19

20

21

22

23

24

25

26

27

28

29

33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

PANDORA: An Architecture-Independent Parallelizing

Approximation-Discovery Framework

GREG STITT and DAVID CAM PBELL, University of Florida, USA

In this paper, we introduce the PANDORA framework for automatically discovering application- and architecture-specialized ap-
proximations of provided code. PANDORA complements existing compilers and runtime optimizers by generating approximations
with a range of Pareto-optimal tradeoffs between performance and error, which enables adaptation to different inputs, different user
preferences, and different runtime conditions (e.g., battery life). We demonstrate that PANDORA can create parallel approximations
of inherently sequential code by discovering alternative implementations that eliminate loop-carried dependencies. For a variety of
functions with loop-carried dependencies, PANDORA generates approximations that achieve speedups ranging from 2.3x to 81x,
with acceptable error for many usage scenarios. We also demonstrate PANDORA’s architecture-specialized approximations via FPGA
experiments, and highlight PANDORA’s discovery capabilities by removing loop-carried dependencies from a recurrence relation with

no known closed-form solution.

CCS Concepts: « Software and its engineering — Compilers; « Mathematics of computing — Approximation; - Computing

methodologies — Machine learning approaches.

Additional Key Words and Phrases: symbolic regression, approximate computing, machine learning

ACM Reference Format:

Greg Stitt and David Campbell. 2018. PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework.
In Woodstock *18: ACM Symposium on Neural Gaze Detection, June 03—05, 2018, Woodstock, NY. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Since the introduction of computers, traditional design practices have focused on achieving exact semantic correctness
of an application and/or system. However, the rapid adoption of machine learning over the past decade has resulted
in the emergence of mainstream computing strategies where approximation is commonly accepted [24, 41, 49]. Even
before machine learning, approximation was a widespread, but largely unrecognized, practice due to the impossibility of
representing real numbers with finite precision. Such finite precision suggests that many applications—even those using
double-precision arithmetic—already tolerate approximation, including signal processing, robotics, financial analysis,
Internet searches, among others [28]. Even scientific-computing applications, which are known for their precision
constraints, are inherently approximate due to the use of real numbers and the common discretization of continuous
processes. For other applications, subjective quality often enables numerous approximations that trade off efficiency
and quality. For example, many signal-processing applications can tolerate occasional incorrect pixels or frequent small
inaccuracies where many pixels may be a slightly different color, where compression artifacts may be more apparent,

etc.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144

146
147
148
149

150

152

153

155

156

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

Approximate computing [17, 22, 28] is an emerging area of research that looks to exploit this inherent imprecision to
explore more effective approximation strategies within acceptable error constraints. With the end of Dennard Scaling
[4], and with Moore’s Law decreasing [25], approximate computing provides a promising way of meeting the rapidly
increasing demands of future applications without relying on additional transistors.

Current approximate computing research focuses largely on specialized compilers, optimization frameworks [3,
33, 36, 44], and/or specialized programming languages [2, 8, 9] that enable designers to specify the acceptable error
of different regions of code [33, 36] and then apply approximations that meet the error constraint. There has also
been a significant focus on algorithmic and data-type approximations [36, 45, 46, 55] and approximate architectures
[10, 12, 14, 16, 21, 31, 39, 50, 54]. Although current work provides many technical benefits, these approaches suffer from
several significant limitations.

The first limitation is that approximations are often too application-specific to be discovered or supported by
compilers. For example, there are many unique application-specific approximations [36, 45, 46, 55] and optimizations
[40, 43, 47] that a compiler can’t achieve via a sequence of general code transformations. In addition, compilers are
unlikely to provide a built-in set of such approximations because they have very limited applicability. Similarly, most
application developers are unlikely to be aware of such niche approximations to apply them manually, and are even
more unlikely to be able to create new approximations. Furthermore, many approximations are architecture-specific,
which further decreases the likelihood of manual discovery and/or adoption by compilers.

Another limitation is that existing techniques only provide limited improvements up to 2x in performance and/or
energy (e.g., [1, 11, 14, 16, 21, 37, 50, 51, 53, 54]). Although beneficial, these improvements are often modest compared
to the 10x to 1000x improvements already provided by graphics-processing unit (GPU) and field-programmable gate
array (FPGA) accelerators [19, 52].

We address these limitations by introducing a parallelizing approximation-discovery framework called PANDORA.

Unlike many existing approximation approaches that derive approximations through a series of transformations to
the original code, PANDORA uses machine learning to automatically discover application-specific approximations
that are specialized for potentially any architecture. One key contribution of PANDORA is the use of approximation

to increase parallelism and amenability to acceleration. Although numerous studies have introduced parallelizing

transformations in compilers [5, 6, 15, 20, 26, 29], compilers require such transformations to be functionally equivalent.

By dropping this requirement, PANDORA enables exploration of significantly more parallelization options, while also
integrating and complementing existing techniques that reduce computation. Although several existing approaches also
use approximation to increase parallelism [33, 36, 38], those approaches either explore a more restricted approximation
space, typically by applying synchronization-relaxing approximations to an existing application [35, 36, 44], or use
neural-net-based approximation [17, 38], which can require a huge computational overhead to approximate some
functions. By contrast, our approach uses symbolic-regression-based machine learning to generate completely different
algorithms, while using fitness functions that maximize parallelism or other optimization goals (e.g., performance,
energy), and improve scalability by avoiding system-specific bottlenecks (e.g., data-movement, synchronization), while
also meeting different constraints (e.g., error, power, performance). In other words, our approach evolves a custom
parallelized approximation that explores a much larger parallelization space, of which previous approaches are a small
subset.

Compared to exact parallel baselines, we present preliminary results showing speedups from 2x to 40x over a range
of error constraints by eliminating loop-carried dependencies from well-known recurrence relations, which increases

to 4,000x when not restricted by I/O bandwidth. We complement these experiments with 336 synthetic loops that
2

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

276
277
278

279

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

Standard Compiler Flow App Code Approximation Flow

int mai
= mam 01 (Select Functions for Goals, Constraints, and
£0; _ Approximation Fitness Functions

10, !
T IEY:

Discover Application- and
PANDORA Architecture-Specific

Approximations
Pareto-optimal
Approximations

»!
P

Lexing/Parsing

f() Approximations

Optimization

Binary battery, user feedback)

uP/GPU/FPGA p : 7 I"Runtime Conditions (e.g. low
«<—— Runtime Optimizer r—|
l

Fig. 1. Overview of how PANDORA integrates with existing compilers and runtime optimizers.

current compilers can only implement sequentially and show speedups ranging from 2.3x to 81x with an average
speedup of 9.5x and an average error of 0.3%. We also demonstrate amenability to architecture-specific acceleration
with FPGA-specialized approximations that achieve speedups from 2x to 10x for errors under 5%, and up to 757x for an
error of 18%.

