

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Intersection of Biotic and Abiotic Sulfur Chemistry Supports Extreme Microbial Life in Hot Acid

Journal:	<i>The Journal of Physical Chemistry</i>
Manuscript ID	jp-2021-02102f.R1
Manuscript Type:	Special Issue Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Willard, Daniel; North Carolina State University, Chemical and Biomolecular Engineering Kelly, Robert; North Carolina State University, Chemical and Biomolecular Engineering

SCHOLARONE™
Manuscripts

Intersection of Biotic and Abiotic Sulfur Chemistry

Supports Extreme Microbial Life in Hot Acid

Daniel J. Willard and Robert M. Kelly*

*Department of Chemical and Biomolecular Engineering,
North Carolina State University, Raleigh, NC 27695*

Submitted to: **Journal of Physical Chemistry B** (March 2021)

Revision to *jp-2021-02102f* submitted April 23, 2021

Running Title: Microbial growth on sulfur in hot acid

Keywords: *thermoacidophily, Sulfolobales, sulfur transformations*

***Address Correspondence to:** Robert M. Kelly

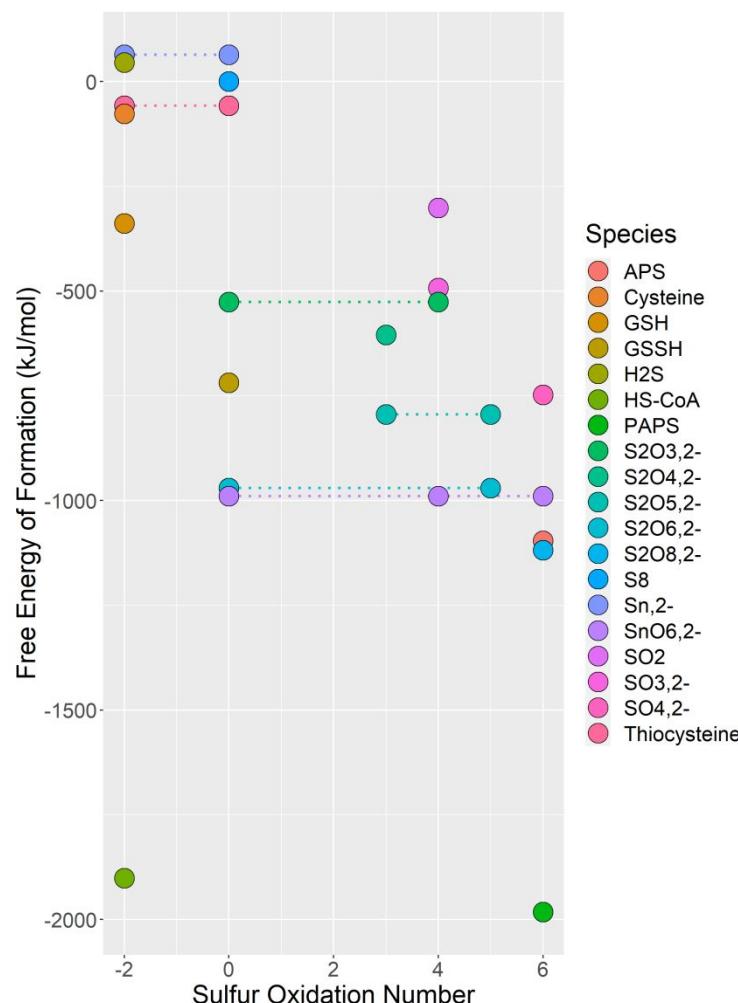
Department of Chemical and Biomolecular Engineering

North Carolina State University

Raleigh, NC 27695

Phone: 919-515-63

Email: rmkelly@ncsu.edu


1
2
3 **Abstract:** Microbial life on Earth exists within wide ranges of temperature, pressure, pH, salinity,
4 radiation, and water activity. Extreme thermoacidophiles, in particular, are microbes found in hot,
5 acidic biotopes laden with heavy metals and reduced inorganic sulfur species. As
6 chemolithoautotrophs, they thrive in the absence of organic carbon, instead using sulfur and metal
7 oxidation to fuel their bioenergetic needs, while incorporating CO₂ as a carbon source. Metal
8 oxidation by these microbes takes place extracellularly, mediated by membrane-associated
9 oxidase complexes. In contrast, sulfur oxidation involves extracellular, membrane-associated and
10 cytoplasmic biotransformations, which intersects with abiotic sulfur chemistry. This novel lifestyle
11 has been examined in the context of early aerobic life on this planet, but it is also interesting when
12 considering the prospects of life, now or previously, on other solar bodies. Here, extreme
13 thermoacidophily (growth at pH below 4.0, temperature above 55°C), a characteristic of species
14 in the archaeal order Sulfolobales, is considered from the perspective of sulfur chemistry, both
15 biotic and abiotic, as it relates to microbial bioenergetics. Current understanding of the
16 mechanisms involved are reviewed which are further expanded through recent experimental
17 results focused on imparting sulfur oxidation capacity on a natively non-sulfur oxidizing extremely
18 thermoacidophilic archaeon, *Sulfolobus acidocaldarius*, through metabolic engineering.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Introduction

Sulfur is among the most abundant elements on Earth, ranking even above carbon, making up 5.4% of Earth's mantle and crust¹. Sulfur-rich environments have also been identified on Mars, leading to theories that the planet as a whole is more sulfur-rich than Earth². Sulfur has a similar electronegativity to carbon and exhibits oxidation states anywhere from -2 to +6. Because of this, the element exists in numerous electron-dense species, ranging from metal-rich

minerals and ores to gasses and fumes from hydrothermal vents.

These diverse chemical species encompass a wide range of Gibbs free energies of formation (Figure 1), which are frequently exchanged through the sulfur cycle. Another key feature of sulfur chemistry is the polymeric structure arising from sulfur-sulfur bonds. These long chains exhibit an overall oxidation state of -2 and act as the site of attack for more nucleophilic species³. This enables chain-lengthening and chain-shortening reactions, thereby generating polysulfides, cyclized sulfur⁴, polythionates, and sulfane monosulfonate intermediate species of varying chain length⁵.

Figure 1: Distribution of oxidation states and ΔG_f° of various sulfur species; APS: adenylyl sulfate, GSH: glutathione, GSSH: glutathione disulfide, PAPS: phosphoadenylyl sulfate; dotted lines indicate multiple sulfur oxidation states within the same molecule

Sulfur's multiple oxidation states and stepwise depolymerization potential means that sulfur can be incrementally oxidized through intermediate species in order to maximize energy conservation, much like the stepwise degradation of glucose that is characteristic of cellular metabolism. The opportunity presented by these energy-rich sulfur species has not been overlooked in nature. Prokaryotes in domains Bacteria and Archaea oxidize reduced inorganic sulfur compounds (RISCs) to elemental sulfur (S^0) or sulfate for phototrophic or chemolithotrophic growth. Indeed, the biological oxidation of sulfur plays a major role in the sulfur cycle on Earth⁶. The diversity of sulfur species identified on Mars suggest the possibility that a similar mechanism of sulfur cycling occurred at some point on this planet, and recent thermodynamic analyses show that a chemolithoautotrophic metabolism could be supported even in the limited Martian atmosphere⁷. Thus, a deeper understanding of the primitive and more extreme terrestrial forms of life on Earth could provide clues towards the possibility of extraterrestrial life.

While sulfur-oxidizing Bacteria span a wide range of genera, the sulfur-oxidizing Archaea belong exclusively to the order Sulfolobales⁶. The order consists entirely of extremely thermoacidophilic species, with optimal temperatures greater than 55°C and pH optima less than 4. Not all extremely thermoacidophilic archaea oxidize sulfur⁸. In fact, these microbes exhibit physiologies ranging from facultative anaerobes, capable of sulfur oxidation and reduction (*Acidianus ambivalens*⁹), to aerobic chemolithautotrophs, leveraging sulfur oxidation and iron oxidation (*Sulfuracidifex metallicus*¹⁰ and *Metallosphaera sedula*¹¹, respectively), to obligate heterotrophs (*Saccharolobus solfataricus*¹²). There is some evidence that certain Sulfolobales may even be able to oxidize vanadium and molybdenum for energetic benefit¹³. A single obligate anaerobe is now part of the order (*Stygiolobus azoricus*¹⁴), and recently a sulfur-inhibited *Sulfolobales* member has been described (*Sulfodiicoccus acidiphilus*¹⁵). In all, the order *Sulfolobales* now contains more than twenty distinct species, with some isolates still awaiting classification. Among the most studied organisms in the order is *Sulfolobus acidocaldarius*, the

1
2
3 first isolated species of this order¹⁶. While *S. acidocaldarius* was initially believed to be a sulfur
4 oxidizer, the current lab-cultured strain does not have this capability¹⁷. It is, however, one of the
5 few Sulfolobales with a tractable genetic toolkit that can be used for mutational analysis and
6 metabolic engineering¹⁸.
7
8

9 Because of the lack of genetic tools for the Sulfolobales, most efforts to understand sulfur
10 oxidation in the order have been focused on characterization of individual enzyme activities¹⁹⁻²³
11 and comparative “omics” analyses to relate what is known about bacterial enzymes to the
12 archaeal Sulfolobales²⁴⁻²⁷. These approaches offer snapshots of the overall landscape of
13 biological sulfur oxidation that involves a complex web of both abiotic and enzymatic reactions.
14 Recently, efforts to engineer some of these enzymes into *S. acidocaldarius* have begun¹⁷.
15 Engineering *S. acidocaldarius* to become a sulfur-oxidizer demonstrates and validates an
16 understanding of the sulfur oxidation mechanism in the Sulfolobales and also presents interesting
17 opportunities for biotechnological application. Here, we examine the abiotic and enzymatic
18 reactions implicated in sulfur oxidation and evaluate the prospects for energy conservation from
19 these reactions. Furthermore, evidence of energy conservation in an engineered strain of *S.*
20 *acidocaldarius* supports the prospect that energy conservation through the coordination of biotic
21 and abiotic sulfur chemistry is indeed possible.
22
23

42 METHODS

43 *Cultivation of S. acidocaldarius Strains*

44 All strains of *S. acidocaldarius* were grown in 125 mL serum bottles containing 1 g/L NZ
45 Amine and 0.01 g/L uracil in Brock Salts (DSM medium #88 without yeast extract), which contains
46 on a per liter basis: 1.3 g (NH₄)₂SO₄, 0.28 g KH₂PO₄, 0.25 g MgSO₄·7H₂O, 0.07 g CaCl₂·2H₂O,
47 4.5 mg Na₂B₄O₇·7H₂O, 1.8 mg MnCl₂·4H₂O, 0.22 mg ZnSO₄·7H₂O, 0.22 mg Na₂MoO₄·2H₂O, 0.05
48 mg CuCl₂·2H₂O, 0.03 mg VOSO₄·2H₂O, and 0.01 mg CoSO₄·7H₂O. The pH of the Brock Salts
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 was adjusted to 3.0 using concentrated sulfuric acid. All cultures were incubated in Eppendorf air
4 shakers at 75°C with agitation (150 rpm). Except for the cultures used in the growth curve
5 measurements, *S. acidocaldarius* media also contained 2 g/L sucrose. Cultures used to evaluate
6
7 *S. acidocaldarius* growth on sulfur were provided with 10 g/L elemental sulfur.
8
9
10

11
12
13 *Transformation of Free Energy of Formation Data*
14

15 Free energy of formation data were collected from several sources to cover the range of
16 chemical species needed for analysis. All data were examined at 25°C for consistency between
17 sources. For inorganic compounds and sulfur species, free energy of formation data were taken
18 from Amend and Shock, with multiple protonation states where possible²⁸. Polysulfide data for n
19 = 2-8 was collected from Kamyshny *et al.*, again using all protonation states of polysulfide
20 chains²⁹. Organic molecules, including biological energy carriers and intermediates of glucose
21 metabolism, were calculated by the eQuilibrator online database at standard state. Again, all
22 available protonation states for each compound were used³⁰. Three energy carriers specific to *S.*
23 *acidocaldarius* were used to evaluate redox coupling of sulfur reactions. Because of their
24 uniqueness, free energy of formation data were not available in all cases. Instead, experimental
25 reduction potential was used for caldarellaquinone³¹ and the [3Fe-4S] and [4Fe-4S] ferredoxins³²
26 from *S. acidocaldarius*.
27
28

29 Free energy values were adjusted for ionic strength, pH, and protonation state according
30 to the methods laid out by Alberty³³. Briefly, free energy values for all protonation states were
31 adjusted for ionic strength according to:
32
33

$$\Delta G_f^0(i,I) = \Delta G_f^0(i,I=0) - \frac{2.91482z_i^2I^{1/2}}{1 + BI^{1/2}} \quad [\text{EQN 1}]$$

34 For these calculations, the adjusted ionic strength was I=0.338 (the ionic strength of the Brock
35 Salts medium), z_i is the charge number of species i , and $B = 1.6 \text{ L}^{1/2}\text{mol}^{-1/2}$. ΔG_f^0 is in units of
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

kJ/mol. The transformed free energy was then calculated at pH intervals of 0.5 from 0.5 to 14 according to:

$$\Delta G_f'(i) = \Delta G_f^0(i) - N_H(i)\{\Delta G_f^0(H^+) + RT\ln[H^+]\} \quad [\text{EQN 2}]$$

where $N_H(i)$ is the number of hydrogen atoms in species i and $\Delta G_f^0(H^+) = 0$ kJ/mol, as given by Amend and Shock²⁸. Finally, the various protonation states of a single species were aggregated as a 'pseudoisomer' group according to:

$$\Delta G_f'(iso) = -RT\ln\left\{\sum \exp\left(\frac{-\Delta G_f'(i)}{RT}\right)\right\} \quad [\text{EQN 3}]$$

This aggregate transformed free energy accounts for the dominant protonation state of a species at a particular pH, and so the pseudoisomer group was calculated separately for each pH interval. Free energy of reaction was then evaluated using these transformed pseudoisomer groups as:

$$\Delta G_{rxn}^0(pH, I = 0.338) = \sum \Delta G_{f,prod}^0(iso, pH, I = 0.338) - \sum \Delta G_{f,react}^0(iso, pH, I = 0.338) \quad [\text{EQN 4}]$$

To calculate reduction potential, half-reactions of sulfur transformations and energy carrier reduction were generated. Transformed free energy of reaction for these half-reactions was converted to transformed reduction potential by:

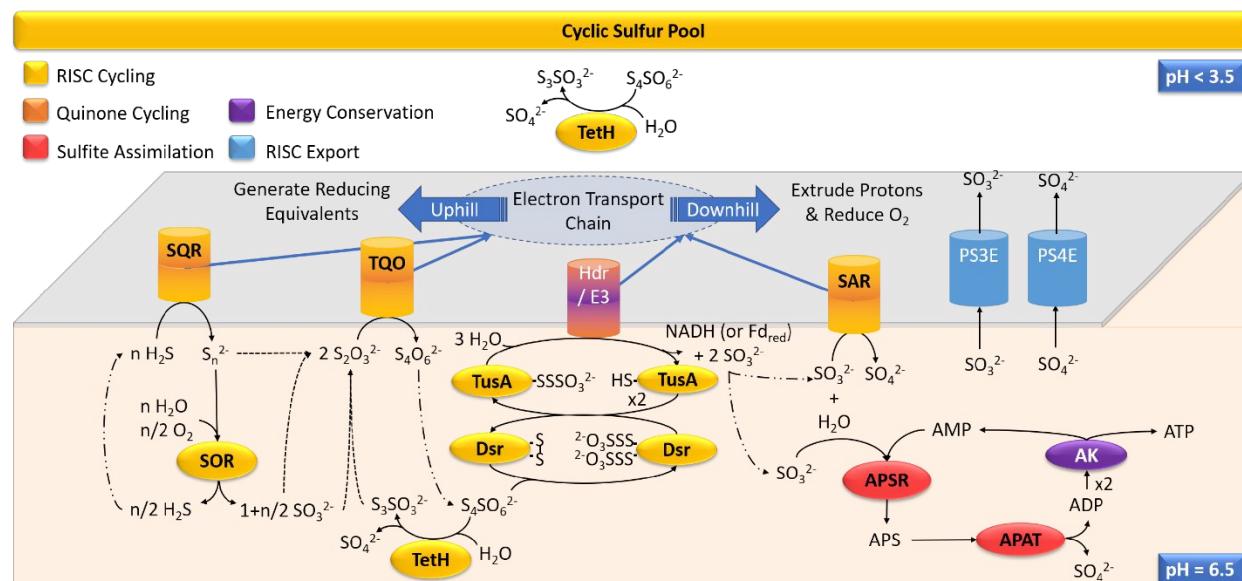
$$E'^0(pH, I = 0.338) = -\frac{\Delta G_{rxn}^0(pH, I = 0.338)}{nF} \quad [\text{EQN 5}]$$

where n is the number of electrons, F is the Faraday constant as 96.485 kJ (V mol)⁻¹, and E'^0 has units of V. For each half-reaction, the equilibrium limits of the half-reaction were based on maximum and minimum physiological concentrations of 10 mM and 1 μ M for reactants and products³⁴.

