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Abstract
The potent greenhouse gas nitrous oxide (N2O) is accumulating in the atmosphere at
unprecedented rates largely due to agricultural intensification, and cultivated soils contribute
∼60% of the agricultural flux. Empirical models of N2O fluxes for intensively managed cropping
systems are confounded by highly variable fluxes and limited geographic coverage; process-based
biogeochemical models are rarely able to predict daily to monthly emissions with >20% accuracy
even with site-specific calibration. Here we show the promise for machine learning (ML) to
significantly improve field-level flux predictions, especially when coupled with a cropping systems
model to simulate unmeasured soil parameters. We used sub-daily N2O flux data from six years of
automated flux chambers installed in a continuous corn rotation at a site in the upper US Midwest
(∼3000 sub-daily flux observations), supplemented with weekly to biweekly manual chamber
measurements (∼1100 daily fluxes), to train an ML model that explained 65%–89% of daily flux
variance with very few input variables—soil moisture, days after fertilization, soil texture, air
temperature, soil carbon, precipitation, and nitrogen (N) fertilizer rate. When applied to a
long-term test site not used to train the model, the model explained 38% of the variation observed
in weekly to biweekly manual chamber measurements from corn, and 51% upon coupling the ML
model with a cropping systems model that predicted daily soil N availability. This represents a two
to three times improvement over conventional process-based models and with substantially fewer
input requirements. This coupled approach offers promise for better predictions of agricultural
N2O emissions and thus more precise global models and more effective agricultural mitigation
interventions.

1. Introduction

Atmospheric nitrous oxide (N2O) concentrations
are currently increasing by 0.98 ppb yr−1, a rate
44% higher than during the period 2000–2005
(0.68 ppb yr−1). This dramatic shift is largely driven
by increased anthropogenic sources that lift current
total global N2O emissions to∼17 Tg N yr−1 (Syakila
and Kroeze 2011, Thompson et al 2019). This repres-
ents a global warming impact of∼2 PgCequivalents yr−1

based on N2O’s global warming potential (Robertson
2004, IPCC 2013). Approximately 60% of the

contemporary N2O increase comes from cultivated
soils that receive nitrogen (N) fertilizer (IPCC 2014,
Robertson 2014, Tian et al 2019, 2020), but this value
involves large uncertainty because the episodic nature
of soil N2O fluxes challenges our ability to quantify
emissions accurately (Barton et al 2015, Parkin 2008,
Saha et al 2017a).

Soil N2O fluxes are of microbial origin, mainly
from incomplete denitrification (the sequential
reduction of nitrite or nitrate to N2O then N2) and
nitrification (the oxidation of ammonium to nitrate).
A number of environmental andmanagement factors
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affect N2O production, in particular soil N inputs
and N availability, pH, soil moisture, tillage, and
temperature (Butterbach-Bahl et al 2013). Further-
more, N2O can also be consumed in soil (Schlesinger
2013), and controlling factors often interact in a non-
linear fashion to add considerable spatial and tem-
poral variability to fluxes (Dobbie and Smith 2003,
Jin et al 2017).

Quantitative predictions of daily to monthly
N2O fluxes are especially challenging. Commonly
used methods include (a) empirical equation-based
parametric models (Sozanska et al 2002, Roelandt
et al 2005), (b) emission factor models based
on the proportion of N inputs emitted as N2O
(De Klein et al 2006), and (c) process-based biogeo-
chemical models (Brilli et al 2017, Ehrhardt et al
2018, Gaillard et al 2018). Each prediction method
has its own limitations with accompanying bias. For
example, equation-based parametric models require
N2O fluxes to be normally distributedwith homogen-
eous variance, conditions rarely met by N2O flux data
even when transformed. The IPCC’s 1% emission
factor is a useful but simple estimate of annual N2O
emissions based largely on annual fertilizer N inputs,
thus ignoring intra-annual variation and the dynamic
variable interactions that influence emissions.

