

1 Physical properties and gas hydrate at a near-seafloor thrust fault, Hikurangi Margin, New
2 Zealand

3 Ann E. Cook¹, Matteo Paganoni², M. Ben Clennell³, David D. McNamara⁴, Michael Nole⁵,
4 Xiujuan Wang⁶, Shuoshuo Han⁷, Rebecca E. Bell⁸, Evan A. Solomon⁹, Demian M. Saffer⁷,
5 Philip M. Barnes¹⁰, Ingo A. Pecher¹¹, Laura M. Wallace¹², Leah J. LeVay¹³ & Katerina E.
6 Petronotis¹³

7 ¹School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA; Corresponding
8 author: cook.1129@osu.edu

9 ²Department of Earth Sciences, University of Oxford, Oxford, UK & Shell International Global
10 Solutions, Rijswijk, The Netherlands

11 ³CSIRO, Kensington, Western Australia, Australia

12 ⁴Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK

13 ⁵Center for Energy and Earth Systems, Sandia National Laboratories, Albuquerque, New
14 Mexico, USA

15 ⁶Institute of Oceanography, Chinese Academy of Sciences, Quidao, China

16 ⁷Institute for Geophysics, University of Texas-Austin, Austin, Texas, USA

17 ⁸Basins Research Group, Imperial College London, Kensington, UK.

18 ⁹School of Oceanography, University of Washington, Seattle, Washington, USA

19 ¹⁰National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand

20 ¹¹School of Environmental and Marine Sciences, University of Auckland, Auckland, New
21 Zealand

22 ¹²GNS Science, Lower Hutt, New Zealand

23 ¹³International Ocean Discovery Program, Texas A&M University, College Station, Texas, USA

24 **Key Points**

25 The Pāpaku fault zone is a 33-m thick near-seafloor splay fault drilled at Site U1518 on the
26 Hikurangi Margin
27 Multiple lines of observational, geophysical and geochemical evidence suggest that there is little
28 to no fluid flow along the Pāpaku fault

29

30 **Abstract**

31 The Pāpaku fault zone, drilled at IODP Site U1518, is an active splay fault in the frontal
32 accretionary wedge of the Hikurangi Margin. In logging-while-drilling data, the 33 m-thick fault
33 zone exhibits mixed modes of deformation associated with a trend of downward decreasing
34 density, P-wave velocity and resistivity. Methane hydrate are observed from ~30-585 mbsf,
35 including within and surrounding the fault zone. Hydrate accumulations are vertically
36 discontinuous and occur throughout the entire logged section at low to moderate saturation in
37 silty and sandy cm-thick layers. We argue that the hydrate distribution implies that the methane
38 is not sourced from fluid flow along the fault but instead by local diffusion. This, combined with
39 geophysical observations and geochemical measurements from Site U1518, suggests that the
40 fault is not a focused migration pathway for deeply-sourced fluids and that the near-seafloor
41 Pāpaku fault zone has little to no active fluid flow.

42

43 **Plain Language Summary**

44 Faults are boundaries in the Earth where two different blocks of sediment or rock slide past each
45 other. Offshore New Zealand, the Pāpaku Fault is very shallow and intersects the seafloor but
46 connects to deeper faults kilometers below the seafloor where large earthquakes can occur. An

47 ice-like form of methane called hydrate also occurs within and surrounding the fault. We use
48 scientific drilling data to understand the physical properties of the fault. Hydrate can affect fault
49 properties and how fluid flows; however, based on the pattern of hydrate distribution and other
50 geochemical and geophysical measurements we suggest that the Pāpaku fault does not have
51 active fluid flow.

52

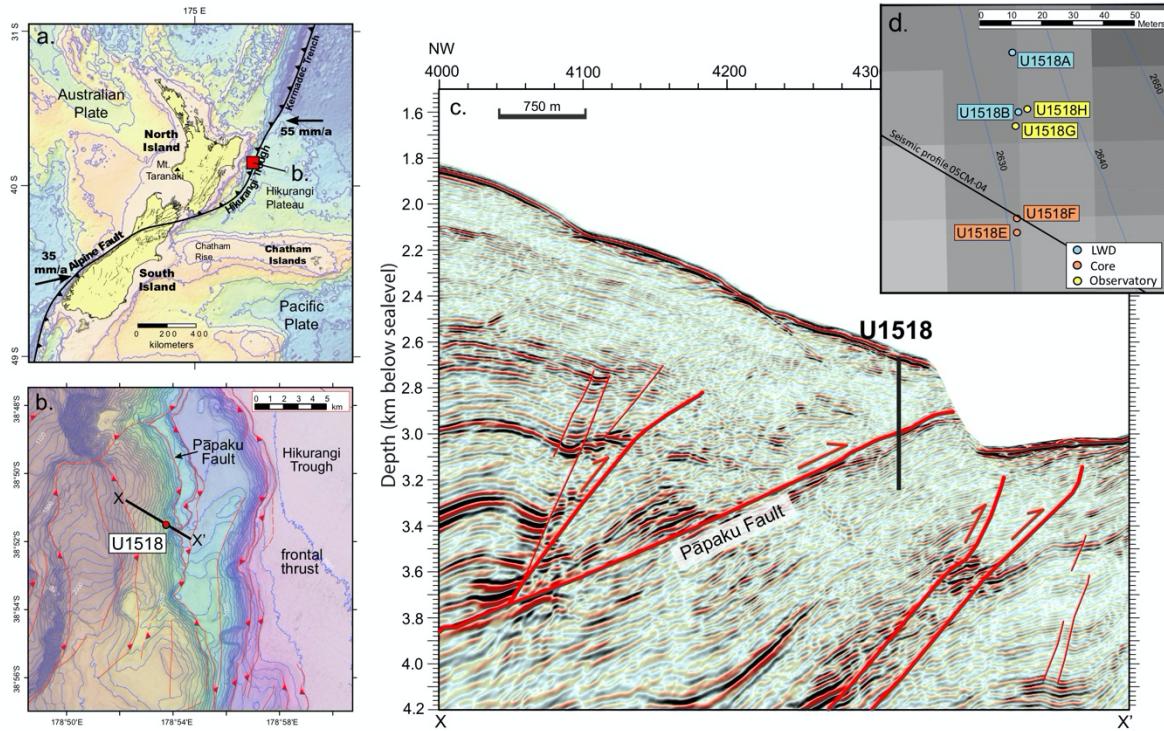
53 Keywords: Hikurangi Margin, fault, gas hydrate, accretionary wedge

54

55 **1. Introduction**

56 The physical and hydrological properties of subduction zone thrust faults are of great
57 interest because of their relationship with large earthquakes. Movement along these faults span a
58 range of behaviors from large earthquakes, to slow and low frequency earthquakes, to aseismic
59 creep behavior [Hyndman *et al.*, 1997; Rogers and Dragert, 2003]. A number of variables
60 influence this spectrum of slip behavior, such as temperature, frictional properties, effective
61 stress and pore pressure [Beroza and Ide, 2011; Saffer and Wallace, 2015; Bürgmann, 2018]. In
62 addition, fault slip behavior near the trench of subduction zones is critical to understand as these
63 areas can generate large tsunamis [Ide *et al.*, 2011]. The fluid flow and drainage patterns of
64 active faults play an important role in mediating the distribution of fluid pressure and effective
65 stress. These flow patterns are also a first-order control on seepage, dewatering processes, and
66 volatile fluxes in subduction forearcs [e.g. Moore and Vrolijk, 1992; Carson and Screamton, 1998;
67 Saffer and Tobin, 2011].

