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PANDORA: An Architecture-Independent Parallelizing

Approximation-Discovery Framework

GREG STITT and DAVID CAMPBELL, University of Florida, USA

In this paper, we introduce the PANDORA framework for automatically discovering application- and architecture-specialized ap-

proximations of provided code. PANDORA complements existing compilers and runtime optimizers by generating approximations

with a range of Pareto-optimal tradeoffs between performance and error, which enables adaptation to different inputs, different user

preferences, and different runtime conditions (e.g., battery life). We demonstrate that PANDORA can create parallel approximations

of inherently sequential code by discovering alternative implementations that eliminate loop-carried dependencies. For a variety of

functions with loop-carried dependencies, PANDORA generates approximations that achieve speedups ranging from 2.3x to 81x,

with acceptable error for many usage scenarios. We also demonstrate PANDORA’s architecture-specialized approximations via FPGA

experiments, and highlight PANDORA’s discovery capabilities by removing loop-carried dependencies from a recurrence relation with

no known closed-form solution.
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1 INTRODUCTION

Since the introduction of computers, traditional design practices have focused on achieving exact semantic correctness

of an application and/or system. However, the rapid adoption of machine learning over the past decade has resulted

in the emergence of mainstream computing strategies where approximation is commonly accepted [24, 41, 49]. Even

before machine learning, approximation was a widespread, but largely unrecognized, practice due to the impossibility of

representing real numbers with finite precision. Such finite precision suggests that many applications—even those using

double-precision arithmetic—already tolerate approximation, including signal processing, robotics, financial analysis,

Internet searches, among others [28]. Even scientific-computing applications, which are known for their precision

constraints, are inherently approximate due to the use of real numbers and the common discretization of continuous

processes. For other applications, subjective quality often enables numerous approximations that trade off efficiency

and quality. For example, many signal-processing applications can tolerate occasional incorrect pixels or frequent small

inaccuracies where many pixels may be a slightly different color, where compression artifacts may be more apparent,

etc.
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Approximate computing [17, 22, 28] is an emerging area of research that looks to exploit this inherent imprecision to

explore more effective approximation strategies within acceptable error constraints. With the end of Dennard Scaling

[4], and with Moore’s Law decreasing [25], approximate computing provides a promising way of meeting the rapidly

increasing demands of future applications without relying on additional transistors.

Current approximate computing research focuses largely on specialized compilers, optimization frameworks [3,

33, 36, 44], and/or specialized programming languages [2, 8, 9] that enable designers to specify the acceptable error

of different regions of code [33, 36] and then apply approximations that meet the error constraint. There has also

been a significant focus on algorithmic and data-type approximations [36, 45, 46, 55] and approximate architectures

[10, 12, 14, 16, 21, 31, 39, 50, 54]. Although current work provides many technical benefits, these approaches suffer from

several significant limitations.

The first limitation is that approximations are often too application-specific to be discovered or supported by

compilers. For example, there are many unique application-specific approximations [36, 45, 46, 55] and optimizations

[40, 43, 47] that a compiler can’t achieve via a sequence of general code transformations. In addition, compilers are

unlikely to provide a built-in set of such approximations because they have very limited applicability. Similarly, most

application developers are unlikely to be aware of such niche approximations to apply them manually, and are even

more unlikely to be able to create new approximations. Furthermore, many approximations are architecture-specific,

which further decreases the likelihood of manual discovery and/or adoption by compilers.

Another limitation is that existing techniques only provide limited improvements up to 2x in performance and/or

energy (e.g., [1, 11, 14, 16, 21, 37, 50, 51, 53, 54]). Although beneficial, these improvements are often modest compared

to the 10x to 1000x improvements already provided by graphics-processing unit (GPU) and field-programmable gate

array (FPGA) accelerators [19, 52].

We address these limitations by introducing a parallelizing approximation-discovery framework called PANDORA.

Unlike many existing approximation approaches that derive approximations through a series of transformations to

the original code, PANDORA uses machine learning to automatically discover application-specific approximations

that are specialized for potentially any architecture. One key contribution of PANDORA is the use of approximation

to increase parallelism and amenability to acceleration. Although numerous studies have introduced parallelizing

transformations in compilers [5, 6, 15, 20, 26, 29], compilers require such transformations to be functionally equivalent.