S. acidocaldarius Growth in Batch Cultures

S. acidocaldarius cultures were started from freezer stocks and grown with sucrose present, as described above. Cultures were passaged twice into fresh media upon reaching an OD600 value of 0.5-0.8. Cultures were passaged a final time into media containing no sucrose and some containing 10 g/L elemental sulfur to measure growth. One mL samples were taken

1
2
3 periodically from serum bottles and transferred to plastic cuvettes. Samples were allowed to settle
4
5 for one min prior to measuring OD600 spectrophotometrically.
6
7
8


9 **RESULTS AND DISCUSSION**

10 *Intersection of RISC Biology and Chemistry*

11
12
13 The role of abiotic sulfur chemistry in biological sulfur oxidation is clearly evident in mining
14 environments, where the breakdown of sulfidic ore is facilitated by acidophilic iron- and sulfur-
15 oxidizing microbes. The well-studied mechanisms of this process reveal that microbes do not
16 directly act on the ores; instead, the ore undergoes abiotic attack by protons and ferric iron³⁵. The
17 role of microbes in this scenario is to regenerate protons and ferric iron through sulfur and iron
18 oxidation, respectively. Here, abiotic and biotic reactions act synergistically; the abiotic
19 degradation of ores provides the microbes with an energy source for growth, and the byproducts
20 of the microbes' metabolism accelerates ore dissolution. At the same time, the sulfur liberated
21 from this process undergoes numerous abiotic reactions to generate a diverse pool of sulfur
22 species and drives acidification. While mesoacidophilic bacteria play the dominant role biomining
23 environments³⁶, high temperature biomining applications are often comprised of *Acidianus* and
24 *Metallosphaera* spp.³⁷ and the bioleaching capabilities of the Sulfolobales have been investigated
25 in laboratory settings³⁸.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43 **Biological Sulfur Oxidation in the Sulfolobales**

44
45 Oxidation of RISCs is a complex process that spans the extracellular space, the cell
46 membrane, and the cytoplasmic space (**Figure 2**) and, while it has been extensively studied in
47 mesoacidophiles, the thermoacidophilic mechanism of sulfur oxidation is less clear. Recent
48 sequencing of Sulfolobales' genomes has enabled a comparative genomic analysis of relevant
49 sulfur oxidation genes in an effort to identify the core constituents of the thermoacidophilic variant
50 of sulfur oxidation, based on the established phenotypes of the Sulfolobales (**Table 1**)^{25, 39}. A
51
52
53
54
55
56
57
58
59
60

Figure 2: Schematic of Sulfolobales enzymes involved in sulfur oxidation; solid lines indicate enzymatic reactions, dashed lines indicate abiotic formation of thiosulfate, dashed-dotted lines indicate a shared sulfur species between reactions, blue arrows indicate the movement of quinones; Gray barrier represents the cell membrane, with cytoplasmic space below the barrier and extracellular space above; enzymes are colored according to their functional associations: cycling of RISCs (yellow), cycling of quinones (orange), assimilation of SO_3^{2-} (red), direct energy conservation through ATP or NAD(P)H (purple), and export of RISCs (blue); enzymes with multiple functional associations have a color gradient

major component of mesoacidophilic sulfur oxidation is the thiosulfate cycle catalyzed by a membrane-associated protein complex, SoxACBDXYZ⁴⁰. However, this cycle is not present in thermoacidophilic organisms. Instead, the central enzyme in sulfur oxidation by the Sulfolobales is the sulfur oxygenase reductase (SOR), which disproportionates zero-valent sulfur into H_2S and SO_3^{2-} ²². A 24-subunit homomeric cytoplasmic protein, SOR requires no cofactors and is inhibited by zinc ions⁴¹. An indirect product of this enzyme is thiosulfate ($\text{S}_2\text{O}_3^{2-}$), which is generated by an abiotic reaction of H_2S and SO_3^{2-} ⁴². SOR is only expressed under aerobic conditions, possibly the result of its hypothesized oxygen-dependent reaction mechanism that involves polysulfide chains as the substrate for SOR rather than elemental sulfur⁴³.

The hot acidic environment of the Sulfolobales is particularly hostile towards secreted or surface-bound proteins. Therefore, it is notable that one such enzyme, tetrathionate hydrolase (TetH), is involved in sulfur oxidation. In the thermoacidophilic, sulfur-oxidizing facultative anaerobe *Acidianus ambivalens*, the majority of TetH activity was located extracellularly, and the isolated

Table 1: Distribution of Sulfur Oxidation Genes in the Genome-Sequenced Sulfolobales

Protein of Interest	Protein Cluster +	Protein Cluster Presence in Sequenced Sulfolobales																								
		Fox				Fox				Fox				Fox				Fox								
		Sred	Sred & Sox	Sox	Sred & Sox	Sred & Sox	Sox	+																		
Autotrophy																										
Sulfur Enzymes with Direct Action	SQR	17768	X	XX	XX	XX	X	XX	X	XX	X	X	X	X	X	X	X	X	X	-	X	X	X	X	X	
	TQOa	17578	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	-	-	X	X	-	X	X
	17852	-	X	X	X	-	X	-	X	X	-	-	-	-	-	-	X	X	-	XX	-	X	-	-	-	
	TQOb	17579	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	-	-	X	X	-	X	X
	17853	-	X	X	X	-	X	-	X	X	-	-	-	-	-	-	X	X	X	XX	-	X	-	-	-	
	TetH	622	-	X	X	X	X	X	XX	X	X	X	X	X	X	X	X	-	-	-	-	-	-	XX	-	
	SOR	18472	-	X	X	X	X	X	X	X	X	-	-	-	X	X	-	-	-	-	-	X	-	-	X	-
	SAOR	1361	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	X	X	X	X	X	X	X
	P53E	17110	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	-	X	X	-	X	-	-	-
	APSRa																									
Sulfur Reduction	APSRb	15	X	X	X	X	X	XX	X	XXX	X	XX	X	XX	X	XX	XX	X	XX	X	-	X	XX	X	X	
	APAT																									
	AK																									
	ATPS																									
Heterodisulfide Reduction System	SreA	18679	X	X	X	X	-	X	-	X	-	-	-	X	X	-	X	X	X	-	X	-	X	-	-	
	SreB	18973	X	X	X	XX	X	X	X	X	X	X	X	XX	XX	X	X	XX	XX	X	X	X	X	-	-	
	SreC	18251	X	X	X	X	-	X	-	X	-	-	-	X	X	-	X	X	X	-	XX	-	X	-	-	
	SreD	17628	X	X	X	XX	X	X	X	X	X	X	X	XX	XX	X	X	XX	XX	X	X	X	-	-	-	
	HdrA	18047	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrB1	18048	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrC1	18049	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrB2	18044	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrC2	18045	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	TusA	18050	X	X	X	X	X	X	X	X	X	X	X	X	X	X	XXX	XX	-	XX	X	X	XX	XX	X	
	DsrB(E2)	18051	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	DsrE3A	18052	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	DLD (E3)	18053	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	GSSH	18747	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LbpM1	18761	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LbpM2	18762	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LpIA	18763	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LbpA	18765	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
Fox Cluster	FoxA	708	-	X	-	X	X	X	X	X	-	XXX	XX	XX	X	X	-	-	-	-	-	-	-	X	X	
	FoxB	715	-	X	-	X	X	X	X	X	-	X	X	X	X	X	-	-	-	-	-	-	-	X	X	
	FoxC	5690	-	-	-	X	-	X	X	-	-	X	X	X	-	X	-	-	-	-	-	-	-	X	X	
	FoxD	717	-	X	-	X	X	X	X	X	-	X	X	-	X	X	-	-	-	-	-	-	-	X	X	
	FoxE	710	-	X	-	X	X	X	X	X	-	X	X	X	X	X	-	-	-	-	-	-	-	X	X	
	FoxF	709	-	X	-	X	X	X	X	X	-	X	X	X	X	X	X	-	-	-	-	-	-	X	X	
	FoxG	707	-	X	-	X	X	X	X	-	X	X	X	X	X	X	-	-	-	-	-	-	-	X	-	
	FoxH	706	-	X	-	X	X	X	X	-	X	X	X	X	X	X	X	-	-	-	-	-	-	X	-	
	FoxI	22019	-	-	-	-	-	-	-	-	-	X	X	X	-	-	-	-	-	-	-	-	-	-	-	
	FoxJ	712	-	XX	X	X	X	X	X	X	-	X	X	X	XX	XX	-	X	X	-	X	X	X	X	X	
	FoxV	711	-	X	-	X	X	X	X	X	-	X	X	X	X	X	X	-	-	-	-	-	-	X	X	
	FoxW	716	-	X	-	X	X	X	X	X	-	X	X	X	X	X	X	-	-	-	-	-	-	X	X	
	FoxY	714	-	X	-	X	X	X	X	-	X	X	-	X	X	-	-	-	-	-	-	-	-	X	X	
	FoxZ	713	X	X	X	X	X	X	X	-	X	X	X	X	X	X	X	-	-	-	-	-	-	X	X	

[†] Protein cluster numbers are based on comparative genomic analysis from Counts *et al.* (2020)²⁵

[‡] Phenotypes of Sulfolobales species are based on the assessment presented in Wheaton *et al.* (2015)³⁶; species excluded from this assessment labeled as "ND"

"X" indicates that the genome contains a protein homologous to the particular protein cluster. Multiple "X's" indicate paralogs in that genome

1
2
3 protein had a pH optimum of 1²³. In *A. ambivalens*, growth on tetrathionate increased transcription
4 of the TetH gene compared to growth on elemental sulfur¹⁷. Homologous genes in a related
5 species, *Acidianus brierleyi*, however, showed significant increase in transcription when
6 grown on elemental sulfur compared to yeast extract¹⁷. While TetH is likely essential for growth
7 on tetrathionate, it appears that it also plays a role in elemental sulfur oxidation.
8
9
10
11
12
13
14
15

16 Enzymes Coupled to the Electron Transport Chain 17

18 While SOR is central to the diversification of sulfur species within the cytoplasm, it is not
19 directly coupled to energy conservation. Instead, the various RISCs associate with a range of
20 membrane-bound quinone oxidoreductases to transfer electrons into the Electron Transport
21 Chain (ETC). Thiosulfate:quinone oxidoreductase (TQO) was the first of these complexes
22 identified in *A. ambivalens*, and it is responsible for oxidizing thiosulfate to tetrathionate²⁰. By
23 coupling sulfur oxidation to the ETC, the cell powers proton pumping and avoids the acidifying
24 effect of SOR disproportionation. In fact, an engineered strain of *S. acidocaldarius* with a
25 heterologous SOR was capable of oxidizing sulfur, but this ultimately proved to be toxic to the
26 organism¹⁷. Upon the insertion of a gene encoding a heterologous TQO to the *S. acidocaldarius*
27 mutant, normal growth was restored while maintaining the capacity to oxidize sulfur¹⁷. This *S.*
28 *acidocaldarius* strain containing SOR and TQO was ultimately designated *Saci* RK34. TQO
29 connects one product of the SOR disproportionation reaction to the ETC, and two other
30 membrane-bound oxidoreductases serve similar functions for H₂S and SO₃²⁻. The enzyme
31 responsible for H₂S oxidation, sulfide:quinone oxidoreductase (SQR), was originally described as
32 a novel type of NADH dehydrogenase⁴⁴. However, further investigation revealed that NADH
33 dehydrogenase activity was only possible with a truncated version of the enzyme. When the full
34 protein sequence was intact, the additional amino acid chain on the C-terminus blocked the
35 binding site for NADH. Instead, the enzyme assembles polysulfide chains from individual H₂S
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 monomers¹⁹. SQR reduces a quinone for each H₂S molecule added to the polysulfide chain,
4 significantly increasing the energy conserved from a single elemental sulfur moiety. The proposed
5 mechanism of SQR implicates two cysteine residues, which form a persulfide bond with incoming
6 H₂S and build up a polysulfide chain between the two residues. Ultimately, an incoming H₂S
7 molecule kicks out the assembled polysulfide chain and takes its place between the two cysteines,
8 triggering the formation of a new polysulfide chain⁴⁵. SO₃²⁻ is coupled to the quinone reduction by
9 a putative sulfite:acceptor oxidoreductase (SAOR). While activity for this enzyme has been
10 detected in aerobically grown *A. ambivalens*, it has not been linked to a coding region of the *A.*
11 *ambivalens* genome²¹. Note that a similar enzyme, sulfite dehydrogenase, has been
12 characterized in the mesoacidophile *Thiobacillus denitrificans*, although the electron acceptor in
13 this case is cytochrome c⁴⁶.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Energy-Conserving Enzymatic Reactions

30 The final oxidation of SO₃²⁻ to SO₄²⁻ can occur in the cytoplasm as well, where it is directly
31 coupled to the phosphorylation of ADP. Two routes of cytoplasmic sulfite oxidation exist, although
32 they share a common first step. Initially, adenosine-5'-phosphosulfate reductase (APSR)
33 catalyzes the reaction of sulfite with AMP to generate adenosine-5'-phosphosulfate (APS). The
34 sulfate group of APS is then cleaved by either ATP sulfurylase with pyrophosphate to generate
35 ATP or adenylylsulfate:phosphate adenylyltransferase (APAT) with phosphate to generate ADP.
36 In the case of the latter reaction, two molecules of ADP are converted to ATP and AMP by an
37 adenylate kinase (AK). A number of sulfur oxidizing organisms use both the cytoplasmic and
38 membrane pathways for sulfite oxidation, and this is thought to increase the rate of generation of
39 reducing equivalents⁴⁷. Interestingly, the cytoplasmic path involving APS also operates in the
40 reverse direction for the assimilatory reduction of sulfate⁴⁸. It is only in this reductive function that
41 the ATP sulfurylase and APAT/AK paths have been observed simultaneously. In oxidative
42 organisms, the APAT/AK path dominates⁴⁷, although instances of the ATP sulfurylase have been
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 observed⁴⁹. This observation is consistent with the limited work on sulfite oxidation in the
4
5 *Sulfolobales*. Much like the membrane-bound SAOR, activity for the APAT/AK route has been
6
7 observed in *A. ambivalens*, but no further characterization of the enzymes has been reported.
8
9 ATP sulfurylase activity was investigated in the same experiment, but no activity was detected²¹.
10
11