68 At the Hikurangi Margin along the eastern North Island of New Zealand, the Pacific plate
69 subducts westward beneath the Australian plate at a rate of ~35-55 mm/year. A range of fault


70 slip styles have been observed or inferred along the Hikurangi Margin including short-term and
71 long-term slow-slip events (SSE), earthquakes, and tsunami earthquakes [Doser and Webb,
72 2003; Wallace *et al.*, 2009, 2012]. Moreover, SSEs at the northern Hikurangi Margin have been
73 observed within 2 km of the seafloor, and these are among the shallowest SSE observations on
74 Earth [Wallace *et al.*, 2016]. The variety of slip styles on the Hikurangi Margin, opportunities
75 for near-field monitoring of SSEs near the trench, and the accessibility of the SSE source to
76 scientific ocean drilling and seismic imaging, makes the area an excellent location to study fault
77 structure, fault properties and fluid flow.

78 The Pāpaku fault (Figure 1), drilled at International Ocean Discovery Program (IODP)
79 Site U1518, intersects the seafloor in a highly active part of the outer margin. The fault is part of
80 a splay system in the accretionary wedge that connects to the deep décollement 10-25 km
81 landward of the drill site, and 2-3 km deeper [Barker *et al.*, 2018]. While the Pāpaku fault zone
82 has been penetrated at very shallow depths at the drilling location (~315 meters below seafloor,
83 mbsf) it may slip and may exhibit pore pressure and fluid flow changes as a result of SSEs.

84 An extensive suite of *in situ* measurements were collected across the Pāpaku fault in Hole
85 U1518B using logging-while-drilling (LWD) tools during IODP Expedition 372 (Figure 1)
86 [Saffer *et al.*, 2019b]. About 50 m to the south, the Pāpaku fault was cored at Hole U1518F
87 during Expedition 375 (Figure 1). There was 43% core recovery over a ~300 m interval
88 surrounding the fault [Saffer *et al.*, 2019b] and 33% recovery in the fault zone [Fagereng *et al.*,
89 2019]. While this core recovery is comparable to other fault zones, coring alone leaves
90 significant gaps in the characterization of the Pāpaku fault zone and surrounding sedimentary
91 system that can be resolved with continuous LWD measurements.

92 Methane hydrate, a solid clathrate of methane and H₂O [Sloan and Koh, 2007] was
93 observed in core at Site U1518 at several different intervals from 33-391 mbsf using infrared
94 scanning and pore water chlorinity measurements [Saffer et al., 2019b]. Methane hydrate is stable
95 throughout Site U1518; the top of methane hydrate stability occurs at ~600 m below sea level in
96 the water column (water depth is ~2630 m) and the base of the methane hydrate stability occurs at
97 ~585 mbsf, using the CSMHyd software [Sloan and Koh, 2007] which incorporates measured
98 temperature, background pore water salinity, and estimated pressure [Saffer et al., 2019b].
99 Hydrate can affect fluid flow patterns by influencing sediment permeability and pore pressure
100 [Nimblett and Ruppel, 2003; Xu and Germanovich, 2006; Sultan, 2007; Daigle et al., 2015] as well
101 as alter the sediment physical properties such as increasing stiffness, cohesion and shear strength
102 [Pearson et al., 1983; Yun et al., 2005; Waite et al., 2009; Yoneda et al., 2017].

103 The Pāpaku fault now hosts a borehole observatory installed in Hole U1518H (only a few
104 meters from Hole U1518B) that is monitoring pore fluid pressure, fluid flow rates and
105 temperature, as well as sampling fluids for geochemical analyses [Saffer et al., 2019b].
106 Therefore, the logging and coring datasets collected at Site U1518 yield insight into the
107 properties of the Pāpaku fault, surrounding sediment, hydrate distribution, and the fluid flow
108 system that provides valuable context for the interpretation of fault slip processes and the
109 observatory data [e.g. Sawyer et al., 2008; Kinoshita et al., 2018]. Herein, we interpret LWD
110 measurements from Hole U1518B and use the distribution of hydrate to infer fluid flow within
111 and around the Pāpaku fault zone.

112

113 Figure 1. a) Location of Site U1518 offshore the North Island of New Zealand on the Hikurangi
 114 Margin. b) Zoomed in bathymetry near the Pāpaku Fault. c) Seismic cross section over the area,
 115 with ancillary faults and the Pāpaku Fault identified with red lines. Seismic line location shown
 116 in b (black line). d) The placement of six holes at Site U1518. All images are modified from
 117 *Saffer et al.*, [2019a; 2019b]. LWD = logging while drilling.
 118

119 **2. Methods**

120 A comprehensive set of *in situ* LWD measurements were collected across the Pāpaku
 121 fault in Hole U1518B, which included natural gamma ray, ultrasonic caliper, neutron porosity,
 122 source-less neutron density, button, ring and propagation resistivity measurements, resistivity
 123 imaging, P-wave and S-wave velocity, nuclear magnetic resonance (NMR) porosity and NMR T₂
 124 relaxation time distribution [Wallace *et al.*, 2019]. Figure 2 depicts selected measurements
 125 across the fault zone from Hole 1518B.

126 We used Schlumberger's petrophysical analysis software, Techlog, to orient and interpret
 127 statically and dynamically normalized resistivity images to identify bedding, fault and fractures