By dropping this requirement, PANDORA enables exploration of significantly more parallelization options, while also

integrating and complementing existing techniques that reduce computation. Although several existing approaches also

use approximation to increase parallelism [33, 36, 38], those approaches either explore a more restricted approximation

space, typically by applying synchronization-relaxing approximations to an existing application [35, 36, 44], or use

neural-net-based approximation [17, 38], which can require a huge computational overhead to approximate some

functions. By contrast, our approach uses symbolic-regression-based machine learning to generate completely different

algorithms, while using fitness functions that maximize parallelism or other optimization goals (e.g., performance,

energy), and improve scalability by avoiding system-specific bottlenecks (e.g., data-movement, synchronization), while

also meeting different constraints (e.g., error, power, performance). In other words, our approach evolves a custom

parallelized approximation that explores a much larger parallelization space, of which previous approaches are a small

subset.

Compared to exact parallel baselines, we present preliminary results showing speedups from 2x to 40x over a range

of error constraints by eliminating loop-carried dependencies from well-known recurrence relations, which increases

to 4,000x when not restricted by I/O bandwidth. We complement these experiments with 336 synthetic loops that
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Fig. 1. Overview of how PANDORA integrates with existing compilers and runtime optimizers.

current compilers can only implement sequentially and show speedups ranging from 2.3x to 81x with an average

speedup of 9.5x and an average error of 0.3%. We also demonstrate amenability to architecture-specific acceleration

with FPGA-specialized approximations that achieve speedups from 2x to 10x for errors under 5%, and up to 757x for an

error of 18%.

The paper is organized as follows. Section 2 gives an overview of approximation flows and how PANDORA comple-

ments existing compilers. Section 3 describes our approach to approximation discovery. Section 4 presents experimental

results. Section 5 discusses related work. Section 6 describes limitations and ongoing work to enable more widespread

usage of the presented techniques. Section 7 presents conclusions.

2 PANDORA OVERVIEW

Figure 1 illustrates the envisioned usage of PANDORA with compilers and runtime optimizers. PANDORA complements

existing compilers by automatically creating new approximations for provided code. In the envisioned approximation

flow, the application code would initially be passed to a tool to determine which functions are the best approximation

candidates, how much approximation each function can tolerate, etc. This step is the subject of numerous existing

studies (e.g., [33, 36]) and is not the focus of this paper. Instead, we can leverage any of the ongoing work in that

area to provide PANDORA with a set of functions to approximate. In addition, PANDORA also takes as input a set of

optimization goals, application constraints, and fitness functions for the targeted architecture. These fitness functions,

discussed in more detail in Section 3, guide the discovery process by ensuring constraints are met, while estimating

metrics (performance, energy) of an approximation on a given architecture.

In our envisioned usage, optimization goals would be generally decided by the application designer. Constraints

would be provided by either the designer, or by existing tools that determine how much approximation can be tolerated

by a given application. Fitness functions would generally be provided in a library, but may require custom specification

for performance and/or energy estimation on specialized architectures (e.g., FPGAs).

Given these inputs, PANDORA automatically discovers a set of Pareto-optimal tradeoffs between performance (or

any optimization goal) and error. PANDORA provides those approximations back to the compiler to apply to the original

3
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code, or could potentially just generate a modified version of the original code that can be compiled. This latter approach

has the benefit of the compiler applying additional architecture-specific optimizations to the generated approximation.

Due to the increased compilation times for discovering approximations, we envision PANDORA being used as a final

optimization step (e.g., -O3), although preliminary results often only took on the order of minutes. We also envision an

offline approach where PANDORA concurrently searches for approximations in the background during application

development, and provides them to the compiler as the approximations are discovered.

Alternatively, PANDORA can also be used to provide approximations with a range of tradeoffs to a runtime optimizer.

Whereas static approaches are restricted to a single approximation, the use of PANDORA with a runtime optimizer

enables adaptive optimizations that could increase approximation based on appropriate runtime conditions (e.g.,

low battery life). Static approximations also restrict designers to a single definition of error, which will generally be

pessimistic to support the most-demanding users, leaving less-demanding users with untapped efficiency improvements.

Furthermore, even the same user could have different opinions of acceptable error in different situations (e.g., noisy

vs. quiet environments). PANDORA avoids this one-size-fits-all restriction by generating a range of Pareto-optimal

approximations that enables different approximations to be used in different usage scenarios.