The IPCC approach often underestimates local
(Philibert et al 2012, Shcherbak et al 2014) and
regional (Grace et al 2011, Griffis et al 2013) N2O
emissions, with variable success at the global scale
(Crutzen et al 2008, Del Grosso et al 2008a, Tian
et al 2020). In contrast, process-based models pre-
dict daily to weekly fluxes, important for design-
ing management interventions to mitigate emis-
sions; however, they are complex and heavily rely
on site and version-specific parameterizations that
are sometimes ad hoc tunings (Del Grosso et al
2008b, Gilhespy et al 2014). Parameterizations add
additional uncertainty when extending such mod-
els to sites without reliable model calibration data
(Jarecki et al 2008, Rafique et al 2013, Ehrhardt et al
2018, Gaillard et al 2018, Berardi et al 2020, Fuchs
et al 2020). Moreover, the N2O algorithms of pop-
ular biogeochemical models such as DayCent (Del
Grosso et al 2000, Parton et al 2001), DNDC (Li
2000, 2007) and EPIC (Izaurralde et al 2012), widely
used for predicting regional N2O budgets, are usu-
ally derived from laboratory-based responses of N2O
to individual environmental factors. This necessar-
ily (and by design) simplifies the complex variable
interactions typical of field settings but adds to the
need for calibration with intensive chamber-based
field measurements.

Although the lack of agreement between observed
and predicted N2O fluxes by current prediction
methods are widely known (Ehrhardt et al 2018),
the development of improved alternative prediction
approaches has been limited.While top-downmodels
have benefited annual N2O flux predictions (Philibert

et al 2013, Perlman et al 2014), such approaches have
not been available for daily to weekly predictions
due to a general lack of N2O measurements at finer
temporal scales. That said, the increasing availability
of long-term high frequency observations from auto-
mated flux chambers (Grace et al 2020) creates new
opportunities to develop data-driven top-downmod-
els that can improve predictability and our under-
standing of the interacting factors and threshold con-
ditions controlling daily N2O fluxes.

Here we demonstrate a novel application of a
data-driven machine learning (ML) model (Random
Forest) to predict N2O fluxes from two sites in the
upper U.S. Midwest growing corn (Zea mays L.).
Corn is responsible for∼60% of U.S. N fertilizer use,
and ∼60% of U.S. corn is grown in the Midwest, a
region of high N2O emissions (Larsen et al 2007, ERS
2019a, 2019b). We use multi-year automated N2O
flux data at one site together with observations from
less dense manual chambers at both sites to deduce
causal relationships among key variables to predict
fluxes with known confidence. This hierarchically
divergent approach requires no knowledge of under-
lying process-level relationships and thus is less able
than process-based models to predict the effects of
novel management changes (e.g. broadcast vs injec-
ted N fertilizer). Model training is also data intensive.
Nevertheless, because the ML system learns relation-
ships from available data it can make unbiased pre-
dictions, and as well provide insights into functional
relationships by discriminating among different pre-
dictor variables as it learns patterns and identifies crit-
ical response thresholds. We further test a coupled
model that uses ML to predict N2O fluxes based on
a process-level cropping systems model’s provision of
an additional predictor variable, soil N availability.

2. Materials andmethods

2.1. Experimental systems
We used data from three experiments in two geo-
graphic locations with different soil types. The first
experiment is a continuous no-till corn system in the
biofuel cropping systems experiment (BCSE) at theW
K Kellogg Biological Station (KBS-BCSE, 42◦23′43′′

N, 85◦22′24′′ W, 288 m elevation) in Michigan, USA.
KBS-BCSE soils are well-drained Kalamazoo series
Alfisols (fine-Loamy, mixed, semiactive, mesic Typic
Hapludalfs) with 1.2% soil organic carbon (table 1);
climate at the site is humid continental with a mean
annual precipitation and temperature of 1027 mm
and 10 ◦C, respectively. The second experiment is also
continuous no-till corn, located in the BCSE at the
Arlington Agricultural Research Station (ARL-BCSE,
43◦17′45′′ N, 89◦22′48′′ W, 315 m elevation) in Wis-
consin, USA. The ARL-BCSE soils are well-drained
Plano series Mollisols (fine-silty, mixed, superact-
ive, mesic Typic Arguidolls) with 4% soil organic
carbon; climate is humid continental with a mean
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annual precipitation and temperature of 869mm and
6.8 ◦C, respectively. Both BCSE experiments were
established in 2008 as part of the US Department
of Energy’s Great Lakes Bioenergy Research Center
and management, site histories, and other details are
reported in detail elsewhere (Sanford et al 2016, Gel-
fand et al 2020). The third experiment is a no-till
corn–soybean (Glycine max L.)–winter wheat (Trit-
icum aestivum L.) rotation at the KBS Long-term Eco-
logical Research (LTER) site (KBS-LTER; 42◦ 24’ N,
85◦ 24’ W, 288 m elevation), 2 km from KBS-BCSE,
established in 1989 (Robertson and Hamilton 2015).
Details on agronomic management can be found in
https://lter.kbs.msu.edu/datatables.