12 The most recent insights into *Sulfolobales* sulfur oxidation involves the highly conserved
13 *hdr/dsr/tusA* locus. In mesoacidophilic sulfur oxidation, this complex has been linked to the
14 oxidation of organic persulfides, namely glutathione, but also extended to sulfur-containing
15 organic molecules, like dimethyl sulfide (DMS)^{50, 51}. This complex is proposed to conserve energy
16 through reduction of ETC electron carriers, although further experimentation is needed to confirm
17 this function⁵². This is supported by the transmembrane domain contained in the HdrC subunit⁵¹.
18
19 Comparative genomic analysis has identified homologs to the *hdr/dsr/tusA* complex in all
20 genome-sequenced *Sulfolobales*¹⁷. However, characterization of the DsrE3A and TusA enzymes
21 in *Metallosphaera cuprina* have shown activity on tetrathionate rather than organic persulfides⁵³.
22 As a result, the Dsr/TusA system serves to cycle tetrathionate and thiosulfate in conjunction with
23 TQO, while also funneling polythionates towards total oxidation through formation of sulfite by
24 Hdr. Despite these insights into substrate preference, the electron acceptor of the Hdr complex is
25 still not clear. In the DMS-degrading *Hyphomicrobium denitrificans*, a lipoate-binding protein was
26 found to be associated with the Hdr complex. The complex reduced the cyclic sulfur bond of lipoic
27 acid, while oxidizing thiosulfate to sulfite. The reduced dihydrolipoic acid can power NAD⁺
28 reduction with the E3 subunit of pyruvate dehydrogenase²⁴. This newly proposed function of the
29 *hdr/dsr/tusA* complex provides a direct route to reducing power for sulfur metabolism. However,
30 the presence of this pathway in non-chemolithotrophic *Sulfolobales* (see **Table 1**) calls into
31 question whether the complex serves to provide energy to the cell or detoxify cytoplasmic RISCs
32 by oxidation. The synthesis of the lipoic acid cofactor could shed some light on Hdr function in the
33 *Sulfolobales*. While homologs of the LipB-catalyzed lipoate synthesis mechanism were identified
34 in a number of non-sulfur oxidizing *Sulfolobales*, *S. tokodaii* (the only sulfur oxidizer investigated)
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 appeared to only be capable of using exogenous lipoate scavenging²⁴. Further understanding of
4 lipoate synthesis in the *Sulfolobales* could clarify the role of the Hdr complex in thermoacidophilic
5 sulfur oxidation.
6
7
8
9
10

11 Involvement of Abiotic RISC Reactions in Biology

12

13 Solid elemental sulfur is mainly orthorhombic and has limited solubility in water⁵⁴. Ring-
14 opening reactions typically involve nucleophilic attack by cyanide, bisulfide, or sulfite⁵. In the case
15 of attack by bisulfide, polysulfide chains are generated⁵⁵. Under alkaline conditions, polysulfides
16 reach an equilibrium distribution of chain length²⁹. As pH decreases, the reverse reaction takes
17 place, with H₂S undergoing radical chemistry to build polysulfide chains; ultimately, the chain
18 attacks itself, cleaving off a closed sulfur ring from the chain⁵⁶. Similarly, sulfite attack on a sulfur
19 ring creates a linearized chain of sulfur, this time in the form of sulfane monosulfonate (S_nO₃²⁻)⁵.
20 Further attack by sulfite leads to the stepwise release of thiosulfate from the chain, resulting in
21 the total conversion of cyclic sulfur to thiosulfate³. Much like the polysulfide mechanism, as pH
22 decreases, the reaction runs in reverse and acidified thiosulfate leads to the formation of sulfur
23 rings⁵⁷.
24
25

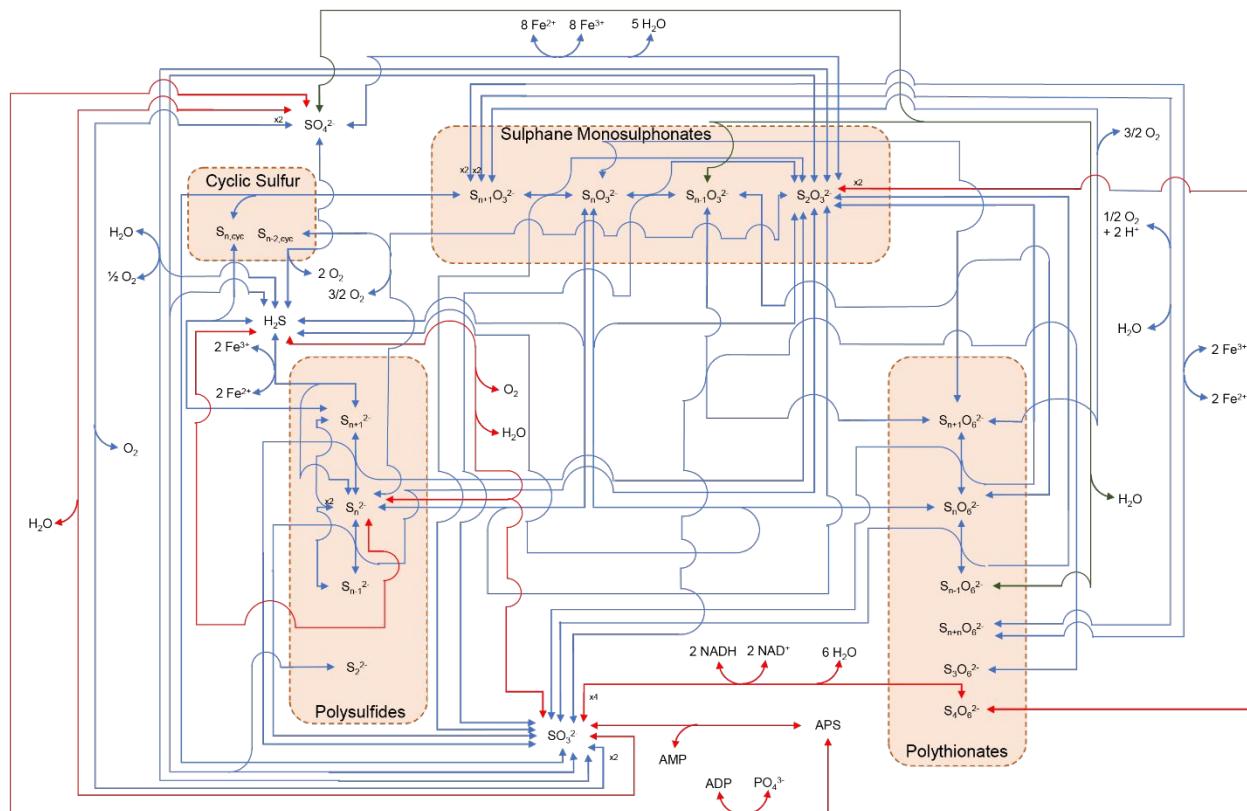

26 Sulfane monosulfonates are highly unstable in water⁵, but the combining of these chains,
27 or direct oxidation of a single chain by diatomic oxygen, gives rise to polythionates^{56, 58}.
28 Polythionates are more stable than their sulfane monosulfonate precursors and are often present
29 in fairly high concentration in native environments of the *Sulfolobales*⁵⁹. However, polythionates
30 are subject to hydrolysis, resulting in the release of sulfate from the chain and reformation of the
31 sulfane monosulfonate species. Polythionates are also subject to attack by bisulfide, producing
32 thiosulfate and polysulfide, even though polysulfide is often represented as elemental sulfur (S⁰)⁵.
33 While the exact reaction mechanism is not clear, a possible explanation is the sequential
34 attack of bisulfide releasing thiosulfate from the polythionate chain, thereby forming sulfane
35 monosulfonate first, before subsequent bisulfide attack forms just polysulfide.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 2: Summary of Key Abiotic RISC Reactions		
Reaction #	Reaction	Representation in Reaction
[Rxn 1]	$H_2O + S_nO_6^{2-} \rightarrow S_{n-1}O_3^{2-} + SO_4^{2-} + 2 H^+$	Yes ⁵⁸⁻⁶⁰
[Rxn 2]	$H_2S + 2 O_2 \rightarrow SO_4^{2-} + H^+$	Yes ⁶⁰
[Rxn 3]	$SO_3^{2-} + S_n^0 \rightarrow S_{n+1}O_3^{2-}$	Yes ³
[Rxn 4]	$SO_3^{2-} + S_nO_3^{2-} \rightarrow S_{n-1}O_3^{2-} + S_2O_3^{2-}$	Yes ³
[Rxn 5]	$HS^- + S_n^0 \rightarrow S_{n+1}^{2-} + H^+$	Yes ^{5, 35, 56, 60, 61}
[Rxn 6]	$SO_3^{2-} + S_n^{2-} \rightarrow S_{n-1}^{2-} + S_2O_3^{2-}$	Yes ^{3, 5}
[Rxn 7]	$SO_3^{2-} + S_2^{2-} + 2 H^+ \rightarrow H_2S + S_2O_3^{2-}$	Yes ^{3, 5}
[Rxn 8]	$S_n^{2-} + \frac{3}{2}O_2 \rightarrow S_2O_3^{2-} + S_{n-2}^0$	Yes ^{56, 60}
[Rxn 9]	$S_nO_6^{2-} + SO_3^{2-} \rightarrow S_{n-2}O_3^{2-} + S_3O_6^{2-}$	Yes ³
[Rxn 10]	$S_nO_6^{2-} + SO_3^{2-} \rightarrow S_2O_3^{2-} + S_{n-1}O_6^{2-}$	Yes ^{5, 59, 61, 62}
[Rxn 11]	$S_nO_3^{2-} + S_mO_6^{2-} \rightarrow S_{n-1}O_3^{2-} + S_{m+1}O_6^{2-}$	Yes ⁵⁸
[Rxn 12]	$2 SO_3^{2-} + O_2 \rightarrow 2 SO_4^{2-}$	Yes ⁶³
[Rxn 13]	$S_nO_3^{2-} + S_mO_3^{2-} + \frac{1}{2}O_2 + 2 H^+ \rightarrow S_{n+m}O_6^{2-} + H_2O$	Yes ^{58, 59}
[Rxn 14]	$S_nO_3^{2-} + S_mO_3^{2-} + 2 Fe^{3+} \rightarrow S_{n+m}O_6^{2-} + 2 Fe^{2+}$	Yes ^{56, 58}
[Rxn 15]	$S_nO_3^{2-} + \frac{3}{2}O_2 \rightarrow S_nO_6^{2-}$	Yes ⁵⁸
[Rxn 16]	$S_nO_6^{2-} + HS^- \rightarrow S_{n-1}O_3^{2-} + S_2O_3^{2-} + H^+$	Yes*
[Rxn 17]	$S_nO_3^{2-} + HS^- \rightarrow S_{n-1}^{2-} + S_2O_3^{2-} + H^+$	Yes*
[Rxn 18]	$S_n^{2-} + H_2S + 2 Fe^{3+} + 2 H_2O \rightarrow S_{n+1}^{2-} + 2 Fe^{2+} + 2 H_3O^+$	Yes*
[Rxn 19]	$S_2O_3^{2-} + 8 Fe^{3+} + 5 H_2O \rightarrow 2 SO_4^{2-} + 8 Fe^{3+} + 10 H^+$	Yes
[Rxn 20]	$S_n^{2-} + S_m^{2-} \rightarrow S_{n-1}^{2-} + S_{m-1}^{2-}$	Yes ^{4, 5, 56}
Overall Reactions Summarized by Rxns [1-20]	$S_nO_6^{2-} + (n-3)SO_3^{2-} \rightarrow S_3O_6^{2-} + (n-3)S_2O_3^{2-}$	[Rxn 9 + (n-4) Rxn 4] or [(n-2) Rxn 10] ^{3, 5}
	$SO_3^{2-} + \frac{1}{8}S_8^0 \rightarrow S_2O_3^{2-}$	[Rxn 3 + Rxn 4 + Rxn 3r] ^{5, 59, 62, 64, 65}
	$S_nO_6^{2-} + HS^- \rightarrow 2 S_2O_3^{2-} + (n-3)S^0 + H^+$	[Rxn 16 + Rxn 17 + Rxn] 3r] ⁵
	$S_nO_6^{2-} + HS^- + (n-3)SO_3^{2-} \rightarrow (n-1)S_2O_3^{2-} + H^+$	[Rxn 16 + (n-3) Rxn 4] ⁵
	$S_nO_6^{2-} + S_mO_6^{2-} \rightarrow S_{n-1}O_6^{2-} + S_{m+1}O_6^{2-}$	[Rxn 10 + Rxn 10r] ⁵
	$H_2S + Fe^{3+} \rightarrow Fe^{2+} + H_2S \cdot \rightarrow \text{radical chain building}$	[Component of Rxn 18] ^{35, 56}
	$S_nO_6^{2-} + 2 HS^- \rightarrow 2 S_2O_3^{2-} + (n-2)S_n^{2-} + 2 H^+$	[Rxn 16 + Rxn 17] ^{56, 59}
	$4 S_3O_3^{2-} \rightarrow S_8^0 + 4 SO_4^{2-}$	[(4) Rxn 4r + (7) Rxn 4 + Rxn 3] ⁵⁸
Note: Reaction numbers followed by an "r" designate the reverse reaction corresponding to that number; numbers in parenthesis indicate multiple instances of that reaction occurring as part of the overall reaction		

In addition to the exchange between polymeric sulfur species, chain-lengthening and chain-shortening reactions are possible. In particular, sulfite is capable of attacking each of the

three polymeric species discussed above, resulting in the liberation of thiosulfate^{3, 5}. This reaction (combined with others discussed here) is often implicit in the overall reactions presented in sulfur biooxidation studies, such as the total conversion of polythionate to thiosulfate in the presence of bisulfide and sulfite⁵ or the formation of cyclooctosulfur (S₈) from S₃O₃²⁻³⁵. A minimalist set of reactions (Table 2), most of which are described above, were identified such that they represent the broad array of overall reactions reported in literature. Select overall reactions are also presented, with a listing of the representative reactions that describe them.