3 PARALLELIZING APPROXIMATION DISCOVERY

In this section, we discuss PANDORA’s automatic discovery of parallelizing approximations for potentially any

architecture. Although we use the term function for simplicity, the approach applies to any level of granularity (e.g.,

loops, basic blocks, statements).

Whereas existing approximating compilers implement many computation-reducing approximations by replacing

portions of a dataflow graph with known approximations (e.g., [8, 17, 30, 38, 42, 44]), automatically creating parallelizing

approximations that aren’t derived from a series of transformations to the original code is a far more difficult problem.

This challenge is highlighted by the limited existence of manually introduced parallelizing approximation strategies.

In many cases, a parallelizing approximation may not even be known, especially for a particular architecture or

combination of resources.

In addition to approximation discovery, another key contribution is the use of approximation to significantly increase

the exploration space for automatic parallelization, which in turn makes more applications amenable to FPGA and GPU

acceleration. In fact, our preliminary experiments show that in some cases increasing the amount of computation—a

strategy that to our knowledge is not considered by any current approximation approach—can enable significant

amounts of untapped parallelism that greatly outweighs any extra operations. In addition to exploiting parallelism to

maximize performance, PANDORA can alternatively optimize for energy while meeting a power constraint and/or

performance constraint. Furthermore, while increasing parallelism alone might result in communication or memory

bottlenecks, PANDORA can use system-specific fitness functions to generate specialized approximations that avoid

such bottlenecks, providing improved scalability.

PANDORA complements conceptually similar approximate-computing research that increases parallelism via syn-

chronization relaxing [7, 35, 36, 44], and approaches that use FPGA- and GPU-amenable approximations (e.g., neural

nets [17, 38]). By using symbolic regression to evolve parallel approximations based on completely new algorithms,

our approach both includes and significantly expands the parallelization space of previous strategies. Such expanded

exploration is critical for identifying approximations where existing neural-net approaches have high overhead. PAN-

DORA is also conceptually similar to Paragen [13], which was a compiler technology that used genetic programming

4
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Fig. 2. PANDORA discovers approximations of (a) an existing function by (b) sampling outputs from within a relevant input range, and

then (c) performing a specialized symbolic regression to find equations with Pareto-optimal tradeoffs between error and performance

(or any goal).

to parallelize sequential software for multi-core processors. However, like other compilers, Paragen was restricted to

generating functionally correct alternatives, and did not support arbitrary architectures such as FPGAs and GPUs.

3.1 Approach

To discover approximations, PANDORA samples the original function’s output across an input range of interest. After

replacing the original function with samples, PANDORA exploits the fact that there are infinite functions that coincide,

or nearly coincide, with the samples. PANDORA searches these alternative functions looking for ones that are cheaper

computationally, more parallel, lower energy, etc. than the original function. Although counter-intuitive, replacing the

original function with samples enables the possibility of discovering numerous approximations that cannot be derived

via transformations to the original code, which we show is critical for both increasing parallelism and specializing an

approximation for a given architecture.

To find such an approximation, PANDORA performs a specialized form of symbolic regression, which is the problem

of searching the space of all mathematical equations to automatically discover the model of a given dataset. However,

whereas symbolic regression is solely focused on finding a function that minimizes error, PANDORA is also concerned

with finding functions (i.e., approximations) that have desirable computation or communication characteristics for a

given architecture.

Figure 2(a) demonstrates a simple example of approximating a sine wave within the input range of -π/2 to π/2.

Figure 2(b) shows the sampled output of the function. Figure 2(c) demonstrates two example regressions that approximate

the original function within the restricted range: a a piece-wise linear regression and a parabola. For this simple

example, the parabola approximation requires two multiplications, but has higher accuracy than the piece-wise linear

approximation that only requires one multiplication.

For these simple approximations, larger ranges can be achieved via piece-wise decomposition of the input space,

where if-statements first check the range and then apply the corresponding approximation. However, in most cases, the

approximation will automatically adapt to the entire range. Additionally, in many cases, a user may want the range

to be restricted to values used by the application. Although this intentionally simple example does not demonstrate

increased parallelism, we present experiments in Section 4 that significantly increase parallelism and in some cases

remove loop-carried dependencies. In general, PANDORA can trade off error for increased performance to support

different use cases, where at one extreme is the original function (low performance, no error) and at the opposite

extreme is a constant (high performance, likely prohibitive error).
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With this formulation of the problem, approximation discovery requires effective solutions to symbolic regression.