The paper is organized as follows. Section 2 gives an overview of approximation flows and how PANDORA comple-
ments existing compilers. Section 3 describes our approach to approximation discovery. Section 4 presents experimental
results. Section 5 discusses related work. Section 6 describes limitations and ongoing work to enable more widespread

usage of the presented techniques. Section 7 presents conclusions.

2 PANDORA OVERVIEW

Figure 1 illustrates the envisioned usage of PANDORA with compilers and runtime optimizers. PANDORA complements
existing compilers by automatically creating new approximations for provided code. In the envisioned approximation
flow, the application code would initially be passed to a tool to determine which functions are the best approximation
candidates, how much approximation each function can tolerate, etc. This step is the subject of numerous existing
studies (e.g., [33, 36]) and is not the focus of this paper. Instead, we can leverage any of the ongoing work in that
area to provide PANDORA with a set of functions to approximate. In addition, PANDORA also takes as input a set of
optimization goals, application constraints, and fitness functions for the targeted architecture. These fitness functions,
discussed in more detail in Section 3, guide the discovery process by ensuring constraints are met, while estimating
metrics (performance, energy) of an approximation on a given architecture.

In our envisioned usage, optimization goals would be generally decided by the application designer. Constraints
would be provided by either the designer, or by existing tools that determine how much approximation can be tolerated
by a given application. Fitness functions would generally be provided in a library, but may require custom specification
for performance and/or energy estimation on specialized architectures (e.g., FPGAs).

Given these inputs, PANDORA automatically discovers a set of Pareto-optimal tradeoffs between performance (or
any optimization goal) and error. PANDORA provides those approximations back to the compiler to apply to the original

3

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

366

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

code, or could potentially just generate a modified version of the original code that can be compiled. This latter approach
has the benefit of the compiler applying additional architecture-specific optimizations to the generated approximation.
Due to the increased compilation times for discovering approximations, we envision PANDORA being used as a final
optimization step (e.g., -O3), although preliminary results often only took on the order of minutes. We also envision an
offline approach where PANDORA concurrently searches for approximations in the background during application
development, and provides them to the compiler as the approximations are discovered.

Alternatively, PANDORA can also be used to provide approximations with a range of tradeoffs to a runtime optimizer.
Whereas static approaches are restricted to a single approximation, the use of PANDORA with a runtime optimizer
enables adaptive optimizations that could increase approximation based on appropriate runtime conditions (e.g.,
low battery life). Static approximations also restrict designers to a single definition of error, which will generally be
pessimistic to support the most-demanding users, leaving less-demanding users with untapped efficiency improvements.
Furthermore, even the same user could have different opinions of acceptable error in different situations (e.g., noisy
vs. quiet environments). PANDORA avoids this one-size-fits-all restriction by generating a range of Pareto-optimal

approximations that enables different approximations to be used in different usage scenarios.

3 PARALLELIZING APPROXIMATION DISCOVERY

In this section, we discuss PANDORA’s automatic discovery of parallelizing approximations for potentially any
architecture. Although we use the term function for simplicity, the approach applies to any level of granularity (e.g.,
loops, basic blocks, statements).

Whereas existing approximating compilers implement many computation-reducing approximations by replacing
portions of a dataflow graph with known approximations (e.g., [8, 17, 30, 38, 42, 44]), automatically creating parallelizing
approximations that aren’t derived from a series of transformations to the original code is a far more difficult problem.
This challenge is highlighted by the limited existence of manually introduced parallelizing approximation strategies.
In many cases, a parallelizing approximation may not even be known, especially for a particular architecture or
combination of resources.

In addition to approximation discovery, another key contribution is the use of approximation to significantly increase
the exploration space for automatic parallelization, which in turn makes more applications amenable to FPGA and GPU
acceleration. In fact, our preliminary experiments show that in some cases increasing the amount of computation—a
strategy that to our knowledge is not considered by any current approximation approach—can enable significant
amounts of untapped parallelism that greatly outweighs any extra operations. In addition to exploiting parallelism to
maximize performance, PANDORA can alternatively optimize for energy while meeting a power constraint and/or
performance constraint. Furthermore, while increasing parallelism alone might result in communication or memory
bottlenecks, PANDORA can use system-specific fitness functions to generate specialized approximations that avoid
such bottlenecks, providing improved scalability.

PANDORA complements conceptually similar approximate-computing research that increases parallelism via syn-
chronization relaxing [7, 35, 36, 44], and approaches that use FPGA- and GPU-amenable approximations (e.g., neural
nets [17, 38]). By using symbolic regression to evolve parallel approximations based on completely new algorithms,
our approach both includes and significantly expands the parallelization space of previous strategies. Such expanded
exploration is critical for identifying approximations where existing neural-net approaches have high overhead. PAN-

DORA is also conceptually similar to Paragen [13], which was a compiler technology that used genetic programming

4

403
404
405
406
407
408
409
410
an
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

473

474
475
476
477

478

480
481
482
483

484

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

503

504

506
507

508

510
511
512
513

514

516
517
518
519
520
521
522
523
524

525

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

y=sin(x - m/2)+1 y=|co*x| y=co*x?
y y y y
: o o : { o) d
o o o 4 ® d
| I % £ ® dc/
| | A IR
x | I
-m/2 0 /2 : -m/2 0 /2 : -T1/2 0 /2 -1/2 0 /2
(a) Original Function (b) Function Samples (c) Approximation 1 Approximation N

Fig. 2. PANDORA discovers approximations of (a) an existing function by (b) sampling outputs from within a relevant input range, and
then (c) performing a specialized symbolic regression to find equations with Pareto-optimal tradeoffs between error and performance
(or any goal).

to parallelize sequential software for multi-core processors. However, like other compilers, Paragen was restricted to

generating functionally correct alternatives, and did not support arbitrary architectures such as FPGAs and GPUs.

3.1 Approach

To discover approximations, PANDORA samples the original function’s output across an input range of interest. After
replacing the original function with samples, PANDORA exploits the fact that there are infinite functions that coincide,
or nearly coincide, with the samples. PANDORA searches these alternative functions looking for ones that are cheaper
computationally, more parallel, lower energy, etc. than the original function. Although counter-intuitive, replacing the
original function with samples enables the possibility of discovering numerous approximations that cannot be derived
via transformations to the original code, which we show is critical for both increasing parallelism and specializing an
approximation for a given architecture.

To find such an approximation, PANDORA performs a specialized form of symbolic regression, which is the problem
of searching the space of all mathematical equations to automatically discover the model of a given dataset. However,
whereas symbolic regression is solely focused on finding a function that minimizes error, PANDORA is also concerned
with finding functions (i.e., approximations) that have desirable computation or communication characteristics for a

given architecture.

