatures during this period. Between ~7.7 and 7 Ma, a
massive long-term decrease in 8"°C of >1%o, corresponding to the global decline known as the late Miocene
carbon isotope shift (LMCIS; Keigwin, 1979; Keigwin & Shackleton, 1980), indicates fundamental changes
in carbon cycling during the peak phase of the Biogenic Bloom (Figures 3 and 5). This period was charac-
terized by global cooling (Herbert et al., 2016), a marked decline in atmospheric pCO, (Tanner et al., 2020;
Figure 5), and by widespread continental aridification of the Northern Hemisphere (e.g., Guo et al., 2002; J.
Liu et al., 2016; Wan et al., 2007).

A slight increase in mixed layer 8'®0 between ~7.5 and 7 Ma at Site 1146 supports a progressive weakening
of the summer monsoon over Southeast Asia during the LMCIS (Figure 5). Between ~7 and 5.5 Ma, cooling
was associated with a marked increase in the mean and amplitude variability of planktic 80 (Figures 3
and S4-S5), previously interpreted as a decline of the wet summer monsoon and intensification of the dry
winter monsoon (Holbourn et al., 2018). Hematite/goethite only registers a slight increase over this peri-
od, which may be related to the decreased riverine input of fine-grained sediment from the northwestern
mountainous area of the Pearl River catchment due to reduced erosion from the weaker summer monsoon.
This would have induced a shift toward sediment originating from the proximal part of the Pearl River,
where subtropical vegetation was dominant and goethite more abundant in soils. The grain-size analysis of
Wan et al. (2007) reveals a major increase in aeolian dust after ~7 Ma (Figure 5), indicating that intensified
dry winter monsoonal winds carried dust from arid regions in the central parts of the East Asian continent
toward the location of Site 1146 during this cooler period.

The interval ~7-5.5 Ma was also marked by a long-term trend toward higher benthic foraminiferal 50,
which culminated in a succession of sharp maxima (TG events) before reversing after 5.5 Ma (Figure 2).
These global deep water §'*0 maxima, coincident with planktic 50 maxima and temperature decreases of
2°C-3°C at Site 1146, were tentatively attributed to transient Northern Hemisphere glaciations (Holbourn
et al., 2018). Furthermore, the gradient between benthic and planktic foraminiferal §"*C reaches peak val-
ues between ~7 and 5.5 Ma, during the most intense phase of the Biogenic Bloom (Figure 5). We speculate
that steepening of the latitudinal thermal gradient after ~7 Ma (Herbert et al., 2016; Figure 5) strengthened
the Hadley and Walker circulation, helping to drive ocean upwelling and productivity and promoting deep
ocean carbon storage and lowering atmospheric pCO, in a positive feedback loop. However, these climatic
trends abruptly reversed after 5.5 Ma, as shown by a decline in hematite/goethite and by decreases in ben-
thic and planktic foraminiferal 50 and A8"C (Figure 5).
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4.4. Drivers of East Asian Monsoon Evolution

Some recent modeling studies investigating the main controls on the long-term evolution of the Asian Mon-
soon yielded very different results (e.g., Acosta & Huber, 2020; Farnsworth et al., 2019). A low-resolution
experiment extending back to the Early Cretaceous suggested that the East Asian Monsoon was predomi-
nantly controlled by gradual uplift of the Himalayan-Tibetan region since the Late Cretaceous (Farnsworth
et al., 2019). By contrast, high-resolution climate simulations by Acosta and Huber (2020) indicated that
monsoon flow is largely governed by sea surface temperature gradients and that topography mainly redi-
rects onshore flow, which affects the spatial and temporal distribution of precipitation. These contradic-
tory results largely stem from differences in model resolution and prescribed boundary conditions, which
strongly influence outputs. A major limitation of low-resolution simulations, for instance, is that they fail
to accurately capture monsoon dynamics (Acosta & Huber, 2017, 2020) and are, therefore, not compatible
with high-resolution paleoclimate reconstructions.