Most existing techniques for symbolic regression rely on genetic programming [23, 27]. To evaluate PANDORA, we

developed a custom symbolic-regression framework in Python that extends the DEAP [18] evolutionary computation

library with additional genetic-programming capabilities. The experiments in this paper approximate functions written

in Python, but PANDORA supports any language by discovering approximations based on output samples, as opposed

to language-specific constructs.

To guide genetic programming, the framework takes a configuration file as input that specifies a number of options.

First, the configuration file specifies the sampling strategy for training and testing, which currently allows for uniform

sampling and random sampling, while also specifying the number of samples to use in each input dimension, and the

range of values for those samples.

Next, the configuration file specifies the fitness function, which includes an optimization goal and any constraints.

PANDORA supports a variety of existing fitness functions, and is easily extendable to support other functions. For

example, in the simplest case, a user could select a fitness function to minimize root mean square error. In this case,

PANDORA essentially performs traditional symbolic regression without any consideration of performance or energy of

the resulting approximation. Typical fitness functions include minimizing error given a performance/energy constraint

or maximizing performance/energy given an error constraint. PANDORA allows for specification of any error metric,

but currently supports root mean square error, mean square error, and mean absolute percentage error. In general, an

ideal fitness function would provide an exact performance estimate for a given architecture. However, since determining

highly accurent performance estimates may require lengthy computation or even simulations that would result in

prohibitive training times, we expect most use cases to perform coarser estimations. Ultimately, the accuracy requirement

of the performance estimate depends on the use case. For approximations providing small performance improvements

(e.g., 5% to 10%), a more accurate estimate is needed. However, for approximations that achieve 2x to 10x improvements,

more error can be tolerated in the performance estimate.

To create a fitness function, we provide an architecture-specific performance-estimation heuristic that is applied

to each approximation. Although any performance estimation technique can be used, most of our experiments use

an estimate that is a function of the depth of the resulting approximation tree structure. By optimizing for tree depth,

genetic programming tends to find solutions that do more operations in parallel, since such parallelism tends to make

the tree wider while reducing the depth. For FPGA experiments, the fitness function uses the resource requirements

of the approximation to determine how many operations can fit on the FPGA, which also determines how many

operations can be done in parallel to improve performance. As a result, genetic programming tends to reduce the

resource requirements of the original code so that more operations can occur in parallel, so that the function can be

replicated more times, etc. In general, performance and energy estimations include system-specific characteristics (e.g.,

communication bandwidth limits), which enable genetic programming to modify the approximation to avoid bottlenecks.

For example, if data movement becomes a bottleneck, then genetic programming would prioritize approximations with

reduced communication (e.g., by eliminating inputs and/or synchronization).

After specifying the fitness function, the configuration file allows specification of primitives from which to build the

approximation during genetic programming. PANDORA includes basic mathematical primitives (addition, multiplication,

sine, log, etc.), in addition to combined with existing coarse-grained approximations (neural nets, perceptrons, hidden

Markov models). New primitives can easily be added simply by defining a function for the primitive, and adding

that function, along with definitions of its parameters and return values, to the code. The configuration settings also

include a large number of genetic-programming configuration options such as population size, number of generations,

6
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Fig. 3. (a) Example of a loop whose (b) unrolled DFG has no parallelism due to loop-carried dependencies and non-associative

operations. PANDORA discovers (c) an application-specific approximation with significant amounts of parallelism and acceptable

error for most use cases.

crossover strategies (e.g., one-point crossover, one-point leaf-biased crossover), and mutation strategies (e.g., uniform,

node replacement, random subtree insertion, random subtree removal).

3.2 Example Approximations

To illustrate usage of PANDORA, we provide several simple motivating examples to explain the functionality. Figure 3(a)

shows example code of a simple loop with loop-carried dependencies. Optimizing this type of loop is a well-known

compiler challenge because the iterations are dependent, and unrolling the loop creates a long sequence of dependent

operations with no parallelism (Figure 3(b)). Although compilers can sometimes parallelize similar examples via

tree-height reduction, those optimizations only work for associative operations. This example uses non-associative

subtractions, which prevents traditional parallelization. Although an integer version of this example could potentially

be parallelized by adding all of b[] with an adder tree and then subtracting from x, a compiler would be unlikely to

implement such a rarely applicable optimization. PANDORA has the key advantage of being able to automatically

generate such application-specific parallelizations.