Figure 2(a) demonstrates a simple example of approximating a sine wave within the input range of -7 /2 to /2.

Figure 2(b) shows the sampled output of the function. Figure 2(c) demonstrates two example regressions that approximate
the original function within the restricted range: a a piece-wise linear regression and a parabola. For this simple
example, the parabola approximation requires two multiplications, but has higher accuracy than the piece-wise linear
approximation that only requires one multiplication.

For these simple approximations, larger ranges can be achieved via piece-wise decomposition of the input space,
where if-statements first check the range and then apply the corresponding approximation. However, in most cases, the
approximation will automatically adapt to the entire range. Additionally, in many cases, a user may want the range
to be restricted to values used by the application. Although this intentionally simple example does not demonstrate
increased parallelism, we present experiments in Section 4 that significantly increase parallelism and in some cases
remove loop-carried dependencies. In general, PANDORA can trade off error for increased performance to support
different use cases, where at one extreme is the original function (low performance, no error) and at the opposite
extreme is a constant (high performance, likely prohibitive error).

5

526

528

533

537

542

547

550
551

552

561

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

634

636
637
638
639
640
641
642
643
644
645
646
647

648

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

With this formulation of the problem, approximation discovery requires effective solutions to symbolic regression.
Most existing techniques for symbolic regression rely on genetic programming [23, 27]. To evaluate PANDORA, we
developed a custom symbolic-regression framework in Python that extends the DEAP [18] evolutionary computation
library with additional genetic-programming capabilities. The experiments in this paper approximate functions written
in Python, but PANDORA supports any language by discovering approximations based on output samples, as opposed
to language-specific constructs.

To guide genetic programming, the framework takes a configuration file as input that specifies a number of options.
First, the configuration file specifies the sampling strategy for training and testing, which currently allows for uniform
sampling and random sampling, while also specifying the number of samples to use in each input dimension, and the
range of values for those samples.

Next, the configuration file specifies the fitness function, which includes an optimization goal and any constraints.
PANDORA supports a variety of existing fitness functions, and is easily extendable to support other functions. For
example, in the simplest case, a user could select a fitness function to minimize root mean square error. In this case,
PANDORA essentially performs traditional symbolic regression without any consideration of performance or energy of
the resulting approximation. Typical fitness functions include minimizing error given a performance/energy constraint
or maximizing performance/energy given an error constraint. PANDORA allows for specification of any error metric,
but currently supports root mean square error, mean square error, and mean absolute percentage error. In general, an
ideal fitness function would provide an exact performance estimate for a given architecture. However, since determining
highly accurent performance estimates may require lengthy computation or even simulations that would result in
prohibitive training times, we expect most use cases to perform coarser estimations. Ultimately, the accuracy requirement
of the performance estimate depends on the use case. For approximations providing small performance improvements
(e.g., 5% to 10%), a more accurate estimate is needed. However, for approximations that achieve 2x to 10x improvements,
more error can be tolerated in the performance estimate.

To create a fitness function, we provide an architecture-specific performance-estimation heuristic that is applied
to each approximation. Although any performance estimation technique can be used, most of our experiments use
an estimate that is a function of the depth of the resulting approximation tree structure. By optimizing for tree depth,
genetic programming tends to find solutions that do more operations in parallel, since such parallelism tends to make
the tree wider while reducing the depth. For FPGA experiments, the fitness function uses the resource requirements
of the approximation to determine how many operations can fit on the FPGA, which also determines how many
operations can be done in parallel to improve performance. As a result, genetic programming tends to reduce the
resource requirements of the original code so that more operations can occur in parallel, so that the function can be
replicated more times, etc. In general, performance and energy estimations include system-specific characteristics (e.g.,
communication bandwidth limits), which enable genetic programming to modify the approximation to avoid bottlenecks.
For example, if data movement becomes a bottleneck, then genetic programming would prioritize approximations with
reduced communication (e.g., by eliminating inputs and/or synchronization).

After specifying the fitness function, the configuration file allows specification of primitives from which to build the
approximation during genetic programming. PANDORA includes basic mathematical primitives (addition, multiplication,
sine, log, etc.), in addition to combined with existing coarse-grained approximations (neural nets, perceptrons, hidden
Markov models). New primitives can easily be added simply by defining a function for the primitive, and adding
that function, along with definitions of its parameters and return values, to the code. The configuration settings also

include a large number of genetic-programming configuration options such as population size, number of generations,
6

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

720
721
722
723
724

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

766
767
768
769
770
771

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

CPECHECE IO L) igRey ()) 30) ())
CHE) iy G) (M)) () (= (I gR) = (&)
float f(float a, float b[]) { =5) @ @ ° 0 0 ° @ °
'

G (D)
)

bl

float x = a;
for (inti=0; i < 20; i++) { aib @ @ @ @
. ; + 20 iterations
x=x - b[i]; .
M ti
} operations @

@ Speedup: 5.9x

return x; Error: 5.2e4%
: >4) Ca)
(@) (b) i ©

Fig. 3. (a) Example of a loop whose (b) unrolled DFG has no parallelism due to loop-carried dependencies and non-associative
operations. PANDORA discovers (c) an application-specific approximation with significant amounts of parallelism and acceptable
error for most use cases.

crossover strategies (e.g., one-point crossover, one-point leaf-biased crossover), and mutation strategies (e.g., uniform,

node replacement, random subtree insertion, random subtree removal).

3.2 Example Approximations

To illustrate usage of PANDORA, we provide several simple motivating examples to explain the functionality. Figure 3(a)
shows example code of a simple loop with loop-carried dependencies. Optimizing this type of loop is a well-known
compiler challenge because the iterations are dependent, and unrolling the loop creates a long sequence of dependent
operations with no parallelism (Figure 3(b)). Although compilers can sometimes parallelize similar examples via
tree-height reduction, those optimizations only work for associative operations. This example uses non-associative
subtractions, which prevents traditional parallelization. Although an integer version of this example could potentially
be parallelized by adding all of b[] with an adder tree and then subtracting from x, a compiler would be unlikely to
implement such a rarely applicable optimization. PANDORA has the key advantage of being able to automatically
generate such application-specific parallelizations.

For this example, we assume all operations take the same time, which makes sequential performance equal to the
total operations (41 for this example) and parallel performance equal to the maximum depth of the tree. We also assume
sufficient resources for maximum parallelism, which can easily be obtained on CPUs, FPGAs and GPUs for these
examples. To approximate this function with PANDORA, we use a fitness function that minimizes depth of the tree
without consideration of error, which generates a range of tradeoffs.

