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PANDORA: An Architecture-Independent Parallelizing

Approximation-Discovery Framework

GREG STITT and DAVID CAM PBELL, University of Florida, USA

In this paper, we introduce the PANDORA framework for automatically discovering application- and architecture-specialized ap-
proximations of provided code. PANDORA complements existing compilers and runtime optimizers by generating approximations
with a range of Pareto-optimal tradeoffs between performance and error, which enables adaptation to different inputs, different user
preferences, and different runtime conditions (e.g., battery life). We demonstrate that PANDORA can create parallel approximations
of inherently sequential code by discovering alternative implementations that eliminate loop-carried dependencies. For a variety of
functions with loop-carried dependencies, PANDORA generates approximations that achieve speedups ranging from 2.3x to 81x,
with acceptable error for many usage scenarios. We also demonstrate PANDORA’s architecture-specialized approximations via FPGA
experiments, and highlight PANDORA’s discovery capabilities by removing loop-carried dependencies from a recurrence relation with

no known closed-form solution.
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1 INTRODUCTION

Since the introduction of computers, traditional design practices have focused on achieving exact semantic correctness
of an application and/or system. However, the rapid adoption of machine learning over the past decade has resulted
in the emergence of mainstream computing strategies where approximation is commonly accepted [24, 41, 49]. Even
before machine learning, approximation was a widespread, but largely unrecognized, practice due to the impossibility of
representing real numbers with finite precision. Such finite precision suggests that many applications—even those using
double-precision arithmetic—already tolerate approximation, including signal processing, robotics, financial analysis,
Internet searches, among others [28]. Even scientific-computing applications, which are known for their precision
constraints, are inherently approximate due to the use of real numbers and the common discretization of continuous
processes. For other applications, subjective quality often enables numerous approximations that trade off efficiency
and quality. For example, many signal-processing applications can tolerate occasional incorrect pixels or frequent small
inaccuracies where many pixels may be a slightly different color, where compression artifacts may be more apparent,

etc.
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Approximate computing [17, 22, 28] is an emerging area of research that looks to exploit this inherent imprecision to
explore more effective approximation strategies within acceptable error constraints. With the end of Dennard Scaling
[4], and with Moore’s Law decreasing [25], approximate computing provides a promising way of meeting the rapidly
increasing demands of future applications without relying on additional transistors.

Current approximate computing research focuses largely on specialized compilers, optimization frameworks [3,
33, 36, 44], and/or specialized programming languages [2, 8, 9] that enable designers to specify the acceptable error
of different regions of code [33, 36] and then apply approximations that meet the error constraint. There has also
been a significant focus on algorithmic and data-type approximations [36, 45, 46, 55] and approximate architectures
[10, 12, 14, 16, 21, 31, 39, 50, 54]. Although current work provides many technical benefits, these approaches suffer from
several significant limitations.

The first limitation is that approximations are often too application-specific to be discovered or supported by
compilers. For example, there are many unique application-specific approximations [36, 45, 46, 55] and optimizations
[40, 43, 47] that a compiler can’t achieve via a sequence of general code transformations. In addition, compilers are
unlikely to provide a built-in set of such approximations because they have very limited applicability. Similarly, most
application developers are unlikely to be aware of such niche approximations to apply them manually, and are even
more unlikely to be able to create new approximations. Furthermore, many approximations are architecture-specific,
which further decreases the likelihood of manual discovery and/or adoption by compilers.

Another limitation is that existing techniques only provide limited improvements up to 2x in performance and/or
energy (e.g., [1, 11, 14, 16, 21, 37, 50, 51, 53, 54]). Although beneficial, these improvements are often modest compared
to the 10x to 1000x improvements already provided by graphics-processing unit (GPU) and field-programmable gate
array (FPGA) accelerators [19, 52].

We address these limitations by introducing a parallelizing approximation-discovery framework called PANDORA.

Unlike many existing approximation approaches that derive approximations through a series of transformations to
the original code, PANDORA uses machine learning to automatically discover application-specific approximations
that are specialized for potentially any architecture. One key contribution of PANDORA is the use of approximation

to increase parallelism and amenability to acceleration. Although numerous studies have introduced parallelizing

transformations in compilers [5, 6, 15, 20, 26, 29], compilers require such transformations to be functionally equivalent.