For this example, we assume all operations take the same time, which makes sequential performance equal to the

total operations (41 for this example) and parallel performance equal to the maximum depth of the tree. We also assume

sufficient resources for maximum parallelism, which can easily be obtained on CPUs, FPGAs and GPUs for these

examples. To approximate this function with PANDORA, we use a fitness function that minimizes depth of the tree

without consideration of error, which generates a range of tradeoffs.

Figure 3(c) illustrates an approximation generated by PANDORA. Themore balanced tree structure shows significantly

increased parallelism compared to the original code, achieving a 5.9x speedup, with a mean absolute percentage error

of only 5.2e−14%, which we determined using 10,000 uniformly distributed random inputs between -32k and 32k.

For this approximation, the only error was due to the non-associativity of floating-point operations. Existing

compilers either ignore the error introduced by the order of floating-point operations, prevent any optimization that

introduce error, or allow the designer to specify different optimization goals (e.g., precision, fast, strict [54]). PANDORA

provides another alternative that identifies Pareto-optimal tradeoffs between error and performance. Although previous

work has also identified tradeoffs for floating-point applications [135], those approaches are a subset of the potential
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Fig. 4. (a) Example of a loop where PANDORA creates different specialized approximations for (b) random inputs ranging from -32k

to 32k, and (c) random inputs between 0 and 1.

approximations applied by our approach. In addition, PANDORA discovers these tradeoffs automatically as part of the

many implicitly explored approximation strategies enabled by genetic programming, without specifically trying to

optimize floating-point operations.

Figure 4 illustrates another example showing how different inputs can benefit from different approximations. The

loop in Figure 4(a) similarly has loop-carried dependencies and non-associative operations that are not parallelized by

compilers. Figure 4(b) illustrates an unexpected approximation generated using 10,000 uniformly distributed random

inputs ranging from -32k to 32k. In this case, PANDORA identifies that the loop is statistically very likely to converge

towards an output of -1, which eliminates all operations for a speedup of 21x, with an error of 0.08%. However, using

random inputs between 0 and 1 provides a significantly different approximation (Figure 4(c)) with speedup of 3.5x and

an error of 1.2e−14%. These results suggest that designers could use PANDORA to create multiple approximations for

different input values, similar to how function specialization optimizes a function for common inputs.

4 EXPERIMENTS

In this section, we present preliminary experiments demonstrating the capabilities of PANDORA. All experiments use

the Python framework described in the previous section.

Figure 5 demonstrates PANDORA’s ability to replace loop-carried dependencies—a long-time goal of compilers—

with approximations that have independent (i.e., parallel) iterations. The figure shows tradeoffs between error and

performance of multiple approximations, which we generated in PANDORA using different error constraints for each

function. The evaluated examples are recurrence relations with dependencies between iterations, which shows that

PANDORA is able to automatically find closed-form solutions or solutions without these dependencies. For example,

PANDORA automatically discovers a finite impulse response (FIR) filter when using an infinite impulse response (IIR)

as input. The included examples demonstrate three separate trends that we have also observed across other examples.

Although some of these examples have known approximations or closed-form solutions, the key advantage of PANDORA

is the automatic discovery of a closed-form solution or parallel approximation. This advantage is significant due to

the lack of approximations for the vast majority of real functions, and due to the common use of application-specific

approximations that are too unique for compiler support.
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Fig. 5. Parallel approximation speedup (with constrained input bandwidth) and root mean square error of various recurrence relations.

PANDORA discovered these approximations by eliminating loop-carried dependencies.

We created each example by writing corresponding Python code, which PANDORA then sampled to discover

approximations. The experiments evaluate performance independently from language and architecture by comparing

the depth of the approximation’s dataflow graph (DFG) with the depth of the original DFG after applying unrolling

and tree-height reduction. The depth of the DFG represents the length of the longest dependence chain, which bounds

execution time even with unlimited parallel resources. In general, a more parallel approximation tends to have a

smaller depth than a sequential approximation, where loop-carried dependencies result in a long sequence of dependent

iterations in the unrolled DFG. Although not all architectures will provide enough resources to achieve a performance

equal to this bound, the comparison is applicable to many existing architectures for the selected examples. The figure

specifies application-specific parameters (e.g., input sizes, constants) used in each experiments. To avoid arbitrarily large

speedups from large inputs, the experiments evaluate a range of input sizes that illustrate the basic trends. Although

approximation discovery times generally ranged from seconds to hours, we ran these experiments for days and then

collected results of the best approximations found at that time.