Figure 3(c) illustrates an approximation generated by PANDORA. The more balanced tree structure shows significantly
increased parallelism compared to the original code, achieving a 5.9x speedup, with a mean absolute percentage error
of only 5.2¢714%, which we determined using 10,000 uniformly distributed random inputs between -32k and 32k.

For this approximation, the only error was due to the non-associativity of floating-point operations. Existing
compilers either ignore the error introduced by the order of floating-point operations, prevent any optimization that
introduce error, or allow the designer to specify different optimization goals (e.g., precision, fast, strict [54]). PANDORA
provides another alternative that identifies Pareto-optimal tradeoffs between error and performance. Although previous

work has also identified tradeoffs for floating-point applications [135], those approaches are a subset of the potential
7

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

887

889
890
891
892
893
894

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

float f(float b[]) {
float x = 0.0;
for (inti=0; i < &; i++) { @
x = (x - b[i]) / bII:

} Speedup: 21x
Error: 0.08%

Speedup: 3.5x

return x; Error: 1.2e%

(a) (b)

Fig. 4. (a) Example of a loop where PANDORA creates different specialized approximations for (b) random inputs ranging from -32k
to 32k, and (c) random inputs between 0 and 1.

approximations applied by our approach. In addition, PANDORA discovers these tradeoffs automatically as part of the
many implicitly explored approximation strategies enabled by genetic programming, without specifically trying to
optimize floating-point operations.

Figure 4 illustrates another example showing how different inputs can benefit from different approximations. The
loop in Figure 4(a) similarly has loop-carried dependencies and non-associative operations that are not parallelized by
compilers. Figure 4(b) illustrates an unexpected approximation generated using 10,000 uniformly distributed random
inputs ranging from -32k to 32k. In this case, PANDORA identifies that the loop is statistically very likely to converge
towards an output of -1, which eliminates all operations for a speedup of 21x, with an error of 0.08%. However, using
random inputs between 0 and 1 provides a significantly different approximation (Figure 4(c)) with speedup of 3.5x and
an error of 1.2¢714%. These results suggest that designers could use PANDORA to create multiple approximations for

different input values, similar to how function specialization optimizes a function for common inputs.

4 EXPERIMENTS

In this section, we present preliminary experiments demonstrating the capabilities of PANDORA. All experiments use
the Python framework described in the previous section.

Figure 5 demonstrates PANDORA’s ability to replace loop-carried dependencies—a long-time goal of compilers—
with approximations that have independent (i.e., parallel) iterations. The figure shows tradeoffs between error and
performance of multiple approximations, which we generated in PANDORA using different error constraints for each
function. The evaluated examples are recurrence relations with dependencies between iterations, which shows that
PANDORA is able to automatically find closed-form solutions or solutions without these dependencies. For example,

PANDORA automatically discovers a finite impulse response (FIR) filter when using an infinite impulse response (IIR)

as input. The included examples demonstrate three separate trends that we have also observed across other examples.

Although some of these examples have known approximations or closed-form solutions, the key advantage of PANDORA
is the automatic discovery of a closed-form solution or parallel approximation. This advantage is significant due to
the lack of approximations for the vast majority of real functions, and due to the common use of application-specific

approximations that are too unique for compiler support.

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1017

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

45

40

"

30 —_—————— T

’ X@-..-—ap——‘—‘K)(V 2
1.0E-8 1.0E-7 1.0E-6 1.0E-5 1.0E-4 1.0E-3 1.0E-2 1.0E-1 1.0E+0
Root Mean Square Error

*0

Logistic Map (R=2.5, N=10) ==Logistic Map (R=2.5, N=20) —&— Logistic Map (R=0.9, N=10) —A— Logistic Map (R=0.9, N=20)
—&—Consecutive Sum (1k) —8—Consecutive Sum (10k) —+—Cheby HP Filter ——Cheby LP Filter
Bandpass Filter Notch Filter —=—Single-Pole HP Filter —#—Single-Pole LP Filter

Fig. 5. Parallel approximation speedup (with constrained input bandwidth) and root mean square error of various recurrence relations.

PANDORA discovered these approximations by eliminating loop-carried dependencies.

We created each example by writing corresponding Python code, which PANDORA then sampled to discover
approximations. The experiments evaluate performance independently from language and architecture by comparing
the depth of the approximation’s dataflow graph (DFG) with the depth of the original DFG after applying unrolling
and tree-height reduction. The depth of the DFG represents the length of the longest dependence chain, which bounds
execution time even with unlimited parallel resources. In general, a more parallel approximation tends to have a
smaller depth than a sequential approximation, where loop-carried dependencies result in a long sequence of dependent
iterations in the unrolled DFG. Although not all architectures will provide enough resources to achieve a performance
equal to this bound, the comparison is applicable to many existing architectures for the selected examples. The figure
specifies application-specific parameters (e.g., input sizes, constants) used in each experiments. To avoid arbitrarily large
speedups from large inputs, the experiments evaluate a range of input sizes that illustrate the basic trends. Although
approximation discovery times generally ranged from seconds to hours, we ran these experiments for days and then
collected results of the best approximations found at that time.

To avoid the unrealistic possibility of infinite input bandwidth, the speedup in Figure 5 is based on an input-bandwidth
constraint that matches existing PCle bandwidth. The results demonstrate several trends. The first trend is that all
of the filter examples achieved a speedup of around 30x with low error, which increases slightly as more error is
allowed. The consecutive-sum examples demonstrate the second trend, where PANDORA achieved speedups of 5x

and 7x for input sizes of 1k and 10k. Unlike the other trends, this speedup was independent of the error constraint

because PANDORA found an exact closed-form solution that was simple enough to not benefit from approximation.

The remaining examples demonstrate the third trend, where PANDORA found closed-form solutions that exhibited
a rapid speedup increase from 1x to 40x for different error constraints. The examples in this third trend were more
complex than the closed-form solutions in the second trend, which enabled a larger set of Pareto-optimal tradeofTs.

9

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

1140

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

4,000 /

1,000 //

500 — L S————

———

1.0E-10 1.0E-9 1.0E-8 1.0E-7 1.0E-6 1.0E-5 1.0E-4 1.0E-3 1.0E-2 1.0E-1 1.0E+0
Root Mean Square Error

—+—Cheby HP Filter ——Cheby LP Filter Bandpass Filter Notch Filter —m—Single-Pole HP Filter —a—Single-Pole LP Filter

Fig. 6. Speedup from approximations of the filter examples in Figure 5 when not constrained by PCle bandwidth.