2.2. Data generation
N2O fluxes from KBS-BCSE were measured using
automated gas flux chambers (50 × 50 × 18 cm)
as described in Ruan and Robertson (2017) from
2012 to mid-July of 2017, except not in 2015 due to
instrument failure. Fluxes were measured in one rep-
licate block from three chamber locations within a
plot (27 × 43 m). Fluxes were measured from one
location on any given day and locations were ran-
domly re-located every 10–15 d to minimize bias
due to small-scale spatial variability. Each chamber
was sampled four times per day; the daily average
flux was used for this analysis, previously shown to
approximate diurnal flux variability in the Midwest
(Parkin 2008). At each sampling time, the chamber
was closed for 45 min and headspace samples of 1 L
each were taken at 0, 15, 30, and 45 min after cham-
ber closure. Headspace samples traveled through a
Teflon sampling line to a nearby (<80 m distant)
trailer housing a gas chromatograph with an elec-
tron capture detector (350 ◦C) (SRI 8610C with cus-
tom sample acquisition, Torrance, CA, USA) tomeas-
ure N2O concentrations, and an in-line infra-red gas
analyzer (LI-820, LI-COR Biosciences, NE, USA) to
measure CO2 concentrations. N2O fluxes from ARL-
BCSE (five replicate blocks) andKBS-LTER (four rep-
licate blocks) were measured using static chambers
(28.5 cm diameter, ∼17 cm height) on a weekly to
biweekly sampling frequency as described elsewhere
(Gelfand et al 2016, Oates et al 2016, Duncan et al
2019).

The predictor variables avoid co-linearity as
they were uncorrelated (table 2, figure S1 (available
online at stacks.iop.org/ERL/16/024004/mmedia)),
and their distribution is shown in figure S2. The
water-filled pore space (WFPS), an approximation
of soil O2 limitation, was estimated from volumet-
ric water content (VWC) and bulk density in the top
25 cm soil layer. The VWC was continuously meas-
ured at the KBS-BCSE site by a data logger-controlled
sensor network as reported elsewhere (Hamilton et al
2015); at ARL-BCSE andKBS-LTER,VWCwas estim-
ated from bulk density and gravimetric soil moisture
values measured at each manual gas sampling event.
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Table 2. Abbreviations and description of the predictor variables used in the Random Forest modeling.

Abbreviated variable Variable category Description Measurement unit

WFPS Soila Water-filled pore space Fraction
NH4

+-N Soil Ammonium N content Kg NH4
+-N ha−1

NO3
-–N Soil Nitrate N content kg NO3

-–N ha−1

Clay Soil Clay content g kg−1

SOC Soil Soil organic carbon %
DAF Management Days after N fertilization Days
N rate Management N fertilizer application rate kg N ha−1 yr−1

Air T Weather Mean daily air temperature ◦C
SPrecip2d Weather Cumulative precipitation in last 2 d mm
a Soil variables were measured at the top 25 cm soil layer.

To test the additional power of adding to the
model daily available soil N, measured only with
manual sampling events, we used SALUS, a process-
based model extensively validated at KBS (Basso and
Ritchie 2015, Hussain et al 2019, 2020), to simu-
late values for soil NH4

+-N and NO3
-–N in the top

25 cm layer at KBS-BCSE. SALUS is an easy to calib-
rate functionalmodel designed to represent feedbacks
and interactions among crop, soil, management, gen-
otype, and climate; avoiding known problems with
accurately simulating daily crop growth and soil water
balances by many biogeochemical models such as
DayCent and DNDC (Jarecki et al 2008, Brilli et al
2017, Fuchs et al 2020). For ARL-BCSE and KBS-
LTER, we used measured soil inorganic N data inter-
polated between the soil sampling dates to match
the manual gas sampling dates. Static soil vari-
ables included soil organic carbon and clay content.
Weather variables included precipitation and air tem-
perature, obtained fromweather stations within 1 km
of each site. Missing data on predictor variables were
imputed using the proximity matrix within the Ran-
dom Forest algorithm.