To avoid the unrealistic possibility of infinite input bandwidth, the speedup in Figure 5 is based on an input-bandwidth

constraint that matches existing PCIe bandwidth. The results demonstrate several trends. The first trend is that all

of the filter examples achieved a speedup of around 30x with low error, which increases slightly as more error is

allowed. The consecutive-sum examples demonstrate the second trend, where PANDORA achieved speedups of 5x

and 7x for input sizes of 1k and 10k. Unlike the other trends, this speedup was independent of the error constraint

because PANDORA found an exact closed-form solution that was simple enough to not benefit from approximation.

The remaining examples demonstrate the third trend, where PANDORA found closed-form solutions that exhibited

a rapid speedup increase from 1x to 40x for different error constraints. The examples in this third trend were more

complex than the closed-form solutions in the second trend, which enabled a larger set of Pareto-optimal tradeoffs.
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Fig. 6. Speedup from approximations of the filter examples in Figure 5 when not constrained by PCIe bandwidth.

The benefits of PANDORA are best highlighted by the logistic-map approximation in Figure 5. Whereas the other

examples have known approximations or closed-form solutions, logistic map does not have a known closed-form

solution. Despite the lack of a known solution, PANDORA found approximations with a root-mean-square error (RMSE)

of less than 1e−4. Although not an exact solution, such error is likely to be acceptable for some cases. One interesting

finding that highlights PANDORA’s discovery capabilities is the counter-intuitive characteristics of the generated

approximation. Despite the logistic map only using multiplication and subtraction, the discovered approximation uses a

square root, cosine, and hyperbolic tangent, which is unlikely to be discovered by any programmer.

Figure 6 re-evaluates the filter examples for use cases that may not be as limited by input bandwidth (e.g., FPGA

internal memory, large distributed systems with replicated data). The other examples are omitted because their results

do not change with additional bandwidth. Two important differences can be seen in these experiments: (1) significantly

higher speedups, ranging from 200x to 4000x; and (2) significant improvements from increasing error. Although

not all architectures will be able to realize this amount of parallelism, these results highlight potential performance

improvements.

Figure 7 complements these results with 336 randomly generated synthetic DFGs that represent unrolled loops with

loop-carried dependencies. For these experiments, PANDORA generated an approximation based on a mean absolute

percentage error constraint of 1%. To generate the synthetic loops, we created a script that produced corresponding

DFGs that would be difficult to parallelize with existing compilers. Each DFG included random types of floating-point

operations, multiple non-associative operations, random numbers of inputs, and random numbers of operations ranging

from 20 to 160. The results show a wide range of speedups from 2.3x to 81x, with a trend towards larger speedups

for larger error. Across all examples, speedup and error averaged 9.5x and 0.3%, respectively. PANDORA was able to

meet the error constraint for 93% of the examples, with many examples using orders-of-magnitude less error. For the

examples where PANDORA couldn’t meet the error constraint, the error ranged from 1% and 5.9%. The speedup of

many examples was limited by the small DFG size. The ratio of speedup to total operations tended to increase for larger

examples, which suggests that larger functions will likely experience significantly larger speedups.
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Fig. 7. Approximation tradeoffs between speedup and mean absolute percentage error (log scale) for 336 synthetic loops.

When repeating the tests with integer data, PANDORA discovered some approximations with no error. To our

knowledge, no existing approach can automatically convert a series of non-associative operations into an exact parallel

alternative. As a result, PANDORA is not solely limited to approximations, and can also be used to discover new

error-free transformations.

Another interesting result was that PANDORA was able to generate a wide range of different approximations for the

examples in Figure 7. Although many examples had increased parallelism, PANDORA occasionally removed iterations

of a loop that had little effect on error, which is a known approximation strategy referred to as loop perforation [8, 46]

that PANDORA discovered automatically. In most cases, PANDORA both reduced the total operations and parallelized

those operations. For five examples, PANDORA enabled a parallel approximation by increasing the total number of

operations. PANDORA also often automatically eliminated some of the inputs from the original application, which is a

known machine-learning technique referred to as dimensionality reduction. We envision this capability being useful

for eliminating communication bottlenecks and improving scalability in parallel systems.