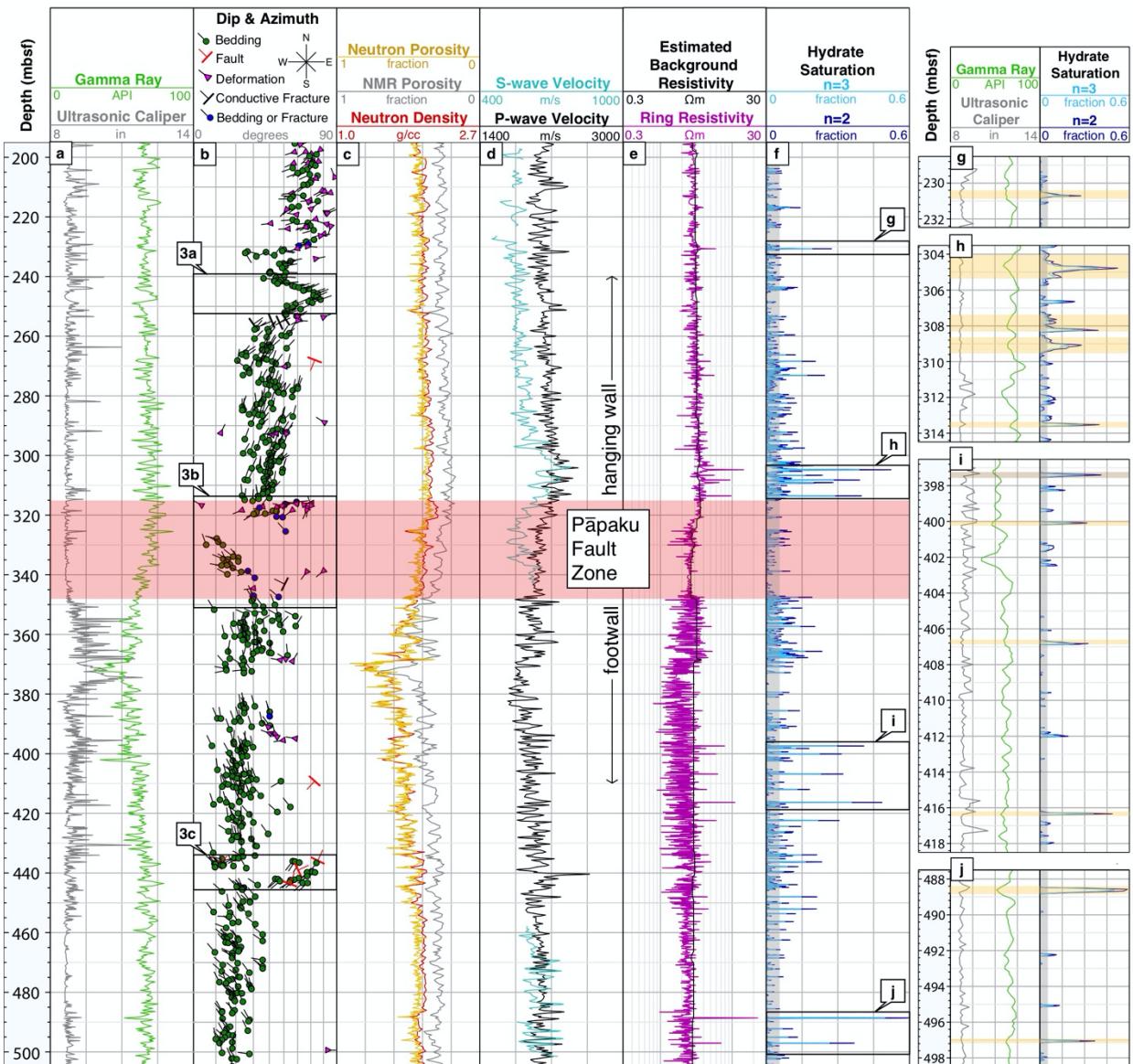
128 orientations [e.g. *Wallace et al.*, 2019]. We also interpreted deformation features in the image,
129 which we define as either non-throughgoing sinusoids fragmented due to deformation, or
130 throughgoing features that change orientation on the image (for example, features appear
131 squeezed and a symmetric sinusoid cannot be fit to the feature), which indicate possible soft-
132 sediment deformation.

133 We adapt Archie's equation[*Archie*, 1942] to calculate hydrate saturation, S_h , which is
134 applicable when hydrate is in the primary pore space of water wet sands and silts [*Spangenberg*,
135 2001; *Goldberg et al.*, 2010; *Priegnitz et al.*, 2015; *Cook and Waite*, 2018]. We use RING
136 resistivity, R_{RING} , and an estimated background resistivity, R_o , to calculate S_h :

$$137 \quad S_h = 1 - \left(\frac{R_o}{R_{RING}} \right)^{1/n} \quad \text{Equation 1}$$

138 We estimate R_o by carefully considering the background trends in resistivity, P-wave velocity,
139 neutron porosity and NMR porosity; we also conservatively overestimated R_o in intervals with
140 borehole washout. R_{RING} is used in saturation calculations because it is the most sensitive
141 resistivity measurement for hydrate in cm-thick layers due to the high vertical resolution (5-8
142 cm) for depth of penetration [*Cook et al.*, 2012]. For the saturation exponent, n , we apply $n = 2$ &
143 $n = 3$ to show the probable range of hydrate saturations [*Cook and Waite*, 2018]. We also
144 calculated R_o from neutron porosity for comparison, but we did not use it for saturation
145 calculations (see Supporting Information).

146 Other than hydrate, sediment overcompaction or cementation could cause spikes in
147 resistivity, but 1) cements are not observed in the core at Site U1518 [*Saffer et al.*, 2019b] and 2)
148 there is no decrease in neutron porosity or NMR porosity indicating cementation or


149 overcompaction at the locations of any of the thicker resistivity spikes; thus hydrate the most
150 likely cause of resistivity exceeding R_o throughout Site U1518.

151

152 **3. The Pāpaku fault zone & surrounding system**

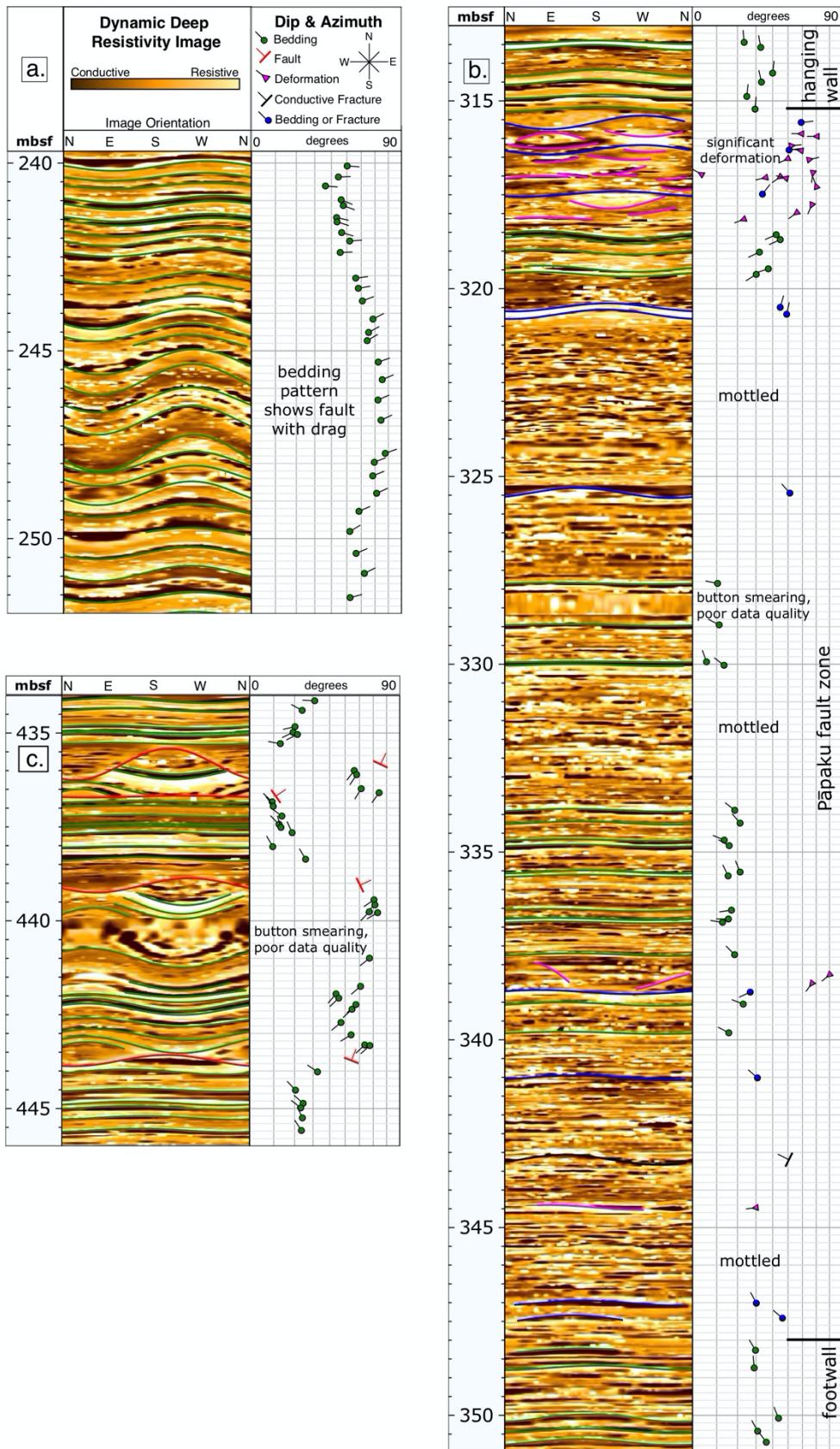
153 In the LWD data, we observe significant changes in the physical properties and bedding
154 orientation above, below and within the Pāpaku fault zone (Figure 2), which are described in the
155 following section. Overall, more deformation features are identified in the hanging wall (Figure
156 2), which may explain the acoustic transparency in the hanging wall relative to the footwall on
157 seismic data (Figure 1c).

