
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

PANDORA: An Architecture-Independent Parallelizing

Approximation-Discovery Framework

GREG STITT and DAVID CAMPBELL, University of Florida, USA

In this paper, we introduce the PANDORA framework for automatically discovering application- and architecture-specialized ap-

proximations of provided code. PANDORA complements existing compilers and runtime optimizers by generating approximations

with a range of Pareto-optimal tradeoffs between performance and error, which enables adaptation to different inputs, different user

preferences, and different runtime conditions (e.g., battery life). We demonstrate that PANDORA can create parallel approximations

of inherently sequential code by discovering alternative implementations that eliminate loop-carried dependencies. For a variety of

functions with loop-carried dependencies, PANDORA generates approximations that achieve speedups ranging from 2.3x to 81x,

with acceptable error for many usage scenarios. We also demonstrate PANDORA’s architecture-specialized approximations via FPGA

experiments, and highlight PANDORA’s discovery capabilities by removing loop-carried dependencies from a recurrence relation with

no known closed-form solution.

CCS Concepts: • Software and its engineering→ Compilers; •Mathematics of computing→Approximation; • Computing

methodologies→Machine learning approaches.

Additional Key Words and Phrases: symbolic regression, approximate computing, machine learning

ACM Reference Format:

Greg Stitt and David Campbell. 2018. PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework.

InWoodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Since the introduction of computers, traditional design practices have focused on achieving exact semantic correctness

of an application and/or system. However, the rapid adoption of machine learning over the past decade has resulted

in the emergence of mainstream computing strategies where approximation is commonly accepted [24, 41, 49]. Even

before machine learning, approximation was a widespread, but largely unrecognized, practice due to the impossibility of

representing real numbers with finite precision. Such finite precision suggests that many applications—even those using

double-precision arithmetic—already tolerate approximation, including signal processing, robotics, financial analysis,

Internet searches, among others [28]. Even scientific-computing applications, which are known for their precision

constraints, are inherently approximate due to the use of real numbers and the common discretization of continuous

processes. For other applications, subjective quality often enables numerous approximations that trade off efficiency

and quality. For example, many signal-processing applications can tolerate occasional incorrect pixels or frequent small

inaccuracies where many pixels may be a slightly different color, where compression artifacts may be more apparent,

etc.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

1

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

Approximate computing [17, 22, 28] is an emerging area of research that looks to exploit this inherent imprecision to

explore more effective approximation strategies within acceptable error constraints. With the end of Dennard Scaling

[4], and with Moore’s Law decreasing [25], approximate computing provides a promising way of meeting the rapidly

increasing demands of future applications without relying on additional transistors.

Current approximate computing research focuses largely on specialized compilers, optimization frameworks [3,

33, 36, 44], and/or specialized programming languages [2, 8, 9] that enable designers to specify the acceptable error

of different regions of code [33, 36] and then apply approximations that meet the error constraint. There has also

been a significant focus on algorithmic and data-type approximations [36, 45, 46, 55] and approximate architectures

[10, 12, 14, 16, 21, 31, 39, 50, 54]. Although current work provides many technical benefits, these approaches suffer from

several significant limitations.

The first limitation is that approximations are often too application-specific to be discovered or supported by

compilers. For example, there are many unique application-specific approximations [36, 45, 46, 55] and optimizations

[40, 43, 47] that a compiler can’t achieve via a sequence of general code transformations. In addition, compilers are

unlikely to provide a built-in set of such approximations because they have very limited applicability. Similarly, most

application developers are unlikely to be aware of such niche approximations to apply them manually, and are even

more unlikely to be able to create new approximations. Furthermore, many approximations are architecture-specific,

which further decreases the likelihood of manual discovery and/or adoption by compilers.

Another limitation is that existing techniques only provide limited improvements up to 2x in performance and/or

energy (e.g., [1, 11, 14, 16, 21, 37, 50, 51, 53, 54]). Although beneficial, these improvements are often modest compared

to the 10x to 1000x improvements already provided by graphics-processing unit (GPU) and field-programmable gate

array (FPGA) accelerators [19, 52].

We address these limitations by introducing a parallelizing approximation-discovery framework called PANDORA.

Unlike many existing approximation approaches that derive approximations through a series of transformations to

the original code, PANDORA uses machine learning to automatically discover application-specific approximations

that are specialized for potentially any architecture. One key contribution of PANDORA is the use of approximation

to increase parallelism and amenability to acceleration. Although numerous studies have introduced parallelizing

transformations in compilers [5, 6, 15, 20, 26, 29], compilers require such transformations to be functionally equivalent.

By dropping this requirement, PANDORA enables exploration of significantly more parallelization options, while also

integrating and complementing existing techniques that reduce computation. Although several existing approaches also

use approximation to increase parallelism [33, 36, 38], those approaches either explore a more restricted approximation

space, typically by applying synchronization-relaxing approximations to an existing application [35, 36, 44], or use

neural-net-based approximation [17, 38], which can require a huge computational overhead to approximate some

functions. By contrast, our approach uses symbolic-regression-based machine learning to generate completely different

algorithms, while using fitness functions that maximize parallelism or other optimization goals (e.g., performance,

energy), and improve scalability by avoiding system-specific bottlenecks (e.g., data-movement, synchronization), while

also meeting different constraints (e.g., error, power, performance). In other words, our approach evolves a custom

parallelized approximation that explores a much larger parallelization space, of which previous approaches are a small

subset.

Compared to exact parallel baselines, we present preliminary results showing speedups from 2x to 40x over a range

of error constraints by eliminating loop-carried dependencies from well-known recurrence relations, which increases

to 4,000x when not restricted by I/O bandwidth. We complement these experiments with 336 synthetic loops that

2

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

Select Functions for
Approximation

PANDORA

int main() {
...
f();
...

App Code

f(), ...
Discover Application- and

Architecture-Specific
Approximations

Lexing/Parsing

Optimization

Standard Compiler Flow Approximation Flow

ErrorP
er
fo
rm
an
ce

μP/GPU/FPGA
Binary

f() Approximations

Runtime Optimizer

.