By dropping this requirement, PANDORA enables exploration of significantly more parallelization options, while also
integrating and complementing existing techniques that reduce computation. Although several existing approaches also
use approximation to increase parallelism [33, 36, 38], those approaches either explore a more restricted approximation
space, typically by applying synchronization-relaxing approximations to an existing application [35, 36, 44], or use
neural-net-based approximation [17, 38], which can require a huge computational overhead to approximate some
functions. By contrast, our approach uses symbolic-regression-based machine learning to generate completely different
algorithms, while using fitness functions that maximize parallelism or other optimization goals (e.g., performance,
energy), and improve scalability by avoiding system-specific bottlenecks (e.g., data-movement, synchronization), while
also meeting different constraints (e.g., error, power, performance). In other words, our approach evolves a custom
parallelized approximation that explores a much larger parallelization space, of which previous approaches are a small
subset.

Compared to exact parallel baselines, we present preliminary results showing speedups from 2x to 40x over a range
of error constraints by eliminating loop-carried dependencies from well-known recurrence relations, which increases

to 4,000x when not restricted by I/O bandwidth. We complement these experiments with 336 synthetic loops that
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Fig. 1. Overview of how PANDORA integrates with existing compilers and runtime optimizers.

current compilers can only implement sequentially and show speedups ranging from 2.3x to 81x with an average
speedup of 9.5x and an average error of 0.3%. We also demonstrate amenability to architecture-specific acceleration
with FPGA-specialized approximations that achieve speedups from 2x to 10x for errors under 5%, and up to 757x for an
error of 18%.

The paper is organized as follows. Section 2 gives an overview of approximation flows and how PANDORA comple-
ments existing compilers. Section 3 describes our approach to approximation discovery. Section 4 presents experimental
results. Section 5 discusses related work. Section 6 describes limitations and ongoing work to enable more widespread

usage of the presented techniques. Section 7 presents conclusions.

2 PANDORA OVERVIEW

Figure 1 illustrates the envisioned usage of PANDORA with compilers and runtime optimizers. PANDORA complements
existing compilers by automatically creating new approximations for provided code. In the envisioned approximation
flow, the application code would initially be passed to a tool to determine which functions are the best approximation
candidates, how much approximation each function can tolerate, etc. This step is the subject of numerous existing
studies (e.g., [33, 36]) and is not the focus of this paper. Instead, we can leverage any of the ongoing work in that
area to provide PANDORA with a set of functions to approximate. In addition, PANDORA also takes as input a set of
optimization goals, application constraints, and fitness functions for the targeted architecture. These fitness functions,
discussed in more detail in Section 3, guide the discovery process by ensuring constraints are met, while estimating
metrics (performance, energy) of an approximation on a given architecture.

In our envisioned usage, optimization goals would be generally decided by the application designer. Constraints
would be provided by either the designer, or by existing tools that determine how much approximation can be tolerated
by a given application. Fitness functions would generally be provided in a library, but may require custom specification
for performance and/or energy estimation on specialized architectures (e.g., FPGAs).

Given these inputs, PANDORA automatically discovers a set of Pareto-optimal tradeoffs between performance (or
any optimization goal) and error. PANDORA provides those approximations back to the compiler to apply to the original
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code, or could potentially just generate a modified version of the original code that can be compiled. This latter approach
has the benefit of the compiler applying additional architecture-specific optimizations to the generated approximation.
Due to the increased compilation times for discovering approximations, we envision PANDORA being used as a final
optimization step (e.g., -O3), although preliminary results often only took on the order of minutes. We also envision an
offline approach where PANDORA concurrently searches for approximations in the background during application
development, and provides them to the compiler as the approximations are discovered.

Alternatively, PANDORA can also be used to provide approximations with a range of tradeoffs to a runtime optimizer.
Whereas static approaches are restricted to a single approximation, the use of PANDORA with a runtime optimizer
enables adaptive optimizations that could increase approximation based on appropriate runtime conditions (e.g.,
low battery life). Static approximations also restrict designers to a single definition of error, which will generally be
pessimistic to support the most-demanding users, leaving less-demanding users with untapped efficiency improvements.
Furthermore, even the same user could have different opinions of acceptable error in different situations (e.g., noisy
vs. quiet environments). PANDORA avoids this one-size-fits-all restriction by generating a range of Pareto-optimal

approximations that enables different approximations to be used in different usage scenarios.