158 On the LWD data, we observe hydrate concentrated in thin layers (on the order of cm to
159 10's of cm) above, below and within the Pāpaku fault zone (Figure 2). Centimeter to tens of cm-
160 thick coarse-grained (sand and silt) layers were observed throughout Site U1518 in cores [Saffer
161 *et al.*, 2019b]. We identify these coarse-grained layers on LWD data by local gamma ray lows,
162 and note that almost all layers with $S_h > 0.2$ is associated with a local gamma ray low (Figure 2).
163 While there is variation in hydrate concentrations with depth, there is not a large difference in the
164 concentration of hydrate filled layers in the hangingwall, fault zone and footwall (Figure 2). Some
165 of the variation may be due to the occurrence of coarse-grained layers. The fault zone itself does
166 have lower hydrate saturations (<0.1) than the immediate surrounding hanging wall and footwall,
167 however, other sections such as 235-263 mbsf in the hanging wall and 455-485 mbsf in the
168 footwall also have similar low hydrate saturations (<0.1).

169
170 Figure 2. a. Logging-while-drilling (LWD) well log measurements (Tracks a, c, d & e), image
171 interpretation (Track b), estimated background resistivity (Track e) and calculated hydrate
172 saturation (Track f) at Hole U1518B. Note that the neutron porosity and neutron density may not
173 provide accurate measurements in this high porosity, clay rich environment, and NMR porosity
174 measurements are affected by the presence of gas hydrate. When resistivity is low and close to
175 the background, calculated hydrate saturations (Track f) have lower confidence; we grayed these
176 lower confidence saturations. At low resistivity, intervals without hydrate could be identified
177 with low saturation and intervals could be incorrectly identified as water-saturated. Insets g, h, i
178 and j show enlarged intervals in U1518B in thin layers. All layers greater than ~20% that are
179 associated with gamma ray lows are highlighted in yellow on the insets (10 layers); one layer
180 that was not associated with a gamma ray low was highlighted in brown on Inset i.
181
182
183
184

185 3.1 Hanging wall and fault zone

186 In core from Hole U1518F, the Pāpaku fault zone was identified from 304-361 mbsf,
187 which includes an ~18 m-thick fault zone underlain by ~30 m of less deformed material,
188 followed by a ~10 m-thick subsidiary fault zone [Fagereng *et al.*, 2019]. The Pāpaku fault zone
189 depths are different in LWD Hole U1518B ~50 m to the north, where we interpret the base of the
190 hanging wall and the top of the Pāpaku fault zone to begin 11 meters deeper, at 315 mbsf, where
191 there is an abrupt change from 25-45° north-dipping beds to a chaotically oriented and deformed
192 interval (Figure 3b) [Fagereng *et al.*, 2019; Saffer *et al.*, 2019].


193 The base of the hanging wall (300-315 mbsf) is marked by elevated P-wave and S-wave
194 velocity and low neutron porosity. Increased compaction and shear strengthening from fault
195 movement compared to the adjacent intervals may explain such trends. However, this interval
196 also hosts hydrate (Figure 2b), which contributes to the increase in P-wave and S-wave velocity
197 by increasing the cohesive and mechanical strength. The hydrate is occurring at saturations up to
198 0.5 in 10's of cm-thick layers that are generally coarser-grained (Figure 2h).

199 The bedding orientation from the hanging wall (dipping 25-45° north) is truncated
200 against chaotically dipping features which are a combination of deformation, fractures and
201 bedding (Figure 3b). The interval between 315-321 mbsf has the highest density values in the
202 hole, likely related to increased compaction caused by fault movement, though the P-wave and
203 S-wave velocity are lower than the interval just above that contains hydrate (Figure 2).

204 Most of the fault zone in Hole U1518B is marked by a gradual decrease in P-wave
205 velocity, resistivity and neutron density with depth. These LWD measurements are of high
206 quality in the fault zone as the borehole diameter is close to the bit size, however, bedding and

207 fracture orientation is often difficult to distinguish within the fault zone as the image appears
208 mottled (Figures 2 & 3). A variety of deformation features were observed in the core, including
209 breccia, flow banding, breccia clasts, dismembered beds, small faults and fractures [Fagereng et
210 al., 2019]. The mottled appearance observed on the image logs over several large sections in the
211 fault zone (Figure 3b) are likely caused by discontinuous deformation features smaller than
212 several horizontal image bins (~3-5 cm) and the vertical resolution (~5-8 cm) of the resistivity
213 images [Luthi, 2001; Schlumberger, 2007]. Bright white mottled features on the image log
214 (Figure 3b) may also be hydrate forming in nodules or in deformed coarser-grained layers within
215 the fault zone. Intervals in the fault zone with identified bedding may be a relatively intact
216 section within the fault zone or could be deformed beds or flow banding.

217 Below ~335 mbsf, the gamma ray (Figure 2) and NMR T2 distribution (shown in [Saffer
218 et al., 2019b]) indicate sediment gradually grades into a nearly 100 m-thick, coarse-grained unit
219 of silts and sands with thin mud interbeds; the bottom of the fault zone is near the top of this
220 coarse-grained unit at 340-348 mbsf.

222 Figure 3. Selected resistivity image log intervals and interpretation from Hole U1518B. a)
223 Bedding patterns indicating a thrust fault propagation fold, b) the Pāpaku fault zone and c) a
224 section of faults and offset beds in the footwall. Higher resolution image logs and interpretation
225 are available in Supporting Information (Figure S1).

226

227 3.2 Footwall

228 The base of the Pāpaku fault zone and the transition to the footwall is not as clear as the
229 hanging wall transition on LWD data. Part of this ambiguity is due to the lithology, as grading
230 into coarser sediments is indicated by the gamma ray beginning at ~335 mbsf, making it difficult
231 to distinguish between physical property changes from coarsening sediment versus changes
232 produced by deformation processes within the fault zone. Core observations note silts and
233 hemipelagic mud at the bottom the fault zone and the top of the footwall, however, core recovery
234 was low in the footwall (<36%) which may be due to coarser-grained sands and silts being
235 washed out during drilling [Saffer *et al.*, 2019b].

236 We argue the most likely depth for the base of the Pāpaku fault zone on LWD data is
237 340-348 mbsf. At this depth, there are only a few features identified on the image logs (Figure
238 3), suggesting the interval may still be affected by fault-related deformation. The contrasting
239 bedding orientations above 340 and below 348 mbsf further suggests there is deformation
240 occurring in this interval. Below 348 mbsf, most identified beds have a similar orientation to
241 beds significantly below the fault zone (i.e. from ~450-500 mbsf) indicating that this is the
242 footwall.