Goals, Constraints, and
Fitness Functions

Pareto-optimal
Approximations

Runtime Conditions (e.g. low
battery, user feedback)

Fig. 1. Overview of how PANDORA integrates with existing compilers and runtime optimizers.

current compilers can only implement sequentially and show speedups ranging from 2.3x to 81x with an average

speedup of 9.5x and an average error of 0.3%. We also demonstrate amenability to architecture-specific acceleration

with FPGA-specialized approximations that achieve speedups from 2x to 10x for errors under 5%, and up to 757x for an

error of 18%.

The paper is organized as follows. Section 2 gives an overview of approximation flows and how PANDORA comple-

ments existing compilers. Section 3 describes our approach to approximation discovery. Section 4 presents experimental

results. Section 5 discusses related work. Section 6 describes limitations and ongoing work to enable more widespread

usage of the presented techniques. Section 7 presents conclusions.

2 PANDORA OVERVIEW

Figure 1 illustrates the envisioned usage of PANDORA with compilers and runtime optimizers. PANDORA complements

existing compilers by automatically creating new approximations for provided code. In the envisioned approximation

flow, the application code would initially be passed to a tool to determine which functions are the best approximation

candidates, how much approximation each function can tolerate, etc. This step is the subject of numerous existing

studies (e.g., [33, 36]) and is not the focus of this paper. Instead, we can leverage any of the ongoing work in that

area to provide PANDORA with a set of functions to approximate. In addition, PANDORA also takes as input a set of

optimization goals, application constraints, and fitness functions for the targeted architecture. These fitness functions,

discussed in more detail in Section 3, guide the discovery process by ensuring constraints are met, while estimating

metrics (performance, energy) of an approximation on a given architecture.

In our envisioned usage, optimization goals would be generally decided by the application designer. Constraints

would be provided by either the designer, or by existing tools that determine how much approximation can be tolerated

by a given application. Fitness functions would generally be provided in a library, but may require custom specification

for performance and/or energy estimation on specialized architectures (e.g., FPGAs).

Given these inputs, PANDORA automatically discovers a set of Pareto-optimal tradeoffs between performance (or

any optimization goal) and error. PANDORA provides those approximations back to the compiler to apply to the original

3

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

code, or could potentially just generate a modified version of the original code that can be compiled. This latter approach

has the benefit of the compiler applying additional architecture-specific optimizations to the generated approximation.

Due to the increased compilation times for discovering approximations, we envision PANDORA being used as a final

optimization step (e.g., -O3), although preliminary results often only took on the order of minutes. We also envision an

offline approach where PANDORA concurrently searches for approximations in the background during application

development, and provides them to the compiler as the approximations are discovered.

Alternatively, PANDORA can also be used to provide approximations with a range of tradeoffs to a runtime optimizer.

Whereas static approaches are restricted to a single approximation, the use of PANDORA with a runtime optimizer

enables adaptive optimizations that could increase approximation based on appropriate runtime conditions (e.g.,

low battery life). Static approximations also restrict designers to a single definition of error, which will generally be

pessimistic to support the most-demanding users, leaving less-demanding users with untapped efficiency improvements.

Furthermore, even the same user could have different opinions of acceptable error in different situations (e.g., noisy

vs. quiet environments). PANDORA avoids this one-size-fits-all restriction by generating a range of Pareto-optimal

approximations that enables different approximations to be used in different usage scenarios.

3 PARALLELIZING APPROXIMATION DISCOVERY

In this section, we discuss PANDORA’s automatic discovery of parallelizing approximations for potentially any

architecture. Although we use the term function for simplicity, the approach applies to any level of granularity (e.g.,

loops, basic blocks, statements).

Whereas existing approximating compilers implement many computation-reducing approximations by replacing

portions of a dataflow graph with known approximations (e.g., [8, 17, 30, 38, 42, 44]), automatically creating parallelizing

approximations that aren’t derived from a series of transformations to the original code is a far more difficult problem.

This challenge is highlighted by the limited existence of manually introduced parallelizing approximation strategies.

In many cases, a parallelizing approximation may not even be known, especially for a particular architecture or

combination of resources.

In addition to approximation discovery, another key contribution is the use of approximation to significantly increase

the exploration space for automatic parallelization, which in turn makes more applications amenable to FPGA and GPU

acceleration. In fact, our preliminary experiments show that in some cases increasing the amount of computation—a

strategy that to our knowledge is not considered by any current approximation approach—can enable significant

amounts of untapped parallelism that greatly outweighs any extra operations. In addition to exploiting parallelism to

maximize performance, PANDORA can alternatively optimize for energy while meeting a power constraint and/or

performance constraint. Furthermore, while increasing parallelism alone might result in communication or memory

bottlenecks, PANDORA can use system-specific fitness functions to generate specialized approximations that avoid

such bottlenecks, providing improved scalability.

PANDORA complements conceptually similar approximate-computing research that increases parallelism via syn-

chronization relaxing [7, 35, 36, 44], and approaches that use FPGA- and GPU-amenable approximations (e.g., neural

nets [17, 38]). By using symbolic regression to evolve parallel approximations based on completely new algorithms,

our approach both includes and significantly expands the parallelization space of previous strategies. Such expanded

exploration is critical for identifying approximations where existing neural-net approaches have high overhead. PAN-

DORA is also conceptually similar to Paragen [13], which was a compiler technology that used genetic programming

4

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

Fig. 2. PANDORA discovers approximations of (a) an existing function by (b) sampling outputs from within a relevant input range, and

then (c) performing a specialized symbolic regression to find equations with Pareto-optimal tradeoffs between error and performance

(or any goal).

to parallelize sequential software for multi-core processors. However, like other compilers, Paragen was restricted to

generating functionally correct alternatives, and did not support arbitrary architectures such as FPGAs and GPUs.

3.1 Approach

To discover approximations, PANDORA samples the original function’s output across an input range of interest. After

replacing the original function with samples, PANDORA exploits the fact that there are infinite functions that coincide,

or nearly coincide, with the samples. PANDORA searches these alternative functions looking for ones that are cheaper

computationally, more parallel, lower energy, etc. than the original function. Although counter-intuitive, replacing the

original function with samples enables the possibility of discovering numerous approximations that cannot be derived

via transformations to the original code, which we show is critical for both increasing parallelism and specializing an

approximation for a given architecture.