3 PARALLELIZING APPROXIMATION DISCOVERY

In this section, we discuss PANDORA’s automatic discovery of parallelizing approximations for potentially any
architecture. Although we use the term function for simplicity, the approach applies to any level of granularity (e.g.,
loops, basic blocks, statements).

Whereas existing approximating compilers implement many computation-reducing approximations by replacing
portions of a dataflow graph with known approximations (e.g., [8, 17, 30, 38, 42, 44]), automatically creating parallelizing
approximations that aren’t derived from a series of transformations to the original code is a far more difficult problem.
This challenge is highlighted by the limited existence of manually introduced parallelizing approximation strategies.
In many cases, a parallelizing approximation may not even be known, especially for a particular architecture or
combination of resources.

In addition to approximation discovery, another key contribution is the use of approximation to significantly increase
the exploration space for automatic parallelization, which in turn makes more applications amenable to FPGA and GPU
acceleration. In fact, our preliminary experiments show that in some cases increasing the amount of computation—a
strategy that to our knowledge is not considered by any current approximation approach—can enable significant
amounts of untapped parallelism that greatly outweighs any extra operations. In addition to exploiting parallelism to
maximize performance, PANDORA can alternatively optimize for energy while meeting a power constraint and/or
performance constraint. Furthermore, while increasing parallelism alone might result in communication or memory
bottlenecks, PANDORA can use system-specific fitness functions to generate specialized approximations that avoid
such bottlenecks, providing improved scalability.

PANDORA complements conceptually similar approximate-computing research that increases parallelism via syn-
chronization relaxing [7, 35, 36, 44], and approaches that use FPGA- and GPU-amenable approximations (e.g., neural
nets [17, 38]). By using symbolic regression to evolve parallel approximations based on completely new algorithms,
our approach both includes and significantly expands the parallelization space of previous strategies. Such expanded
exploration is critical for identifying approximations where existing neural-net approaches have high overhead. PAN-

DORA is also conceptually similar to Paragen [13], which was a compiler technology that used genetic programming
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Fig. 2. PANDORA discovers approximations of (a) an existing function by (b) sampling outputs from within a relevant input range, and
then (c) performing a specialized symbolic regression to find equations with Pareto-optimal tradeoffs between error and performance
(or any goal).

to parallelize sequential software for multi-core processors. However, like other compilers, Paragen was restricted to

generating functionally correct alternatives, and did not support arbitrary architectures such as FPGAs and GPUs.

3.1 Approach

To discover approximations, PANDORA samples the original function’s output across an input range of interest. After
replacing the original function with samples, PANDORA exploits the fact that there are infinite functions that coincide,
or nearly coincide, with the samples. PANDORA searches these alternative functions looking for ones that are cheaper
computationally, more parallel, lower energy, etc. than the original function. Although counter-intuitive, replacing the
original function with samples enables the possibility of discovering numerous approximations that cannot be derived
via transformations to the original code, which we show is critical for both increasing parallelism and specializing an
approximation for a given architecture.

To find such an approximation, PANDORA performs a specialized form of symbolic regression, which is the problem
of searching the space of all mathematical equations to automatically discover the model of a given dataset. However,
whereas symbolic regression is solely focused on finding a function that minimizes error, PANDORA is also concerned
with finding functions (i.e., approximations) that have desirable computation or communication characteristics for a

given architecture.

Figure 2(a) demonstrates a simple example of approximating a sine wave within the input range of -7 /2 to /2.

Figure 2(b) shows the sampled output of the function. Figure 2(c) demonstrates two example regressions that approximate
the original function within the restricted range: a a piece-wise linear regression and a parabola. For this simple
example, the parabola approximation requires two multiplications, but has higher accuracy than the piece-wise linear
approximation that only requires one multiplication.

For these simple approximations, larger ranges can be achieved via piece-wise decomposition of the input space,
where if-statements first check the range and then apply the corresponding approximation. However, in most cases, the
approximation will automatically adapt to the entire range. Additionally, in many cases, a user may want the range
to be restricted to values used by the application. Although this intentionally simple example does not demonstrate
increased parallelism, we present experiments in Section 4 that significantly increase parallelism and in some cases
remove loop-carried dependencies. In general, PANDORA can trade off error for increased performance to support
different use cases, where at one extreme is the original function (low performance, no error) and at the opposite
extreme is a constant (high performance, likely prohibitive error).
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With this formulation of the problem, approximation discovery requires effective solutions to symbolic regression.
Most existing techniques for symbolic regression rely on genetic programming [23, 27]. To evaluate PANDORA, we
developed a custom symbolic-regression framework in Python that extends the DEAP [18] evolutionary computation
library with additional genetic-programming capabilities. The experiments in this paper approximate functions written
in Python, but PANDORA supports any language by discovering approximations based on output samples, as opposed
to language-specific constructs.