2.3. Data processing
Each flux event was checked for linearity of head-
space N2O and CO2 accumulations during the cham-
ber closure period, and periods with leakage (<3%
of all fluxes data) were deleted. We converted fluxes
between zero and the automated chamber’s N2O
detection limit (±1.1 g N2O-N ha−1 d−1) to 50% of
the detection limit. Approximately 11% of the total
number of N2O fluxes (2246) were negative and the
lowest valuewas−7.5 gN2O-Nha−1 d−1. The highest
measured flux was 593 g N2O-N ha−1 d−1.

2.4. Machine learning algorithm
We used R statistical software (R Core Team 2018)
to implement Random Forest, a supervised ML
algorithm for classification and regression based
on the principle of recursive partitioning (Breiman
2001), and independent of the assumption of func-
tional relationships between the response and pre-
dictor variables. A detailed description of the Ran-
dom Forest algorithm can be found in Hoffman et al

(2018). Briefly, Random Forest analysis ensembles
numerous regression and classification trees follow-
ing a process called ‘bootstrap aggregation’ or ‘bag-
ging.’ Classification trees are relatively uncorrelated in
two ways. First, a random subset of the data space is
drawn (with replacement) to grow a tree to its full
length, and each node of the tree group’s observa-
tions are characterized by certain conditions on the
predictor variables to produce an average prediction
for the response variable. Each tree growing process
uses only two-thirds of the bootstrapped data and
one-third of the observations (out-of-bag data, OOB)
are used for estimating the prediction errors. Second,
each node split in a tree considers a random subset of
predictor variables, usually a square root of the total
number of predictor variables. The predictions from
all the trees are averaged to make final predictions.

The variable importance functionwithin theRan-
dom Forest algorithm ranks predictor variables based
on the increase in model error by randomly permut-
ing the values of the predictor variables. Briefly, the
mean square error of the OOB data (OOB-MSE) for
each tree is the average squared deviations of OOB
observations from the predictions. The difference in
OOB-MSE before and after random permutation of
a predictor variable is averaged over all trees to com-
pute variable importance. Top predictors were visual-
ized using partial dependence and feature contribu-
tion plots using the Forest Floor package to unravel
linear or non-linear interactions (Welling et al 2016).

We used one dimensional individual conditional
expectation (ICE) plots that show the effect of a
predictor feature on the response variable for all
instances as well as a global average effect i.e. the par-
tial dependence of the response on that feature (Fried-
man 2001, Goldstein et al 2015). The partial depend-
ence plot allows us to identify whether the relation-
ship between the predictor and response variable
is linear, monotonic, or interactive (i.e. the pattern
changes after a certain threshold of the predictor vari-
able). The feature contribution which computes the
contribution of a variable to Random Forest predic-
tionwith numerical observations, belongs to the same
family of partial dependence plots. Unlike the vari-
able importance, feature contribution is separately
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computed for each observation and allows us to apply
a color gradient based on a predictor variable to
identify latent interactions and correlations between
predictor variables (Kuz’min et al 2011, Welling et al
2016).

2.5. Model building
Data used for model building included 1576 daily
observations from continuous corn rotations at KBS-
BCSE and ARL-BCSE; we used 670 daily observa-
tions collected from 2002 to 2014 in a corn–soybean–
wheat rotation at KBS-LTER for independent model
testing (table 1, figure S3). The N2O fluxes within the
model-building data were divided into eight bins by
merging some of the bins in figure S4 containing only
a few high flux observations to assure representative
sampling from the entire range of N2O fluxes; 70%
of the randomly selected observations within each
bin were used to train the model (training data)
and the model was validated with the remaining
data. We used the Synthetic Minority Over Sampling
Technique for regressions to correct multiclass data
imbalance in the training set (text S1; Chawla et al
2002, Torgo et al 2013); however, the number of
observations in the highest domain of N2O fluxes
>100 g N ha−1 d−1 were still limited (figure S4).

