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ABSTRACT: Lakes in the Midwest and Northeast United States are
at risk of anthropogenic chloride contamination, but there is little
knowledge of the prevalence and spatial distribution of freshwater
salinization. Here, we use a quantile regression forest (QRF) to
leverage information from 2773 lakes to predict the chloride
concentration of all 49 432 lakes greater than 4 ha in a 17-state
area. The QRF incorporated 22 predictor variables, which included
lake morphometry characteristics, watershed land use, and distance to
the nearest road and interstate. Model predictions had an r2 of 0.94
for all chloride observations, and an r2 of 0.86 for predictions of the
median chloride concentration observed at each lake. The four
predictors with the largest influence on lake chloride concentrations
were low and medium intensity development in the watershed, crop
density in the watershed, and distance to the nearest interstate.
Almost 2000 lakes are predicted to have chloride concentrations above 50 mg L−1 and should be monitored. We encourage
management and governing agencies to use lake-specific model predictions to assess salt contamination risk as well as to augment
their monitoring strategies to more comprehensively protect freshwater ecosystems from salinization.

■ INTRODUCTION

Sixty years of unbridled road salt application across a vast area of
North America has led to the salinization of freshwater
ecosystems.1,2 Studies have documented a long-term rise in
chloride and salinity in groundwater, streams, and lakes;
including the Laurentian Great Lakes.2−6 The freshwater-rich
U.S. Midwest and Northeast states, which contain 49 000 large
lakes (>4 ha), as well as hundreds of thousands of wetlands,
streams, and ponds, are particularly reliant on road salt
application during winter weather. Given the ubiquity and
broad spatial distribution of road salt application, it is highly
probable that many of these waterbodies are undergoing
salinization. However, with water quality data available from
only ∼5% of the lakes in this region, the prevalence and spatial
distribution of the problem is poorly understood.
When added to the landscape, deicing salts readily dissolve

into their associated ions, often sodium (sometimes calcium and
potassium) and chloride. Because chloride is the common anion
in all salts, is mostly unreactive, and occurs naturally at extremely
low concentrations in freshwater lakes,7,8 its abundance in water
is considered a robust tracer of anthropogenic inputs. The
concern over elevated chloride concentrations is 2-fold: First,
high concentrations are toxic to a variety of freshwater aquatic
organisms.9−11 Government agencies have set chloride thresh-
olds to protect aquatic ecosystem function, but evidence is
mounting that these criterion lack ecological realism and should
not be standardized across all aquatic systems.12−14 In the

United States, the Environmental Protection Agency’s (EPA)
acute and chronic chloride concentration toxicity standards are
860 mg L−1 and 230 mg L−1, respectively.15 Second, chloride
and associated sodium concentrations can compromise drinking
water sources as concentrations above 250 mg L−1 taste salty,
and high sodium concentrations contribute to hypertension in
humans.16 Salts are also known to mobilize toxic heavy metals
from soils to groundwater, which have the potential to
bioaccumulate in aquatic food webs and compromise human
health.17−19 Removing dissolved ions from water sources is an
added expense to drinking water treatment, and identifying
waterbodies at risk of long-term salinization will enable water
managers to consider reduction of source inputs as an alternative
to removal through costly filtration.
While road salt application is the most pervasive and common

salt source, water softeners, synthetic fertilizers (namely KCl),
and livestock excretion contribute sizable loads of salt to the
environment.20 Lakes are particularly susceptible to long-term
salinization because of their longer water residence time and
their large watersheds, which combine many exogenous salt
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sources.21 Unlike streams and rivers, which may experience
extreme chloride loading during spring melt periods from
surface inflows22 or summer groundwater discharge,23 lake
chloride concentrations are more likely to display low
interannual variability if their water residence time is greater
than one year, even if these waterbodies are also receiving runoff
events. The longer the residence time, the longer it will take for a
waterbody to reach dynamic equilibrium with the inflows, and
themore representative a single water sample from a lakemay be
of overall chloride load in its watershed. Despite the capacity for
low-resolution water quality sampling to assess lake health,
chloride is not routinely monitored in many lakes and states.
To identify at-risk lakes, we use machine learning and regional