243 3.3 Subsidiary faults

244 There are several subsidiary faults and fault-related features visible on the LWD
245 resistivity images. Six faults identified at 272, 409, 436, 437, 439, and 444 mbsf are dipping

246 between 12-75° (Figure 2). Figure 3c shows four of these faults, which occur between 435-445
247 mbsf and are associated with sharp changes in bedding orientation above and below the fault
248 sinusoid. We cannot identify the relative movement of these faults because beds cannot be
249 correlated above and below the fault plane sinusoid. This also means that the throw is more than
250 the amplitude of the sinusoid in the borehole (between 10-100 cm).

251 A major fault zone was interpreted at 351-361 mbsf in coring Hole U1518F [*Fagereng et*
252 *al.*, 2019] and at 369 mbsf in LWD Hole U1518B [*Saffer et al.*, 2019b]. LWD evidence for a
253 fault near 369 mbsf includes changing bedding orientations from 368-370 mbsf with some
254 deformation features; however, there is no clear fault plane like other subsidiary faults observed
255 in the resistivity images (Figure 3c). In addition, there are several depths (e.g. 226, 234, and 355
256 mbsf) where bedding orientation changes suddenly which could also be evidence for additional
257 faults.

258 Another fault-related feature is the orientation of beds from 242-250 mbsf (Figure 3a),
259 which increase in dip from 242 mbsf and reach the highest angle dip of almost 80° at ~247 mbsf
260 and then decreases. This pattern of increasing and decreasing dip is consistent with a thrust
261 fault-propagation fold as well as the stress regime in the hanging wall.

262

263 **4 Discussion**

264 On LWD data from Hole U1518B, we interpret an apparent 33 m-thick Pāpaku fault zone
265 from 315-348 mbsf. From core in Hole U1518F, *Fagereng et al.* [2019] interpreted the fault
266 zone over an apparent 58 m-thick interval from 304-361 mbsf. The top of the fault zone is
267 identified in both LWD and core datasets by a low porosity interval at the base of the hanging

268 wall and at the top of the fault zone [Saffer *et al.*, 2019a]. The difference in the Pāpaku fault zone
269 thickness and the top of the fault zone may be the result of a variety of different factors [Saffer *et*
270 *al.*, 2019b]. There may be a change in fault geometry and thickness over the 50 m distance
271 between holes due to splays or imbricate structure, or poor core recovery may cause an
272 overestimate of fault thickness in the coring hole. Small differences in fault thickness may also
273 be related to borehole deviation.

274 4.1 Fluid flow and gas hydrate

275 Hydrate is inferred in many thin, cm- to 10's of cm-thick coarse-grained sediments
276 throughout Site U1518, from as shallow as ~33 mbsf in core samples [Saffer *et al.*, 2019a] to nearly
277 total depth (590 mbsf) on LWD data (Figure 2 & S2). Such a frequent occurrence of hydrate
278 implies that the dissolved pore water methane concentration is very close to solubility throughout
279 the site, yet hydrate appears to preferentially form in higher concentrations in coarse-grained
280 sediments with less hydrate in marine muds.

281 This pattern of hydrate-bearing coarse-grained layers interbedded within water-saturated
282 or low-hydrate saturation marine muds has been observed in several locations, such as accretionary
283 prisms in the northern Cascadia Margin, the Andaman Sea, and the Nankai Trough as well as in
284 the Gulf of Mexico [Malinverno, 2010; Cook and Malinverno, 2013; Malinverno and Goldberg,
285 2015]. The pattern can be explained by a diffusion-dominated methane migration, which is driven
286 by the difference in methane solubility between coarse-grained sands (or silts) and marine muds
287 [Malinverno, 2010; Nole *et al.*, 2017; Vanderbeek and Rempel, 2018]. The solubility threshold is
288 higher in muds due the high curvature of the pore surface in small pores [Clennell *et al.*, 1999;
289 Rempel, 2011]. In marine muds near the seafloor, methane can be generated through a series of

290 microbial reactions, and it is dissolved in the pore water. This methane diffuses into adjacent sand
291 layers over time, and when the solubility threshold is reached, hydrate forms in the sands first.
292 Because methane solubility is lower in the sands, this allows for a diffusive flux of methane
293 dissolved in pore water from marine muds both above and below the sand layers, which can
294 continue to occur as hydrate forms. Eventually, this leads to significant hydrate saturation in thin
295 sands surrounded by water-saturated marine muds. Because the methane generated in the muds
296 only diffuses a few centimeters to meters to fill the thin sands, the mechanism is referred to as
297 short-migration [Malinverno, 2010].

298 Yet, in accretionary wedge environments advective methane fluxes along faults are
299 observed at many locations worldwide [Moore and Vrolijk, 1992; Kastner *et al.*, 1998, 2014;
300 Geersen *et al.*, 2016] as well as observed and inferred along the Hikurangi Margin, often associated
301 with gas hydrate systems on seismic data [Pecher *et al.*, 2010; Crutchley *et al.*, 2011; Plaza-
302 Faverola *et al.*, 2012; Kroeger *et al.*, 2015; Watson *et al.*, 2019]. In addition, the Pāpaku fault
303 zone at Site U1518 does have relatively high porosity (>0.4) in deformed and fractured sediment
304 which could facilitate fluid flow.

305 We argue, however, that there is combined observational, geochemical, geophysical and
306 petrophysical evidence supporting little to no advection of deeply-sourced, gas-bearing or
307 geochemically distinct fluids along the Pāpaku fault zone. First, methane to ethane ratios in
308 headspace gas samples are greater than 20,000, suggesting that a microbial origin for the methane
309 is more likely than a deeply-sourced thermogenic origin [Saffer *et al.*, 2019b]. We recognize that
310 thermogenic methane can be microbially altered and microbial methane can be generated rather
311 deep in some systems and advected upward (for example, modeling suggests microbial generation

312 peaks at 1600 mbsf in the Pegasus Basin in the southern Hikurangi Margin [Kroeger *et al.*, 2015]).
313 Even so, an in-situ microbial origin for the methane forming hydrate appears more in line with the
314 observed pattern of hydrate distribution.

315 At Site U1518, if the methane originated from fluid or gas flow along the Pāpaku fault one
316 would expect hydrate to occur within and around the fault zone, or perhaps in other large
317 permeable layers like the coarse-grained unit from ~345-440 mbsf. In addition, it is likely that
318 hydrate would form at high-concentration in fractures or veins, as they commonly do in other
319 focused flow settings [Weinberger and Brown, 2006; Abegg *et al.*, 2007; Riedel *et al.*, 2010; Kim
320 *et al.*, 2013]; however, there is no evidence for hydrate in veins or fractures on resistivity images
321 or measurements in Hole U1518B. While we observe an increase in hydrate concentration
322 immediately surrounding the fault zone (Figure 2), the overall saturation is still moderate to low,
323 and we also observe that hydrate occurs throughout the site (from ~30 to 590 mbsf) in thin, discreet
324 layers on the order of cm to 10s of cm-thick. This distribution of hydrate implies that either the
325 fault zone is not the only source of methane or that the fault zone is not related to the methane
326 hydrate distribution.