Figure 8 demonstrates PANDORA’s ability to create parallelizing approximations for a specific architecture, which for

this experiment was an Arria 10 FPGA. In FPGAs, parallelism of an application is often limited by available resources.

By discovering approximations that require fewer FPGA resources, PANDORA increases realizable parallelism. In

these experiments, we compare achievable parallelism in terms of the number of IP instances that would fit in the

FPGA between Intel-provided IP cores and automatically generated approximations. For these experiments, PANDORA

generated approximations with speedups between 1x and 10x for mean-absolute percentage errors below 5%, with

rapid increases in speedup to over 100x for larger errors. For the ln example, PANDORA generated an approximation

that experienced a speedup of 757x at 18% error. Although the larger errors are unlikely to be acceptable, we included

the tradeoffs to demonstrate upper bounds on performance. The results assume equal clock frequencies, which likely

makes the speedup pessimistic due to most of the approximations using finer-grained operations that support higher

frequencies.

5 RELATEDWORK

Existing approximate computing work focuses largely on languages, compilers, and/or optimization frameworks to

improve performance/energy within designer-specified constraints. Rely [8] is a specialized language that enables
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Fig. 8. FPGA speedup (log2 scale) and mean absolute percentage error of PANDORA-generated approximations that reduce resource

utilization compared to Intel IP cores.

designers to specify accuracy and reliability (i.e., probability that a computation is correct) for different functions. When

combined with a specification for approximate hardware resources, Rely enables designers to evaluate if the architecture

can provide sufficient application reliability. Chisel [34] is a compiler-like framework that approximates a Rely program

to maximize performance or energy while ensuring reliability and accuracy constraints. Green [3] is a similar approach

that applies approximations to improve performance and energy while providing a specified quality of service. Our

approach complements these works by significantly expanding the exploration for parallel approximations via genetic

programming, while also removing the requirement for specification of approximation candidates and acceptability.

Quickstep [35] is a compiler-like framework with a similar goal as our proposed work: exploit approximation to create

parallelism within error constraints. The key difference is that Quickstep introduces parallelism by transforming an

existing program to allow relaxed synchronization and data races. By contrast, our approach generates a completely new

algorithm via genetic programming, which explores a much larger space of parallelization options. Dubstep [36] is an

extension of Quickstep that further increases parallelism via opportunistic synchronization and barriers. Renganarayana

et al. [44] present a similar synchronization-relaxing methodology for reducing synchronization overhead in parallel

programs. All of these prior studies are complementary to our proposed work, and could be used to increase parallelism

by relaxing synchronization within our generated approximations. We plan to integrate the synchronization-relaxing

approximation strategy into genetic programming as a mutation that would be considered with all other approximation

options.

SNNAP [38], also conceptually similar to our proposed work, approximates an application with neural nets, which

are executed on FPGAs. As opposed to using an approximation that is known to be efficient for a specific architecture,

our proposed approach has the more general goal of generating a parallel approximation for potentially any architecture,

including heterogeneous systems with different types of resources. Also, by performing genetic programming to create a

completely new algorithm that may contain neural nets as an approximation strategy, we explore a larger parallelization

space than SNNAP.

We previously published a preliminary version of PANDORA in [48], which we expand in this paper with signifi-

cantly more detailed explanation of the approach and framework, example approximations that demonstrate different
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capabilities and tradeoffs, an expanded evaluation in the experiments, a discussion of the envisioned usage of the

framework with compilers and runtime optimizers, and a greatly expanded discussion of related work.

6 LIMITATIONS AND FUTUREWORK

Despite demonstrating considerable potential for approximation, there are several limitations and challenges that must

be addressed to make PANDORA more widely usable. The most significant challenge is that PANDORA is based on

symbolic regression, which is known to be a challenging problem where existing strategies generally only work for toy

problems [32]. For future work, we plan to address this challenge in two ways. The first solution is hardware-accelerated

symbolic regression that performs over a million times faster than existing software implementations, according to our

preliminary results. Whereas existing software can generally only evaluate 100s to 1000s of solutions a second, a custom

hardware pipeline can evaluate 100s of millions of solutions per second. Such performance enables fundamentally new

exploration algorithms that we expect to overcome existing limitations. Our second planned solution is to consider

providing PANDORA with information about the original code. Although this solution may restrict some of the

counter-intuitive approximations that are currently discovered, it could also enable better solutions in situations where

symbolic regression techniques cannot find an attractive approximation.