databases of lake characteristics and water quality to determine
the predictors of chloride contamination. This analysis was
motivated by previous regional and local studies of long-term
chloride trends indicating that developed land, including
impervious surface cover and the density of the road network
surrounding lakes and rivers, are strongly correlated with
elevated chloride concentrations.5,24−26 These studies suggest
that landscape watershed characteristics, along with lake
characteristics, may provide the predictive power to identify
sites at risk of chloride contamination, even in unmonitored
areas.
Our analysis covers a 17-state area of the United States,

including Connecticut, Illinois, Indiana, Iowa, Maine, Massa-
chusetts, Michigan, Minnesota, Missouri, NewHampshire, New
Jersey, New York, Ohio, Pennsylvania, Rhode Island, Vermont,
and Wisconsin. Road salt application across this area is
widespread, intensive, and expensive. Total road salt application
in these states averages 6.9 million tons of salt and 68 million
gallons of liquid brine per year, at an annual cost of $367 million
for materials and $1.4 billion for application (years 2014−2017,
Clear Roads 2018). This area is also lake-rich, containing 23% of
the lakes in the United States.28 The convergence of abundant
freshwater and rampant salt use underscores the need to
prioritize monitoring and predictive modeling in this region,
with the aim of ultimately reducing anthropogenic chloride
pollution.

■ METHODS
We leveraged publicly available land use, lake catchment and
morphometry, and climate data across a 17-state area of the
Midwest and Northeast United States, to predict chloride
concentrations in 49 432 lakes. Our general methodology
included: (Step i) Acquiring and geoprocessing lake water
quality data and site characteristics. (Step ii) Harmonizing
training data sets. (Step iii) Harmonizing hold-out/testing data
sets. (Step iv) Building a machine learning model and selecting
optimum hyperparameters for chloride prediction. (Step v)
Calculating model fit on training and hold-out data sets. (Step
vi) Evaluating variable importance of predictors. (Step vii)
Building a prediction data set for 49 432 lakes.
Step i: Data Acquisition. Observational chloride measure-

ments from lakes, reservoirs, and impoundments were down-
loaded from the U.S. water quality portal (WQP,
waterqualitydata.us).29 All results were converted to mg L−1,
and only data with ResultStatusIdentif ier as “Accepted” or “Final”
noted in the data set were retained. The initial search of 115 389
observations was then filtered to data collected after 1990,
chloride concentrations <10 000 mg L−1, and water samples less
than 10 m deep or with depth not listed (where the assumption
was an epilimnion measurement). These quality control steps

were taken to limit inclusion of historical data that may not
represent current conditions, remove naturally saline water-
bodies (n = 5, adjacent/connected to the Atlantic Ocean), and
remove potentially meromictic lakes (n = 0). Multiple
observations collected on the same day were averaged. Lakes
with missing watershed information were removed, resulting in
29 010 unique daily observations from 2773 lakes, which
represent 5% of the lakes in the region. Three states (Illinois,
Iowa, and Rhode Island) had no chloride data, and three states
(Pennsylvania, Connecticut, and New Hampshire) had chloride
data from only one lake.
The WQP, from which our observational data were drawn,

combines data from state, local, and tribal monitoring agencies
and acts as a standardized data warehouse for the procurement
of regional to national-scale data. This simplified avenue for data
access enables modeling efforts at a multistate level, but this
secondary use of data (“the use of data beyond the original intent
determined by the organization that collected the data”) comes
with the challenge of quality control.30 A study by the United
States Geological Survey (USGS) on the quality of multisource
data found that, of the 25 million records examined, more than
14million had missing or ambiguous metadata.30 Ambiguity can
arise from parameter names, filtration methods, chemical form,
and units. In our experience, chloride observations are less
cryptic than other water quality parameters, in that the
parameter name is more standardized, the filtration and storage
method is less prone to error, there is effectively only one
chemical form, and the reported units are logical (mg L−1, ppm,
eq L−1, μg L−1, and μmol). The occurrence of outliers and data
quality assurance are discussed in the Supporting Information
(SI).

Step ii: Training Data Set. WQP site identification
numbers (IDs) from the data set were linked to the high-
resolution National Hydrography Data set (NHD) using a
Python script that accessed bounding box information on each
NHD shapefile and ran a spatial join (see SI). The resulting
relational table linked each chloride observation to an individual
lake through an NHD ID. For every NHD lake ID, geospatial
lake data were obtained from the LAGOS-NE database,31 which
provides watershed ecological context for all lakes greater than 4
ha in the 17-state area (Table 1). Additional site characteristics
were extracted fromGIS line features of U.S. interstates and U.S.
primary roads, and from gridded winter severity data (Table 1,
Figure S1). Across all predictor variables in the training data set
(Table 1), minimum values (excluding zero data) were ≥0.01.
To log-transform data, we converted zero values to 0.001;
thereby allowing us to distinguish zero values from positive
values. Predictors related to climate, salt application rates at the
state level, and coastal distance were investigated during initial
model runs but found to be uninformative on our training data
set, and not used in our final model (see SI).