The benefits of PANDORA are best highlighted by the logistic-map approximation in Figure 5. Whereas the other
examples have known approximations or closed-form solutions, logistic map does not have a known closed-form
solution. Despite the lack of a known solution, PANDORA found approximations with a root-mean-square error (RMSE)
of less than 1e*. Although not an exact solution, such error is likely to be acceptable for some cases. One interesting
finding that highlights PANDORA’s discovery capabilities is the counter-intuitive characteristics of the generated
approximation. Despite the logistic map only using multiplication and subtraction, the discovered approximation uses a
square root, cosine, and hyperbolic tangent, which is unlikely to be discovered by any programmer.

Figure 6 re-evaluates the filter examples for use cases that may not be as limited by input bandwidth (e.g., FPGA
internal memory, large distributed systems with replicated data). The other examples are omitted because their results
do not change with additional bandwidth. Two important differences can be seen in these experiments: (1) significantly
higher speedups, ranging from 200x to 4000x; and (2) significant improvements from increasing error. Although
not all architectures will be able to realize this amount of parallelism, these results highlight potential performance
improvements.

Figure 7 complements these results with 336 randomly generated synthetic DFGs that represent unrolled loops with
loop-carried dependencies. For these experiments, PANDORA generated an approximation based on a mean absolute
percentage error constraint of 1%. To generate the synthetic loops, we created a script that produced corresponding
DFGs that would be difficult to parallelize with existing compilers. Each DFG included random types of floating-point
operations, multiple non-associative operations, random numbers of inputs, and random numbers of operations ranging
from 20 to 160. The results show a wide range of speedups from 2.3x to 81x, with a trend towards larger speedups
for larger error. Across all examples, speedup and error averaged 9.5x and 0.3%, respectively. PANDORA was able to
meet the error constraint for 93% of the examples, with many examples using orders-of-magnitude less error. For the
examples where PANDORA couldn’t meet the error constraint, the error ranged from 1% and 5.9%. The speedup of
many examples was limited by the small DFG size. The ratio of speedup to total operations tended to increase for larger
examples, which suggests that larger functions will likely experience significantly larger speedups.

10

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

1263

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

90

80
70 °

60

50 o °

40

Speedup

30
L]

20 Y ° o

10 ep * e °

, ®®® © 0 6 00 ®%

0.00001% 0.0001% 0.001% 0.01% 0.1% 1% 10%
Mean Absolute Percentage Error

Fig. 7. Approximation tradeoffs between speedup and mean absolute percentage error (log scale) for 336 synthetic loops.

When repeating the tests with integer data, PANDORA discovered some approximations with no error. To our
knowledge, no existing approach can automatically convert a series of non-associative operations into an exact parallel
alternative. As a result, PANDORA is not solely limited to approximations, and can also be used to discover new
error-free transformations.

Another interesting result was that PANDORA was able to generate a wide range of different approximations for the
examples in Figure 7. Although many examples had increased parallelism, PANDORA occasionally removed iterations
of a loop that had little effect on error, which is a known approximation strategy referred to as loop perforation [8, 46]
that PANDORA discovered automatically. In most cases, PANDORA both reduced the total operations and parallelized
those operations. For five examples, PANDORA enabled a parallel approximation by increasing the total number of
operations. PANDORA also often automatically eliminated some of the inputs from the original application, which is a
known machine-learning technique referred to as dimensionality reduction. We envision this capability being useful
for eliminating communication bottlenecks and improving scalability in parallel systems.

Figure 8 demonstrates PANDORA’s ability to create parallelizing approximations for a specific architecture, which for
this experiment was an Arria 10 FPGA. In FPGAs, parallelism of an application is often limited by available resources.
By discovering approximations that require fewer FPGA resources, PANDORA increases realizable parallelism. In
these experiments, we compare achievable parallelism in terms of the number of IP instances that would fit in the
FPGA between Intel-provided IP cores and automatically generated approximations. For these experiments, PANDORA
generated approximations with speedups between 1x and 10x for mean-absolute percentage errors below 5%, with
rapid increases in speedup to over 100x for larger errors. For the In example, PANDORA generated an approximation
that experienced a speedup of 757x at 18% error. Although the larger errors are unlikely to be acceptable, we included
the tradeoffs to demonstrate upper bounds on performance. The results assume equal clock frequencies, which likely
makes the speedup pessimistic due to most of the approximations using finer-grained operations that support higher

frequencies.

5 RELATED WORK

Existing approximate computing work focuses largely on languages, compilers, and/or optimization frameworks to

improve performance/energy within designer-specified constraints. Rely [8] is a specialized language that enables
11

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385

1386

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

Speedup
&

0.25
2% 4% 8% 16% 32% 64% 128%

Mean Absolute Percentage Error

—+—sin —®—sqrt ——In exp —*—tan —e—cube_root

Fig. 8. FPGA speedup (logz scale) and mean absolute percentage error of PANDORA-generated approximations that reduce resource
utilization compared to Intel IP cores.

designers to specify accuracy and reliability (i.e., probability that a computation is correct) for different functions. When
combined with a specification for approximate hardware resources, Rely enables designers to evaluate if the architecture
can provide sufficient application reliability. Chisel [34] is a compiler-like framework that approximates a Rely program
to maximize performance or energy while ensuring reliability and accuracy constraints. Green [3] is a similar approach
that applies approximations to improve performance and energy while providing a specified quality of service. Our
approach complements these works by significantly expanding the exploration for parallel approximations via genetic
programming, while also removing the requirement for specification of approximation candidates and acceptability.

Quickstep [35] is a compiler-like framework with a similar goal as our proposed work: exploit approximation to create
parallelism within error constraints. The key difference is that Quickstep introduces parallelism by transforming an
existing program to allow relaxed synchronization and data races. By contrast, our approach generates a completely new
algorithm via genetic programming, which explores a much larger space of parallelization options. Dubstep [36] is an
extension of Quickstep that further increases parallelism via opportunistic synchronization and barriers. Renganarayana
et al. [44] present a similar synchronization-relaxing methodology for reducing synchronization overhead in parallel
programs. All of these prior studies are complementary to our proposed work, and could be used to increase parallelism
by relaxing synchronization within our generated approximations. We plan to integrate the synchronization-relaxing
approximation strategy into genetic programming as a mutation that would be considered with all other approximation
options.

SNNAP [38], also conceptually similar to our proposed work, approximates an application with neural nets, which
are executed on FPGAs. As opposed to using an approximation that is known to be efficient for a specific architecture,
our proposed approach has the more general goal of generating a parallel approximation for potentially any architecture,
including heterogeneous systems with different types of resources. Also, by performing genetic programming to create a
completely new algorithm that may contain neural nets as an approximation strategy, we explore a larger parallelization
space than SNNAP.