327 Other sources of evidence indicate that there is no active fluid flow along the Pāpaku fault.
328 Pore water solute profiles indicated there is no evidence for fluid flow along the fault and the
329 absence of diagenetic cements at Site U1518 further support the lack of fluid advection [Saffer *et*
330 *al.*, 2019b]. In seismic data, high amplitude, reversed seafloor-polarity reflections from the
331 decollement and other thrust faults on subduction margins have been linked to possible evidence
332 of fluid flow and/or high pore pressure in both observations and in models [Moore *et al.*, 1995;
333 Bangs *et al.*, 1999, 2015; Saffer and Tobin, 2011]. At the Pāpaku fault, the reverse-seafloor

334 polarity reflection can be produced by the reduction in both P-wave velocity and density from the
335 hanging wall into the fault zone (Figure 2), as shown by the synthetic seismogram in *Saffer et al.*,
336 [2019b]. Therefore, fluid flow and high pore pressure are not required at Site U1518 to explain
337 the negative impedance on seismic data, and the impedance can be explained by changes in
338 physical properties. In addition, a 2D high-resolution full waveform inversion P-wave velocity
339 model by *Gray et al.*, [2019] showed that some fault zones in the wedge are associated with
340 velocity reductions of up to 500 m/s. The smaller velocity reduction of ~100 m/s in the Pāpaku
341 fault zone in the *Gray et al.* [2019] model indicates that the fault may not be acting as a significant
342 conduit for fluid flow in the same way as inferred for other faults.

343 Collectively, multiple lines of evidence suggest the shallow part of the Pāpaku fault zone
344 currently has low or no fluid advection; however, we cannot rule out fluid flow at greater depths
345 or brief pulses of fluids along the shallow fault zone in the past. If pulsing occurred in the past,
346 the fluids are likely through-going and not interacting with the surrounding footwall and hanging
347 wall system.

348 Although evidence for long distance migration of fluids is fairly common from drilling
349 frontal thrust faults at subduction zones, another example of a location where there is limited
350 evidence for fluid flow and methane flux is along the Kumano transect on the Nankai Trough
351 [*Screaton et al.*, 2009]. Together, the Kumano and Hikurangi sites suggest that inactive or lower
352 advection hydrologic systems along frontal thrusts could be a more common occurrence than
353 previously thought. How shallow faults without advection may or may not relate to the deeper
354 fault system is unknown. In the future, data and fluid samples recovered from the borehole

355 observatory installed at Site U1518 will provide direct constraints on in situ near-seafloor fluid
356 flow rates and fault zone hydrologic properties of the Pāpaku fault zone.

357

358 **5 Conclusions**

359 Understanding physical properties and fluid flow around subduction fault zones is essential
360 for illuminating the role of fluids in fault mechanics and slip behavior. Herein, we argue that the
361 Pāpaku fault zone does not have significant fluid flow in the near-seafloor system. The 33 m-thick
362 fault zone does have high porosity and a trend of decreasing P-wave velocity from top to bottom
363 of the fault. Despite high porosity measured within the fault zone and the occurrence of methane
364 hydrate in thin sands and silts at Site U1518, we argue that advective fluid flow is likely not causing
365 the unconnected but frequent occurrence of gas hydrate from 30 to 585 mbsf on logging-while-
366 drilling (LWD) data. Instead we argue that the hydrate distributed in coarse-grained layers less
367 than 1 m-thick is caused by local diffusion of microbially generated methane. This further supports
368 evidence from geochemical analysis on pore water samples and modeling work on seismic data
369 that the Pāpaku fault does not have significant active fluid flow.

370

371 Acknowledgements

372 This research used data and samples provided by the International Ocean Discovery Program
373 (IODP) and the data in this paper can be accessed through IODP's database
374 (http://mlp.ledo.columbia.edu/logdb/scientific_ocean_drilling/). We gratefully acknowledge
375 IODP, Texas A&M university staff, Schlumberger Drilling & Measurements, the crew of the *JR*,
376 and the Expedition 375 and 372 science parties. We thank Schlumberger for the Techlog software

377 donation. We thank A. Malinverno and G. Guerin for their comments and suggestions on this
378 paper.

379 Cook was supported by NSF Award 1752882, Paganoni was funded by NERC Grant
380 NE/R016615/1 and Bell from NERC Grant NE/S00291X/1, Wang was supported by National
381 Natural Science Foundation of China (41976077), and McNamara was supported by the
382 Geological Survey Ireland. Barnes and Wallace acknowledge support from the New Zealand
383 Endeavour fund, Contract CO5X1605, as well as NIWA and GNS SSIF core funding. LeVay and
384 Petronotis were supported by IODP-JRSO NSF Award 1326927.

385

386

387 Abegg, F., G. Bohrmann, J. Freitag, and W. Kuhs (2007), Fabric of gas hydrate in sediments
388 from Hydrate Ridge - Results from ODP Leg 204 samples, *Geo-Marine Lett.*, 27(2–4), 269–
389 277, doi:10.1007/s00367-007-0080-4.

390 Archie, G. E. (1942), The electrical resistivity log as an aid in determining some reservoir
391 characteristics, in *Transactions of the American Institute of Mining and Metallurgical
392 Engineers*, Vol. 146, pp. 54–63.

393 Bangs, N. L., K. D. McIntosh, E. A. Silver, J. W. Kluesner, and C. R. Ranero (2015), Fluid
394 accumulation along the Costa Rica subduction thrust and development of the seismogenic
395 zone, *J. Geophys. Res. Solid Earth*, 120, 67–86, doi:10.1002/2014JB011265.

396 Bangs, N. L. B., T. H. Shipley, J. C. Moore, and G. F. Moore (1999), Fluid accumulation and
397 channeling along the northern Barbados Ridge Decollement thrust, *J. Geophys. Res. Solid
398 Earth*, 104, 20399–20414, doi:10.1029/1999JB900133.

399 Barker, D. H. N., S. Henrys, F. Caratori Tontini, P. M. Barnes, D. Bassett, E. Todd, and L.
400 Wallace (2018), Geophysical Constraints on the Relationship Between Seamount
401 Subduction, Slow Slip, and Tremor at the North Hikurangi Subduction Zone, New Zealand,
402 *Geophys. Res. Lett.*, 45(23), 12,804–12,813, doi:10.1029/2018GL080259.

403 Beroza, G. C., and S. Ide (2011), Slow Earthquakes and Nonvolcanic Tremor, *Annu. Rev. Earth
404 Planet. Sci.*, 39(1), 271–296, doi:10.1146/annurev-earth-040809-152531.

405 Bürgmann, R. (2018), The geophysics, geology and mechanics of slow fault slip, *Earth Planet.
406 Sci. Lett.*, 495, 112–134, doi:10.1016/j.epsl.2018.04.062.

407 Carson, B., and E. J. Scream (1998), Fluid flow in accretionary prisms: Evidence for focused,
408 time-variable discharge, *Rev. Geophys.*, (36), 329–351,
409 doi:<https://doi.org/10.1029/97RG03633>.