To find such an approximation, PANDORA performs a specialized form of symbolic regression, which is the problem

of searching the space of all mathematical equations to automatically discover the model of a given dataset. However,

whereas symbolic regression is solely focused on finding a function that minimizes error, PANDORA is also concerned

with finding functions (i.e., approximations) that have desirable computation or communication characteristics for a

given architecture.

Figure 2(a) demonstrates a simple example of approximating a sine wave within the input range of -π/2 to π/2.

Figure 2(b) shows the sampled output of the function. Figure 2(c) demonstrates two example regressions that approximate

the original function within the restricted range: a a piece-wise linear regression and a parabola. For this simple

example, the parabola approximation requires two multiplications, but has higher accuracy than the piece-wise linear

approximation that only requires one multiplication.

For these simple approximations, larger ranges can be achieved via piece-wise decomposition of the input space,

where if-statements first check the range and then apply the corresponding approximation. However, in most cases, the

approximation will automatically adapt to the entire range. Additionally, in many cases, a user may want the range

to be restricted to values used by the application. Although this intentionally simple example does not demonstrate

increased parallelism, we present experiments in Section 4 that significantly increase parallelism and in some cases

remove loop-carried dependencies. In general, PANDORA can trade off error for increased performance to support

different use cases, where at one extreme is the original function (low performance, no error) and at the opposite

extreme is a constant (high performance, likely prohibitive error).

5

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

With this formulation of the problem, approximation discovery requires effective solutions to symbolic regression.

Most existing techniques for symbolic regression rely on genetic programming [23, 27]. To evaluate PANDORA, we

developed a custom symbolic-regression framework in Python that extends the DEAP [18] evolutionary computation

library with additional genetic-programming capabilities. The experiments in this paper approximate functions written

in Python, but PANDORA supports any language by discovering approximations based on output samples, as opposed

to language-specific constructs.

To guide genetic programming, the framework takes a configuration file as input that specifies a number of options.

First, the configuration file specifies the sampling strategy for training and testing, which currently allows for uniform

sampling and random sampling, while also specifying the number of samples to use in each input dimension, and the

range of values for those samples.

Next, the configuration file specifies the fitness function, which includes an optimization goal and any constraints.

PANDORA supports a variety of existing fitness functions, and is easily extendable to support other functions. For

example, in the simplest case, a user could select a fitness function to minimize root mean square error. In this case,

PANDORA essentially performs traditional symbolic regression without any consideration of performance or energy of

the resulting approximation. Typical fitness functions include minimizing error given a performance/energy constraint

or maximizing performance/energy given an error constraint. PANDORA allows for specification of any error metric,

but currently supports root mean square error, mean square error, and mean absolute percentage error. In general, an

ideal fitness function would provide an exact performance estimate for a given architecture. However, since determining

highly accurent performance estimates may require lengthy computation or even simulations that would result in

prohibitive training times, we expect most use cases to perform coarser estimations. Ultimately, the accuracy requirement

of the performance estimate depends on the use case. For approximations providing small performance improvements

(e.g., 5% to 10%), a more accurate estimate is needed. However, for approximations that achieve 2x to 10x improvements,

more error can be tolerated in the performance estimate.

To create a fitness function, we provide an architecture-specific performance-estimation heuristic that is applied

to each approximation. Although any performance estimation technique can be used, most of our experiments use

an estimate that is a function of the depth of the resulting approximation tree structure. By optimizing for tree depth,

genetic programming tends to find solutions that do more operations in parallel, since such parallelism tends to make

the tree wider while reducing the depth. For FPGA experiments, the fitness function uses the resource requirements

of the approximation to determine how many operations can fit on the FPGA, which also determines how many

operations can be done in parallel to improve performance. As a result, genetic programming tends to reduce the

resource requirements of the original code so that more operations can occur in parallel, so that the function can be

replicated more times, etc. In general, performance and energy estimations include system-specific characteristics (e.g.,

communication bandwidth limits), which enable genetic programming to modify the approximation to avoid bottlenecks.

For example, if data movement becomes a bottleneck, then genetic programming would prioritize approximations with

reduced communication (e.g., by eliminating inputs and/or synchronization).

After specifying the fitness function, the configuration file allows specification of primitives from which to build the

approximation during genetic programming. PANDORA includes basic mathematical primitives (addition, multiplication,

sine, log, etc.), in addition to combined with existing coarse-grained approximations (neural nets, perceptrons, hidden

Markov models). New primitives can easily be added simply by defining a function for the primitive, and adding

that function, along with definitions of its parameters and return values, to the code. The configuration settings also

include a large number of genetic-programming configuration options such as population size, number of generations,

6

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

Fig. 3. (a) Example of a loop whose (b) unrolled DFG has no parallelism due to loop-carried dependencies and non-associative

operations. PANDORA discovers (c) an application-specific approximation with significant amounts of parallelism and acceptable

error for most use cases.

crossover strategies (e.g., one-point crossover, one-point leaf-biased crossover), and mutation strategies (e.g., uniform,

node replacement, random subtree insertion, random subtree removal).

3.2 Example Approximations

To illustrate usage of PANDORA, we provide several simple motivating examples to explain the functionality. Figure 3(a)

shows example code of a simple loop with loop-carried dependencies. Optimizing this type of loop is a well-known

compiler challenge because the iterations are dependent, and unrolling the loop creates a long sequence of dependent

operations with no parallelism (Figure 3(b)). Although compilers can sometimes parallelize similar examples via

tree-height reduction, those optimizations only work for associative operations. This example uses non-associative

subtractions, which prevents traditional parallelization. Although an integer version of this example could potentially

be parallelized by adding all of b[] with an adder tree and then subtracting from x, a compiler would be unlikely to

implement such a rarely applicable optimization. PANDORA has the key advantage of being able to automatically

generate such application-specific parallelizations.

For this example, we assume all operations take the same time, which makes sequential performance equal to the

total operations (41 for this example) and parallel performance equal to the maximum depth of the tree. We also assume

sufficient resources for maximum parallelism, which can easily be obtained on CPUs, FPGAs and GPUs for these

examples. To approximate this function with PANDORA, we use a fitness function that minimizes depth of the tree

without consideration of error, which generates a range of tradeoffs.