The balanced training data were used to train two
Random Forest models based on their representa-
tion of soil N availability. A Coupled model included
both measured and SALUS predicted soil available N
(see above); the Standard model included measured
data only and used Days after fertilizations (DAF)
as a surrogate of soil N availability. For each model
we optimized the number of trees used in the forest
(ntree) and the number of variables considered at each
node (mtry). The ntree = 800 best stabilized error
and mtry = 4 resulted in the greatest error reduction
for the OOB observations (figure S5). The Random
Forest models were tested on KBS-LTER data and
model performance was assessed by rootmean square
errors (RMSE), coefficients of determination (R2),
and correlation coefficients (r) between observed and
predicted daily N2O fluxes.

3. Results

3.1. N2O flux variability, soils, and environment
The three studied sites exhibited large inter-annual
variability in N2O fluxes during their respective
measurement years (figure 1). Long-term aver-
age daily N2O fluxes were in the order ARL-
BCSE (18.3) > KBS-BCSE (5.2) > KBS-LTER
(3.4 gNha−1 d−1) andwidely variedwithin sites from
−0.5 to 593, −7 to 237, and −4 to 89 g N ha−1 d−1,
respectively (figure 1, table 1). The highest long-
term daily average N2O flux from corn at ARL-BCSE
(18.3 g N ha−1 d−1) was perhaps due to this site’s
greater soil N availability stemming from a high soil

organic matter content and due to greater anoxia in
its finer textured soils (table 1). The Mollisols at the
ARL-BCSE in Wisconsin had three times higher SOC
content than the Alfisols at the KBS sites inMichigan.
Unlike the highly fertilized continuous corn systems
at the BCSE sites, diverse crop rotation including
unfertilized soybean and low-input winter wheat at
KBS-LTER site lowered daily average fluxes. Further-
more, bi-weekly sampling frequencies for manual
chambers at ARL-BCSE and KBS-LTER may have
missed peak emissions events, in particular at KBS-
LTER with its relatively narrow range of fluxes.

3.2. Model performance
We trained two Random Forest models to predict
N2O fluxes. A Standard model used readily avail-
able soil, agronomic, and weather variables as model
inputs and a Coupledmodel included additional high
frequency soil N data generated by SALUS (table 2).
We expected simulated soil N pools to improve
estimates of available N based otherwise on N fertil-
izer rate and DAF in the Standard model.

Overall, both the Standard and Coupled models
performed well in predicting temporal N2O fluxes
from corn at the KBS-BCSE and ARL-BCSE valida-
tion sites using 70% of the observations for model
training (figure 1). The models explained 65%–89%
of the variability between observed and predicted
N2O fluxes that were highly correlated (r > 0.80,
p < 0.001). However, the Standard model over-
predicted N2O fluxes on several occasions at the
KBS-BCSE site, which resulted in higher predic-
tion error than the Coupled model (RMSE of 10.2
vs 8.3). Surprisingly, however, the Standard model
outperformed the Coupled model at ARL-BCSE
(RMSE 15.8 vs 21), where the Coupled model
over-predicted fluxes in 2010 and 2011. At the KBS-
LTER test site, the Coupled model explained 51%
variability of observed N2O fluxes in corn at KBS-
LTER, for which no data were used to train themodel.
The standard model explained 38% of observed
N2O fluxes from corn. For the entire corn–soybean–
winter wheat rotation at KBS-LTER, the Coupled
model explained 38% variability, whereas the Stand-
ard model predicted only 13% variability.

3.3. Critical predictor variables for N2O emissions
Themost important variables influencing N2O fluxes
for both Standard and Coupled models were soil
moisture (WFPS) and N availability (DAF for the
Standardmodel, inorganicN for theCoupledmodel),
which together explained >80% of the N2O flux
variance in the OOB samples (figure 2). Other soil,
environment, and management related variables had
relatively smaller predictive values.

The ICE plot visualizes the average predictor
variable effect on prediction (partial dependence)
along with the spread for each instance in the data

5
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Figure 1. Observed vs Random Forest predicted N2O fluxes at the validation (KBS-BCSE and ARL-BCSE) and test (KBS-LTER)
sites. The left and right columns show the predictions from the Standard and Coupled Random Forest models, respectively.
Inorganic N availability is represented in the Standard model as DAF and in the Coupled model as both measured and modeled
(by SALUS) NH4

+-N and NO3
-–N availability. A 70% of the data from KBS-BCSE and ARL-BCSE were used to build the

Random Forest models and 30% were used for validation. KBS-LTER data were used for testing.