A visualization combining this reaction network with the known enzymatic sulfur reactions of the Sulfolobales highlights points of synergy or antagonism (Figure 3). While the Sulfolobales possess several enzymes equipped to cycle thiosulfate and tetrathionate, no enzymatic step has been identified to facilitate the formation of thiosulfate from polysulfide or H₂S. It appears that the

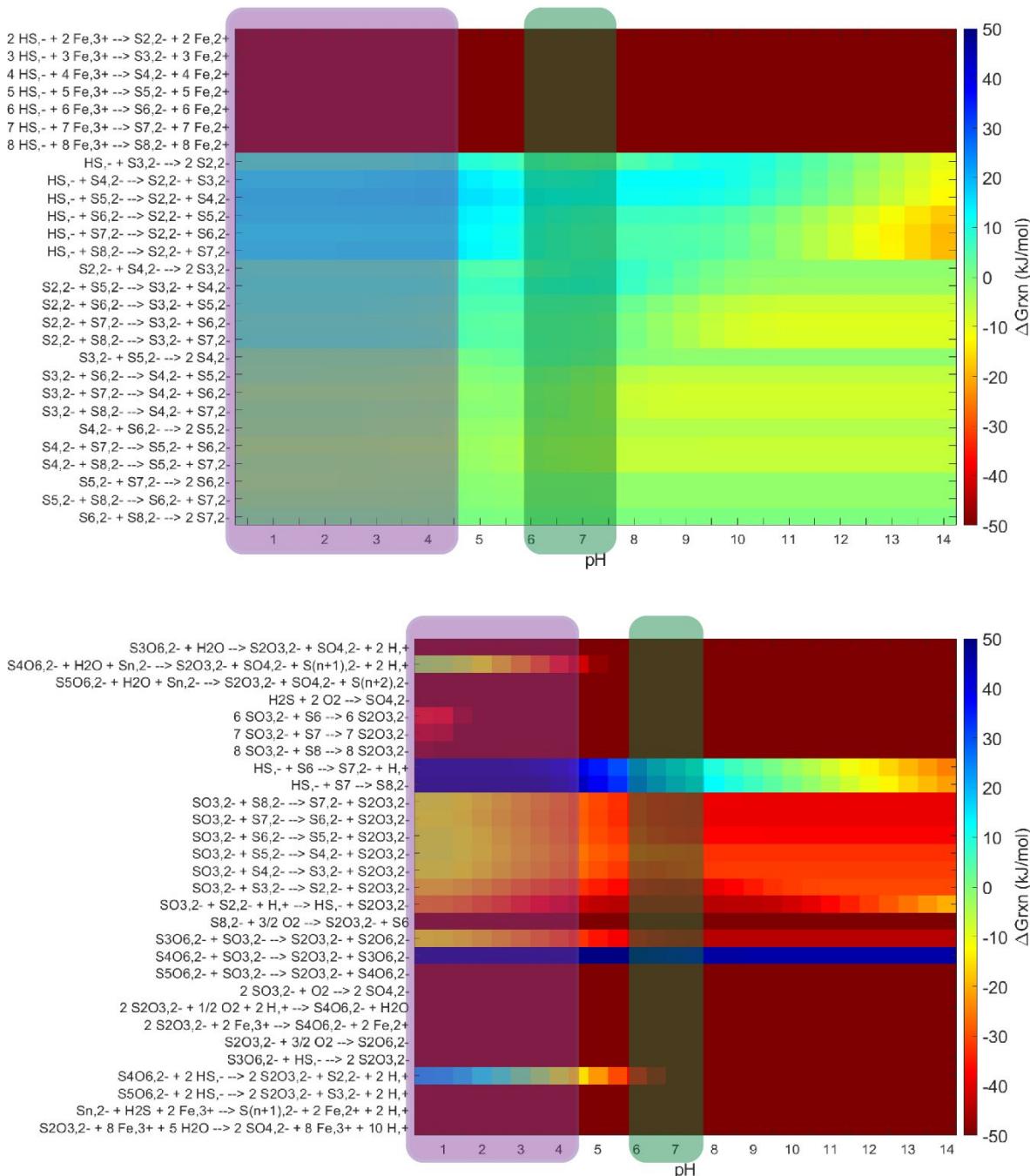
Figure 3: Minimalist representation of RISC reactions involved in Sulfolobales sulfur oxidation; Blue lines indicate abiotic reactions; Red lines indicate enzymatic reactions; Green lines indicate abiotic reactions also catalyzed by enzymes. Tan boxes indicate a class of sulfur species with varying chain length

1
2
3 cell instead relies on the abiotic formation of thiosulfate from polysulfide degradation by sulfite.
4
5 This reaction is often accounted for in models of sulfur oxidation in thermoacidophiles and
6 mesoacidophiles alike^{41, 66}. Other abiotic paths to thiosulfate include degradation of polythionates
7 by sulfite (Reaction 10), degradation of polythionate by H₂S (Reactions 16 and 17), and hydrolysis
8 of polythionates (Reaction 1 plus *n*-2 Reaction 4).
9
10
11
12

13 Direct competition between abiotic and enzymatic reactions also exist, notably in the case
14 of all three enzymes directly linked to the ETC. Conversion of H₂S to polysulfide (SQR), thiosulfate
15 to tetrathionate (TQO), and sulfite to sulfate (SAOR) all occur abiotically. Therefore, only a portion
16 of the available energy from these reactions is actually captured by the ETC and made available
17 to the cell. Accounting for this partial energy conservation is key in any model of the sulfur
18 oxidation metabolism, although the extent of energy loss to abiotic reactions necessitates a more
19 detailed kinetic understanding of the enzymatic steps. This consideration is only pertinent to
20 enzymatic steps that conserve energy. TetH, for instance, catalyzes the hydrolysis of
21 polythionates, namely tetrathionate, and this reaction also occurs abiotically. However, there is
22 no energy conserved by TetH, so the distinction between enzymatic and abiotic hydrolysis is not
23 significant.
24
25

26 Finally, some abiotic reactions may be directly antagonistic to the Sulfolobales. H₂S forms
27 cyclic sulfur through sequential chain-building of polysulfides via radical chemistry, where the
28 oxidizing agent is often Fe³⁺.⁴ This reaction leads to the generation of Fe²⁺, which when combined
29 with peroxide byproducts of the ETC can lead to the generation of hydroxyl radicals through
30 Fenton chemistry and subsequent oxidative stress in the cell. Notably, all sulfur-oxidizing
31 Sulfolobales possess the *fox* cluster of genes, which are linked to biological iron oxidation²⁷. While
32 some of these species rely on iron oxidation for energy, this gene cluster may also be providing
33 a way for the sulfur-oxidizers to deal with the toxic byproducts of H₂S radical chemistry.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Accessing Extracellular Sulfur Substrates


In contrast to the extracellular localization of sulfur reduction, sulfur oxidation occurs largely on the cytoplasm side of the cell membrane where the pH is more circumneutral. Transport of sulfur across the cell membrane is a particularly difficult process, considering that elemental sulfur dominates the distribution of sulfur species at low pH and is largely insoluble in water⁵⁴. Sulfur transport has been studied in mesophilic sulfur oxidizers, and multiple mechanisms have been proposed. In the mesophilic, photoautotrophic purple sulfur bacterium *Chromatium vinosum*, vesicles encapsulating extracellular sulfur are formed. Proteins encoded by *dsrE* and *tusA* then cleave individual sulfide atoms within the vesicle and transport them into the cytoplasm⁶⁷. Mesoacidophilic *Acidithiobacillus* spp. exhibit a similar mechanism, where proteins in the cell membrane form persulfide bonds, which are then cleaved on the cytoplasmic side of the membrane⁶⁸. No such transport mechanism has been identified in the *Sulfolobales* to date. However, hydrogen sulfide appears to be capable of crossing the cell membrane. Because of its structural similarity to water, H₂S appears to be capable of passing through aquaporins into the cytoplasmic space⁶⁹, where the near-neutral cytoplasm enables the abiotic redistribution of RISCs. In fact, H₂S may not even need the aid of a transporter to cross into the cytoplasm; rather it is capable of passive diffusion across the membrane⁷⁰. It has been postulated that cyclic S₈ could diffuse across the cell membrane in a similar manner due to its hydrophobic character and neutral charge⁷¹. However, transmembrane diffusion of S₈ has not yet been demonstrated experimentally.

Recently, a study of the extremely thermoacidophilic archaeon *Acidianus* DS80 showed that, while sulfur reduction can occur even when sulfur was sequestered away from the organism, sulfur oxidation required direct contact between the cells and solid sulfur substrate⁷². In the case of sulfur reduction, organism growth was dependent on the pore size of the dialysis bag, indicating that the particle size distribution of sulfur influenced sulfur reduction⁷². Whether this is indicative of mass transfer-limited growth or reaction-limited growth is unclear, but it is possible that for

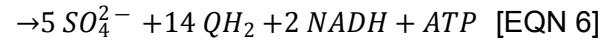
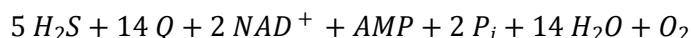
acidophiles, nanocrystalline S₈ is the substrate for sulfur reducers and is formed by ring-opening of H₂S and subsequent ring closure by the reverse reaction. This independence of direct contact for sulfur reduction has previously been explained in neutrophilic Archaea by polysulfide chains acting as the actual substrate for the cell⁷³. This would require extracellular cleavage of cyclic sulfur to generate polysulfide in the first place, and the thermodynamic equilibrium of cleavage by H₂S at acidic extracellular pH is highly unfavorable (see **Figure 4 bottom**). However, cleavage by SO₃²⁻ has a more favorable equilibrium. In the presence of oxygen, extracellular sulfite would be rapidly oxidized to sulfate according to Reaction 12 (see **Table 2**). This instability of sulfite in aerobic conditions could explain the need for direct interaction with (or at least proximity to) the sulfur substrate for oxidation, while it would not be required for sulfur reduction under anaerobic conditions. Notably, all sulfur-oxidizing species in the order Sulfolobales contain a putative sulfite exporter, which could provide the nucleophile necessary for ring cleavage (see **Table 1**).

Influence of pH on Reaction Directionality

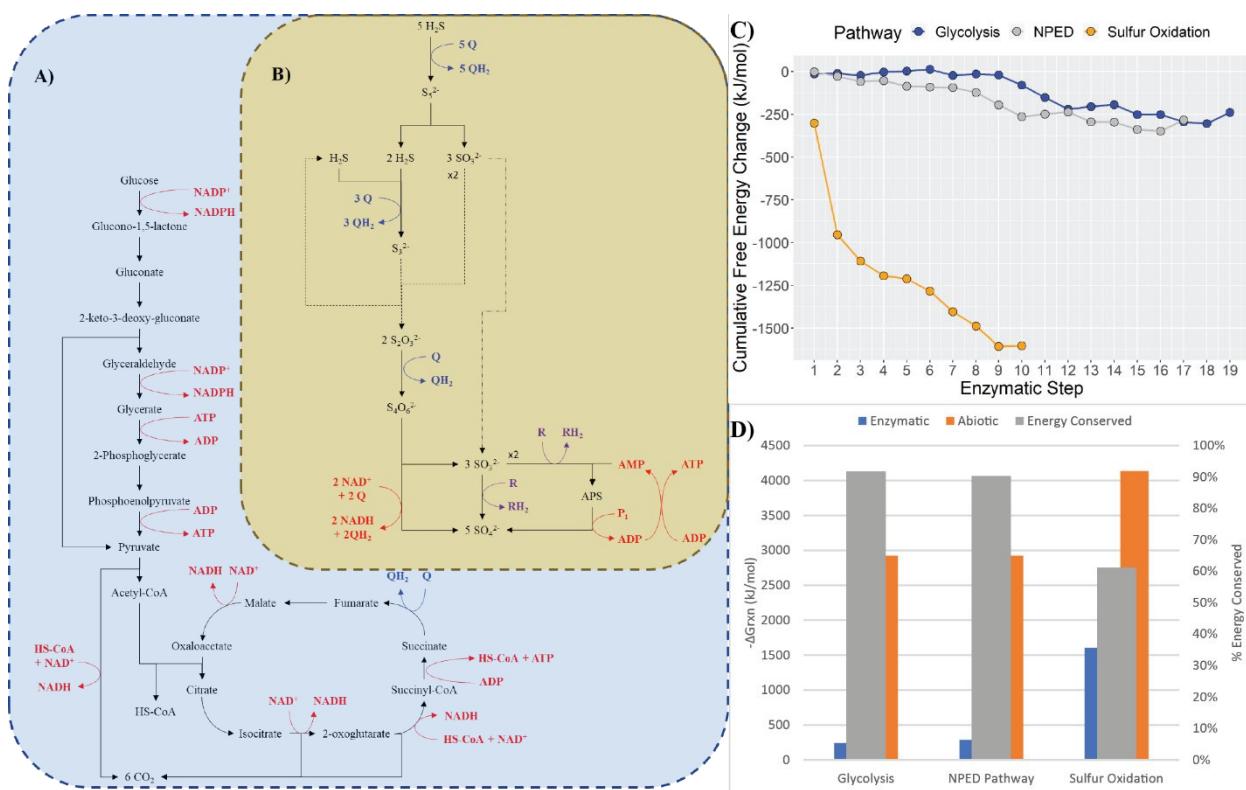
How pH influences reactions involving RISCs is particularly pertinent when considering thermoacidophilic biooxidation. While these organisms do thrive at acidic pHs, they maintain a near-neutral cytoplasmic pH of ~6.5^{74, 75}. The cell membrane acts as a discrete barrier to this large pH gradient, which causes a drastic shift in reaction equilibria as RISCs cross the cell membrane. ΔG_f⁰ values from literature were transformed to account for ionic strength of the standard Brock Salts medium and the protonation state of the species, and the equilibrium constant of abiotic reactions of RISCs was evaluated over a range of pH values (**Figure 4**). The equilibrium between polysulfide chains of varying lengths has been well-studied under alkaline conditions²⁹. However, the instability of polysulfides in acid makes the direct examination of this equilibria at low pH challenging. In general terms, the ΔG_{rxn} appears to favor combining shorter chains into longer polysulfide chains at pH below 7, even at the expense of liberating H₂S (**Figure 4 top**). However, the presence of an oxidant, like ferric iron, enables the radical chemistry necessary to assemble

Figure 4: ΔG_{rxn} (kJ/mol) for RISC reactions at pH increments of 0.5; Colorscale boundaries are 50 and -50 kJ/mol, and any ΔG_{rxn} exceeding these values are shown at the bounds of the color scale; Purple shading indicates extracellular pH conditions; Green shading indicates cytoplasmic pH conditions; (Top): polysulfide chain-sizing from Reaction 20; (Bottom): RISC Reactions 1-19, excluding Reaction 9.

n H₂S into a polysulfide chain S_n²⁻⁵⁶ and is favorable, independent of pH. Ultimately, this chain-building effect results in the formation of insoluble cyclic sulfur and release of H₂S.



1
2
3 There is a stark contrast between the nucleophilic attack of sulfur rings by H₂S and by
4 sulfite (**Figure 4 bottom**). At low pH, the reaction involving H₂S is favored in the reverse direction,
5 forming sulfur rings from polysulfide chains by releasing H₂S. However, at near-neutral
6 cytoplasmic pH, an equilibrium between reactants and products persists. In contrast, nucleophilic
7 attack by sulfite (and the subsequent degradation of polysulfide chains by sulfite) is favored in the
8 forward direction, even at low pH, and becomes more favorable as pH increases. This mechanism
9 has implications for making sulfur accessible to the cell, as discussed below. It is somewhat
10 complicated by the stability of SO₃²⁻. In aerobic conditions, SO₃²⁻ will rapidly oxidize to SO₄²⁻⁶³,
11 and SO₃²⁻ is degraded in acid even in an anoxic environment, although measurable quantities of
12 SO₃²⁻ were still detectable after 24 h of incubation⁷⁶.
13
14

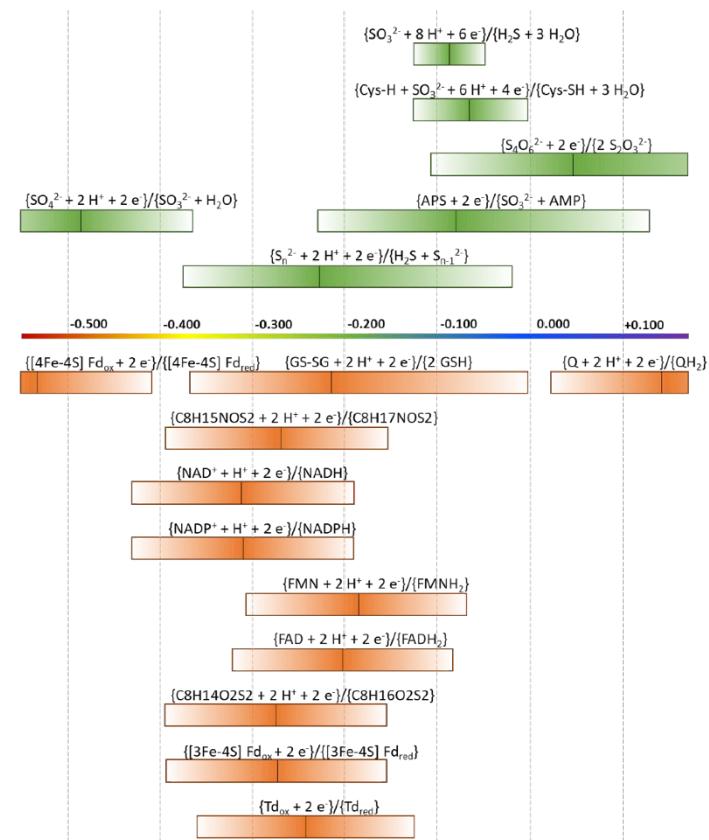
15 Reaction equilibria of polythionates also appear to vary with chain length, but with a free
16 energy minimum at $n = 4$ as tetrathionate. While the hydrolysis of polythionates is favored at
17 cytoplasmic pH, hydrolysis of tetrathionate specifically approaches an equilibrium in the
18 extracellular space. The stability of tetrathionate outside of the cell represents a possible
19 bottleneck in the interchange of RISCs and may explain why the Sulfolobales produce an
20 extracellular tetrathionate hydrolase, which catalyzes a reaction that is normally spontaneous at
21 higher pH.
22
23