Step iii: Holdout Data Sets. Four hold-out testing data sets
(data not available in the WQP) were used to provide an
independent evaluation of the model fit:

a. Rhode Island lakes (93 lakes). The University of Rhode
Island Watershed Watch Program provided data for lakes
in Rhode Island with chloride observations from 1990 to
2010.32 Rhode Island lakes comprise some of the most
urban lakes in the region.

b. Minnesota lakes (137 lakes). The Minnesota Pollution
Control Agency provided chloride data from 1990 to
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2018 for lakes that were not available in the WQP. The
observed chloride was ≤1 mg L−1 for 104 of 137 lakes.

c. Wisconsin lakes (134 lakes). Chloride concentrations
from Wisconsin lakes were compiled from four
independent surveys available from the North Temperate
Lakes Long-Term Ecological Research Site (NTL-
LTER). Because these surveys only represented lakes in
Northern Wisconsin, we sampled eight lakes in Southern
Wisconsin in 2018 to better represent the diversity of
lakes in the state.

d. The U.S. EPA National Lakes Assessment (NLA) lakes
(488 lakes). TheNLA is a snapshot survey of summer lake
water quality across the U.S. that was conducted in 2007
and 2012.33 Data from both sampling years were retained
within the 17-state area used in this study, and any
duplicate sampling was averaged. Sixty-one lakes were too
small (<4 ha) to be included in the LAGOS data set.
Surprisingly, none of the remaining 488 lakes were
represented in the WQP training data.

We elected not to incorporate test data into our training data
set to examine the model’s predictive performance on regions
not covered by the training data. By examining test-set error we
could examine whether the model was robust to a variety of
regional characteristics. Ultimately, our goal was to develop a
model that is useful outside of well-studied locations, and the
approach of hold-out testing data sets was the best method to
evaluate our success in this aim.

Step iv: Machine Learning Model. A quantile regression
forest (QRF) was used to model the relationship between
observed chloride concentrations and lake and watershed
characteristics. This model was chosen to accommodate a
large number of correlated predictor variables (Figure S2), the
presence of nonlinear responses, and the potential importance of
interactions among predictor variables. The QRF consisted of
1000 trees and was implemented with the “ranger” package in
R.34

In a typical QRF routine, a random fraction of observations
would be sampled. However, since our training data set is
unevenly weighted with respect to number of observations per

Figure 1. (a) Predictor variable importance calculated by permutation, with higher values on the x-axis corresponding with greater importance. (b)
Feature contribution plot of the top two predictorspercent of low andmedium development in the watershed. Feature contributions >0 indicate that
the combination of predictor values resulted in a predicted chloride concentration greater than the mean predicted value. Feature contributions <0
indicate that the combination of predictors resulted in a predicted chloride concentration less than themean predicted value. Dashed lines highlight FC
= 0 and 5% development. (c) Combined feature contribution of watershed low and medium development (x-axis) and percentage of cropland in the
watershed (y-axis) to lake chloride concentration. Each point represents an individual observation in the training data set and the associated feature
contribution value represents the influence of the predictors on the total predicted chloride concentration. Dashed boxes 1−4 are referenced in (d). (d)
Chloride concentration density distributions for four groupings of watershed characteristics. Data are the median observed chloride concentrations
from the 2773 training lakes.
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lake, this approach would overfit the QRF to lakes with a greater
number of chloride observations. Therefore, we developed a
customized sampling routine that constructed individual trees
using the observations from a random subset of the study lakes
(95% subset: the “in-bag samples”). Each resulting tree was used
to make out-of-bag predictions on the remaining observations
from the 5% of excluded lakes. For each test lake, there were
1000 terminal node values that created a distribution of
predicted chloride concentrations. All predictions are reported
as the back-transformed median of the distribution. Median
terminal node values were chosen overmean values because they
had superior predictive performance on out-of-bag observations,
and to avoid the errors associated with back-transforming mean
values. A 90% prediction interval can be calculated from the 0.05
and 0.95 quantiles of the estimated conditional distribution of
the response variable.35 The optimum number of candidate
predictor variables considered at each tree split (mtry = 4) was
selected based on out-of-bag error in the training model.
Step v: Model Fit. Model fits were evaluated using the