To guide genetic programming, the framework takes a configuration file as input that specifies a number of options.
First, the configuration file specifies the sampling strategy for training and testing, which currently allows for uniform
sampling and random sampling, while also specifying the number of samples to use in each input dimension, and the
range of values for those samples.

Next, the configuration file specifies the fitness function, which includes an optimization goal and any constraints.
PANDORA supports a variety of existing fitness functions, and is easily extendable to support other functions. For
example, in the simplest case, a user could select a fitness function to minimize root mean square error. In this case,
PANDORA essentially performs traditional symbolic regression without any consideration of performance or energy of
the resulting approximation. Typical fitness functions include minimizing error given a performance/energy constraint
or maximizing performance/energy given an error constraint. PANDORA allows for specification of any error metric,
but currently supports root mean square error, mean square error, and mean absolute percentage error. In general, an
ideal fitness function would provide an exact performance estimate for a given architecture. However, since determining
highly accurent performance estimates may require lengthy computation or even simulations that would result in
prohibitive training times, we expect most use cases to perform coarser estimations. Ultimately, the accuracy requirement
of the performance estimate depends on the use case. For approximations providing small performance improvements
(e.g., 5% to 10%), a more accurate estimate is needed. However, for approximations that achieve 2x to 10x improvements,
more error can be tolerated in the performance estimate.

To create a fitness function, we provide an architecture-specific performance-estimation heuristic that is applied
to each approximation. Although any performance estimation technique can be used, most of our experiments use
an estimate that is a function of the depth of the resulting approximation tree structure. By optimizing for tree depth,
genetic programming tends to find solutions that do more operations in parallel, since such parallelism tends to make
the tree wider while reducing the depth. For FPGA experiments, the fitness function uses the resource requirements
of the approximation to determine how many operations can fit on the FPGA, which also determines how many
operations can be done in parallel to improve performance. As a result, genetic programming tends to reduce the
resource requirements of the original code so that more operations can occur in parallel, so that the function can be
replicated more times, etc. In general, performance and energy estimations include system-specific characteristics (e.g.,
communication bandwidth limits), which enable genetic programming to modify the approximation to avoid bottlenecks.
For example, if data movement becomes a bottleneck, then genetic programming would prioritize approximations with
reduced communication (e.g., by eliminating inputs and/or synchronization).

After specifying the fitness function, the configuration file allows specification of primitives from which to build the
approximation during genetic programming. PANDORA includes basic mathematical primitives (addition, multiplication,
sine, log, etc.), in addition to combined with existing coarse-grained approximations (neural nets, perceptrons, hidden
Markov models). New primitives can easily be added simply by defining a function for the primitive, and adding
that function, along with definitions of its parameters and return values, to the code. The configuration settings also

include a large number of genetic-programming configuration options such as population size, number of generations,
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Fig. 3. (a) Example of a loop whose (b) unrolled DFG has no parallelism due to loop-carried dependencies and non-associative
operations. PANDORA discovers (c) an application-specific approximation with significant amounts of parallelism and acceptable
error for most use cases.

crossover strategies (e.g., one-point crossover, one-point leaf-biased crossover), and mutation strategies (e.g., uniform,

node replacement, random subtree insertion, random subtree removal).

3.2 Example Approximations

To illustrate usage of PANDORA, we provide several simple motivating examples to explain the functionality. Figure 3(a)
shows example code of a simple loop with loop-carried dependencies. Optimizing this type of loop is a well-known
compiler challenge because the iterations are dependent, and unrolling the loop creates a long sequence of dependent
operations with no parallelism (Figure 3(b)). Although compilers can sometimes parallelize similar examples via
tree-height reduction, those optimizations only work for associative operations. This example uses non-associative
subtractions, which prevents traditional parallelization. Although an integer version of this example could potentially
be parallelized by adding all of b[] with an adder tree and then subtracting from x, a compiler would be unlikely to
implement such a rarely applicable optimization. PANDORA has the key advantage of being able to automatically
generate such application-specific parallelizations.