Figure 3(c) illustrates an approximation generated by PANDORA. Themore balanced tree structure shows significantly

increased parallelism compared to the original code, achieving a 5.9x speedup, with a mean absolute percentage error

of only 5.2e−14%, which we determined using 10,000 uniformly distributed random inputs between -32k and 32k.

For this approximation, the only error was due to the non-associativity of floating-point operations. Existing

compilers either ignore the error introduced by the order of floating-point operations, prevent any optimization that

introduce error, or allow the designer to specify different optimization goals (e.g., precision, fast, strict [54]). PANDORA

provides another alternative that identifies Pareto-optimal tradeoffs between error and performance. Although previous

work has also identified tradeoffs for floating-point applications [135], those approaches are a subset of the potential

7

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

Fig. 4. (a) Example of a loop where PANDORA creates different specialized approximations for (b) random inputs ranging from -32k

to 32k, and (c) random inputs between 0 and 1.

approximations applied by our approach. In addition, PANDORA discovers these tradeoffs automatically as part of the

many implicitly explored approximation strategies enabled by genetic programming, without specifically trying to

optimize floating-point operations.

Figure 4 illustrates another example showing how different inputs can benefit from different approximations. The

loop in Figure 4(a) similarly has loop-carried dependencies and non-associative operations that are not parallelized by

compilers. Figure 4(b) illustrates an unexpected approximation generated using 10,000 uniformly distributed random

inputs ranging from -32k to 32k. In this case, PANDORA identifies that the loop is statistically very likely to converge

towards an output of -1, which eliminates all operations for a speedup of 21x, with an error of 0.08%. However, using

random inputs between 0 and 1 provides a significantly different approximation (Figure 4(c)) with speedup of 3.5x and

an error of 1.2e−14%. These results suggest that designers could use PANDORA to create multiple approximations for

different input values, similar to how function specialization optimizes a function for common inputs.

4 EXPERIMENTS

In this section, we present preliminary experiments demonstrating the capabilities of PANDORA. All experiments use

the Python framework described in the previous section.

Figure 5 demonstrates PANDORA’s ability to replace loop-carried dependencies—a long-time goal of compilers—

with approximations that have independent (i.e., parallel) iterations. The figure shows tradeoffs between error and

performance of multiple approximations, which we generated in PANDORA using different error constraints for each

function. The evaluated examples are recurrence relations with dependencies between iterations, which shows that

PANDORA is able to automatically find closed-form solutions or solutions without these dependencies. For example,

PANDORA automatically discovers a finite impulse response (FIR) filter when using an infinite impulse response (IIR)

as input. The included examples demonstrate three separate trends that we have also observed across other examples.

Although some of these examples have known approximations or closed-form solutions, the key advantage of PANDORA

is the automatic discovery of a closed-form solution or parallel approximation. This advantage is significant due to

the lack of approximations for the vast majority of real functions, and due to the common use of application-specific

approximations that are too unique for compiler support.

8

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

Fig. 5. Parallel approximation speedup (with constrained input bandwidth) and root mean square error of various recurrence relations.

PANDORA discovered these approximations by eliminating loop-carried dependencies.

We created each example by writing corresponding Python code, which PANDORA then sampled to discover

approximations. The experiments evaluate performance independently from language and architecture by comparing

the depth of the approximation’s dataflow graph (DFG) with the depth of the original DFG after applying unrolling

and tree-height reduction. The depth of the DFG represents the length of the longest dependence chain, which bounds

execution time even with unlimited parallel resources. In general, a more parallel approximation tends to have a

smaller depth than a sequential approximation, where loop-carried dependencies result in a long sequence of dependent

iterations in the unrolled DFG. Although not all architectures will provide enough resources to achieve a performance

equal to this bound, the comparison is applicable to many existing architectures for the selected examples. The figure

specifies application-specific parameters (e.g., input sizes, constants) used in each experiments. To avoid arbitrarily large

speedups from large inputs, the experiments evaluate a range of input sizes that illustrate the basic trends. Although

approximation discovery times generally ranged from seconds to hours, we ran these experiments for days and then

collected results of the best approximations found at that time.

To avoid the unrealistic possibility of infinite input bandwidth, the speedup in Figure 5 is based on an input-bandwidth

constraint that matches existing PCIe bandwidth. The results demonstrate several trends. The first trend is that all

of the filter examples achieved a speedup of around 30x with low error, which increases slightly as more error is

allowed. The consecutive-sum examples demonstrate the second trend, where PANDORA achieved speedups of 5x

and 7x for input sizes of 1k and 10k. Unlike the other trends, this speedup was independent of the error constraint

because PANDORA found an exact closed-form solution that was simple enough to not benefit from approximation.

The remaining examples demonstrate the third trend, where PANDORA found closed-form solutions that exhibited

a rapid speedup increase from 1x to 40x for different error constraints. The examples in this third trend were more

complex than the closed-form solutions in the second trend, which enabled a larger set of Pareto-optimal tradeoffs.

9

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

Fig. 6. Speedup from approximations of the filter examples in Figure 5 when not constrained by PCIe bandwidth.

The benefits of PANDORA are best highlighted by the logistic-map approximation in Figure 5. Whereas the other

examples have known approximations or closed-form solutions, logistic map does not have a known closed-form

solution. Despite the lack of a known solution, PANDORA found approximations with a root-mean-square error (RMSE)

of less than 1e−4. Although not an exact solution, such error is likely to be acceptable for some cases. One interesting

finding that highlights PANDORA’s discovery capabilities is the counter-intuitive characteristics of the generated

approximation. Despite the logistic map only using multiplication and subtraction, the discovered approximation uses a

square root, cosine, and hyperbolic tangent, which is unlikely to be discovered by any programmer.

Figure 6 re-evaluates the filter examples for use cases that may not be as limited by input bandwidth (e.g., FPGA

internal memory, large distributed systems with replicated data). The other examples are omitted because their results

do not change with additional bandwidth. Two important differences can be seen in these experiments: (1) significantly

higher speedups, ranging from 200x to 4000x; and (2) significant improvements from increasing error. Although

not all architectures will be able to realize this amount of parallelism, these results highlight potential performance

improvements.