Another limitation is that even when existing symbolic-regression techniques achieve an effective approximation,

the time required to discover that approximation can be a bottleneck. As a solution to this problem, PANDORA can be

configured to return the best approximation seen so far after a specified amount of time. Alternatively, PANDORA can

be used as a final optimization step, or to search for approximations in the background during application development.

In addition to speeding up symbolic regression, there is a need for better understanding effects of configuration

parameters. For example, use of course-grained primitives significantly speeds up the search, but also restricts the size

of the solution space, potentially resulting in less attractive approximation tradeoffs. Using finer-grained primitives

enables a larger solution space, but that larger space also suffers from numerous local optima in which the search

heuristic might get stuck. Similarly, there is a need to understand the tradeoffs between training time, approximation

quality, population size, and number of generations.

For any use case where the training data has noise, symbolic regression is often limited by the tendency to overfit,

which results in an overly complex equation that tries to account for the noise. When used for approximation, the

training data has no noise because function outputs are deterministic, which helps to eliminate this problem. PANDORA

can still potentially experience overfitting, but since most uses of PANDORA will specify a fitness function that

minimizes the size of the discovered approximations, overfit solutions will tend to be eliminated during exploration.

Another area of future work will be automatically decomposing the input space into piece-wise approximations. In

our experiments, we have noticed that in many cases PANDORA will provide good approximations within a restricted

range, while providing less attractive tradeoffs when used to approximation a larger input space. We have currently

dealt with this issue by manually creating multiple approximations, but that is only feasible in situations where the

designer understands the original function. In many cases, especially with machine learning, the original function is

unknown, which therefore requires an automated approach. As future work, we plan to investigate search heuristics

that hierarchically decompose the input space into smaller subspaces as long as approximation quality continues to

increase.

One fundamental limitation of PANDORA is that by relying on machine learning, PANDORA can only make

probabilistic, as opposed to absolute, guarantees about approximation error. However, all machine-learning techniques

share this same limitation, which has not prevented its widespread acceptance in various application domains.
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One interesting limitation of PANDORA is the tendency to discover unintuitive approximations. If a designer

needs to understand or debug the approximation when integrated with a larger application, the unintuitive nature

of approximations could be prohibitive. However, similar to the probabilistic error issue, this limitation is shared by

all machine-learning approaches, and has not limited the success of those approaches. Interestingly, the uninuitive

nature of the approximations highlights one of the biggest advantages of PANDORA: non-obvious approximations are

unlikely to be supported by a compiler or discovered by a designer.

7 CONCLUSIONS

We introduced the PANDORA framework for automatically discovering parallelizing approximations for potentially any

targeted architecture. Whereas existing approximation approaches focus on languages and compilers that transform

provided code into an approximation, PANDORA uses a symbolic-regression-based machine-learning strategy that

discovers a new approximation based on sampled outputs of the original function, as opposed to specific coding

constructs. By sampling function outputs, PANDORA explores the infinite number of alternative functions that coincide,

or nearly coincide, with the samples of the original function in order to find an approximation that can be computed

more efficiently. Envisioned usage of PANDORA includes generation of a range of Pareto-optimal approximations that

can be used by a compiler or runtime optimizer to adapt the level of approximation to the current input, the current

user’s preferences, or to runtime conditions such as battery life.

In this paper, we demonstrated that PANDORA can remove loop-carried dependencies from recurrence relations,

while also increasing parallelism in the presence of non-associative operations. We also showed how PANDORA can

generate FPGA-specific approximations that reduce resources requirements for a number of FPGA functions, which

achieved attractive tradeoffs between error and performance.

Although there are technical challenges preventing PANDORA from being widely usable in its current state, this

paper presents a proof-of-concept that demonstrates attractive Pareto-optimal tradeoffs to the decades-long compiler

challenge of parallelizing sequential code. This work also motivates the need for improvements in symbolic regression,

which would in turn provide even more attractive approximations.
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