42 Energetics of the Sulfur Oxidation Metabolic Pathway

43 The comprehensive energetics of sulfur oxidation have previously been examined in a
44 biological context⁶⁵. However, these overall oxidation reactions represent only a maximum
45 potential for energy conservation. To evaluate the metabolic potential of a pathway, the energetics
46 of individual steps of the pathway must be assessed. To this end, energy conservation of sulfur
47 oxidation in Sulfolobales can be compared to the primary heterotrophic pathway in the
48 Sulfolobales, the non-phosphorylative Entner-Doudoroff Pathway^{77, 78}.
49
50
51
52
53
54
55
56
57
58
59
60

For the purposes of overall energetic comparison, a pathway was constructed for the total oxidation of H_2S to sulfate in the Sulfolobales (Figure 5). Note that a number of recycle steps and branch points normally exist for the sulfur pathway, as outlined earlier (Figure 2). However, this representation is intended to include all known enzymatic sulfur reactions of the Sulfolobales and to ensure total oxidation of the number of H_2S molecules considered. In this case, the overall biological oxidation of H_2S to sulfate is represented as:

The electron acceptor for the sulfite:acceptor oxidoreductase and APS reductase reactions are unknown (shown as "R"/"RH₂" in Figure 5) and were assumed to be quinones for the purpose of



pathway energetic calculations. Notably, the sulfur oxidation pathway reduces significantly more quinones than the NPED pathway (Figure 5a, 5b), indicating that sulfur-oxidizing Sulfolobales rely much more heavily on the electron transport chain for energy than their heterotrophic

Figure 5: a) Non-phosphorylative Entner-Doudoroff pathway (NPED); b) Representative sulfur oxidation pathway; c) Cumulative free energy change by reaction step for glycolysis (blue), NPED (gray), and sulfur oxidation (orange); d) Overall percent energy conservation of pathways (gray) based on free energy change of total combustion or oxidation of substrate (orange) and free energy change of enzymatic pathway (blue).

counterparts. This may also be a means of dealing with the liberation of protons that occurs during cytoplasmic sulfur oxidation and the consequential acidification.

Total energy conservation of the sulfur oxidation pathway was compared against the NPED pathway of the Sulfolobales and glycolysis (**Figure 5c**). The magnitude of the abiotic ΔG_{rxn}^0 for oxidation of four H_2S molecules is comparable to ΔG_{rxn}^0 for complete combustion of glucose. The sulfur oxidation pathway falls short of the >90% energy conservation from the two heterotrophic pathways, but it does still conserve greater than 60% of the available energy.

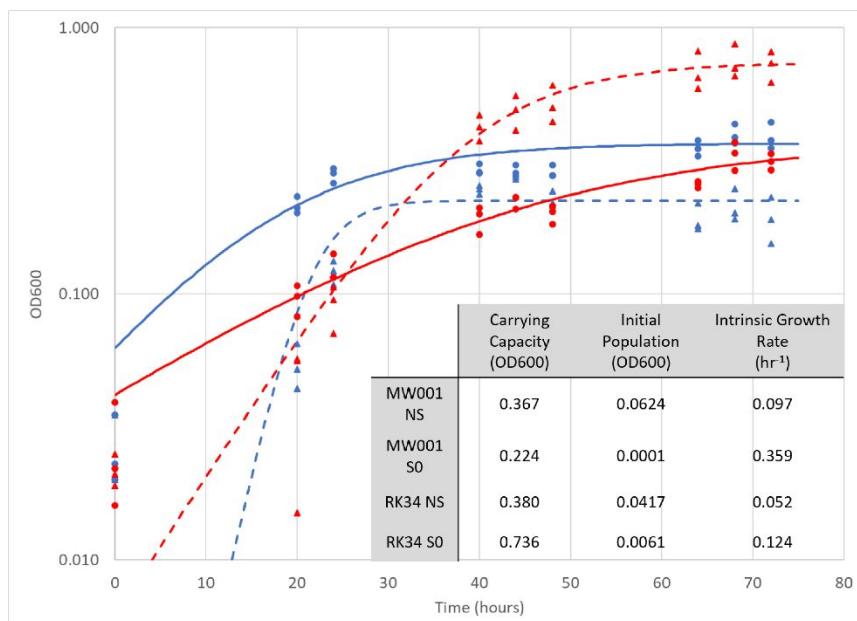
Figure 6: Reduction potential of enzymatic sulfur half-reactions (green) and energy carrier half-reactions (orange); bars represent the physiological range of reactant/product ratios; vertical lines in each bar represent the equimolar transformed reduction potential of the half-reaction.

H_2S to S^0 by sulfide:quinone oxidoreductase and the disproportionation of S^0 by sulfur oxygenase reductase, result in the most significant energy loss. This is not surprising for the SOR reaction, considering that it is not coupled to any biological energy carrier. Downstream of the SOR

However, this calculated energy conservation is assuming all molecules of H_2S proceed to SO_4^{2-} through enzymatic steps wherever possible. As discussed earlier, competitive abiotic sulfur reactions may cut into this energy conservation, making the practical energy conservation even lower. The extent of this interference requires more detailed kinetic enzymatic understanding.

A breakdown of the cumulative free energy change through each step of sulfur oxidation (**Figure 5d**) reveals that the first two steps of the pathway,

reaction, the rate of free energy change is not too dissimilar from heterotrophic pathways, indicating a high degree of energy conservation in these steps.


The reduction potential of the enzymatic half-reactions of sulfur were evaluated against the half-reaction reduction potential of major biological energy carriers (**Figure 6**). The majority of sulfur half-reactions have moderately high reduction potential and so are only capable of coupling to quinone reduction. The lowest reduction potential of any enzymatic step is the oxidation of sulfite to sulfate, associated with sulfur:acceptor oxidoreductase. Notably, the electron acceptor of this enzyme remains unknown, but it has the energetic capability to reduce even the [4Fe-4S] ferredoxin, the energy carrier with the lowest known reduction potential in the Sulfolobales³². The Sulfolobales also possess a rather unusual [3Fe-4S] ferredoxin, which has a standard reduction potential of -0.275 V³². Interestingly, this energy carrier sits squarely in the range of the [H₂S, S_n^{-1,2}/S_n²⁻] reduction potential and suggests that it may be a ferredoxin uniquely suited to the reduction potential of sulfur oxidation.

Supporting Evidence of Sulfur Oxidation in an Engineered *S. acidocaldarius* Strain

The engineered strain of *S. acidocaldarius* (RK34)¹⁷ and the parent strain *S. acidocaldarius* MW001 were grown with limited heterotrophic nutrients, with and without elemental sulfur present (**Figure 7**). The resulting growth data were fit to logistic equation of the form:

$$N_t = \frac{K}{1 + \left(\frac{K - N_0}{N_0}\right)e^{-rt}} \quad [\text{EQN 7}]$$

where K is the carrying capacity of the population, N_0 is the initial population and r is the intrinsic growth rate of the population. The data were also analyzed by Principle Component Analysis (PCA) to evaluate differences in behavior between the growth conditions. When grown with sulfur, the carrying capacity of MW001 somewhat decreased compared to growth on just amino acids

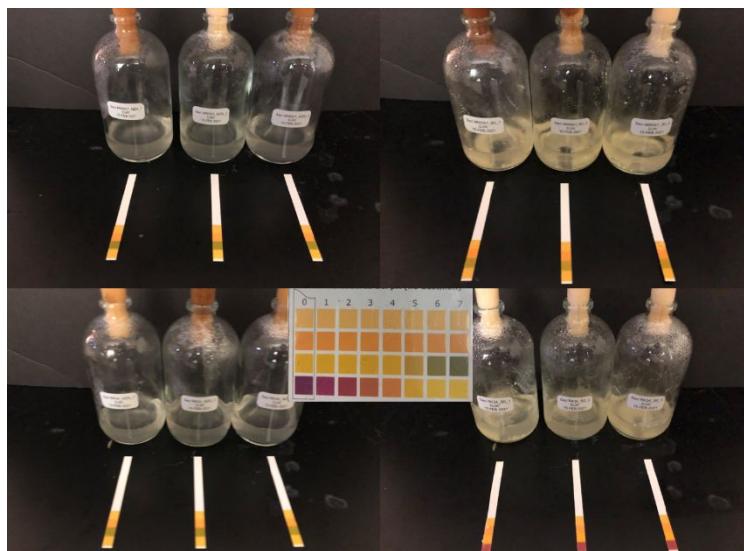


Figure 7: Growth curves of *Saci* MW001 (blue) and RK34 (red) on amino acids without sulfur (circles) and with sulfur (triangles); Logistic equation models for the data are shown as solid lines (without sulfur) or dotted lines (with sulfur); values for the logistic equation parameters are shown in the insert, where “NS” indicates the condition without sulfur and “S0” indicates the condition with sulfur

component that was similar between the two strains. However, the first principle component showed a divergence between MW001 and RK34 in the presence of sulfur. This implies that the RK34 strain gains an energetic advantage from sulfur that enables more of the amino acids to be allocated as a carbon source for biomass generation and not used as an energy source.

Notably, in the non-sulfur condition, batch cultures of both MW001 and RK34 had a final pH greater than 5 (**Figure 8**). This was also the case for batch cultures of MW001 with sulfur. However, the RK34 strain grown with sulfur ended with a pH between 2 and 3. Maintaining the acidic environment in these cultures is likely a consequence of sulfur oxidation by RK34. Naturally one might assume that a lower extracellular pH, and therefore a larger transmembrane proton gradient, might enable the cell to generate more energy from protonmotive force. However, acidophilic microbes have been shown to throttle proton influx to levels similar to neutrophilic microbes due to a positive membrane potential⁷⁹. In fact, acidophilic microbes have even been shown to adjust this membrane potential in response to changes in extracellular pH in order to

(NZ-Amine). In contrast, the RK34 strain nearly doubled, indicating that the presence of sulfur improved growth from amino acids alone. In the PCA analysis, minimal difference between MW001 and RK34 was observed in the first two components when grown without sulfur. Addition of sulfur to the cultures resulted in a shift in the second principle

Figure 8: Final pH measurement of serum bottles for *Saci* MW001 without sulfur (pH 6, top left), *Saci* MW001 with sulfur (pH 5.5, top right), *Saci* RK34 without sulfur (pH 5.5, bottom left), and *Saci* RK34 with sulfur (pH 2, bottom right).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
maintain a constant proton flux⁷⁴. In the *Sulfolobales*, increasing the number of cyclopentyl rings attached to the tetraether lipid membrane reduces proton permeability in the membrane⁸⁰. Therefore, it is possible that the difference in extracellular pH does not affect the energy conservation from protonmotive force in RK34. However, the microbe would have to change its membrane

composition to deal with higher pH, therefore increasing the energy demand of the cell. As such, it remains to be seen if RK34 generates cellular energy directly from sulfur oxidation or as an indirect consequence of the maintained pH gradient.

CONCLUSION

The complexity of abiotic sulfur chemistry adds a challenging dimension to sulfur oxidation that is unique among inorganic metabolisms. As such, to fully understand the energetic potential of sulfur as a metabolic substrate, the effect of abiotic reactions on energy conservation must be considered. Some reactions, such as hydrolysis of polythionates and formation of thiosulfate, create synergy with enzymatic steps. Others impede energy conservation through direct competition with enzymatic steps or by creating cellular stress. The function of these abiotic reactions between the acidic extracellular space and the neutral cytoplasm may even provide insight into mechanisms of sulfur transport in the *Sulfolobales*.

The stepwise oxidation of sulfur offers numerous opportunities to conserve energy through enzymatic coupling to energy carriers, theoretically capturing over 60% of the available energy

1
2
3 from sulfur oxidation. Matching the oxidation step with an energy carrier of similar reduction
4 potential is critical to minimizing energy loss while providing some clues as to the role of enzymes
5 in sulfur metabolism. Even introducing only a few of these enzymes into a non-sulfur oxidizer
6 provides an energetic advantage to the engineered strain.
7
8

9
10 Another consideration for the role of sulfur chemistry, biotic and abiotic, is the role that this
11 element may have played in establishing life in an emerging aerobic system on Earth or
12 elsewhere. The stepwise oxidation of sulfur creates an opportunity for efficient energy
13 conservation, and the varied reduction potential of sulfur half-reactions enables reduction of
14 varied biological energy carriers. Further understanding of how biological sulfur oxidation
15 influences and responds to the distribution of RISCs in an environment may provide clues towards
16 the presence or potential for life beyond the planet Earth.
17
18

29 SUPPORTING INFORMATION

30
31

32 Free energy of formation data for all chemical species and protonation states used for
33 calculations, including source of the data.
34

37 ACKNOWLEDGMENTS

38
39

40 This work was supported by grants from the U.S. Air Force Office of Sponsored Research
41 (AFOSR) (FA9550-17-1-0268, FA9550-20-1-0216) and the U.S. National Science Foundation
42 (CBET-1802939). DJW acknowledges support from an U.S. National Institutes of Health
43 Biotechnology Traineeship (T32 GM133366-01).
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 **REFERENCES**
4
5

6 1. McDonough, W. F.; Sun, S. S., The Composition of the Earth. *Chem Geol* **1995**, *120* (3-4), 223-
7 253.

8 2. King, P. L.; McLennan, S. M., Sulfur on Mars. *Elements* **2010**, *6* (2), 107-112.

9 3. *Elemental Sulfur: Chemistry and Physics*. Interscience Publishers: 1965.

10 4. Steudel, R.; Chivers, T., The role of polysulfide dianions and radical anions in the chemical,
11 physical and biological sciences, including sulfur-based batteries. *Chem Soc Rev* **2019**, *48* (12), 3279-
12 3319.

13 5. *Inorganic Sulphur Chemistry*. Elsevier Publishing Company: 1968.

14 6. Friedrich, C. G.; Rother, D.; Bardischewsky, F.; Quentmeier, A.; Fischer, J., Oxidation of reduced
15 inorganic sulfur compounds by bacteria: Emergence of a common mechanism? *Appl Environ Microb*
16 **2001**, *67* (7), 2873-2882.

17 7. Macey, M. C.; Fox-Powell, M.; Ramkissoon, N. K.; Stephens, B. P.; Barton, T.; Schwenger, S. P.;
18 Pearson, V. K.; Cousins, C. R.; Olsson-Francis, K., The identification of sulfide oxidation as a potential
19 metabolism driving primary production on late Noachian Mars. *Sci Rep* **2020**, *10* (1), 10941.

20 8. Lewis, A. M.; Recalde, A.; Brasen, C.; Counts, J. A.; Nussbaum, P.; Bost, J.; Schocke, L.; Shen, L.;
21 Willard, D. J.; Quax, T. E. F., et al., The biology of thermoacidophilic archaea from the order Sulfolobales.
22 *FEMS Microbiol Rev* **2021**.

23 9. Zillig, W.; Yeats, S.; Holz, I.; Bock, A.; Rettenberger, M.; Gropp, F.; Simon, G., *Desulfurolobus*
24 *ambivalens*, *gen nov*, *sp nov*, an autotrophic Archaeabacterium facultatively oxidizing or reducing sulfur.
25 *Syst Appl Microbiol* **1986**, *8* (3), 197-203.