(figure 3). Both models identified that for most
instances, N2O fluxes sharply increased after WFPS
exceeded 0.70. The feature contribution plot showed
that the Standard model predicted an exponen-
tial decrease in N2O fluxes with increasing DAF in
interactions with WFPS (figure 4(b)). Occurrence
of high WFPS within a month after N fertilization
increased N2O fluxes. Soil clay content >250 g kg−1

increased N2O for some instances, but lack of range
on this variable in our data limits our interpretation
(figure S2(h)). Average N2O fluxes showed threshold
responses to NO3

-–N and NH4
+-N contents with a

much smaller value for NH4
+-N (∼30 kg NH4

+-
N ha−1, figures 4(d) and (e)). However, hetero-
geneous relationships between N2O and NO3

-–N
were observed for many instances (figure 3(e)),
indicating possible interactions with WFPS. Higher

WFPS values variably influenced N2O fluxes up to
125 kg NO3

-–N ha−1 and sharply increased bey-
ond that threshold (figure 4). At the same time,
WFPS > 0.75 negatively contributed to N2O fluxes
when soil ammonium was below 30 kg NH4

+-
N ha−1; however, both moderate to high soil mois-
ture content (0.6–0.9WFPS) positively contributed to
fluxes beyond 30 kg NH4

+-N ha−1.

4. Discussion

Our results demonstrate a high utility for using ML
to predict agricultural soil N2O emissions. The Ran-
dom Forest models were developed using both auto-
mated and manual chamber based N2O flux data
from corn production at two sites with different soils
and explained 65%–89% of daily flux variance at the
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Figure 2. Importance of variables controlling N2O fluxes as predicted by Standard and Coupled Random Forest models. The
variables associated with the greatest % increase in mean square error are the most important variables. Inorganic N availability is
represented in the simple model as DAF and in the Coupled model as simulated NH4

+-N and NO3
-–N) availability. The

Standard and Coupled models explained 86% and 84% variability in N2O fluxes in the OOB observations, respectively. Each box
corresponding to a variable represents the uncertainty of variable importance scores computed by the Random Forest model built
on ten random subsamples of the training data.

training sites. When extended to a long-term test site
with a very different cropping system it explained up
to 51%of emissions variation in corn, especially when
coupled with a cropping systemsmodel that provided
daily inorganic N values.

4.1. Predictability and interpretability of ML
models
Our ability to assimilate data in traditional ways
has not kept pace with the increasing availability
of long-term N2O data from automated chambers
and advanced sensor technology. ML provides the
potential to efficiently use such data to generate new
insights and derive predictive models that emulate
high resolution fluxes. When tested against 13 years
of weekly to biweekly flux measurements from an
independent test site (KBS-LTER), our Coupled ML
model accounted for 51% of the variability of daily
average N2O fluxes for corn phase emissions and 38%
for the entire corn–soybean–wheat rotation. This
effort represents a 2–3 times improvement over con-
ventional process-based models and with substan-
tially fewer input requirements.

The most commonly used process-based mod-
els DayCent (Del Grosso et al 2000, Parton et al
2001), DNDC (Li 2000, 2007), and their variants
(table S1) explain, on average, 20% variability of tem-
poral N2O fluxes in 15 cropping system studies (71
observations) that we reviewed and that explicitly

reported model performance (median of 17%, figure
S6). A recent modeling study using 24 process-based
models showed equally large uncertainties for an
ensemble model (Ehrhardt et al 2018). The improved
performance of the ML model is due to its depend-
ing on functional relationships between predictor
and dependent variables as learned from the data
(Breiman 2001), rather than depending on an under-
lying process-level understanding of flux variability.
This does not mean that ML models are inherently
superior—indeed, their predictive ability is strictly
correlational, and thus of limited use for predict-
ing the effects of novel conditions, an important
feature of process-based models with their super-
ior understanding of biophysical interactions. Rather,
ML models might be used to better scale existing
knowledge and perhaps help to optimize process-
based models by better identifying the key variables
interactions responsible for driving episodic fluxes.