coefficient of determination (r2) on log-transformed chloride
concentrations, and root-mean-square log error (RMSLE).
Step vi: Variable Importance. Variable importance was

calculated via permutation, which measures the change in model
prediction error after randomly shuffling each predictor variable.
The order and absolute value of the importance of the predictor
variables is more of a guidepost than a strict hierarchy of
influence, because estimates are affected by the predictors
included, the hyperparameters selected and the degree of
correlation between predictors.36 Hyperparameters in machine
learning are parameters with a fixed value that are not changed
by model training.

Step vii: Prediction Data Set. A prediction data set was
constructed for the full LAGOS-NE data set, which contained
51 102 lakes and reservoirs greater than 4 ha in the 17-state
area.31 After removing lakes with no available land-use data
because the watersheds crossed the US/Canada border, 49 432
lakes remained, of which 2773 were used for training the model.
The prediction data set was identical in structure to the training
data set but contained no observational chloride data. The
month of prediction was set to July, as this had the greatest
overlap with the training data set. In general, we would expect
natural, ambient background chloride concentrations across the
entire region to be <10mg L−1.7,8 The distribution of lakes in the
training and prediction data sets were unequal, with training
lakes biased toward larger lakes in more urban environments
(Figures S3 and S4).

■ RESULTS
The twomost important predictor variables amongQRFmodels
constructed with a range of different hyperparameters were the
percentage of low (WS.Dev.Low) and medium development
(WS.Dev.Med) (Figure 1a). Considering that WS.Dev.Low and
WS.Dev.Med were highly correlated, the top four predictors
across all model tests were the percentage of low and medium
development in a lake’s watershed, followed by crop abundance
(WS.Crops), a climate index of winter severity (Winter-
Severity), and distance to the nearest interstate (Interstate
Distance). Surprisingly, morphometric parameters including
lake and watershed area, as well as month of sampling, were
relatively poor predictors (Figure 1a).
Feature contribution (FC) plots are a useful method to

illustrate the influence and additive contributions of predictor

Figure 2. (a−f) Feature contribution plots for the top six predictor variables and (g) one noninformative predictor. Y-axis feature contribution values
represent the additive contribution of that predictor to the predicted chloride concentrations. Feature contributions >0 indicate that the combination
of predictor values resulted in a predicted chloride concentration greater than the mean predicted value. X-axis values are the predictor value for
individual lakes, and each point represents an individual chloride observation in the training data set. Points are colored by the sum of low andmedium
development in the watershed to highlight the interaction of multiple drivers.
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variables to chloride concentration (Figure 1b). FC values
represent the change in predicted probability a sample receives
in the QRF when split by the given variable, and can give insight
into how the QRF decisions are made. Every test lake is
associated with 22 FC values, one for each predictor. The sum of
these 22 values added to the overall mean predicted chloride
concentration equals the predicted chloride concentration for
the test lake. Therefore, an FC equal to 0 would indicate that the
predictor variable had no influence on the predicted outcome.
FC values >0 indicate the predictor variable had a positive
influence (predicted chloride concentration will be greater than
the overall mean), and FC values <0 indicate the predictor
variable had a negative influence (predicted chloride concen-
tration will be less than the overall mean). The higher the
absolute value of an FC, the more influence it has on the final
prediction. For instance, the FC plot of the top predictor (low
and medium development in a watershed) shows that overall
low development results in low chloride concentrations and high
development results in high chloride concentrations. Almost all
sites with >5% low and medium development in the watershed
had FC values >0 (Figure 1b).
Feature contributions are additive, such that a positive

contribution from one predictor may cancel out a negative
contribution from another predictor. In examining the additive
contribution of low and medium development and crop
abundance, it is clear that watershed development has a much
stronger positive contribution to chloride concentrations than
crop percentage (Figure 1c). We can isolate quadrants of the FC
plot to show the relationship between modeled feature
contributions and observed chloride concentrations. Data in
group 1 (development <1%, crops <10%) had the overall lowest
feature contributions (median −0.99), and a median observed
chloride concentration of 2.2 mg L−1. Data in group 2
(development <1%, crops >20%) still had relatively low feature
contributions (median −0.39), and a median observed chloride
concentration of 13.8 mg L−1. Data in group 3 (development
>5%, crops <10%) had the highest feature contributions