The orbital-scale variability of the East Asian Monsoon is driven by changes in the strength and spatial
extent of atmospheric convective cells in conjunction with the available heat and moisture in the source
area (e.g., Caley et al., 2014; Mohtadi et al., 2016, and references therein). However, the relative impact of
changing insolation forcing and greenhouse gases on the latitudinal thermal gradient and on the strength
and extent of the atmospheric convection has been intensely debated. Particular disagreement exists in
estimating the effects of greenhouse gas-driven global warming on the intensity of monsoonal circulation
(Birner et al., 2014; Post et al., 2014; Mantsis et al., 2017; Mamalakis et al., 2021). Coupled circulation mod-
els predicted that during greenhouse warming, the heat input over Asia prevails on a similar or lower level
than in the tropics, the atmospheric circulation remains unchanged or weakens, and the spatial extent and
intensity of monsoonal rainfall is highly variable depending on local orography, land-sea distribution, and
albedo (Kitoh, 2017; Vecchi & Soden, 2007). In contrast, during Northern Hemisphere precessional inso-
lation warming, the net energy input over the Northern Hemisphere Asian landmass increases, leading to
a stronger thermal contrast with the tropics and intensification of monsoons due to strengthening of the
atmospheric circulation (D'Agostino et al., 2019). However, a new synthesis of Miocene modeling efforts
by Burls et al. (2021) underlined the fundamental role of CO, as the main control on long-term Miocene
warmth. This synopsis underpins, in particular, the role of atmospheric CO, as a primary agent by which
changing temperature gradients influenced moisture fluxes and monsoon convection.

At Site 1146, planktic 80 exhibits a strong response to precessional insolation forcing, except during the
Carbonate Crash, when the summer monsoon weakened (Figure 3). The antiphase relationship of planktic
and benthic foraminiferal 830 records at the precessional band (Figure S9) implies that deep water 50
was mainly driven by Antarctic climate variability, as the Southern Ocean was the main locus of deep wa-
ter formation during the Miocene; by contrast, mixed layer 830 responded to local Northern Hemisphere
insolation forcing. The significant obliquity component in both records as well as the high coherence and
consistent phase relationship at the obliquity band suggest that the latitudinal temperature gradient exerted
additional control on SCS hydrology. This can be explained by obliquity-induced variations on the seasonal-
ity of radiation and the interhemispheric insolation gradient, which drive cross-equatorial moisture transfer
(e.g., Bosmans et al., 2015; Mantsis et al., 2014). Comparison of long-term changes in the latitudinal thermal
gradient and atmospheric pCO, with our monsoon proxy data (Figure 5) supports that high-latitude cooling
and declining pCO, were associated with major variations in the intensity and characteristics of the East
Asian Monsoon during the middle to late Miocene.

The Miocene evolution of the East Asian Monsoon at Site 1146 suggests that extended periods of global
warming (probably induced by greenhouse gas increases) favored the latitudinal expansion of tropical con-
vection and precipitation, whereas global cooling promoted increased seasonality of monsoonal rainfall
in the subtropical Northern Hemisphere. Evidence for abundant precipitation and runoff from ~15.6 to
14.7 Ma during the MCO supports northward expansion of the tropical rain belt in response to greenhouse
gas forcing. By contrast, monsoon seasonality increased during the MMCT, as the tropics contracted in con-
cert with Antarctic ice sheet expansion and global cooling. Our results also demonstrate that the long-term
evolution of this highly dynamic climate feature through the middle to late Miocene was linked to changes
in the global carbon cycle through intricate internal feedback processes involving, atmospheric pCO,, the
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latitudinal thermal gradient, deep ocean, and terrestrial carbon storage as well as atmospheric and oceanic
circulation.

5. Conclusions

Data from this study indicate that secular variations in local insolation forcing and in Southern Hemisphere
ice volume, influencing the latitudinal thermal gradient, evaporation-moisture budgets, and the strength
of the tropical convection, exerted a major control on the evolution of the East Asian Monsoon during the
middle to late Miocene stepwise climate cooling. These dynamic changes in tropical hydrology also had
important repercussions for global climate evolution. In particular, data from this study support that weak-
ening of the Southeast Asian summer monsoon between ~13 and 10.9 Ma, following global cooling and ice
sheet expansion during the MMCT, contributed to the development of the Carbonate Crash by decreasing
one of the main inputs of nutrients and alkalinity to the global ocean. Tectonic uplift of the high Himalaya
through the middle to late Miocene may, additionally, have played a critical role in driving major climatic
transitions such as the MMCT and LMCIS by redirecting monsoon flow and altering large-scale weathering
and erosion patterns. Such re-organization would have induced long-term variations in tropical precipita-
tion and productivity that affected the global carbon cycle and atmospheric CO, and preconditioned the
ocean-climate system for change toward irreversible tipping points. However, detailed integration of Neo-
gene terrestrial and marine records is urgently required to resolve the relative timing of climatic events and
Himalayan uplift in order to better understand the tectonic impact on monsoon circulation as well as the
intricate feedback processes involved.
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