For this example, we assume all operations take the same time, which makes sequential performance equal to the
total operations (41 for this example) and parallel performance equal to the maximum depth of the tree. We also assume
sufficient resources for maximum parallelism, which can easily be obtained on CPUs, FPGAs and GPUs for these
examples. To approximate this function with PANDORA, we use a fitness function that minimizes depth of the tree
without consideration of error, which generates a range of tradeoffs.

Figure 3(c) illustrates an approximation generated by PANDORA. The more balanced tree structure shows significantly
increased parallelism compared to the original code, achieving a 5.9x speedup, with a mean absolute percentage error
of only 5.2¢714%, which we determined using 10,000 uniformly distributed random inputs between -32k and 32k.

For this approximation, the only error was due to the non-associativity of floating-point operations. Existing
compilers either ignore the error introduced by the order of floating-point operations, prevent any optimization that
introduce error, or allow the designer to specify different optimization goals (e.g., precision, fast, strict [54]). PANDORA
provides another alternative that identifies Pareto-optimal tradeoffs between error and performance. Although previous

work has also identified tradeoffs for floating-point applications [135], those approaches are a subset of the potential
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float f(float b[]) {
float x = 0.0;
for (inti=0; i < &; i++) { @
x = (x - b[i]) / bII:

} Speedup: 21x
Error: 0.08%

Speedup: 3.5x

return x; Error: 1.2e%

(a) (b)

Fig. 4. (a) Example of a loop where PANDORA creates different specialized approximations for (b) random inputs ranging from -32k
to 32k, and (c) random inputs between 0 and 1.

approximations applied by our approach. In addition, PANDORA discovers these tradeoffs automatically as part of the
many implicitly explored approximation strategies enabled by genetic programming, without specifically trying to
optimize floating-point operations.

Figure 4 illustrates another example showing how different inputs can benefit from different approximations. The
loop in Figure 4(a) similarly has loop-carried dependencies and non-associative operations that are not parallelized by
compilers. Figure 4(b) illustrates an unexpected approximation generated using 10,000 uniformly distributed random
inputs ranging from -32k to 32k. In this case, PANDORA identifies that the loop is statistically very likely to converge
towards an output of -1, which eliminates all operations for a speedup of 21x, with an error of 0.08%. However, using
random inputs between 0 and 1 provides a significantly different approximation (Figure 4(c)) with speedup of 3.5x and
an error of 1.2¢714%. These results suggest that designers could use PANDORA to create multiple approximations for

different input values, similar to how function specialization optimizes a function for common inputs.

4 EXPERIMENTS

In this section, we present preliminary experiments demonstrating the capabilities of PANDORA. All experiments use
the Python framework described in the previous section.

Figure 5 demonstrates PANDORA’s ability to replace loop-carried dependencies—a long-time goal of compilers—
with approximations that have independent (i.e., parallel) iterations. The figure shows tradeoffs between error and
performance of multiple approximations, which we generated in PANDORA using different error constraints for each
function. The evaluated examples are recurrence relations with dependencies between iterations, which shows that
PANDORA is able to automatically find closed-form solutions or solutions without these dependencies. For example,

PANDORA automatically discovers a finite impulse response (FIR) filter when using an infinite impulse response (IIR)

as input. The included examples demonstrate three separate trends that we have also observed across other examples.

Although some of these examples have known approximations or closed-form solutions, the key advantage of PANDORA
is the automatic discovery of a closed-form solution or parallel approximation. This advantage is significant due to
the lack of approximations for the vast majority of real functions, and due to the common use of application-specific

approximations that are too unique for compiler support.
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Fig. 5. Parallel approximation speedup (with constrained input bandwidth) and root mean square error of various recurrence relations.

PANDORA discovered these approximations by eliminating loop-carried dependencies.