410 Clennell, M. Ben, M. Hovland, S. Booth, H. Pierre, and J. Winters (1999), Formation of Gas
411 Hydrate in Marine Sediments: 1. Conceptual Model of Gas Hydrate Growth Conditioned by

412 Host Sediment Properties, , 104, doi:10.1029/1999JB900175.
413 Cook, A. E., and A. Malinverno (2013), Short migration of methane into a gas hydrate-bearing
414 sand layer at Walker Ridge, Gulf of Mexico, *Geochemistry, Geophys. Geosystems*, 14(2),
415 283–291, doi:10.1002/ggge.20040.
416 Cook, A. E., and W. F. Waite (2018), Archie's Saturation Exponent for Natural Gas Hydrate in
417 Coarse-Grained Reservoirs, *J. Geophys. Res. Solid Earth*, 123(3),
418 doi:10.1002/2017JB015138.
419 Cook, A. E., B. I. Anderson, J. Rasmus, K. Sun, Q. Li, T. S. Collett, and D. S. Goldberg (2012),
420 Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico, *Mar.
421 Pet. Geol.*, 34(1), doi:10.1016/j.marpetgeo.2011.09.003.
422 Crutchley, G. J., A. R. Gorman, I. A. Pecher, S. Toulmin, and S. A. Henrys (2011), Geological
423 controls on focused fluid flow through the gas hydrate stability zone on the southern
424 Hikurangi Margin of New Zealand, evidenced from multi-channel seismic data, *Mar. Pet.
425 Geol.*, 28(10), 1915–1931, doi:10.1016/j.marpetgeo.2010.12.005.
426 Daigle, H., A. Cook, and A. Malinverno (2015), Permeability and porosity of hydrate-bearing
427 sediments in the northern Gulf of Mexico, *Mar. Pet. Geol.*, 68, 551–564,
428 doi:10.1016/j.marpetgeo.2015.10.004.
429 Doser, D. I., and T. H. Webb (2003), Source parameters of large historical (1917-1961)
430 earthquakes, North Island, New Zealand, *Geophys. J. Int.*, 152(3), 795–832,
431 doi:10.1046/j.1365-246X.2003.01895.x.
432 Fagereng, Å., H. M. Savage, J. K. Morgan, M. Wang, F. Meneghini, P. M. Barnes, R. Bell, H.
433 Kitajima, D. D. McNamara, and D. M. Saffer (2019), Mixed deformation styles observed on
434 a shallow subduction thrust, Hikurangi margin, New Zealand, *Geology*, 47(9), 1–5,
435 doi:10.1130/G46367.1/4797825/g46367.pdf.
436 Geersen, J., F. Scholz, P. Linke, M. Schmidt, D. Lange, J. Behrmann, D. Volker, and C. Hensen
437 (2016), Fault zone controlled seafloor methane seepage in the rupture area of the 2010
438 Maule earthquake, Central Chile, *Geochemistry, Geophys. Geosystems*, 17, 4802–4813,
439 doi:10.1002/2015GC006171.Received.
440 Goldberg, D. S., R. L. Kleinberg, J. L. Weinberger, A. Malinverno, P. J. McLellan, and T. S.
441 Collett (2010), 16. Evaluation of Natural Gas-Hydrate Systems Using Borehole Logs,
442 *Geophys. Charact. Gas Hydrates*, 239–261, doi:10.1190/1.9781560802197.ch16.
443 Gray, M., R. E. Bell, J. V. Morgan, S. Henrys, and D. H. N. Barker (2019), Imaging the Shallow
444 Subsurface Structure of the North Hikurangi Subduction Zone, New Zealand, Using 2-D
445 Full-Waveform Inversion, *J. Geophys. Res. Solid Earth*, 124(8), 9049–9074,
446 doi:10.1029/2019JB017793.
447 Hyndman, R. D., M. Yamano, and D. A. Oleskevich (1997), The seismogenic zone of
448 subduction thrust faults, *Isl. Arc*, 6(3), 244–260, doi:10.1111/j.1440-1738.1997.tb00175.x.
449 Ide, S., A. Baltay, and G. C. Beroza (2011), Shallow Dynamic Overshoot and Energetic Deep
450 Rupture in the 2011, *Science* (80- .), 332, 1426–1430, doi:10.1126/science.1207020.
451 Kastner, M., K. A. Kvenvolden, and T. D. Lorenson (1998), Chemistry, isotopic composition,
452 and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone, *Earth
453 Planet. Sci. Lett.*, 156(3–4), 173–183, doi:10.1016/S0012-821X(98)00013-2.
454 Kastner, M., E. A. Solomon, R. N. Harris, and M. E. Torres (2014), Fluid Origins, Thermal
455 Regimes, and Fluid and Solute Fluxes in the Forearc of Subduction Zones, in *Developments
456 in Marine Geology, Volume 7*, pp. 671–733.
457 Kim, G. Y., B. Narantsetseg, B. J. Ryu, D. G. Yoo, J. Y. Lee, H. S. Kim, and M. Riedel (2013),

458 Fracture orientation and induced anisotropy of gas hydrate-bearing sediments in seismic
459 chimney-like-structures of the Ulleung Basin, East Sea, *Mar. Pet. Geol.*, 47, 182–194,
460 doi:10.1016/j.marpetgeo.2013.06.001.

461 Kinoshita, C. et al. (2018), Changes in Physical Properties of the Nankai Trough Megasplay
462 Fault Induced by Earthquakes, Detected by Continuous Pressure Monitoring, *J. Geophys.
463 Res. Solid Earth*, 123(2), 1072–1088, doi:10.1002/2017JB014924.

464 Kroeger, K. F., A. Plaza-Faverola, P. M. Barnes, and I. A. Pecher (2015), Thermal evolution of
465 the New Zealand Hikurangi subduction margin: IMPACT on natural gas generation and
466 methane hydrate formation - A model study, *Mar. Pet. Geol.*, 63, 97–114,
467 doi:10.1016/j.marpetgeo.2015.01.020.

468 Luthi, S. (2001), *Geological Well Logs: Their Use in Reservoir Modeling*, Springer-Verlag
469 Berlin Heidelberg.

470 Malinverno, A. (2010), Marine gas hydrates in thin sand layers that soak up microbial methane,
471 *Earth Planet. Sci. Lett.*, 292(3–4), 399–408, doi:10.1016/j.epsl.2010.02.008.

472 Malinverno, A., and D. S. Goldberg (2015), Testing short-range migration of microbial methane
473 as a hydrate formation mechanism: Results from Andaman Sea and Kumano Basin drill
474 sites and global implications, *Earth Planet. Sci. Lett.*, 422, 105–114,
475 doi:10.1016/j.epsl.2015.04.019.

476 Moore, J. C., and P. Vrolijk (1992), Fluids in accretionary prisms, *Rev. Geophys.*, 30(2), 113–
477 135, doi:<https://doi.org/10.1029/92RG00201>.

478 Moore, J. C., G. F. Moore, G. R. Cochrane, and H. J. Tobin (1995), Negative-polarity seismic
479 reflections along faults of the Oregon accretionary prism: indicators of overpressuring, *J.
480 Geophys. Res.*, 100(B7), doi:10.1029/94jb02049.

481 Nimblett, J., and C. Ruppel (2003), Permeability evolution during the formation of gas hydrates
482 in marine sediments, *J. Geophys. Res. Solid Earth*, 108(B9), 1–17,
483 doi:10.1029/2001jb001650.

484 Nole, M., H. Daigle, A. E. Cook, J. I. T. Hillman, and A. Malinverno (2017), Linking basin-scale
485 and pore-scale gas hydrate distribution patterns in diffusion-dominated marine hydrate
486 systems, *Geochemistry, Geophys. Geosystems*, 18, 653–675, doi:10.1002/2016GC006662.