(median 0.67), and a median observed chloride concentration
of 51.2 mg L−1. Data in group 4 (development >5%, crops
>20%) had slightly lower feature contributions than group 3
(median 0.43), and amedian observed chloride concentration of
30.7 mg L−1 (Figure 1d). Lakes in group 3 had higher overall
development than lakes in group 4.
Individual FC plots revealed that several different forms of

anthropogenic development in a lake’s watershed contribute to
higher chloride concentrations (Figure 2). For instance, a higher
percentage of low-intensity development, close proximity to
interstate highways, and high road density were associated with
higher chloride concentration (Figure 2a,d,f). These predictors
exhibit threshold effects in some cases. For instance, road
density begins to have a positive contribution to chloride
concentrations only when there is at least 16 m ha−1 of roads in
the watershed, and the contribution of interstate highways to
chloride concentrations rapidly declines when the distance from
lakeshore is greater than 2 km.
FC relationships are modified by co-occurring variables. Here

we highlight the interaction of predictor variables with low and
medium development. For instance, high agricultural land use,
both crop cultivation (Figure 2b) and pasture/hay (Figure 2e),
contributed to higher chloride concentrations, but only under
low development conditions. Likewise, distance to the nearest
interstate was more likely to positively contribute to chloride
concentrations when there was low development (Figure 2d).
Climate was also associated with differences in lake chloride
concentrations; lakes in a winter severity zone greater than 50
generally had lower chloride concentrations than lakes in
warmer locations with a severity less than 50 (Figures 2c and S1
for maps). Finally, feature contribution plots of predictors with
low variable importance, such as lake area, showed little
influence on chloride concentrations across their range (Figure
2g).

QRF Model Predictions. The model predictions for out-of-
bag observations within the training data set had an r2 of 0.94
and an RMSLE of 0.41 for all observations, and an r2 of 0.86 and

Figure 3. (a) Observed chloride vs out-of-bag predictions for all observations in the training data set. (b) Observed data in (a) grouped by individual
lake and plotted as the median. Where multiple observations are available, ranges are shown for min−max observed data.
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an RMSLE of 0.60 when data were summarized by taking the
observed median chloride concentration for each individual lake
(Figure 3). Model predictions were not biased toward over or
under-prediction, with the exception of ∼20 lakes where the
chloride concentrations were consistently under-predicted, in
some cases by 1000 to 2000 mg L−1. Of the 20 lakes with
observed median chloride concentrations >500 mg L−1 and
predicted concentrations <200 mg L−1, 18 are located in New
York state, and all observation data were collected during a
single year (2003, see SI). There were no cases where high-
concentration lakes were overpredicted by more than 100 mg
L−1 (Figure 3b).

Holdout Data Sets. The holdout data from Rhode Island,
Minnesota, and Wisconsin compare well to the predicted values
except at low concentrations (r2 = 0.79, RMSLE = 0.86). The
log−log scale of the prediction plots overemphasizes differences
at low concentrations and, therefore, the Wisconsin and
Minnesota lakes fall off the 1:1 line at concentrations <4 mg
L−1. Many of the Rhode Island lakes had multiple observations,
and the model prediction fell within the range of observed values
(Figure 4a). In these three states, there is a pattern of decreasing
chloride concentration with latitude. This relationship is due to
lower population densities in the northern regions of this 17-
state area. The observed NLA data likewise compared well with
the predictions, with an r2 of 0.79 and RMSLE of 0.84 (Figure

Figure 4. (a) Predicted chloride versus observed chloride for hold-out data sets from Minnesota, Rhode Island, and Wisconsin. Where multiple
observations are available, ranges are shown for min−max observed data. (b) Predicted chloride versus observed chloride for lakes in the National
Lakes Assessment. Individual lakes are colored by latitude.

Figure 5.Density distribution of the median predicted chloride concentration for all 49,432 LAGOS-NE lakes (filled yellow). Dashed and dotted lines
represent the 5% and 95% prediction quantiles. The gray rectangle denotes the range of predicted values (max 15 mg L−1) for undeveloped lakes.
Vertical lines represent the chronic and acute chloride toxicity thresholds as set by the U.S. EPA.
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4b). While the model under-predicted chloride concentrations
for the lakes with the highest observed values, similar to the
training data set, the three highest observed lakes (>200mg L−1)
are all located in Illinois, which is a state for which there was no
training data.
Predicting Chloride Concentrations Across 17-States.