Figure 7 complements these results with 336 randomly generated synthetic DFGs that represent unrolled loops with

loop-carried dependencies. For these experiments, PANDORA generated an approximation based on a mean absolute

percentage error constraint of 1%. To generate the synthetic loops, we created a script that produced corresponding

DFGs that would be difficult to parallelize with existing compilers. Each DFG included random types of floating-point

operations, multiple non-associative operations, random numbers of inputs, and random numbers of operations ranging

from 20 to 160. The results show a wide range of speedups from 2.3x to 81x, with a trend towards larger speedups

for larger error. Across all examples, speedup and error averaged 9.5x and 0.3%, respectively. PANDORA was able to

meet the error constraint for 93% of the examples, with many examples using orders-of-magnitude less error. For the

examples where PANDORA couldn’t meet the error constraint, the error ranged from 1% and 5.9%. The speedup of

many examples was limited by the small DFG size. The ratio of speedup to total operations tended to increase for larger

examples, which suggests that larger functions will likely experience significantly larger speedups.

10

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Fig. 7. Approximation tradeoffs between speedup and mean absolute percentage error (log scale) for 336 synthetic loops.

When repeating the tests with integer data, PANDORA discovered some approximations with no error. To our

knowledge, no existing approach can automatically convert a series of non-associative operations into an exact parallel

alternative. As a result, PANDORA is not solely limited to approximations, and can also be used to discover new

error-free transformations.

Another interesting result was that PANDORA was able to generate a wide range of different approximations for the

examples in Figure 7. Although many examples had increased parallelism, PANDORA occasionally removed iterations

of a loop that had little effect on error, which is a known approximation strategy referred to as loop perforation [8, 46]

that PANDORA discovered automatically. In most cases, PANDORA both reduced the total operations and parallelized

those operations. For five examples, PANDORA enabled a parallel approximation by increasing the total number of

operations. PANDORA also often automatically eliminated some of the inputs from the original application, which is a

known machine-learning technique referred to as dimensionality reduction. We envision this capability being useful

for eliminating communication bottlenecks and improving scalability in parallel systems.

Figure 8 demonstrates PANDORA’s ability to create parallelizing approximations for a specific architecture, which for

this experiment was an Arria 10 FPGA. In FPGAs, parallelism of an application is often limited by available resources.

By discovering approximations that require fewer FPGA resources, PANDORA increases realizable parallelism. In

these experiments, we compare achievable parallelism in terms of the number of IP instances that would fit in the

FPGA between Intel-provided IP cores and automatically generated approximations. For these experiments, PANDORA

generated approximations with speedups between 1x and 10x for mean-absolute percentage errors below 5%, with

rapid increases in speedup to over 100x for larger errors. For the ln example, PANDORA generated an approximation

that experienced a speedup of 757x at 18% error. Although the larger errors are unlikely to be acceptable, we included

the tradeoffs to demonstrate upper bounds on performance. The results assume equal clock frequencies, which likely

makes the speedup pessimistic due to most of the approximations using finer-grained operations that support higher

frequencies.

5 RELATEDWORK

Existing approximate computing work focuses largely on languages, compilers, and/or optimization frameworks to

improve performance/energy within designer-specified constraints. Rely [8] is a specialized language that enables

11

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Fig. 8. FPGA speedup (log2 scale) and mean absolute percentage error of PANDORA-generated approximations that reduce resource

utilization compared to Intel IP cores.

designers to specify accuracy and reliability (i.e., probability that a computation is correct) for different functions. When

combined with a specification for approximate hardware resources, Rely enables designers to evaluate if the architecture

can provide sufficient application reliability. Chisel [34] is a compiler-like framework that approximates a Rely program

to maximize performance or energy while ensuring reliability and accuracy constraints. Green [3] is a similar approach

that applies approximations to improve performance and energy while providing a specified quality of service. Our

approach complements these works by significantly expanding the exploration for parallel approximations via genetic

programming, while also removing the requirement for specification of approximation candidates and acceptability.

Quickstep [35] is a compiler-like framework with a similar goal as our proposed work: exploit approximation to create

parallelism within error constraints. The key difference is that Quickstep introduces parallelism by transforming an

existing program to allow relaxed synchronization and data races. By contrast, our approach generates a completely new

algorithm via genetic programming, which explores a much larger space of parallelization options. Dubstep [36] is an

extension of Quickstep that further increases parallelism via opportunistic synchronization and barriers. Renganarayana

et al. [44] present a similar synchronization-relaxing methodology for reducing synchronization overhead in parallel

programs. All of these prior studies are complementary to our proposed work, and could be used to increase parallelism

by relaxing synchronization within our generated approximations. We plan to integrate the synchronization-relaxing

approximation strategy into genetic programming as a mutation that would be considered with all other approximation

options.

SNNAP [38], also conceptually similar to our proposed work, approximates an application with neural nets, which

are executed on FPGAs. As opposed to using an approximation that is known to be efficient for a specific architecture,

our proposed approach has the more general goal of generating a parallel approximation for potentially any architecture,

including heterogeneous systems with different types of resources. Also, by performing genetic programming to create a

completely new algorithm that may contain neural nets as an approximation strategy, we explore a larger parallelization

space than SNNAP.

We previously published a preliminary version of PANDORA in [48], which we expand in this paper with signifi-

cantly more detailed explanation of the approach and framework, example approximations that demonstrate different

12

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

capabilities and tradeoffs, an expanded evaluation in the experiments, a discussion of the envisioned usage of the

framework with compilers and runtime optimizers, and a greatly expanded discussion of related work.