487 Pearson, C. F., P. M. Halleck, P. L. McGuire, R. Hermes, and M. Mathews (1983), Natural gas
488 hydrate deposits: a review of in situ properties, *J. Phys. Chem.*, 87(21), 4180–4185,
489 doi:10.1021/j100244a041.

490 Pecher, I. A. et al. (2010), Focussed fluid flow on the Hikurangi Margin, New Zealand -
491 Evidence from possible local upwarping of the base of gas hydrate stability, *Mar. Geol.*,
492 272(1–4), 99–113, doi:10.1016/j.margeo.2009.10.006.

493 Plaza-Faverola, A., D. Klaeschen, P. Barnes, I. Pecher, S. Henrys, and J. Mountjoy (2012),
494 Evolution of fluid expulsion and concentrated hydrate zones across the southern Hikurangi
495 subduction margin, New Zealand: An analysis from depth migrated seismic data,
496 *Geochemistry, Geophys. Geosystems*, 13(8), doi:10.1029/2012GC004228.

497 Priegnitz, M., J. Thaler, E. Spangenberg, J. M. Schicks, J. Schröter, and S. Abendroth (2015),
498 Characterizing electrical properties and permeability changes of hydrate bearing sediments
499 using ERT data, *Geophys. J. Int.*, 202(3), 1599–1612, doi:10.1093/gji/ggv245.

500 Rempel, A. W. (2011), A model for the diffusive growth of hydrate saturation anomalies in
501 layered sediments, *J. Geophys. Res. Solid Earth*, 116(10), 1–15,
502 doi:10.1029/2011JB008484.

503 Riedel, M., T. S. Collett, P. Kumar, A. V. Sathe, and A. Cook (2010), Seismic imaging of a

504 fractured gas hydrate system in the Krishna-Godavari Basin offshore India, *Mar. Pet. Geol.*,
505 27(7), doi:10.1016/j.marpetgeo.2010.06.002.

506 Rogers, G., and H. Dragert (2003), Episodic Tremor and Slip on the Cascadia Subduction Zone,
507 *Science* (80-.), 300, 1942–1944, doi:10.1126/science.1084783.

508 Saffer, D. M., and H. J. Tobin (2011), Hydrogeology and Mechanics of Subduction Zone
509 Forearcs: Fluid Flow and Pore Pressure, *Annu. Rev. Earth Planet. Sci.*, 39(1), 157–186,
510 doi:10.1146/annurev-earth-040610-133408.

511 Saffer, D. M., and L. M. Wallace (2015), The frictional, hydrologic, metamorphic and thermal
512 habitat of shallow slow earthquakes, *Nat. Geosci.*, 8(8), 594–600, doi:10.1038/ngeo2490.

513 Saffer, D. M., L. M. Wallace, P. M. Barnes, I. A. Pecher, K. E. Petronotis, L. J. LeVay, and
514 the E. 372/375 Scientists (2019a), Expedition 372B / 375 summary, *Proc. Int. Ocean
515 Discov. Progr. Vol. 372B/375*, 372B/375,
516 doi:<https://doi.org/10.14379/iodp.proc.372B375.101.2019>.

517 Saffer, D. M. et al. (2019b), Site U1518, *Proc. Int. Ocean Discov. Progr. Vol. 372B/375*,
518 372B/375.

519 Sawyer, A. H., P. Flemings, D. Elsworth, and M. Kinoshita (2008), Response of submarine
520 hydrologic monitoring instruments to formation pressure changes: Theory and application
521 to Nankai advanced CORKs, *J. Geophys. Res. Solid Earth*, 113(1), 1–16,
522 doi:10.1029/2007JB005132.

523 Schlumberger (2007), *geoVISION: Resistivity imaging for productive drilling*.

524 Screamton, E. et al. (2009), Interactions between deformation and fluids in the frontal thrust region
525 of the NanTroSEIZE transect offshore the Kii Peninsula, Japan: Results from IODP
526 Expedition 316 Sites C0006 and C0007, *Geochemistry, Geophys. Geosystems*, 10(12),
527 doi:10.1029/2009GC002713.

528 Sloan, E. D., and C. Koh (2007), *Clathrate Hydrates of Natural Gases, Third Edition*, Chemical
529 Industries, CRC Press.

530 Spangenberg, E. (2001), Modeling of the influence of gas hydrate content on the electrical
531 properties of porous sediments, *J. Geophys. Res. Solid Earth*, 106, 6535–6548.

532 Sultan, N. (2007), Comment on “Excess pore pressure resulting from methane hydrate
533 dissociation in marine sediments: A theoretical approach” by Wenyue Xu and Leonid N.
534 Germanovich, *J. Geophys. Res. Solid Earth*, 112(2), 1–7, doi:10.1029/2006JB004527.

535 Vanderbeek, B. P., and A. W. Rempel (2018), On the Importance of Advective Versus Diffusive
536 Transport in Controlling the Distribution of Methane Hydrate in Heterogeneous Marine
537 Sediments, , 1, doi:10.1029/2017JB015298.

538 Waite, W. F. et al. (2009), Physical properties of hydrate-bearing sediments, *Rev. Geophys.*,
539 47(4), 1–38, doi:10.1029/2008RG000279.

540 Wallace, L. M. et al. (2009), Characterizing the seismogenic zone of a major plate boundary
541 subduction thrust: Hikurangi Margin, New Zealand, *Geochemistry, Geophys. Geosystems*,
542 doi:10.1029/2009GC002610.

543 Wallace, L. M., J. Beavan, S. Bannister, and C. Williams (2012), Simultaneous long-term and
544 short-term slow slip events at the Hikurangi subduction margin , New Zealand :
545 Implications for processes that control slow slip event occurrence , duration , and migration,
546 *J. Geophys. Res. Solid Earth*, 117, 1–18, doi:10.1029/2012JB009489.

547 Wallace, L. M., S. C. Webb, Y. Ito, K. Mochizuki, R. Hino, S. Henrys, S. Y. Schwartz, and A. F.
548 Sheehan (2016), Slow slip near the trench at the Hikurangi subduction zone, New Zealand,
549 *Science* (80-.), 352(6286), 1–5.

550 Wallace, L. M., D. M. Saffer, P. M. Barnes, I. A. Pecher, K. E. Petronotis, A. LeVay, L.J., and
551 and the E. 372/375 S. Proceedings (2019), Expedition 372B/375 methods, , 372B/375.

552 Watson, S. J. et al. (2019), Focused fluid seepage related to variations in accretionary wedge
553 structure, Hikurangi margin, New Zealand, *Geology*, 48(1), 56–61, doi:10.1130/G46666.1.

554 Weinberger, J. L., and K. M. Brown (2006), Fracture networks and hydrate distribution at
555 Hydrate Ridge, Oregon, *Earth Planet. Sci. Lett.*, 245(1–2), 123–136,
556 doi:10.1016/j.epsl.2006.03.012.

557 Xu, W., and L. N. Germanovich (2006), Excess pore pressure resulting from methane hydrate
558 dissociation in marine sediments: A theoretical approach, *J. Geophys. Res. Solid Earth*,
559 111(1), 1–12, doi:10.1029/2004JB003600.

560 Yun, T. S., F. M. Francisca, J. C. Santamarina, and C. Ruppel (2005), Compressional and shear
561 wave velocities in uncemented sediment containing gas hydrate, *Geophys. Res. Lett.*,
562 32(10), 1–5, doi:10.1029/2005GL022607.

563