26 10. Huber, G.; Stetter, K. O., *Sulfolobus metallicus*, *sp nov*, a novel strictly chemolithoautotrophic
27 thermophilic Archaeal species of metal-mobilizers. *Syst Appl Microbiol* **1991**, *14* (4), 372-378.

28 11. Huber, G.; Spinnler, C.; Gambacorta, A.; Stetter, K. O., *Metallosphaera sedula* *gen nov* and *sp nov*
29 represents a new genus of aerobic, metal-mobilizing, thermoacidophilic Archaeabacteria. *Syst Appl*
30 *Microbiol* **1989**, *12* (1), 38-47.

31 12. De Rosa, M.; Gambacorta, A.; Bu'Lock, J. D., Extremely thermophilic acidophilic bacteria
32 convergent with *Sulfolobus acidocaldarius*. *J Gen Microbiol* **1975**, *86*, 9.

33 13. Wheaton, G. H.; Vitko, N. P.; Counts, J. A.; Dulkis, J. A.; Podolsky, I.; Mukherjee, A.; Kelly, R. M.,
34 Extremely thermoacidophilic *Metallosphaera* species mediate mobilization and oxidation of vanadium
35 and molybdenum oxides. *Appl Environ Microb* **2019**, *85* (5).

36 14. Segerer, A. H.; Trincone, A.; Gahrtz, M.; Stetter, K. O., *Stygiolobus azoricus* *gen nov*, *sp nov*
37 represents a novel genus of anaerobic, extremely thermoacidophilic Archaeabacteria of the order
38 Sulfolobales. *Int J Syst Bacteriol* **1991**, *41* (4), 495-501.

39 15. Sakai, H. D.; Kurosawa, N., *Sulfodiicoccus acidiphilus* *gen nov*, *sp nov*, a sulfur-inhibited
40 thermoacidophilic archaeon belonging to the order Sulfolobales isolated from a terrestrial acidic hot
41 spring. *Int J Syst Evol Micr* **2017**, *67* (6), 1880-1886.

42 16. Brock, T. D.; Brock, K. M.; Belly, R. T.; Weiss, R. L., *Sulfolobus* - new genus of sulfur-oxidizing
43 Bacteria living at low pH and high temperature. *Arch Mikrobiol* **1972**, *84* (1), 54-&.

44 17. Zeldes, B. M.; Loder, A. J.; Counts, J. A.; Haque, M.; Widney, K. A.; Keller, L. M.; Albers, S.-V.;
45 Kelly, R. M., Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilic
46 Sulfolobales. *Environmental Microbiology* **2019**, *21* (10), 3696-3710.

47 18. Wagner, M.; van Wolferen, M.; Wagner, A.; Lassak, K.; Meyer, B. H.; Reimann, J.; Albers, S.-V.,
48 Versatile genetic tool box for the Crenarchaeote *Sulfolobus acidocaldarius*. *Front. Microbiol.* **2012**, *3*,
49 e214.

50 51
52 53
53 54
54 55
55 56
56 57
57 58
58 59
59 60

1
2
3 19. Brito, J. A.; Sousa, F. L.; Stelter, M.; Bandeiras, T. M.; Vonrhein, C.; Teixeira, M.; Pereira, M. M.;
4 Archer, M., Structural and functional insights into sulfide:quinone oxidoreductase. *Biochemistry-US*
5 **2009**, *48* (24), 5613-5622.

6 20. Muller, F. H.; Bandeiras, T. M.; Urich, T.; Teixeira, M.; Gomes, C. M.; Kletzin, A., Coupling of the
7 pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound
8 thiosulphate : quinone oxidoreductase. *Mol Microbiol* **2004**, *53* (4), 1147-1160.

9 21. Zimmermann, P.; Laska, S.; Kletzin, A., Two modes of sulfite oxidation in the extremely
10 thermophilic and acidophilic archaeon *Acidianus ambivalens*. *Arch. Microbiol.* **1999**, *172* (2), 76-82.

11 22. Kletzin, A., Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from
12 sulfur - purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic
13 archaeabacterium *Desulfurolobus ambivalens*. *J Bacteriol* **1989**, *171* (3), 1638-1643.

14 23. Protze, J.; Muller, F.; Lauber, K.; Nass, B.; Mentele, R.; Lottspeich, F.; Kletzin, A., An extracellular
15 tetrathionate hydrolase from the thermoacidophilic archaeon *Acidianus ambivalens* with an activity
16 optimum at pH 1. *Front Microbiol* **2011**, *2*.

17 24. Cao, X.; Koch, T.; Steffens, L.; Finkensieper, J.; Zigann, R.; Cronan, J. E.; Dahl, C., Lipoate-binding
18 proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atypical role for an
19 old cofactor. *Elife* **2018**, *7*.

20 25. Counts, J. A.; Willard, D. J.; Kelly, R. M., Life in hot acid: a genome-based reassessment of the
21 archaeal order *Sulfolobales*. *Environ Microbiol* **2020**.

22 26. Jiang, C. Y.; Liu, L. J.; Guo, X.; You, X. Y.; Liu, S. J.; Poetsch, A., Resolution of carbon metabolism
23 and sulfur-oxidation pathways of *Metallosphaera cuprina* Ar-4 via comparative proteomics. *J Proteomics*
24 **2014**, *109*, 276-289.

25 27. Bathe, S.; Norris, P. R., Ferrous iron- and sulfur-induced genes in *Sulfolobus metallicus*. *Appl.*
26 *Environ. Microbiol.* **2007**, *73*, 2491-2497.

27 28. Amend, J. P.; Shock, E. L., Energetics of overall metabolic reactions of thermophilic and
28 hyperthermophilic Archaea and Bacteria. *Fems Microbiology Reviews* **2001**, *25* (2), 175-243.

29 29. Kamyshny, A.; Goifman, A.; Gun, J.; Rizkov, D.; Lev, O., Equilibrium distribution of polysulfide
30 ions in aqueous solutions at 25 degrees C: A new approach for the study of polysulfides equilibria.
31 *Environ Sci Technol* **2004**, *38* (24), 6633-6644.

32 30. Flamholz, A.; Noor, E.; Bar-Even, A.; Milo, R., eQuilibrator-the biochemical thermodynamics
33 calculator. *Nucleic Acids Res* **2012**, *40* (D1), D770-D775.

34 31. Schafer, G.; Engelhard, M.; Muller, V., Bioenergetics of the archaea. *Microbiol Mol Biol R* **1999**,
35 *63* (3), 570-+.

36 32. Breton, J. L.; Duff, J. L. C.; Butt, J. N.; Armstrong, F. A.; George, S. J.; Petillot, Y.; Forest, E.;
37 Schafer, G.; Thomson, A. J., Identification of the iron-sulfur clusters in a ferredoxin from the Archaeon
38 *Sulfolobus acidocaldarius* - Evidence for a reduced [3Fe-4S] cluster with pH-dependent electronic
39 properties. *Eur J Biochem* **1995**, *233* (3), 937-946.

40 41 33. Alberti, R. A., Calculation of standard transformed entropies of formation of biochemical
42 reactants and group contributions at specified pH. *J Phys Chem A* **1998**, *102* (44), 8460-8466.

43 44 34. Bar-Even, A.; Flamholz, A.; Noor, E.; Milo, R., Thermodynamic constraints shape the structure of
45 carbon fixation pathways. *Bba-Bioenergetics* **2012**, *1817* (9), 1646-1659.

46 47 35. Sand, W.; Gehrke, T.; Jozsa, P. G.; Schippers, A., (Bio) chemistry of bacterial leaching - direct vs.
48 indirect bioleaching. *Hydrometallurgy* **2001**, *59* (2-3), 159-175.

49 50 36. Dave, S. R.; Tipre, D. R., Diversity of Iron and Sulphur Oxidizers in Sulphide Mine Leachates. In
51 *Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications*, Satyanarayana, T.;
52 Johri, B.; Das, S., Eds. Springer, Singapore: 2019.

53
54
55
56
57
58
59
60

1
2
3 37. Neale, J. W.; Robertson, S. W.; Muller, H. H.; Gericke, M., Integrated piloting of a thermophilic
4 bioleaching process for the treatment of a low-grade nickel-copper sulphide concentrate. *J S Afr I Min
5 Metall* **2009**, *109* (5), 273-293.

6 38. Liu, H. C.; Xia, J. L.; Nie, Z. Y.; Liu, L. Z.; Wang, L.; Ma, C. Y.; Zheng, L.; Zhao, Y. D.; Wen, W.,
7 Comparative study of S, Fe and Cu speciation transformation during chalcopyrite bioleaching by mixed
8 mesophiles and mixed thermophiles. *Miner Eng* **2017**, *106*, 22-32.

9 39. Wheaton, G.; Counts, J.; Mukherjee, A.; Kruh, J.; Kelly, R., The Confluence of Heavy Metal
10 Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles.
11 *Minerals-Basel* **2015**, *5* (3), 397-451.

12 40. Chen, L.; Ren, Y.; Lin, J.; Liu, X.; Pang, X.; Lin, J., Acidithiobacillus caldus sulfur oxidation model
13 based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective
14 mutant. *PLoS One* **2012**, *7* (9), e39470.

15 41. Veith, A.; Urich, T.; Seyfarth, K.; Protze, J.; Frazao, C.; Kletzin, A., Substrate pathways and
16 mechanisms of inhibition in the sulfur oxygenase reductase of acidianus ambivalens. *Front Microbiol*
17 **2011**, *2*, 37.

18 42. Kletzin, A., Molecular characterization of the sor gene, which encodes the sulfur
19 oxygenase/reductase of the thermoacidophilic Archaeum *Desulfurolobus ambivalens*. *J Bacteriol* **1992**,
20 *174* (18), 5854-9.

21 43. Kletzin, A., Oxidation of Sulfur and Inorganic Sulfur Compounds in *Acidianus ambivalens*. In
22 *Microbial Sulfur Metabolism*, Dahl, C.; Friedrich, C., Eds. Springer-Verlag: Heidelberg, 2008.

23 44. Gomes, C. M.; Bandeiras, T. M.; Teixeira, M., A new type-II NADH dehydrogenase from the
24 archaeon *Acidianus ambivalens*: characterization and in vitro reconstitution of the respiratory chain. *J
25 Bioenerg Biomembr* **2001**, *33* (1), 1-8.

26 45. Brito, J. A.; Sousa, F. L.; Stelter, M.; Bandeiras, T. M.; Vonrhein, C.; Teixeira, M.; Pereira, M. M.;
27 Archer, M., Structural and functional insights into sulfide:quinone oxidoreductase. *Biochemistry* **2009**,
28 *48* (24), 5613-22.

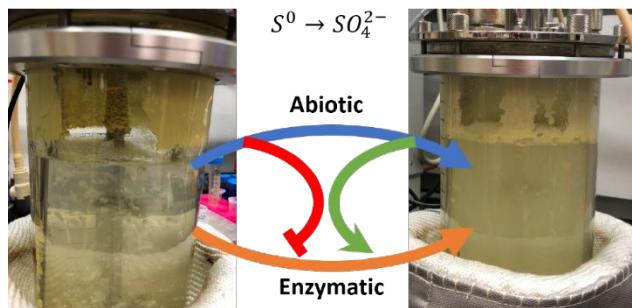
29 46. Nakamura, K.; Yoshikawa, H.; Okubo, S.; Kurosawa, H.; Amano, Y., Purification and Properties of
30 Membrane-Bound Sulfite Dehydrogenase from *Thiobacillus Thiooxidans* Jcm7814. *Biosci Biotech Bioch*
31 **1995**, *59* (1), 11-15.

32 47. Kappler, U.; Dahl, C., Enzymology and molecular biology of prokaryotic sulfite oxidation. *FEMS
33 Microbiol Lett* **2001**, *203* (1), 1-9.

34 48. Yu, H.; Susanti, D.; McGlynn, S. E.; Skennerton, C. T.; Chourey, K.; Iyer, R.; Scheller, S.;
35 Tavormina, P. L.; Hettich, R. L.; Mukhopadhyay, B., et al., Comparative Genomics and Proteomic Analysis
36 of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea. *Front Microbiol*
37 **2018**, *9*, 2917.

38 49. Yin, H.; Zhang, X.; Li, X.; He, Z.; Liang, Y.; Guo, X.; Hu, Q.; Xiao, Y.; Cong, J.; Ma, L., et al., Whole-
39 genome sequencing reveals novel insights into sulfur oxidation in the extremophile *Acidithiobacillus*
40 *thiooxidans*. *BMC Microbiol* **2014**, *14*, 179.

41 50. Wang, R.; Lin, J. Q.; Liu, X. M.; Pang, X.; Zhang, C. J.; Yang, C. L.; Gao, X. Y.; Lin, C. M.; Li, Y. Q.; Li,
42 Y., et al., Sulfur oxidation in the acidophilic autotrophic *Acidithiobacillus* spp. *Front. Microbiol.* **2019**, *9*,
43 e3290.


44 51. Koch, T.; Dahl, C., A novel bacterial sulfur oxidation pathway provides a new link between the
45 cycles of organic and inorganic sulfur compounds. *ISME J.* **2018**, *12* (10), 2479-2491.

46 52. Camacho, D.; Frazao, R.; Fouillen, A.; Nanci, A.; Lang, B. F.; Apte, S. C.; Baron, C.; Warren, L. A.,
47 New Insights Into *Acidithiobacillus thiooxidans* Sulfur Metabolism Through Coupled Gene Expression,
48 Solution Chemistry, Microscopy, and Spectroscopy Analyses. *Front Microbiol* **2020**, *11*, 411.