We previously published a preliminary version of PANDORA in [48], which we expand in this paper with signifi-

cantly more detailed explanation of the approach and framework, example approximations that demonstrate different
12

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

1509

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

capabilities and tradeoffs, an expanded evaluation in the experiments, a discussion of the envisioned usage of the

framework with compilers and runtime optimizers, and a greatly expanded discussion of related work.

6 LIMITATIONS AND FUTURE WORK

Despite demonstrating considerable potential for approximation, there are several limitations and challenges that must
be addressed to make PANDORA more widely usable. The most significant challenge is that PANDORA is based on
symbolic regression, which is known to be a challenging problem where existing strategies generally only work for toy
problems [32]. For future work, we plan to address this challenge in two ways. The first solution is hardware-accelerated
symbolic regression that performs over a million times faster than existing software implementations, according to our
preliminary results. Whereas existing software can generally only evaluate 100s to 1000s of solutions a second, a custom
hardware pipeline can evaluate 100s of millions of solutions per second. Such performance enables fundamentally new
exploration algorithms that we expect to overcome existing limitations. Our second planned solution is to consider
providing PANDORA with information about the original code. Although this solution may restrict some of the
counter-intuitive approximations that are currently discovered, it could also enable better solutions in situations where
symbolic regression techniques cannot find an attractive approximation.

Another limitation is that even when existing symbolic-regression techniques achieve an effective approximation,
the time required to discover that approximation can be a bottleneck. As a solution to this problem, PANDORA can be

configured to return the best approximation seen so far after a specified amount of time. Alternatively, PANDORA can

be used as a final optimization step, or to search for approximations in the background during application development.

In addition to speeding up symbolic regression, there is a need for better understanding effects of configuration
parameters. For example, use of course-grained primitives significantly speeds up the search, but also restricts the size
of the solution space, potentially resulting in less attractive approximation tradeoffs. Using finer-grained primitives
enables a larger solution space, but that larger space also suffers from numerous local optima in which the search
heuristic might get stuck. Similarly, there is a need to understand the tradeoffs between training time, approximation
quality, population size, and number of generations.

For any use case where the training data has noise, symbolic regression is often limited by the tendency to overfit,
which results in an overly complex equation that tries to account for the noise. When used for approximation, the
training data has no noise because function outputs are deterministic, which helps to eliminate this problem. PANDORA
can still potentially experience overfitting, but since most uses of PANDORA will specify a fitness function that
minimizes the size of the discovered approximations, overfit solutions will tend to be eliminated during exploration.

Another area of future work will be automatically decomposing the input space into piece-wise approximations. In
our experiments, we have noticed that in many cases PANDORA will provide good approximations within a restricted
range, while providing less attractive tradeoffs when used to approximation a larger input space. We have currently
dealt with this issue by manually creating multiple approximations, but that is only feasible in situations where the
designer understands the original function. In many cases, especially with machine learning, the original function is
unknown, which therefore requires an automated approach. As future work, we plan to investigate search heuristics
that hierarchically decompose the input space into smaller subspaces as long as approximation quality continues to
increase.

One fundamental limitation of PANDORA is that by relying on machine learning, PANDORA can only make
probabilistic, as opposed to absolute, guarantees about approximation error. However, all machine-learning techniques

share this same limitation, which has not prevented its widespread acceptance in various application domains.
13

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1632

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

One interesting limitation of PANDORA is the tendency to discover unintuitive approximations. If a designer
needs to understand or debug the approximation when integrated with a larger application, the unintuitive nature
of approximations could be prohibitive. However, similar to the probabilistic error issue, this limitation is shared by
all machine-learning approaches, and has not limited the success of those approaches. Interestingly, the uninuitive
nature of the approximations highlights one of the biggest advantages of PANDORA: non-obvious approximations are

unlikely to be supported by a compiler or discovered by a designer.

7 CONCLUSIONS

We introduced the PANDORA framework for automatically discovering parallelizing approximations for potentially any
targeted architecture. Whereas existing approximation approaches focus on languages and compilers that transform
provided code into an approximation, PANDORA uses a symbolic-regression-based machine-learning strategy that
discovers a new approximation based on sampled outputs of the original function, as opposed to specific coding
constructs. By sampling function outputs, PANDORA explores the infinite number of alternative functions that coincide,
or nearly coincide, with the samples of the original function in order to find an approximation that can be computed
more efficiently. Envisioned usage of PANDORA includes generation of a range of Pareto-optimal approximations that
can be used by a compiler or runtime optimizer to adapt the level of approximation to the current input, the current
user’s preferences, or to runtime conditions such as battery life.

In this paper, we demonstrated that PANDORA can remove loop-carried dependencies from recurrence relations,
while also increasing parallelism in the presence of non-associative operations. We also showed how PANDORA can
generate FPGA-specific approximations that reduce resources requirements for a number of FPGA functions, which
achieved attractive tradeoffs between error and performance.

Although there are technical challenges preventing PANDORA from being widely usable in its current state, this
paper presents a proof-of-concept that demonstrates attractive Pareto-optimal tradeoffs to the decades-long compiler
challenge of parallelizing sequential code. This work also motivates the need for improvements in symbolic regression,

which would in turn provide even more attractive approximations.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant Nos. CNS-1149285,
CNS-1718033, and CCF-1909244.

REFERENCES

[1] C. Alvarez,]J. Corbal, and M. Valero. 2005. Fuzzy memoization for floating-point multimedia applications. Computers, IEEE Transactions on 54, 7 (July
2005), 922-927. https://doi.org/10.1109/TC.2005.119

[2] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Amarasinghe. 2011. Language and Compiler Support for
Auto-tuning Variable-accuracy Algorithms. In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO ’11). IEEE Computer Society, Washington, DC, USA, 85-96. http://dl.acm.org/citation.cfm?id=2190025.2190056

[3] Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Framework for Supporting Energy-conscious Programming Using Controlled Approximation.
In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI °10). ACM, New York, NY, USA,
198-209. https://doi.org/10.1145/1806596.1806620

[4] M. Bohr. 2007. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. Solid-State Circuits Society Newsletter, IEEE 12, 1 (Winter 2007), 11-13.
https://doi.org/10.1109/N-SSC.2007.4785534

[5] Pierre Boulet, Alain Darte, Georges-André Silber, and Frédéric Vivien. 1998. Loop parallelization algorithms: from parallelism extraction to code
generation. Parallel Comput. 24, 3-4 (1998), 421-444. https://doi.org/10.1016/S0167-8191(98)00020-9