6 LIMITATIONS AND FUTUREWORK

Despite demonstrating considerable potential for approximation, there are several limitations and challenges that must

be addressed to make PANDORA more widely usable. The most significant challenge is that PANDORA is based on

symbolic regression, which is known to be a challenging problem where existing strategies generally only work for toy

problems [32]. For future work, we plan to address this challenge in two ways. The first solution is hardware-accelerated

symbolic regression that performs over a million times faster than existing software implementations, according to our

preliminary results. Whereas existing software can generally only evaluate 100s to 1000s of solutions a second, a custom

hardware pipeline can evaluate 100s of millions of solutions per second. Such performance enables fundamentally new

exploration algorithms that we expect to overcome existing limitations. Our second planned solution is to consider

providing PANDORA with information about the original code. Although this solution may restrict some of the

counter-intuitive approximations that are currently discovered, it could also enable better solutions in situations where

symbolic regression techniques cannot find an attractive approximation.

Another limitation is that even when existing symbolic-regression techniques achieve an effective approximation,

the time required to discover that approximation can be a bottleneck. As a solution to this problem, PANDORA can be

configured to return the best approximation seen so far after a specified amount of time. Alternatively, PANDORA can

be used as a final optimization step, or to search for approximations in the background during application development.

In addition to speeding up symbolic regression, there is a need for better understanding effects of configuration

parameters. For example, use of course-grained primitives significantly speeds up the search, but also restricts the size

of the solution space, potentially resulting in less attractive approximation tradeoffs. Using finer-grained primitives

enables a larger solution space, but that larger space also suffers from numerous local optima in which the search

heuristic might get stuck. Similarly, there is a need to understand the tradeoffs between training time, approximation

quality, population size, and number of generations.

For any use case where the training data has noise, symbolic regression is often limited by the tendency to overfit,

which results in an overly complex equation that tries to account for the noise. When used for approximation, the

training data has no noise because function outputs are deterministic, which helps to eliminate this problem. PANDORA

can still potentially experience overfitting, but since most uses of PANDORA will specify a fitness function that

minimizes the size of the discovered approximations, overfit solutions will tend to be eliminated during exploration.

Another area of future work will be automatically decomposing the input space into piece-wise approximations. In

our experiments, we have noticed that in many cases PANDORA will provide good approximations within a restricted

range, while providing less attractive tradeoffs when used to approximation a larger input space. We have currently

dealt with this issue by manually creating multiple approximations, but that is only feasible in situations where the

designer understands the original function. In many cases, especially with machine learning, the original function is

unknown, which therefore requires an automated approach. As future work, we plan to investigate search heuristics

that hierarchically decompose the input space into smaller subspaces as long as approximation quality continues to

increase.

One fundamental limitation of PANDORA is that by relying on machine learning, PANDORA can only make

probabilistic, as opposed to absolute, guarantees about approximation error. However, all machine-learning techniques

share this same limitation, which has not prevented its widespread acceptance in various application domains.

13

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

One interesting limitation of PANDORA is the tendency to discover unintuitive approximations. If a designer

needs to understand or debug the approximation when integrated with a larger application, the unintuitive nature

of approximations could be prohibitive. However, similar to the probabilistic error issue, this limitation is shared by

all machine-learning approaches, and has not limited the success of those approaches. Interestingly, the uninuitive

nature of the approximations highlights one of the biggest advantages of PANDORA: non-obvious approximations are

unlikely to be supported by a compiler or discovered by a designer.

7 CONCLUSIONS

We introduced the PANDORA framework for automatically discovering parallelizing approximations for potentially any

targeted architecture. Whereas existing approximation approaches focus on languages and compilers that transform

provided code into an approximation, PANDORA uses a symbolic-regression-based machine-learning strategy that

discovers a new approximation based on sampled outputs of the original function, as opposed to specific coding

constructs. By sampling function outputs, PANDORA explores the infinite number of alternative functions that coincide,

or nearly coincide, with the samples of the original function in order to find an approximation that can be computed

more efficiently. Envisioned usage of PANDORA includes generation of a range of Pareto-optimal approximations that

can be used by a compiler or runtime optimizer to adapt the level of approximation to the current input, the current

user’s preferences, or to runtime conditions such as battery life.

In this paper, we demonstrated that PANDORA can remove loop-carried dependencies from recurrence relations,

while also increasing parallelism in the presence of non-associative operations. We also showed how PANDORA can

generate FPGA-specific approximations that reduce resources requirements for a number of FPGA functions, which

achieved attractive tradeoffs between error and performance.

Although there are technical challenges preventing PANDORA from being widely usable in its current state, this

paper presents a proof-of-concept that demonstrates attractive Pareto-optimal tradeoffs to the decades-long compiler

challenge of parallelizing sequential code. This work also motivates the need for improvements in symbolic regression,

which would in turn provide even more attractive approximations.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant Nos. CNS-1149285,

CNS-1718033, and CCF-1909244.

REFERENCES

[1] C. Alvarez, J. Corbal, and M. Valero. 2005. Fuzzy memoization for floating-point multimedia applications. Computers, IEEE Transactions on 54, 7 (July

2005), 922–927. https://doi.org/10.1109/TC.2005.119

[2] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Amarasinghe. 2011. Language and Compiler Support for

Auto-tuning Variable-accuracy Algorithms. In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization

(CGO ’11). IEEE Computer Society, Washington, DC, USA, 85–96. http://dl.acm.org/citation.cfm?id=2190025.2190056

[3] Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Framework for Supporting Energy-conscious Programming Using Controlled Approximation.

In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA,

198–209. https://doi.org/10.1145/1806596.1806620

[4] M. Bohr. 2007. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. Solid-State Circuits Society Newsletter, IEEE 12, 1 (Winter 2007), 11–13.

https://doi.org/10.1109/N-SSC.2007.4785534

[5] Pierre Boulet, Alain Darte, Georges-André Silber, and Frédéric Vivien. 1998. Loop parallelization algorithms: from parallelism extraction to code

generation. Parallel Comput. 24, 3-4 (1998), 421–444. https://doi.org/10.1016/S0167-8191(98)00020-9

14

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

[6] E. Bugnion, Shih-Wei Liao, B.R. Murphy, S.P. Amarasinghe, J.M. Anderson, M.W. Hall, and M.S Lam. 1996. Maximizing multiprocessor performance

with the SUIF compiler. Computer 29, 12 (1996), 84,85,86,87,88,89. https://doi.org/10.1109/2.546613

[7] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon Wei, and David Brooks. 2014. HELIX-RC: An Architecture-compiler

Co-design for Automatic Parallelization of Irregular Programs. In Proceeding of the 41st Annual International Symposium on Computer Architecuture

(ISCA ’14). IEEE Press, Piscataway, NJ, USA, 217–228. http://dl.acm.org/citation.cfm?id=2665671.2665705

[8] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. 2013. Verified Integrity Properties for Safe Approximate Program

Transformations. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation (PEPM ’13). ACM, New York,

NY, USA, 63–66. https://doi.org/10.1145/2426890.2426901

[9] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying Quantitative Reliability for Programs That Execute on Unreliable Hardware.