The QRF model was used to predict chloride concentrations in
the 49 432 lakes greater than 4 ha in a 17-state area in the U.S.
Northeast and Midwest (Figure 5); 2773 lakes were in the
training data set, and 46 659 lakes were test lakes. From
historical empirical studies, the ambient background chloride
concentrations across the entire region is assumed to be <10 mg
L−1.7,8 Using our model, if we include only test lakes with no
development or agriculture in their watersheds that are >100 km
from an interstate (n = 2100), then the median predicted
chloride concentration was 0.42 mg L−1, and the maximum
predicted chloride concentration was 15.0 mg L−1.
Overall, the median predicted chloride in the 49 432 lakes was

6.8 mg L−1, compared with a median of 7.9 mg L−1 for the
training lakes. We identified 1972 lakes with predicted median
chloride concentrations above 50 mg L−1, including 245 lakes
that were in the training data set. These lakes are typically
located along U.S. interstate highways and near major
metropolitan areas, including densely populated areas of New
York, Massachusetts, and Illinois (Figure 6). Only 114 lakes,
including 95 in the training set, are predicted to have median
chloride concentrations exceeding 100 mg L−1.
The prediction interval for many of the lakes in this region was

high, especially in the Northeast U.S. (Figure S5). The
prediction interval is kept as a log value as the difference
between 5% and 95% quantiles of the estimated distribution of
predicted chloride. When back transformed, the prediction
interval scales with chloride concentration, and prevents
evaluation of the drivers. The median and 95% quantile of the
prediction interval are 3.73 and 5.89. In the 5% of lakes with a
prediction interval >5.89, there was a small bias toward smaller
lake and watershed area, with more development. The spatial
distribution of the high prediction interval lakes reveals many are
located in New Jersey, southern New York, and Connecticut
(see SI Figure S5).

■ DISCUSSION
Of the 49 432 lakes greater than 4 ha in the 17-state area, about
4% were predicted to have chloride concentrations above 50 mg

L−1, and an additional 14% were predicted to have chloride
concentrations between 20 and 50 mg L−1. Fortunately, this
result indicates that the vast majority of lakes (82%) are likely at
concentrations <20 mg L−1. However, with continued land-use
change, even pristine lakes should be monitored for early
warnings of chloride pollution.
We demonstrate that chloride is predictable at the regional

scale, and that we can leverage information from 5% of the
region’s waterbodies to assess the status of all 49 432 lakes in the
region. Overall our training data set was representative of the
region in terms of watershed properties (Figure S3), but was
skewed toward large lakes with high watershed development
(Figure S4). This bias is to be expected, as lakes are rarely
sampled to represent the regional population, unless through a
stratified sampling regime designed to specifically address this
challenge.37 In reality, lakes are sampled for a variety of reasons,
which skews the representativeness.38 Sampling is often
conducted in contaminated lakes or in lakes that are easy to
access, which results in observational data that disproportionally
represent large lakes in urban areas with water quality issues.38

Importance of Predictors. Top predictors of lake chloride
concentration were the percentage of low and medium
development, the percentage of cropland in a lake’s watershed,
and the distance to the nearest interstate highway. These
predictors have rarely been studied at the same time, but all have
been identified as major sources of anthropogenic chloride to
freshwater lakes. Studies in North America have found positive
correlations between lake and stream chloride concentrations
and road density,24,39 road proximity,24 and percent impervious
surface;5,40 which are all proxies for road salt application. In
addition, studies in Europe and North America have identified
agricultural land cover as a major source of chloride to lakes and
rivers,41−43 due to the use of potassium chloride as a synthetic
fertilizer. In the United States, potassium chloride accounts for
over 90% of potash fertilizers, with over 5 M tons applied per
year since 1990.44

While we do not quantify salt loads for individual watersheds,
we illustrate the relative significance of these predictors as
related to salt loading to a watershed. In our 17-state region, a
common road salt application rate is 84 kg km−1 (300 lb per
mile).45 In a given winter, multiple snowfall events cumulate in
an average annual application rate of 15−30 tons per mile
(8.45−16.9 kg m−1).27 Multiplying this rate by the median road
density of the 49 432 lakes (19.3 m ha−1), results in an