14

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

1704 [6] E.Bugnion, Shih-Wei Liao, B.R. Murphy, S.P. Amarasinghe, J.M. Anderson, MW. Hall, and M.S Lam. 1996. Maximizing multiprocessor performance 1756
1705 with the SUIF compiler. Computer 29, 12 (1996), 84,85,86,87,88,89. https://doi.org/10.1109/2.546613 1757
1706 [7] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon Wei, and David Brooks. 2014. HELIX-RC: An Architecture-compiler x;z
1707 Co-design for Automatic Parallelization of Irregular Programs. In Proceeding of the 41st Annual International Symposium on Computer Architecuture 1760
1708 (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 217-228. http://dl.acm.org/citation.cfm?id=2665671.2665705 1761
1700 [8] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. 2013. Verified Integrity Properties for Safe Approximate Program :;2?
10 Transformations. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation (PEPM °13). ACM, New York, 1764
NY, USA, 63-66. https://doi.org/10.1145/2426890.2426901 1765

1 [9] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying Quantitative Reliability for Programs That Execute on Unreliable Hardware. 1766
1712 In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA 1767
1713 ’13). ACM, New York, NY, USA, 33-52. https://doi.org/10.1145/2509136.2509546 l;gz
1714 [10] Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar Korkmaz, Krishna V. Palem, and Balasubramanian Seshasayee. 2006. 1770
1715 Ultra-efficient (Embedded) SOC Architectures Based on Probabilistic CMOS (PCMOS) Technology. In Proceedings of the Conference on Design, 1771
1716 Automation and Test in Europe: Proceedings (DATE "06). European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 1110-1115. 1772
1717 http://dl.acm.org/citation.cfm?id=1131481.1131790 1;;3
1718 [11] Lakshmi N.B. Chakrapani, Kirthi Krishna Muntimadugu, Avinash Lingamneni, Jason George, and Krishna V. Palem. 2008. Highly Energy and 1775
1 Performance Efficient Embedded Computing Through Approximately Correct Arithmetic: A Mathematical Foundation and Preliminary Experimental 1776
0 Validation. In Proceedings of the 2008 International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES "08). ACM, 1;;;
New York, NY, USA, 187-196. https://doi.org/10.1145/1450095.1450124 1779

1721 [12] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Analysis and Characterization of Inherent Application 1780
1722 Resilience for Approximate Computing. In Proceedings of the 50th Annual Design Automation Conference (DAC °13). ACM, New York, NY, USA, 1781
1723 Article 113, 9 pages. https://doi.org/10.1145/2463209.2488873 1782
1724 [13] Noel Cressie. 1990. The origins of kriging. Mathematical Geology 22, 3 (1990), 239-252. https://doi.org/10.1007/BF00889887 l;:i
1725 [14] M. de la Guia Solaz and Richard Conway. 2010. Comparative study on Wordlength Reduction and Truncation for low power multipliers. In MIPRO, 1785
1726 2010 Proceedings of the 33rd International Convention. 84-88. 1786
1727 [15] A.E.Eichenberger, K. O'Brien, Peng Wu, Tong Chen, P.H. Oden, D.A. Prener, J.C. Shepherd, Byoungro So, Z. Sura, A. Wang, Tao Zhang, Peng Zhao, :;2;
1728 and M. Gschwind. 2005. Optimizing Compiler for the CELL Processor. In Parallel Architectures and Compilation Techniques, 2005. PACT 2005. 14th 1789
1790 International Conference on. 161 — 172. https://doi.org/10.1109/PACT.2005.33 1790
) [16] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Architecture Support for Disciplined Approximate Programming. In 1791
1720 Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XVII). 1792
1731 ACM, New York, NY, USA, 301-312. https://doi.org/10.1145/2150976.2151008 xzz
1732 [17] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural Acceleration for General-Purpose Approximate Programs. In 1795
1733 Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45). IEEE Computer Society, Washington, DC, 1796
1734 USA, 449-460. https://doi.org/10.1109/MICRO.2012.48 1797
1735 [18] Félix-Antoine Fortin, Frangois-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms 1;22
1736 Made Easy. Journal of Machine Learning Research 13 (July 2012), 2171-2175. 1800
1737 [19] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. 2012. A performance and energy comparison of FPGAs, GPUs, and multicores for 1801
1738 sliding-window applications. In FPGA ’12: Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays (FPGA ’12). ligi
1730 ACM, New York, NY, USA, 47-56. https://doi.org/10.1145/2145694.2145704 130;1
s [20] Milind Girkar and Constantine D. Polychronopoulos. 1995. Extracting Task-level Parallelism. ACM Trans. Program. Lang. Syst. 17, 4 (July 1995), 1805
600-634. https://doi.org/10.1145/210184.210189 1806

174 [21] V. Gupta, D. Mohapatra, Sang Phill Park, A. Raghunathan, and K. Roy. 2011. IMPACT: IMPrecise adders for low-power approximate computing. In 1807
1742 Low Power Electronics and Design (ISLPED) 2011 International Symposium on. 409-414. https://doi.org/10.1109/ISLPED.2011.5993675 Izgi
1743 [22] J. Han and M. Orshansky. 2013. Approximate computing: An emerging paradigm for energy-efficient design. In 2013 18th IEEE European Test 1810
1744 Symposium (ETS). 1-6. https://doi.org/10.1109/ETS.2013.6569370 1811
1745 [23] Gregory S. Hornby. 2006. ALPS: The Age-layered Population Structure for Reducing the Problem of Premature Convergence. In Proceedings of the 1812
1746 8th Annual Conference on Genetic and Evolutionary Computation (GECCO "06). ACM, New York, NY, USA, 815-822. https://doi.org/10.1145/1143997. Iz::
1747 1144142 1815
1748 [24] K. Hornik, M. Stinchcombe, and H. White. 1989. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 2, 5 (July 1989), 1816
o 359-366. https://doi.org/10.1016/0893-6080(89)90020-8 E;
50 [25] A.Huang. 2015. Moore’s Law is Dying (and that could be good). Spectrum, IEEE 52, 4 (April 2015), 43-47. https://doi.org/10.1109/MSPEC.2015.7065418 1819
[26] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. 2002. Iterative compilation. Springer-Verlag New York, Inc., New York, NY, USA, 171-187. 1820

1751 [27] JohnR.Koza. 1994. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, USA. 1821
1752 [28] Logan Kugler. 2015. Is "Good Enough" Computing Good Enough? Commun. ACM 58, 5 (April 2015), 12-14. https://doi.org/10.1145/2742482 1822
1753 [29] Sameer Kulkarni and John Cavazos. 2012. Mitigating the Compiler Optimization Phase-ordering Problem Using Machine Learning. In Proceedings of 122:

1754 the ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 1825
1755 15 1826

1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

Woodstock ’18, June 03-05, 2018, Woodstock, NY Trovato and Tobin, et al.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45

[46

[47]

[48]

[49]

[50]

[51]