In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA

’13). ACM, New York, NY, USA, 33–52. https://doi.org/10.1145/2509136.2509546

[10] Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar Korkmaz, Krishna V. Palem, and Balasubramanian Seshasayee. 2006.

Ultra-efficient (Embedded) SOC Architectures Based on Probabilistic CMOS (PCMOS) Technology. In Proceedings of the Conference on Design,

Automation and Test in Europe: Proceedings (DATE ’06). European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 1110–1115.

http://dl.acm.org/citation.cfm?id=1131481.1131790

[11] Lakshmi N.B. Chakrapani, Kirthi Krishna Muntimadugu, Avinash Lingamneni, Jason George, and Krishna V. Palem. 2008. Highly Energy and

Performance Efficient Embedded Computing Through Approximately Correct Arithmetic: A Mathematical Foundation and Preliminary Experimental

Validation. In Proceedings of the 2008 International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES ’08). ACM,

New York, NY, USA, 187–196. https://doi.org/10.1145/1450095.1450124

[12] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Analysis and Characterization of Inherent Application

Resilience for Approximate Computing. In Proceedings of the 50th Annual Design Automation Conference (DAC ’13). ACM, New York, NY, USA,

Article 113, 9 pages. https://doi.org/10.1145/2463209.2488873

[13] Noel Cressie. 1990. The origins of kriging. Mathematical Geology 22, 3 (1990), 239–252. https://doi.org/10.1007/BF00889887

[14] M. de la Guia Solaz and Richard Conway. 2010. Comparative study on Wordlength Reduction and Truncation for low power multipliers. In MIPRO,

2010 Proceedings of the 33rd International Convention. 84–88.

[15] A.E. Eichenberger, K. O’Brien, Peng Wu, Tong Chen, P.H. Oden, D.A. Prener, J.C. Shepherd, Byoungro So, Z. Sura, A. Wang, Tao Zhang, Peng Zhao,

and M. Gschwind. 2005. Optimizing Compiler for the CELL Processor. In Parallel Architectures and Compilation Techniques, 2005. PACT 2005. 14th

International Conference on. 161 – 172. https://doi.org/10.1109/PACT.2005.33

[16] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Architecture Support for Disciplined Approximate Programming. In

Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII).

ACM, New York, NY, USA, 301–312. https://doi.org/10.1145/2150976.2151008

[17] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural Acceleration for General-Purpose Approximate Programs. In

Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE Computer Society, Washington, DC,

USA, 449–460. https://doi.org/10.1109/MICRO.2012.48

[18] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms

Made Easy. Journal of Machine Learning Research 13 (July 2012), 2171–2175.

[19] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. 2012. A performance and energy comparison of FPGAs, GPUs, and multicores for

sliding-window applications. In FPGA ’12: Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays (FPGA ’12).

ACM, New York, NY, USA, 47–56. https://doi.org/10.1145/2145694.2145704

[20] Milind Girkar and Constantine D. Polychronopoulos. 1995. Extracting Task-level Parallelism. ACM Trans. Program. Lang. Syst. 17, 4 (July 1995),

600–634. https://doi.org/10.1145/210184.210189

[21] V. Gupta, D. Mohapatra, Sang Phill Park, A. Raghunathan, and K. Roy. 2011. IMPACT: IMPrecise adders for low-power approximate computing. In

Low Power Electronics and Design (ISLPED) 2011 International Symposium on. 409–414. https://doi.org/10.1109/ISLPED.2011.5993675

[22] J. Han and M. Orshansky. 2013. Approximate computing: An emerging paradigm for energy-efficient design. In 2013 18th IEEE European Test

Symposium (ETS). 1–6. https://doi.org/10.1109/ETS.2013.6569370

[23] Gregory S. Hornby. 2006. ALPS: The Age-layered Population Structure for Reducing the Problem of Premature Convergence. In Proceedings of the

8th Annual Conference on Genetic and Evolutionary Computation (GECCO ’06). ACM, New York, NY, USA, 815–822. https://doi.org/10.1145/1143997.

1144142

[24] K. Hornik, M. Stinchcombe, and H. White. 1989. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 2, 5 (July 1989),

359–366. https://doi.org/10.1016/0893-6080(89)90020-8

[25] A. Huang. 2015. Moore’s Law is Dying (and that could be good). Spectrum, IEEE 52, 4 (April 2015), 43–47. https://doi.org/10.1109/MSPEC.2015.7065418

[26] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. 2002. Iterative compilation. Springer-Verlag New York, Inc., New York, NY, USA, 171–187.

[27] John R. Koza. 1994. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, USA.

[28] Logan Kugler. 2015. Is "Good Enough" Computing Good Enough? Commun. ACM 58, 5 (April 2015), 12–14. https://doi.org/10.1145/2742482

[29] Sameer Kulkarni and John Cavazos. 2012. Mitigating the Compiler Optimization Phase-ordering Problem Using Machine Learning. In Proceedings of

the ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA,

15

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

147–162. https://doi.org/10.1145/2384616.2384628

[30] J. M. Pierre Langlois and Dhamin Al-Khalili. 2006. Carry-free approximate squaring functions with O(n) complexity and O(1) delay. IEEE Trans. on

Circuits and Systems 53-II, 5 (2006), 374–378. http://dblp.uni-trier.de/db/journals/tcas/tcasII53.html#LangloisA06

[31] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. 2011. Flikker: Saving DRAM Refresh-power Through Critical Data

Partitioning. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS XVI). ACM, New York, NY, USA, 213–224. https://doi.org/10.1145/1950365.1950391

[32] James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin

Harper, Kenneth De Jong, and Una-May O’Reilly. 2012. Genetic Programming Needs Better Benchmarks. In Proceedings of the 14th Annual Conference

on Genetic and Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA, 791–798. https://doi.org/10.1145/2330163.2330273

[33] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and Accuracy-aware Optimization of

Approximate Computational Kernels. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA ’14). ACM, New York, NY, USA, 309–328. https://doi.org/10.1145/2660193.2660231

[34] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and Accuracy-aware Optimization of

Approximate Computational Kernels. SIGPLAN Not. 49, 10 (Oct. 2014), 309–328. https://doi.org/10.1145/2714064.2660231

[35] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing Sequential Programs with Statistical Accuracy Tests. ACM Trans. Embed.