Figure 6. (a) Location of lakes predicted to have chloride concentrations above 50 mg L−1. (b) Chicagoland, and (c) Boston, MA and Providence, RI
are highlighted to show the density of at-risk lakes in regions of high development.
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application rate of 163−326 kg ha−1. The 95th percentile for road
density was 85.1 m ha−1, which could result in salt application
rates of 719−1439 kg ha−1. In comparison, the mean application
rate of potash to corn and soybean crops in the United States in
2018 was 97 kg ha−1, and 34 kg ha−1 to wheat in 2017.44 While
these rates are a liberal estimateas not all crops are fertilized,
and not all roads are saltedthey are an indication that chloride
from road deicers can easily be an order of magnitude greater
than chloride from fertilizer in a watershed, and they support the
relative importance of predictors determined in our model.
Winter severity had an unexpected relationship with chloride

concentrations where high winter severity (>50) is found to be
related to low chloride concentrations (Figure 2c). At first
glance, this is counterintuitive, as more severe winters should
require more deicing application. However, there are two
explanations for this pattern. First, salt as a deicing agent loses
efficacy with temperature. Many regions with severe winters are
too cold for salt to be effective, and therefore opt for plowing and
sanding for winter road maintenance. Second, the population
density, and therefore road density and urban land use, is higher
in regions with less severe winters. Still, the feature contribution
of winter severity is an intriguing pattern and requires further
investigation; especially in light of climate change and projected
changes in winter severity.46

Poor predictors of chloride concentration include the month
of sampling, lake area, and watershed area. We had hypothesized
that month of sampling would influence chloride concen-
trations, as there is evidence that some waterbodies experience
annual spring peaks in concentration following winter runoff
(Figure 7a). However, it is likely that the effects of these factors
were small at a regional scale for two reasons. First, depending
on climate, hydrological inflows, and residence time, lakes may
experience seasonal peaks anywhere from late winter to early
summer, and many lakes likely experience no seasonal peaks due
to watershed storage that delays inflows (Figure 7b). Second,
83% of observational data were collected between May and
September and may not have included enough samples from the
winter and spring to resolve the importance of sampling date
(Figure S6).
Lake area and watershed area were also relatively poor

predictors of chloride concentration. Likewise, maximum lake
depth was not an important predictor for the 89% of the
observed lakes for which lake depth was available. Had lake

depth been an important predictor, the model could only have
been applied to the 20% of the LAGOS-NE data set for which
lake depth is documented.47 Residence time is often considered
a “master factor” for water quality in lakes,48,49 as hydraulic
residence time is proportional to the concentration of
nonconservative solutes that are processed in a lake.50 While
we did not explicitly test residence time in our model, as the
requisite data were not available, there was little indication from
our morphometric parameters (lake depth, watershed area, and
lake area) that residence time was a strong predictor of chloride
concentration. This is consistent with models that predict the
concentration of a conservative solute (nonreactive, not
sedimented) in a steady-state lake will be proportional to flow-
weighted concentration in the inflow.51 Residence time will only
impact the time it takes to reach dynamic equilibrium.

Unquantified Sources. As with any broad-scale environ-
mental model, we were unable to account for all potential
sources of chloride to lakes. On the basis of our model
evaluation, we are confident that our model predictors correlate
with road salt use, but we did not explicitly account for spatial
variation in application rates, as these data were not available at
high resolution at the time of analysis. A recently released a 1
km2 resolution data set of estimated annual salt application used
similar predictors to our model, including road density and
developed land use, snowfall, and salt sources by state.52

We were unable to account for point sources of chloride
including wastewater treatment plants, septic systems,53 and
industrial and mining effluents.54,55 Wastewater treatment
plants are point-sources of chloride due to discharges from
water softeners and industrial sources (human waste is a small
contributor).20 In Minnesota, where water softeners are
common in both residential and industrial settings, wastewater
treatment discharges account for 22% of chloride discharges.20

However, a large regional study of watersheds along the eastern
U.S. found that septic and wastewater were small contributors to
overall chloride loads.56 On a regional scale, it is unknown how
many wastewater treatment plants discharge effluent into lakes,
and headwater lakes may be largely protected from point-source
pollution. On individual lakes, septic systems, industrial
effluents, or dust control measures may be significant sources
of chloride, but enumeration is beyond the scope of this study.