147-162. https://doi.org/10.1145/2384616.2384628

J. M. Pierre Langlois and Dhamin Al-Khalili. 2006. Carry-free approximate squaring functions with O(n) complexity and O(1) delay. IEEE Trans. on
Circuits and Systems 53-11, 5 (2006), 374-378. http://dblp.uni-trier.de/db/journals/tcas/tcasII53. html#LangloisA06

Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. 2011. Flikker: Saving DRAM Refresh-power Through Critical Data
Partitioning. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVI). ACM, New York, NY, USA, 213-224. https://doi.org/10.1145/1950365.1950391

James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin
Harper, Kenneth De Jong, and Una-May O’Reilly. 2012. Genetic Programming Needs Better Benchmarks. In Proceedings of the 14th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA, 791-798. https://doi.org/10.1145/2330163.2330273

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and Accuracy-aware Optimization of
Approximate Computational Kernels. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA °14). ACM, New York, NY, USA, 309-328. https://doi.org/10.1145/2660193.2660231

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and Accuracy-aware Optimization of
Approximate Computational Kernels. SIGPLAN Not. 49, 10 (Oct. 2014), 309-328. https://doi.org/10.1145/2714064.2660231

Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing Sequential Programs with Statistical Accuracy Tests. ACM Trans. Embed.
Comput. Syst. 12, 2s, Article 88 (May 2013), 26 pages. https://doi.org/10.1145/2465787.2465790

Sasa Misailovic, Stelios Sidiroglou, and Martin C. Rinard. 2012. Dancing with Uncertainty. In Proceedings of the 2012 ACM Workshop on Relaxing
Synchronization for Multicore and Manycore Scalability (RACES ’12). ACM, New York, NY, USA, 51-60. https://doi.org/10.1145/2414729.2414738
D. Mohapatra, VK. Chippa, A. Raghunathan, and K. Roy. 2011. Design of voltage-scalable meta-functions for approximate computing. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011. 1-6. https://doi.org/10.1109/DATE.2011.5763154

T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M. Oskin. 2015. SNNAP: Approximate computing on programmable
SoCs via neural acceleration. In 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA). 603-614. https:
//doi.org/10.1109/HPCA.2015.7056066

Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones. 2010. Scalable Stochastic Processors. In Proceedings of the Conference
on Design, Automation and Test in Europe (DATE °10). European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 335-338.
http://dl.acm.org/citation.cfm?id=1870926.1871008

Preeti Ranjan Panda, Nikil D. Dutt, Alexandru Nicolau, Francky Catthoor, Arnout Vandecappelle, Erik Brockmeyer, Chidamber Kulkarni, and
Eddy De Greef. 2001. Data Memory Organization and Optimizations in Application-Specific Systems. IEEE Des. Test 18, 3 (May 2001), 56—68.
https://doi.org/10.1109/54.922803

J. Park and I. W. Sandberg. 1991. Universal Approximation Using Radial-basis-function Networks. Neural Comput. 3, 2 (June 1991), 246-257.
https://doi.org/10.1162/neco0.1991.3.2.246

Suganth Paul, Nikhil Jayakumar, and Sunil P. Khatri. 2009. A Fast Hardware Approach for Approximate, Efficient Logarithm and Antilogarithm
Computations. IEEE Trans. VLSI Syst. 17, 2 (2009), 269-277. https://doi.org/10.1109/TVLSI.2008.2003481

Efecan Poyraz, Heming Xu, and Yifeng Cui. 2014. Application-specific I/O Optimizations on Petascale Supercomputers. Procedia Computer Science
29 (2014), 910 - 923. https://doi.org/10.1016/j.procs.2014.05.082

Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and Daniel Prener. 2012. Programming with Relaxed Synchronization. In
Proceedings of the 2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore Scalability (RACES ’12). ACM, New York, NY, USA,
41-50. https://doi.org/10.1145/2414729.2414737

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data Types for
Safe and General Low-power Computation. SIGPLAN Not. 46, 6 (June 2011), 164-174. https://doi.org/10.1145/1993316.1993518

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing Performance vs. Accuracy Trade-offs with Loop
Perforation. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE
’11). ACM, New York, NY, USA, 124-134. https://doi.org/10.1145/2025113.2025133

Huaiming Song, Yanlong Yin, Yong Chen, and Xian-He Sun. 2013. Cost-intelligent Application-specific Data Layout Optimization for Parallel File
Systems. Cluster Computing 16, 2 (June 2013), 285-298. https://doi.org/10.1007/s10586-012-0200-4

Greg Stitt and David Campbell. 2019. PANDORA: A Parallelizing Approximation-discovery Framework (WIP Paper). In Proceedings of the 20th
ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2019). ACM, New York, NY, USA,
198-202. https://doi.org/10.1145/3316482.3326345

Vladimir Vapnik, Steven E. Golowich, and Alex Smola. 1996. Support Vector Method for Function Approximation, Regression Estimation, and Signal
Processing. In Advances in Neural Information Processing Systems 9. MIT Press, 281-287.

Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Quality Programmable Vector
Processors for Approximate Computing. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46).
ACM, New York, NY, USA, 1-12. https://doi.org/10.1145/2540708.2540710

S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. 2012. SALSA: Systematic logic synthesis of approximate circuits. In Design
Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE. 796-801.

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

2001

PANDORA: An Architecture-Independent Parallelizing Approximation-Discovery Framework Woodstock *18, June 03-05, 2018, Woodstock, NY

[52] John Wernsing, Jeremy Fowers, and Greg Stitt. 2012. RACECAR: A Heuristic for Automatic Function Specialization on Multi-core Heterogeneous
Systems. In CASES’12: IEEE/ACM International Conference on Compilers, Architecture, and Synthesis for Embedded Systems.

[53] K.E. Wires, M.J. Schulte, and J.E. Stine. 2000. Variable-correction truncated floating point multipliers. In Signals, Systems and Computers, 2000.
Conference Record of the Thirty-Fourth Asilomar Conference on, Vol. 2. 1344-1348 vol.2. https://doi.org/10.1109/ACSSC.2000.911211

[54] Ning Zhu, Wang Ling Goh, Weija Zhang, Kiat Seng Yeo, and Zhi Hui Kong. 2010. Design of Low-power High-speed Truncation-error-tolerant
Adder and Its Application in Digital Signal Processing. IEEE Trans. Very Large Scale Integr. Syst. 18, 8 (Aug. 2010), 1225-1229. https://doi.org/10.
1109/TVLSIL.2009.2020591

[55] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard. 2012. Randomized Accuracy-aware Program Transformations for
Efficient Approximate Computations. SIGPLAN Not. 47, 1 (Jan. 2012), 441-454. https://doi.org/10.1145/2103621.2103710

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072