We created each example by writing corresponding Python code, which PANDORA then sampled to discover
approximations. The experiments evaluate performance independently from language and architecture by comparing
the depth of the approximation’s dataflow graph (DFG) with the depth of the original DFG after applying unrolling
and tree-height reduction. The depth of the DFG represents the length of the longest dependence chain, which bounds
execution time even with unlimited parallel resources. In general, a more parallel approximation tends to have a
smaller depth than a sequential approximation, where loop-carried dependencies result in a long sequence of dependent
iterations in the unrolled DFG. Although not all architectures will provide enough resources to achieve a performance
equal to this bound, the comparison is applicable to many existing architectures for the selected examples. The figure
specifies application-specific parameters (e.g., input sizes, constants) used in each experiments. To avoid arbitrarily large
speedups from large inputs, the experiments evaluate a range of input sizes that illustrate the basic trends. Although
approximation discovery times generally ranged from seconds to hours, we ran these experiments for days and then
collected results of the best approximations found at that time.

To avoid the unrealistic possibility of infinite input bandwidth, the speedup in Figure 5 is based on an input-bandwidth
constraint that matches existing PCle bandwidth. The results demonstrate several trends. The first trend is that all
of the filter examples achieved a speedup of around 30x with low error, which increases slightly as more error is
allowed. The consecutive-sum examples demonstrate the second trend, where PANDORA achieved speedups of 5x

and 7x for input sizes of 1k and 10k. Unlike the other trends, this speedup was independent of the error constraint

because PANDORA found an exact closed-form solution that was simple enough to not benefit from approximation.

The remaining examples demonstrate the third trend, where PANDORA found closed-form solutions that exhibited
a rapid speedup increase from 1x to 40x for different error constraints. The examples in this third trend were more
complex than the closed-form solutions in the second trend, which enabled a larger set of Pareto-optimal tradeofTs.
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Fig. 6. Speedup from approximations of the filter examples in Figure 5 when not constrained by PCle bandwidth.

The benefits of PANDORA are best highlighted by the logistic-map approximation in Figure 5. Whereas the other
examples have known approximations or closed-form solutions, logistic map does not have a known closed-form
solution. Despite the lack of a known solution, PANDORA found approximations with a root-mean-square error (RMSE)
of less than 1e*. Although not an exact solution, such error is likely to be acceptable for some cases. One interesting
finding that highlights PANDORA’s discovery capabilities is the counter-intuitive characteristics of the generated
approximation. Despite the logistic map only using multiplication and subtraction, the discovered approximation uses a
square root, cosine, and hyperbolic tangent, which is unlikely to be discovered by any programmer.

Figure 6 re-evaluates the filter examples for use cases that may not be as limited by input bandwidth (e.g., FPGA
internal memory, large distributed systems with replicated data). The other examples are omitted because their results
do not change with additional bandwidth. Two important differences can be seen in these experiments: (1) significantly
higher speedups, ranging from 200x to 4000x; and (2) significant improvements from increasing error. Although
not all architectures will be able to realize this amount of parallelism, these results highlight potential performance
improvements.

Figure 7 complements these results with 336 randomly generated synthetic DFGs that represent unrolled loops with
loop-carried dependencies. For these experiments, PANDORA generated an approximation based on a mean absolute
percentage error constraint of 1%. To generate the synthetic loops, we created a script that produced corresponding
DFGs that would be difficult to parallelize with existing compilers. Each DFG included random types of floating-point
operations, multiple non-associative operations, random numbers of inputs, and random numbers of operations ranging
from 20 to 160. The results show a wide range of speedups from 2.3x to 81x, with a trend towards larger speedups
for larger error. Across all examples, speedup and error averaged 9.5x and 0.3%, respectively. PANDORA was able to
meet the error constraint for 93% of the examples, with many examples using orders-of-magnitude less error. For the
examples where PANDORA couldn’t meet the error constraint, the error ranged from 1% and 5.9%. The speedup of
many examples was limited by the small DFG size. The ratio of speedup to total operations tended to increase for larger
examples, which suggests that larger functions will likely experience significantly larger speedups.
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Fig. 7. Approximation tradeoffs between speedup and mean absolute percentage error (log scale) for 336 synthetic loops.

When repeating the tests with integer data, PANDORA discovered some approximations with no error. To our
knowledge, no existing approach can automatically convert a series of non-associative operations into an exact parallel
alternative. As a result, PANDORA is not solely limited to approximations, and can also be used to discover new
error-free transformations.