Prediction at High Concentrations. Freshwater lakes in
the U.S. Midwest and Northeast that are not impacted by

Figure 7. Observed chloride concentrations from (a) Diamond Lake (20 ha), Minnesota, and (b) Bde Maka Ska (170 ha), Minnesota. Observations
are colored by the month of sampling. Data obtained from the water quality portal.

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.9b07718
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

I

http://pubs.acs.org/doi/suppl/10.1021/acs.est.9b07718/suppl_file/es9b07718_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07718?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07718?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07718?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.9b07718?fig=fig7&ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.9b07718?ref=pdf


anthropogenic chloride often have low temporal variability in
their chloride concentrations. Therefore, median chloride
concentrations of these lakes are largely representative of the
overall range in concentrations. However, small lakes that do
experience severe chloride contamination may have high
seasonal variability in chloride concentrations. Take the extreme
example of Diamond Lake, which is a very shallow 20-ha lake in
Minneapolis, Minnesota that receives direct runoff from nearby
U.S. Interstate-35. The median chloride concentration of the
lake is 115 mg L−1, but the range is from 7.5 to 1181 mg L−1

(Figure 7a). Arguably, the median concentration of the lake
should be viewed as a conservative indicator of ecosystem state,
because extreme water quality values likely have disproportion-
ately dire consequences for ecosystem function. However, the
median concentration (115 mg L−1) and the median prediction
(94 mg L−1) provide more than enough information to indicate
that the lake is subject to anthropogenic chloride inputs.
The relationships between mean/median chloride concen-

tration, maximum chloride concentration, and the threshold of
chloride toxicity are central to our motivation in undertaking a
predictive chloride model. Although we do not model or report
on maximum chloride concentrations, maximums can greatly
exceed median chloride concentrations, as shown for Diamond
Lake, MN (Figure 7a). Many governing agencies have water
quality criteria that set thresholds for toxicity. For instance, the
U.S. EPA threshold for chronic chloride toxicity is 230 mg L−1,
while the acute toxicity threshold is 860mg L−1.15 The Canadian
water quality guidelines for freshwater set the long-term chloride
exposure limit at 120 mg L−1, and the short-term limit at 640 mg
L−1.57 These thresholds are based on laboratory tests of select
species to a range of chloride concentrations and represent a
conservative percentile at which most species survive. In reality,
salt sensitivity of freshwater organisms varies by taxa, with
invertebrates typically being more sensitive than fish.58 Some
species, such as the glochidia of certain freshwater mussels59 are
impacted at chloride concentrations below the EPA water
quality thresholds, while other species, such as invasive Asian
Clams (Corbicula f luminea) and the Common Reed (Phragmites
australis) can thrive above these thresholds.60,61 The fact that
some invasive taxa are salt tolerant is particularly concerning as
they may be able to outcompete more sensitive, native taxa. In
addition, other water quality characteristics (e.g., water
hardness) can influence the vulnerability of species to chloride
toxicity. Studies have found that the presence of major cations in
freshwater (Na+ and Ca2+) can mitigate ion toxicity to
invertebrates and fish.58,62−64 Given the temporal variability of
chloride at high concentrations, we suggest lakes predicted to
have median chloride concentrations above 50 mg L−1 are a
good starting point for field verification of chloride contami-
nation.
The rampant use of salt persists in part due to the scarcity of

incentives or policies aimed at limiting salt use, and it comes with
large economic, environmental, and public health costs.65 Our
results indicated that 82% of 49,432 lakes >4 ha across a 17-state
area from Maine to Minnesota are likely near, or at, natural
chloride concentrations. The remaining 1972 lakes may be at
risk due to salinization and can serve as a starting point for
locating and assessing vulnerable ecosystems. Our model fit
identified two major predictors of chloride concentrations:
developed areas/roads and agricultural crops. We recognize that
the model does not take into account other potential point
sources, like wastewater discharge, which includes water
softener effluent, or industrial sources. Nonetheless, the robust

model fit indicates that we are capturing the major sources of
chloride to most lakes. With more observational data, we could
improve the model fit and prediction confidence (Figure S7).
Managing lakes to minimize chloride toxicity is not as simple

as maintaining concentrations below a given threshold. There is
significant seasonality and spatial heterogeneity in chloride
concentrations, as well as the presence of at-risk resident biota.
Lake managers and governing agencies are encouraged to use
model predictions to augment their monitoring strategies to
identify and protect freshwater ecosystems threatened by
salinization.
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