Indeed, in our model, key predictor variables are
few (table 2, figure 2): two static soil properties (soil
organic carbon and clay content) and four dynamic
properties (WFPS, N availability (expressed either as
DAF or inorganic N pools), temperature, rainfall, and
N fertilizer rate). All of these factors are well known
drivers of N gas emissions (Groffman et al 1988,
Firestone and Davidson 1989, Conen et al 2000).
These input variables are easy to measure proxies for
soil biophysical processes.

7
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Figure 3. ICE plots of predicted N2O fluxes in response to the top three predictor variables as identified by the Standard (a)–(c)
and Coupled (d)–(f) model. In each panel, each dark line represents one data instance in the training set. The red line is the
partial dependence line, an average of all the instances.

WFPS, for example, is an integrative measure of
water availability and soil gas diffusivity (Linn and
Doran 1984), and stands out here as the strongest
individual predictor of N2O fluxes (figures 2 and
3). The strong interaction of WFPS with N avail-
ability (either DAF or inorganic N pools; figure 4)
reflects the greater risk of significant N2O emissions
following precipitation events close to N fertiliza-
tion, reported in many other studies (e.g. Parkin and
Kaspar 2006, Saha et al 2017b). The lower predict-
ive value for fertilizer rate is surprising and prob-
ably reflects the relatively narrow range of fertilizer
rates (170–200 kg N ha−1 yr−1) used in our training
data, which include only corn (figure 2). We might
expect a broader range of fertilizer managements to
elevate the predictive capacity of N rate, well known
for its ability to mitigate N2O emissions from fer-
tilized cropping systems (IPCC 2014; Mikkelsen and
Snyder 2012; Millar et al 2010; Shcherbak et al 2014).
On the other hand, inorganic N species availability
(the second most important variable) may represent
a sufficient proxy of the integrative effect of man-
agement (fertilization) and microbial N transforma-
tions. Future development of our knowledge and data
availability onN2Oresponse tomicrobial community
composition and activitymay provide additional pre-
dictive capacity for the ML models.

4.2. Challenges of machine learning models for
predicting N2O fluxes
Prior efforts to use ML to predict N2O fluxes have
used cumulative fluxes as estimated from literature
reviews (Philibert et al 2013) or process-level mod-
els (Villa-Vialaneix et al 2012, Perlman et al 2014).
To our knowledge, the present effort is the first to use
ML to predict highly resolved daily fluxes—especially
important for designing management interventions
to mitigate high fluxes and perhaps for building bet-
ter process-based models. Yet there remain import-
ant challenges before ML models can be used more
broadly to predict regional N2O emissions.

The first challenge is to increase the model’s gen-
eralizability. It would be naïve to believe that our
ML model might be extrapolable to diverse soils, cli-
mates, and production systems given that the model
was trained on data from a single type of cropping
system with narrow ranges for predictor variables
measured within a constrained biogeographic con-
text. ML predictions are bound to the data range in
the training set, such that themodel will, for example,
underestimate N2O fluxes beyond 593 g N ha−1 d−1,
the maximum value in our training data (figure 1;
figure S4). Moreover, DAF is relevant only for N-
fertilized systems. These limitations are illustrated by
the model’s lower predictability for fluxes from the
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Figure 4. Percent change in the probability of accurately predicting N2O fluxes (feature contribution) for WFPS (a) and (c) and
its interactions with N availability: DAF (b) and inorganic N pools (d) and (e) as predicted by the Standard (a) and (b) and
Coupled (c)–(e) Random Forest models. The color gradient from red to blue represents dry to wet soil conditions based on WFPS
(a) and (c). R2 refers to leave-one-out goodness of fit of the average contribution line (denoted in black).

whole rotation relative to the corn phase at KBS-
LTER. For example, the Standard model identified
DAF as the second most important variable, ran-
ging from 1 to 378 d in the training data (annu-
ally fertilized corn); however, DAF ranged from 1 to
678 d for the KBS-LTER corn–soybean–wheat rota-
tion at the test site, with N fertilization not present
during the soybean phase of this rotation. Like-
wise, overestimation of N2O fluxes from the wheat
phase of this rotation is likely due to the model’s
low temperature range—winter wheat is fertilized
in early spring when soil temperatures are relatively
low. The Coupled Model’s use of soil inorganic N
instead of DAF overcame this problem to some extent
(figure 1).