Another interesting result was that PANDORA was able to generate a wide range of different approximations for the
examples in Figure 7. Although many examples had increased parallelism, PANDORA occasionally removed iterations
of a loop that had little effect on error, which is a known approximation strategy referred to as loop perforation [8, 46]
that PANDORA discovered automatically. In most cases, PANDORA both reduced the total operations and parallelized
those operations. For five examples, PANDORA enabled a parallel approximation by increasing the total number of
operations. PANDORA also often automatically eliminated some of the inputs from the original application, which is a
known machine-learning technique referred to as dimensionality reduction. We envision this capability being useful
for eliminating communication bottlenecks and improving scalability in parallel systems.

Figure 8 demonstrates PANDORA’s ability to create parallelizing approximations for a specific architecture, which for
this experiment was an Arria 10 FPGA. In FPGAs, parallelism of an application is often limited by available resources.
By discovering approximations that require fewer FPGA resources, PANDORA increases realizable parallelism. In
these experiments, we compare achievable parallelism in terms of the number of IP instances that would fit in the
FPGA between Intel-provided IP cores and automatically generated approximations. For these experiments, PANDORA
generated approximations with speedups between 1x and 10x for mean-absolute percentage errors below 5%, with
rapid increases in speedup to over 100x for larger errors. For the In example, PANDORA generated an approximation
that experienced a speedup of 757x at 18% error. Although the larger errors are unlikely to be acceptable, we included
the tradeoffs to demonstrate upper bounds on performance. The results assume equal clock frequencies, which likely
makes the speedup pessimistic due to most of the approximations using finer-grained operations that support higher

frequencies.

5 RELATED WORK

Existing approximate computing work focuses largely on languages, compilers, and/or optimization frameworks to

improve performance/energy within designer-specified constraints. Rely [8] is a specialized language that enables
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Fig. 8. FPGA speedup (logz scale) and mean absolute percentage error of PANDORA-generated approximations that reduce resource
utilization compared to Intel IP cores.

designers to specify accuracy and reliability (i.e., probability that a computation is correct) for different functions. When
combined with a specification for approximate hardware resources, Rely enables designers to evaluate if the architecture
can provide sufficient application reliability. Chisel [34] is a compiler-like framework that approximates a Rely program
to maximize performance or energy while ensuring reliability and accuracy constraints. Green [3] is a similar approach
that applies approximations to improve performance and energy while providing a specified quality of service. Our
approach complements these works by significantly expanding the exploration for parallel approximations via genetic
programming, while also removing the requirement for specification of approximation candidates and acceptability.

Quickstep [35] is a compiler-like framework with a similar goal as our proposed work: exploit approximation to create
parallelism within error constraints. The key difference is that Quickstep introduces parallelism by transforming an
existing program to allow relaxed synchronization and data races. By contrast, our approach generates a completely new
algorithm via genetic programming, which explores a much larger space of parallelization options. Dubstep [36] is an
extension of Quickstep that further increases parallelism via opportunistic synchronization and barriers. Renganarayana
et al. [44] present a similar synchronization-relaxing methodology for reducing synchronization overhead in parallel
programs. All of these prior studies are complementary to our proposed work, and could be used to increase parallelism
by relaxing synchronization within our generated approximations. We plan to integrate the synchronization-relaxing
approximation strategy into genetic programming as a mutation that would be considered with all other approximation
options.

SNNAP [38], also conceptually similar to our proposed work, approximates an application with neural nets, which
are executed on FPGAs. As opposed to using an approximation that is known to be efficient for a specific architecture,
our proposed approach has the more general goal of generating a parallel approximation for potentially any architecture,
including heterogeneous systems with different types of resources. Also, by performing genetic programming to create a
completely new algorithm that may contain neural nets as an approximation strategy, we explore a larger parallelization
space than SNNAP.

We previously published a preliminary version of PANDORA in [48], which we expand in this paper with signifi-

cantly more detailed explanation of the approach and framework, example approximations that demonstrate different
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capabilities and tradeoffs, an expanded evaluation in the experiments, a discussion of the envisioned usage of the

framework with compilers and runtime optimizers, and a greatly expanded discussion of related work.

6 LIMITATIONS AND FUTURE WORK

Despite demonstrating considerable potential for approximation, there are several limitations and challenges that must
be addressed to make PANDORA more widely usable. The most significant challenge is that PANDORA is based on
symbolic regression, which is known to be a challenging problem where existing strategies generally only work for toy
problems [32]. For future work, we plan to address this challenge in two ways. The first solution is hardware-accelerated
symbolic regression that performs over a million times faster than existing software implementations, according to our
preliminary results. Whereas existing software can generally only evaluate 100s to 1000s of solutions a second, a custom
hardware pipeline can evaluate 100s of millions of solutions per second. Such performance enables fundamentally new
exploration algorithms that we expect to overcome existing limitations. Our second planned solution is to consider
providing PANDORA with information about the original code. Although this solution may restrict some of the
counter-intuitive approximations that are currently discovered, it could also enable better solutions in situations where
symbolic regression techniques cannot find an attractive approximation.