Comput. Syst. 12, 2s, Article 88 (May 2013), 26 pages. https://doi.org/10.1145/2465787.2465790

[36] Sasa Misailovic, Stelios Sidiroglou, and Martin C. Rinard. 2012. Dancing with Uncertainty. In Proceedings of the 2012 ACM Workshop on Relaxing

Synchronization for Multicore and Manycore Scalability (RACES ’12). ACM, New York, NY, USA, 51–60. https://doi.org/10.1145/2414729.2414738

[37] D. Mohapatra, V.K. Chippa, A. Raghunathan, and K. Roy. 2011. Design of voltage-scalable meta-functions for approximate computing. In Design,

Automation Test in Europe Conference Exhibition (DATE), 2011. 1–6. https://doi.org/10.1109/DATE.2011.5763154

[38] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M. Oskin. 2015. SNNAP: Approximate computing on programmable

SoCs via neural acceleration. In 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA). 603–614. https:

//doi.org/10.1109/HPCA.2015.7056066

[39] Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones. 2010. Scalable Stochastic Processors. In Proceedings of the Conference

on Design, Automation and Test in Europe (DATE ’10). European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 335–338.

http://dl.acm.org/citation.cfm?id=1870926.1871008

[40] Preeti Ranjan Panda, Nikil D. Dutt, Alexandru Nicolau, Francky Catthoor, Arnout Vandecappelle, Erik Brockmeyer, Chidamber Kulkarni, and

Eddy De Greef. 2001. Data Memory Organization and Optimizations in Application-Specific Systems. IEEE Des. Test 18, 3 (May 2001), 56–68.

https://doi.org/10.1109/54.922803

[41] J. Park and I. W. Sandberg. 1991. Universal Approximation Using Radial-basis-function Networks. Neural Comput. 3, 2 (June 1991), 246–257.

https://doi.org/10.1162/neco.1991.3.2.246

[42] Suganth Paul, Nikhil Jayakumar, and Sunil P. Khatri. 2009. A Fast Hardware Approach for Approximate, Efficient Logarithm and Antilogarithm

Computations. IEEE Trans. VLSI Syst. 17, 2 (2009), 269–277. https://doi.org/10.1109/TVLSI.2008.2003481

[43] Efecan Poyraz, Heming Xu, and Yifeng Cui. 2014. Application-specific I/O Optimizations on Petascale Supercomputers. Procedia Computer Science

29 (2014), 910 – 923. https://doi.org/10.1016/j.procs.2014.05.082

[44] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and Daniel Prener. 2012. Programming with Relaxed Synchronization. In

Proceedings of the 2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore Scalability (RACES ’12). ACM, New York, NY, USA,

41–50. https://doi.org/10.1145/2414729.2414737

[45] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data Types for

Safe and General Low-power Computation. SIGPLAN Not. 46, 6 (June 2011), 164–174. https://doi.org/10.1145/1993316.1993518

[46] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing Performance vs. Accuracy Trade-offs with Loop

Perforation. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE

’11). ACM, New York, NY, USA, 124–134. https://doi.org/10.1145/2025113.2025133

[47] Huaiming Song, Yanlong Yin, Yong Chen, and Xian-He Sun. 2013. Cost-intelligent Application-specific Data Layout Optimization for Parallel File

Systems. Cluster Computing 16, 2 (June 2013), 285–298. https://doi.org/10.1007/s10586-012-0200-4

[48] Greg Stitt and David Campbell. 2019. PANDORA: A Parallelizing Approximation-discovery Framework (WIP Paper). In Proceedings of the 20th

ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2019). ACM, New York, NY, USA,

198–202. https://doi.org/10.1145/3316482.3326345

[49] Vladimir Vapnik, Steven E. Golowich, and Alex Smola. 1996. Support Vector Method for Function Approximation, Regression Estimation, and Signal

Processing. In Advances in Neural Information Processing Systems 9. MIT Press, 281–287.

[50] Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Quality Programmable Vector

Processors for Approximate Computing. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46).

ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/2540708.2540710

[51] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. 2012. SALSA: Systematic logic synthesis of approximate circuits. In Design

Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE. 796–801.

16

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock ’18, June 03–05, 2018, Woodstock, NY

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

[52] John Wernsing, Jeremy Fowers, and Greg Stitt. 2012. RACECAR: A Heuristic for Automatic Function Specialization on Multi-core Heterogeneous

Systems. In CASES’12: IEEE/ACM International Conference on Compilers, Architecture, and Synthesis for Embedded Systems.

[53] K.E. Wires, M.J. Schulte, and J.E. Stine. 2000. Variable-correction truncated floating point multipliers. In Signals, Systems and Computers, 2000.

Conference Record of the Thirty-Fourth Asilomar Conference on, Vol. 2. 1344–1348 vol.2. https://doi.org/10.1109/ACSSC.2000.911211

[54] Ning Zhu, Wang Ling Goh, Weija Zhang, Kiat Seng Yeo, and Zhi Hui Kong. 2010. Design of Low-power High-speed Truncation-error-tolerant

Adder and Its Application in Digital Signal Processing. IEEE Trans. Very Large Scale Integr. Syst. 18, 8 (Aug. 2010), 1225–1229. https://doi.org/10.

1109/TVLSI.2009.2020591

[55] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard. 2012. Randomized Accuracy-aware Program Transformations for

Efficient Approximate Computations. SIGPLAN Not. 47, 1 (Jan. 2012), 441–454. https://doi.org/10.1145/2103621.2103710

17