49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 53. Liu, L. J.; Stockdreher, Y.; Koch, T.; Sun, S. T.; Fan, Z.; Josten, M.; Sahl, H. G.; Wang, Q.; Luo, Y. M.;
4 Liu, S. J., et al., Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-
5 oxidizing archaeon *Metallosphaera cuprina*. *J Biol Chem* **2014**, *289* (39), 26949-59.
6
7 54. Kamyshny, A., Solubility of cyclooctasulfur in pure water and sea water at different
8 temperatures. *Geochim Cosmochim Ac* **2009**, *73* (20), 6022-6028.
9
10 55. Avetisyan, K.; Buchshtav, T.; Kamyshny, A., Kinetics and mechanism of polysulfides formation by
11 a reaction between hydrogen sulfide and orthorhombic cyclooctasulfur. *Geochim Cosmochim Ac* **2019**,
12 *247*, 96-105.
13
14 56. Steudel, R., Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical
15 and microbiological desulfurization processes. *Ind Eng Chem Res* **1996**, *35* (4), 1417-1423.
16
17 57. Davis, R. E., Displacement reactions at the sulfur atom - 1. An interpretation of the
18 decomposition of acidified thiosulfate. *J Am Chem Soc* **1958**, *80* (14), 3565-3569.
19
20 58. Schippers, A.; Jozsa, P. G.; Sand, W., Sulfur chemistry in bacterial leaching of pyrite. *Appl Environ
21 Microb* **1996**, *62* (9), 3424-3431.
22
23 59. Xu, Y.; Schoonen, M. A. A.; Nordstrom, D. K.; Cunningham, K. M.; Ball, J. W., Sulfur geochemistry
24 of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. Formation and decomposition
25 of thiosulfate and polythionate in Cinder Pool. *J Volcanol Geoth Res* **2000**, *97* (1-4), 407-423.
26
27 60. *Elemental Sulfur and Sulfur-Rich Compounds*. Springer-Verlag: 2003.
28
29 61. Pryor, W. A., *Mechanisms of Sulfur Reactions*. McGraw-Hill Book Company, Inc.: 1962.
30
31 62. Suzuki, I., Oxidation of inorganic sulfur compounds: Chemical and enzymatic reactions. *Can J
32 Microbiol* **1999**, *45* (2), 97-105.
33
34 63. Chen, T. I.; Barron, C. H., Some Aspects of Homogeneous Kinetics of Sulfite Oxidation. *Ind Eng
35 Chem Fund* **1972**, *11* (4), 466-&.
36
37 64. *The Chemistry of Sulfides*. Interscience Publishers: 1968.
38
39 65. Kelly, D. P., Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria
40 in relation to the sulfur oxidation pathways. *Arch. Microbiol.* **1999**, *171* (4), 219-229.
41
42 66. Fazzini, R. A. B.; Cortes, M. P.; Padilla, L.; Maturana, D.; Budinich, M.; Maass, A.; Parada, P.,
43 Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (RISCs) in *Acidithiobacillus
44 thiooxidans*. *Biotechnol Bioeng* **2013**, *110* (8), 2242-2251.
45
46 67. Pattaragulwanit, K.; Brune, D. C.; Truper, H. G.; Dahl, C., Molecular genetic evidence for
47 extracytoplasmic localization of sulfur globules in *Chromatium vinosum*. *Arch Microbiol* **1998**, *169* (5),
48 434-44.
49
50 68. Dahl, C., Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes. *IUBMB Life* **2015**, *67* (4),
51 268-74.
52
53 69. Lv, C.; Aitchison, E. W.; Wu, D.; Zheng, L.; Cheng, X.; Yang, W., Comparative exploration of
54 hydrogen sulfide and water transmembrane free energy surfaces via orthogonal space tempering free
55 energy sampling. *J Comput Chem* **2016**, *37* (6), 567-74.
56
57 70. Mathai, J. C.; Missner, A.; Kugler, P.; Saparov, S. M.; Zeidel, M. L.; Lee, J. K.; Pohl, P., No
58 facilitator required for membrane transport of hydrogen sulfide. *P Natl Acad Sci USA* **2009**, *106* (39),
59 16633-16638.
60
61 71. Boyd, E. S.; Druschel, G. K., Involvement of Intermediate Sulfur Species in Biological Reduction of
62 Elemental Sulfur under Acidic, Hydrothermal Conditions. *Appl Environ Microb* **2013**, *79* (6), 2061-2068.
63
64 72. Amenabar, M. J.; Boyd, E. S., Mechanisms of mineral substrate acquisition in a
65 thermoacidophile. *Applied and Environmental Microbiology* **2018**, *84* (12).
66
67 73. Blumentals, II; Itoh, M.; Olson, G. J.; Kelly, R. M., Role of Polysulfides in Reduction of Elemental
68 Sulfur by the Hyperthermophilic Archaeabacterium *Pyrococcus furiosus*. *Appl Environ Microb* **1990**, *56*
69 (5), 1255-62.

1
2
3 74. Matin, A., Keeping a Neutral Cytoplasm - the Bioenergetics of Obligate Acidophiles. *Fems*
4 *Microbiology Letters* **1990**, *75* (2-3), 307-318.
5
6 75. Schafer, G.; Krulwich, T. A.; Poole, R. K.; Padan, E.; Konings, W. N.; Skulachev, V.; Fillingame, R.
7 H.; Matin, A.; Dimroth, P.; Booth, I. R., et al., How can archaea cope with extreme acidity? *Novart Fdn*
8 *Symp* **1999**, *221*, 131-151.
9
10 76. Colman, D. R.; Lindsay, M. R.; Amenabar, M. J.; Fernandes-Martins, M. C.; Roden, E. R.; Boyd, E.
11 S., Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in
12 volcanic environments on early Earth. *Isme J* **2020**, *14* (5), 1316-1331.
13
14 77. Ahmed, H.; Ettema, T. J.; Tjaden, B.; Geerling, A. C.; van der Oost, J.; Siebers, B., The semi-
15 phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. *Biochem J*
16 **2005**, *390* (Pt 2), 529-40.
17
18 78. Figueiredo, A. S.; Kouril, T.; Esser, D.; Haferkamp, P.; Wieloch, P.; Schomburg, D.; Ruoff, P.;
19 Siebers, B.; Schaber, J., Systems biology of the modified branched Entner-Doudoroff pathway in
20 *Sulfolobus solfataricus*. *PLoS One* **2017**, *12* (7), e0180331.
21
22 79. Schafer, G.; Moll, R.; Schmidt, C. L., Respiratory enzymes from *Sulfolobus acidocaldarius*.
23 *Methods Enzymol* **2001**, *331*, 369-410.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60**TOC Graphic**

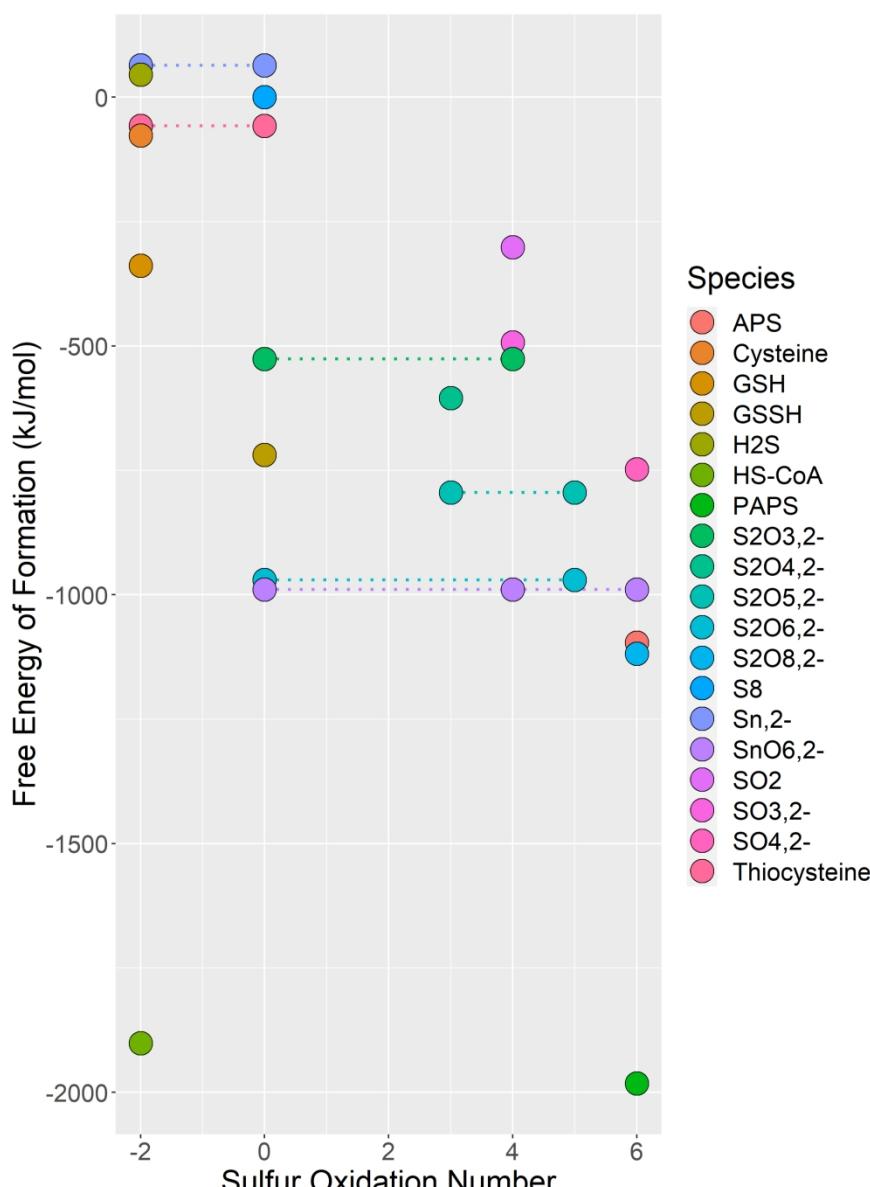


Figure 1: Distribution of oxidation states and ΔG_f^0 of various sulfur species; APS: adenylyl sulfate, GSH: glutathione, GSSH: glutathione disulfide, PAPS: phosphoadenylyl sulfate; dotted lines indicate multiple sulfur oxidation states within the same molecule

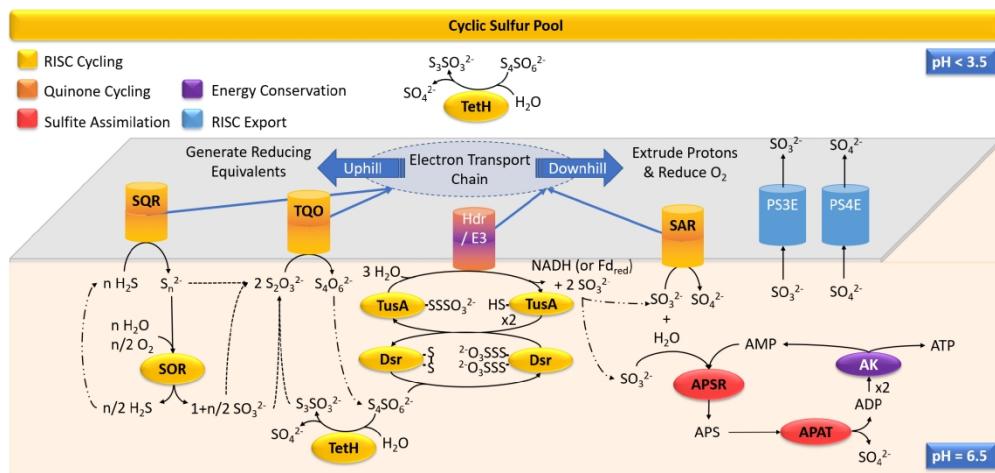


Figure 2: Schematic of Sulfolobales enzymes involved in sulfur oxidation; solid lines indicate enzymatic reactions, dashed lines indicate abiotic formation of thiosulfate, dashed-dotted lines indicate a shared sulfur species between reactions, blue arrows indicate the movement of quinones; Gray barrier represents the cell membrane, with cytoplasmic space below the barrier and extracellular space above; enzymes are colored according to their functional associations: cycling of RISCs (yellow), cycling of quinones (orange), assimilation of SO_3^{2-} (red), direct energy conservation through ATP or NAD(P)H (purple), and export of RISCs (blue); enzymes with multiple functional associations have a color gradient

Protein of Interest	Protein Cluster	Protein Cluster Presence in Sequenced Sulfobolales																														
		Fox			Fox			Fox			Fox			Fox			Fox			Fox			Fox			Fox			Fox			
		Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	Sred	Sred & Sox	Sox	
SQR	17768	X	XX	XX	XX	X	XX	X	XX	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
TQOa	17578	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
TQOb	17579	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
TetH	622	-	X	X	X	X	-	X	-	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	XX	-	
SOR	18472	-	X	X	X	X	X	X	X	X	X	-	-	-	-	X	X	-	-	-	-	-	-	-	-	X	-	-	X	-	X	
SAOR	1361	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
PS3E	17110	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
APSRa																																
APSrb	15	X	X	X	X	X	XX	X	XXX	X	XX	X	XX	X	XX	X	XX	X	XX	X	XX	X	XX	X	-	X	XX	X	X	X		
APAT																																
Sulfur Reduction	SreA	18679	X	X	X	X	-	X	-	X	-	-	-	-	X	X	-	X	X	X	X	X	X	X	X	-	X	-	X	-	-	
	SreB	18973	X	X	X	X	X	X	X	X	X	X	X	X	X	X	XX	X	XX	XX	XX	XX	XX	XX	XX	X	X	X	X	X	-	
	SreC	18251	X	X	X	X	-	X	-	X	-	-	-	-	X	X	-	X	X	X	X	X	X	X	X	-	XX	-	X	-		
	SreD	17628	X	X	X	XX	X	X	X	X	X	X	X	X	XX	XX	X	X	XX	XX	XX	XX	XX	XX	XX	X	X	X	X	X	-	
Heterodisulfide Reduction System	HdrA	18047	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrB1	18048	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrC1	18049	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrB2	18044	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	HdrC2	18045	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	TuS4	18050	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	DsrB(E2Z)	18051	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	DsrE3A	18052	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	DLD (E3)	18053	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	GSSH	18747	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LbpM1	18761	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LbpM2	18762	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LplA	18763	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
	LbpA	18765	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	
Fox Cluster	FoxA	708	-	X	-	X	X	X	X	X	-	-	XXX	XX	XX	X	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	FoxB	715	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	FoxC	5690	-	X	-	X	-	X	X	X	-	-	X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
	FoxD	717	-	X	-	X	X	X	X	X	-	-	X	X	-	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	
	FoxE	710	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	
	FoxF	709	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	
	FoxG	707	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	
	FoxH	706	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	-	X	X	X	X	X	X	X	X	X	X	X	X	X	
	FoxI	22019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	FoxJ	712	-	XX	X	X	X	X	X	X	-	-	X	X	X	X	XX	XX	-	X	X	-	-	-	-	-	-	-	X	X	X	
	FoxK	711	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	-	X	X	X	
	FoxL	716	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	X	-	-	-	-	-	-	-	-	-	X	X	X	X	
	FoxM	714	-	X	-	X	X	X	-	X	-	-	X	X	-	X	X	-	X	-	-	-	-	-	-	-	-	X	X	X	X	
	FoxZ	713	-	X	-	X	X	X	X	X	-	-	X	X	X	X	X	X	X	-	-	-	-	-	-	-	-	X	X	X	X	

[†] Protein cluster numbers are based on comparative genomic analysis from Counts *et al.* (2020)²⁵

[‡] Phenotypes of Sulfobolales species are based on the assessment presented in Wheaton *et al.* (2015)³⁶; species excluded from this assessment labeled as "ND"

^{*}"X" indicates that the genome contains a protein homologous to the particular protein cluster. Multiple "X's" indicate paralogs in that genome

Table 1: Distribution of Sulfur Oxidation Genes in the Genome-Sequenced Sulfobolales

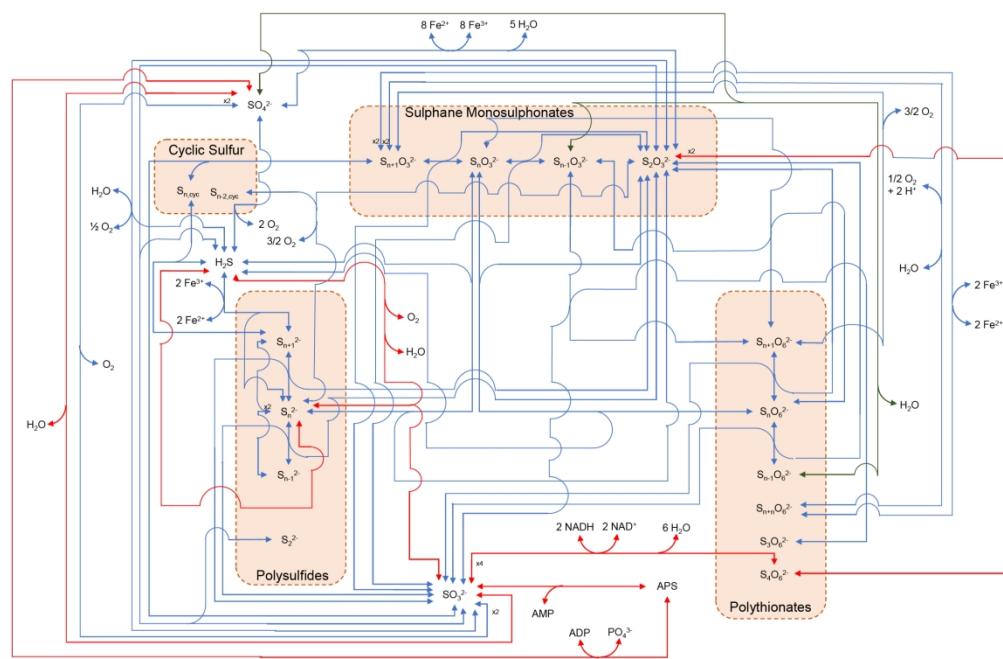


Figure 3: Minimalist representation of RISC reactions involved in Sulfolobales sulfur oxidation; Blue lines indicate abiotic reactions; Red lines indicate enzymatic reactions; Green lines indicate abiotic reactions also catalyzed by enzymes. Tan boxes indicate a class of sulfur species with varying chain length