The second difficulty is imbalance in our train-
ing data. Only 2% of total observations were asso-
ciated with N2O fluxes >50 g N ha−1 d−1, an
arbitrary threshold that represents high flux events
(figure S4). This limits the ML model’s opportunity
to learn critical variable interactions promoting epis-
odic emission events. To avoid this limitation, we
attempted to balance the distribution of N2O flux
data by dividing the training data into bins based

on N2O fluxes, and then respectively over- and
under-sampled the minority (high N2O flux observa-
tions) and majority (low N2O flux observations) bins
(figure S4). However, this may not have eliminated
the imbalance problem and may be a reason that the
MLmodels over and under predicted N2O fluxes that
exhibited murky relationships with all predictor vari-
ables (figure S7).

Both of these problems can be addressed by the
addition of data sets frommore diversemanagements
and geographies. Greater variability in training data
(rather than more data from similar sites) will be key
to developing more generalizable models. This can
be achieved by coordinating N2O research to com-
bine cross-site observations that follow a consistent
protocol for predictor variables (Borer et al 2014,
Almaraz et al 2020).

4.3. Coupled machine learning and process-based
models
Our results provide formative evidence for improv-
ing the efficiency and accuracy of N2O predic-
tions by integrating ML and process-based modeling
approaches. Traditionally, biogeochemical models
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Figure 5. A conceptual strategy of integrated process-based and ML modeling for N2O prediction. Daily time-step outputs on soil
biophysical and biogeochemical variables predicted by the process-based models with a satisfactory level of confidence feed into a
Random Forest model, trained on diverse soil, climate, and management scenarios, to predict N2O fluxes.

are guided by process-level theory while ML models
are data-driven. Their fusion is gaining attention in
Earth and Geosciences (Karpatne et al 2017a, 2017b,
Brenowitz and Bretherton 2018, Reichstein et al 2019)
but is in its infancy in terrestrial biogeochemistry. We
show that ML predictions of a temporally dynamic
soil biogeochemical processes such as N2O fluxes can
be improved by incorporating data produced by a
well-validated process-based model simulating soil-
plant-atmosphere processes—in our case, by predict-
ing inorganic N pools.

This approach provides two important synergies
for N2O prediction: First, replacing the N2O sub-
routine in the process-based model with an ML sub-
routine could provide a coupled model with greater
predictive power (figure 5). This, however, requires
the ML model to be trained on diverse input data
with a wide prediction range. For example, process-
based models typically predict soil water, temperat-
ure, and N availability with acceptable fidelity in a
wide variety of cropping systems and geographies.
This information could be contributed to the ML
sub-model as input variables to predict N2O. This
approach has been efficiently used in atmospheric
and ocean science (de Bezenac et al 2017, Karpatne
et al 2017b).

Second, ML models can be used to analyze N2O
prediction bias by process-based models. That is, an
MLmodel can automatically learn the pattern of pre-
diction deviation from observed fluxes and identify
the variables associated with the greatest contribution

to the mismatch. This would lead to a better repres-
entation of the biogeochemical processes affecting the
predictor variable through improved parameteriza-
tion learned from the real-world variability of N2O,
and thereby help to correct model bias.

5. Conclusions

Results show that regression-based ML models such
as Random Forest can, with limited input data, sub-
stantially improve temporal N2O flux predictions
from intensively managed cropping systems. Further-
more, ML facilitates interpreting non-linear interac-
tions among N2O predictor variables, which is often
challenging with contemporary statistical methods.
While our ML model predicted up to 51% variabil-
ity of daily N2O fluxes from corn at two upper Mid-
west sites, its application to other regions and crops
requires further improvements in model training
based on diverse data sources from various soils, cli-
mate, crop, and management conditions. Results also
identify potential opportunities for integrating ML
with process-basedmodels to improve the overall pre-
dictability of soil N2O emissions—a new paradigm,
perhaps, for N2Omodeling.

Data availability

Data and R code are available online at datadryad.org
(https://doi.org/10.5061/dryad.bnzs7h493). The sup-
plementary data provides supporting information.
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