Another limitation is that even when existing symbolic-regression techniques achieve an effective approximation,
the time required to discover that approximation can be a bottleneck. As a solution to this problem, PANDORA can be

configured to return the best approximation seen so far after a specified amount of time. Alternatively, PANDORA can

be used as a final optimization step, or to search for approximations in the background during application development.

In addition to speeding up symbolic regression, there is a need for better understanding effects of configuration
parameters. For example, use of course-grained primitives significantly speeds up the search, but also restricts the size
of the solution space, potentially resulting in less attractive approximation tradeoffs. Using finer-grained primitives
enables a larger solution space, but that larger space also suffers from numerous local optima in which the search
heuristic might get stuck. Similarly, there is a need to understand the tradeoffs between training time, approximation
quality, population size, and number of generations.

For any use case where the training data has noise, symbolic regression is often limited by the tendency to overfit,
which results in an overly complex equation that tries to account for the noise. When used for approximation, the
training data has no noise because function outputs are deterministic, which helps to eliminate this problem. PANDORA
can still potentially experience overfitting, but since most uses of PANDORA will specify a fitness function that
minimizes the size of the discovered approximations, overfit solutions will tend to be eliminated during exploration.

Another area of future work will be automatically decomposing the input space into piece-wise approximations. In
our experiments, we have noticed that in many cases PANDORA will provide good approximations within a restricted
range, while providing less attractive tradeoffs when used to approximation a larger input space. We have currently
dealt with this issue by manually creating multiple approximations, but that is only feasible in situations where the
designer understands the original function. In many cases, especially with machine learning, the original function is
unknown, which therefore requires an automated approach. As future work, we plan to investigate search heuristics
that hierarchically decompose the input space into smaller subspaces as long as approximation quality continues to
increase.

One fundamental limitation of PANDORA is that by relying on machine learning, PANDORA can only make
probabilistic, as opposed to absolute, guarantees about approximation error. However, all machine-learning techniques

share this same limitation, which has not prevented its widespread acceptance in various application domains.
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One interesting limitation of PANDORA is the tendency to discover unintuitive approximations. If a designer
needs to understand or debug the approximation when integrated with a larger application, the unintuitive nature
of approximations could be prohibitive. However, similar to the probabilistic error issue, this limitation is shared by
all machine-learning approaches, and has not limited the success of those approaches. Interestingly, the uninuitive
nature of the approximations highlights one of the biggest advantages of PANDORA: non-obvious approximations are

unlikely to be supported by a compiler or discovered by a designer.

7 CONCLUSIONS

We introduced the PANDORA framework for automatically discovering parallelizing approximations for potentially any
targeted architecture. Whereas existing approximation approaches focus on languages and compilers that transform
provided code into an approximation, PANDORA uses a symbolic-regression-based machine-learning strategy that
discovers a new approximation based on sampled outputs of the original function, as opposed to specific coding
constructs. By sampling function outputs, PANDORA explores the infinite number of alternative functions that coincide,
or nearly coincide, with the samples of the original function in order to find an approximation that can be computed
more efficiently. Envisioned usage of PANDORA includes generation of a range of Pareto-optimal approximations that
can be used by a compiler or runtime optimizer to adapt the level of approximation to the current input, the current
user’s preferences, or to runtime conditions such as battery life.

In this paper, we demonstrated that PANDORA can remove loop-carried dependencies from recurrence relations,
while also increasing parallelism in the presence of non-associative operations. We also showed how PANDORA can
generate FPGA-specific approximations that reduce resources requirements for a number of FPGA functions, which
achieved attractive tradeoffs between error and performance.

Although there are technical challenges preventing PANDORA from being widely usable in its current state, this
paper presents a proof-of-concept that demonstrates attractive Pareto-optimal tradeoffs to the decades-long compiler
challenge of parallelizing sequential code. This work also motivates the need for improvements in symbolic regression,

which would in turn provide even more attractive approximations.
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