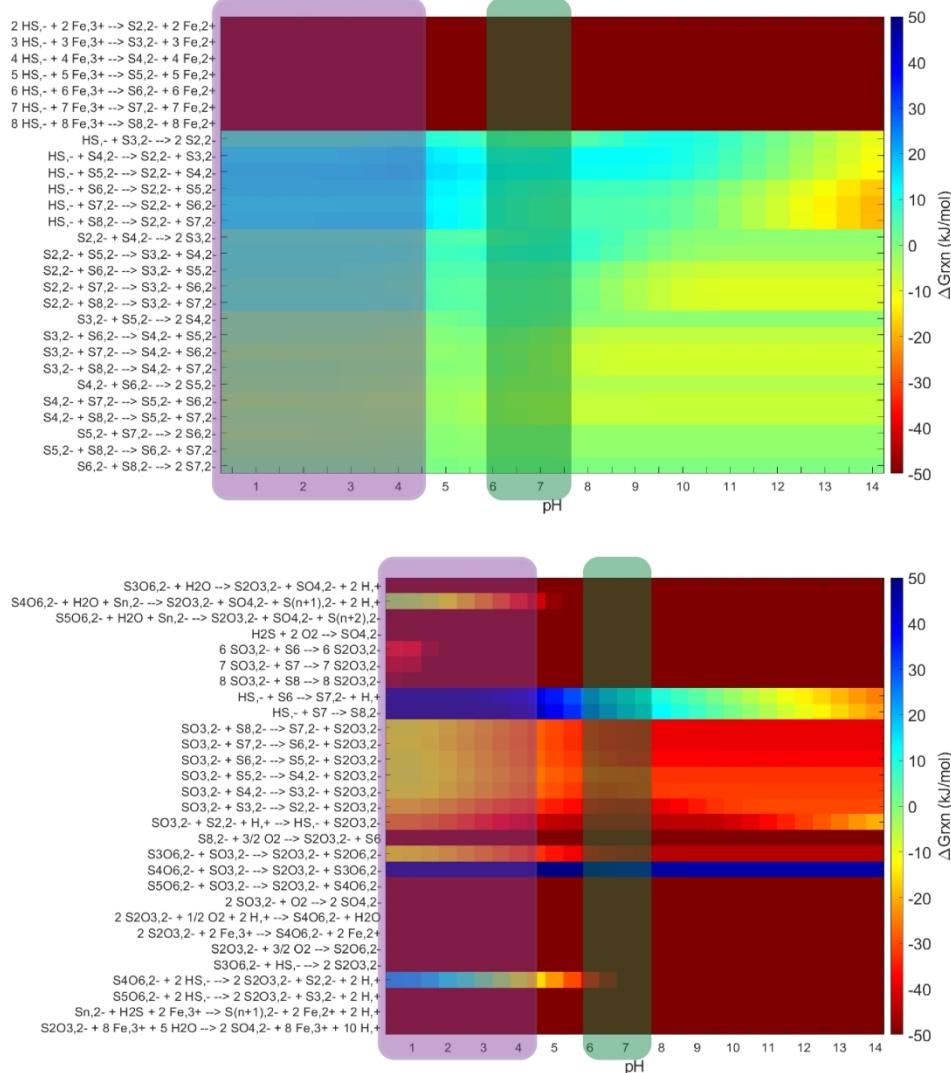


Figure 4: ΔG_{rxn} (kJ/mol) for RISC reactions at pH increments of 0.5; Colorscales boundaries are 50 and -50 kJ/mol, and any ΔG_{rxn} exceeding these values are shown at the bounds of the color scale; Purple shading indicates extracellular pH conditions; Green shading indicates cytoplasmic pH conditions; (Top): polysulfide chain-sizing from Reaction 20; (Bottom): RISC Reactions 1-19, excluding Reaction 9.

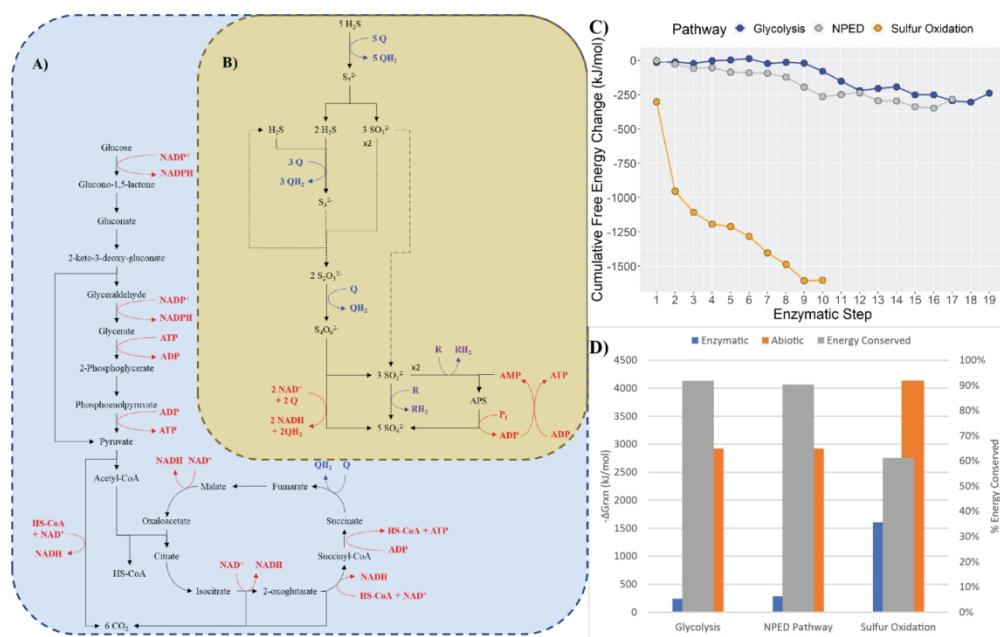


Figure 5: a) Non-phosphorylative Entner-Doudoroff pathway (NPED); b) Representative sulfur oxidation pathway; c) Cumulative free energy change by reaction step for glycolysis (blue), NPED (gray), and sulfur oxidation (orange); d) Overall percent energy conservation of pathways (gray) based on free energy change of total combustion or oxidation of substrate (orange) and free energy change of enzymatic pathway (blue).

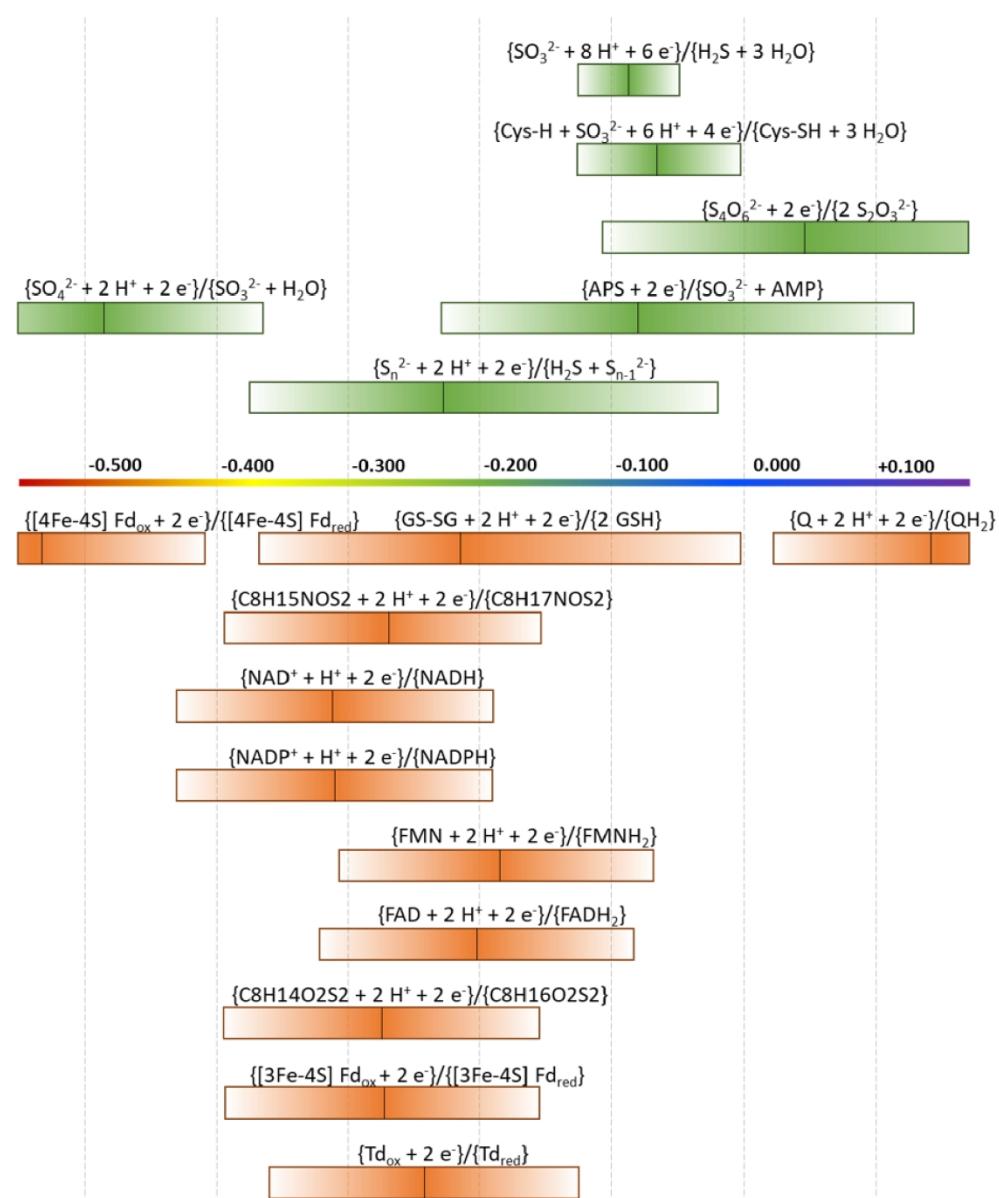


Figure 6: Reduction potential of enzymatic sulfur half-reactions (green) and energy carrier half-reactions (orange); bars represent the physiological range of reactant/product ratios; vertical lines in each bar represent the equimolar transformed reduction potential of the half-reaction.

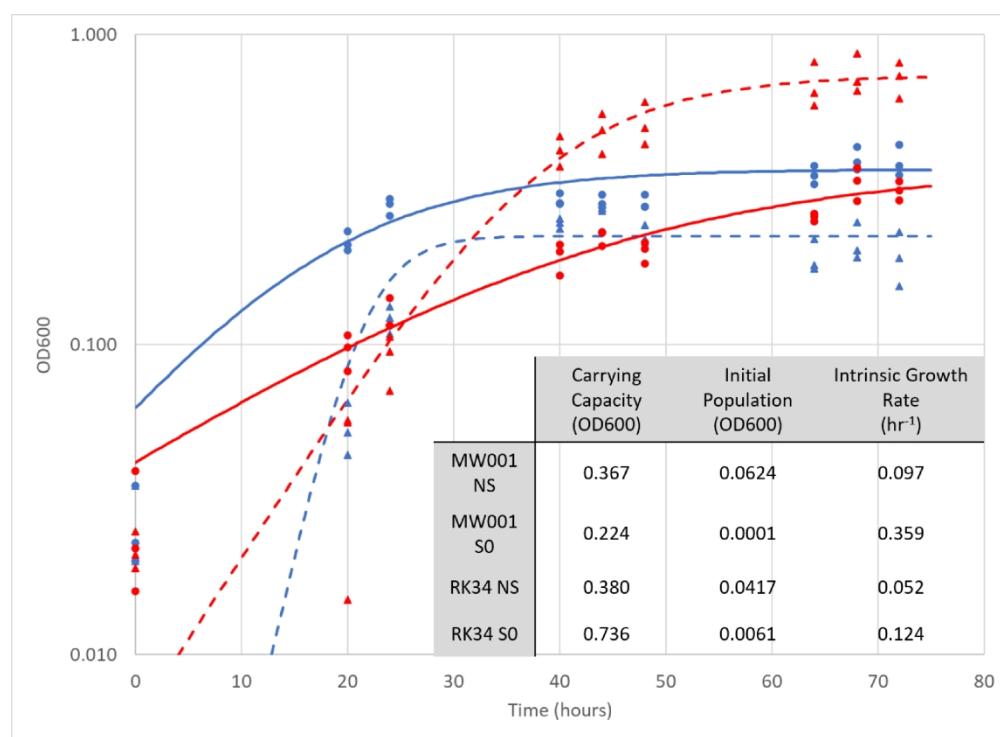


Figure 7: Growth curves of Saci MW001 (blue) and RK34 (red) on amino acids without sulfur (circles) and with sulfur (triangles); Logistic equation models for the data are shown as solid lines (without sulfur) or dotted lines (with sulfur); values for the logistic equation parameters are shown in the insert, where "NS" indicates the condition without sulfur and "S0" indicates the condition with sulfur

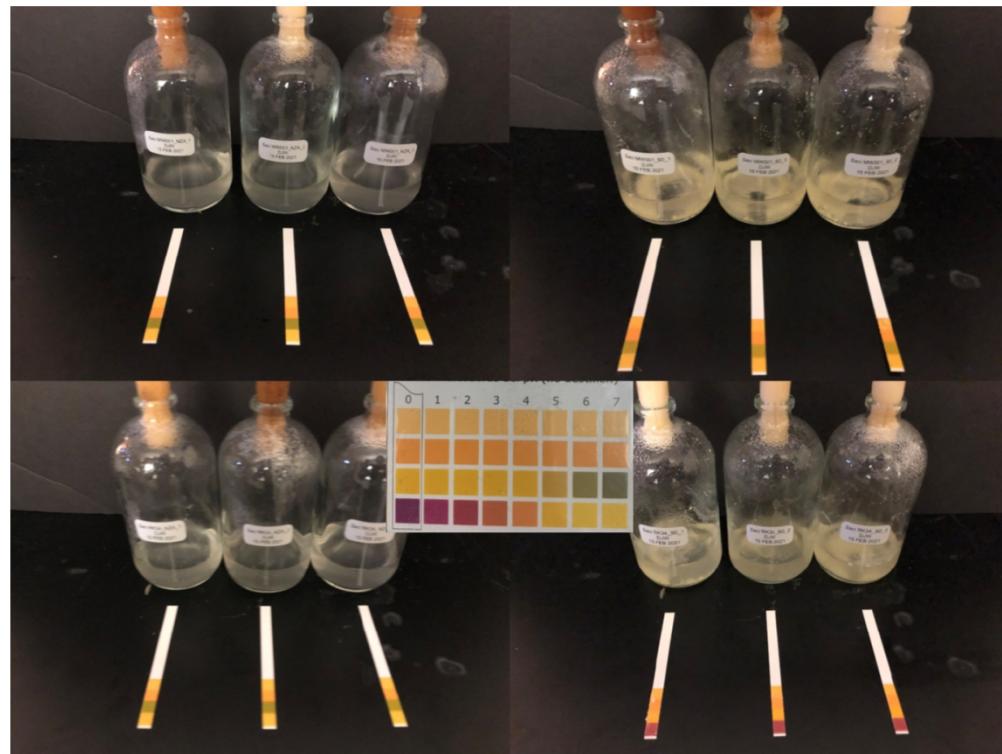


Figure 8: Final pH measurement of serum bottles for Saci MW001 without sulfur (pH 6, top left), Saci MW001 with sulfur (pH 5.5, top right), Saci RK34 without sulfur (pH 5.5, bottom left), and Saci RK34 with sulfur (pH 2, bottom right).