
Noname manuscript No.
(will be inserted by the editor)

A Quotient Space Formulation for Generative Statistical
Analysis of Graphical Data

Xiaoyang Guo · Anuj Srivastava · Sudeep Sarkar

Received: date / Accepted: date

Abstract Complex analyses involving multiple, depen-
dent random quantities often lead to graphical models

– a set of nodes denoting variables of interest, and cor-
responding edges denoting statistical interactions be-
tween nodes. To develop statistical analyses for graph-

ical data, especially towards generative modeling, one
needs mathematical representations and metrics for match-
ing and comparing graphs, and subsequent tools, such
as geodesics, means, and covariances. This paper uti-

lizes a quotient structure to develop efficient algorithms
for computing these quantities, leading to useful statis-
tical tools, including principal component analysis, sta-

tistical testing, and modeling. We demonstrate the ef-
ficacy of this framework using datasets taken from sev-
eral problem areas, including letters, biochemical struc-

tures, and social networks.

Keywords Graph statistics · Modeling graph vari-
ability · Graph matching · Graph PCA

1 Introduction

Due to rapid advances in sensing and measurement
technology, data is increasingly becoming complex and
structured, reflecting the growing need for newer ap-
proaches and problem formulations. One common ap-
proach to understanding complex, high-dimensional datasets
is to represent them as graphs. Typically one identifies

X. Guo and A. Srivastava
Department of Statistics, Florida State University, Tallahas-
see, FL 32306, USA.
E-mail: {xiaoyang.guo,anuj}@stat.fsu.edu

S. Sarkar
Department of Computer Science and Engineering, Univer-
sity of South Florida, Tampa, FL 33620, USA.
E-mail: sarkar@usf.edu

several variables of interest in the data, designates them
as nodes, and represents their interactions as edges.

Such a graph captures variability and interactions as-
sociated with a large number of variables, and lends
to higher-order statistical analysis. Examples of graph-

ical representations can be found in many areas, includ-
ing social networks [58], gene expression networks [64],
brain connectivity data [12], geographical data [37], fi-
nancial stocks [67], communication networks [22], epi-

demiology [53], and so on. Fig. 1 shows some exam-
ples: a social network; a molecule with atoms as nodes
and chemical bonds as edges; a video represented as a

pattern theoretic graph [13] with objects or actions as
nodes and their relationships as edges; and a brain ar-
terial graph whose edges are 2D/3D curves connecting

nodes.

We focus on the problems where one has several

graphs, each representing a snapshot or an observa-
tion of a system. One is interested in capturing, mod-
eling, and analyzing statistical shape variability across
these graphs. For instance, consider the representation

of functional connectivity of parts of a human brain
during performance of a particular task, as measured
by fMRI signals, using graphical structures. Given sev-
eral of these graphs, one for each human subject under
each task and performance, one has a large amount of
graph data to analyze and model. Similarly, one may
have graphical representations of different social or eco-
nomic networks, each representing different communi-
ties. The general goal of statistical analysis is: (1) derive
common characteristics across observed graphs, (2) dis-
tinguish graph-populations using statistical testing, and
(3) model variability in graph shapes using analytical
generative models. Further, using these tools, one can

generate synthetic graphs that follow dominant vari-
ability in observed complex graphs. An interesting use

ar
X

iv
:1

90
9.

12
90

7v
2

 [c
s.C

V
]

2
A

pr
 2

02
1

2 Xiaoyang Guo et al.

0

1

2

3

4
5

6

7

8
9

10

11
12

13
14

15

16

17
1819

20

21

22

23

24 25

26

27
28

29
30

31

32 33

34

35
3637

38

39
40

41 42

4344

45

46
47 48

49

50
51

52
53

54

55

56

57

58

59

60

61

62
63 64

65

66

67
68

69

70

71
72

73

74

75

76

77

78
7980

81

82

83

84

85

86

87

88

89

90

91 92

93

94

95

96

97

98

99

100

101

102
103

104

105

106 107

108

109

110

111
112 113

114

115

116
117

118
119

120

121 122123

124

125

126
127

128

129

130131132

133

134

135

136

137

138

139

140

141

142

143

144

145146

147
148149

150

151

152

153
154

155

156

157

158

159

160
161

162

163

164
165

166

167

168

169

170 171

172

173
174

175

176

177

178

179

180

181
182

183

184

185

186

187188

189
190

191

192

193
194

195

196197

198

199

200

201

202

203
204

205
206

207

208

209

210
211 212

213

214
215

216

217

218

219

220 221

222

223

224

225226

227
228

229

230

231

232

233

234

235

236

237

238

239

240

241
242

243

244

245

246

247

248

249 250

251

252
253
254

255

256

257

258

259
260

261

262

263

264

265

266
267

268

269

270

271
272

273

274

275
276277

278 279

280

281

282

283

284
285

286

287

288

289 290

291
292

293

294

295

296
297

298
299

300301

302

303 304

305

306

307

308

309

310

311

312

313

314
315

316
317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344 345
346

347

348
349

350

351

352

353

354

355

356357

358

359360

361

362

363

364 365

366367

368

369

370

371

372
373

374

375

376

377378
379

380

381

382

383

384

385

386

387

388389 390

391

392393
394

395

396

397

398
399

400

401

402

403

404

405

406

407

408

409

410

411

412413

414

415
416

417

418

419

420

421

422

423

424

425

426

427
428

429 430

431
432

433

Social Network

C
C

C

C

C
C

C

S

O N

C
CC

C

C

O

O

C

Molecule

hog

hog

hog

hof

hog

putdown

bowl

lettuce
spreader

cup

Video Interpretation Brain Artery

Fig. 1 Some examples of graphs representing knowledge in
different applications.

of generative models is in augmenting training data that
enables more data-driven deep learning approaches. In
the long term, this theory can support deep learning

on non-Euclidean spaces of graphs, where the data ele-
ments are themselves graphs.

The structured nature of graphs makes them chal-
lenging to analyze using classical statistical tools. A
graph is a non-Euclidean data object consisting of a set
of variables as nodes and their interactions as edges.
There are two sources of variability in shapes of graphs
– (i) different number and values (attributes) of the

nodes, and (ii) different connectivity patterns and val-
ues of the edges. Therefore, one is interested in mathe-
matical representations that enable a quantitative sta-
tistical analysis of graph data using both edge and node
attributes. For quantifying differences between graphs,
one requires metrics that can incorporate measures of

these properties. However, one big issue in analyzing
shapes of graphs is that nodes across graphs often come
without matchings or correspondences. Although it is
possible to bypass the issue in some subproblems, for
example by counting common substructures [34], the
problem of establishing correspondences of nodes across
graphs (named registration or graph matching) is fun-
damental and represents one of the biggest challenges
in the statistical analysis of graphs.

1.1 Literature Review

The use of graph representations is of great interest in
several broad problem domains. We cover some of these
areas in a brief survey.

In machine learning, primarily geometric deep learn-
ing, the focus is on learning geometry of the manifold of
the data elements (nodes) which, in turn, can be nat-
urally represented as a graph. In a related problem,
some papers consider entire graphs as the entities of
interest. For instance, papers, such as graph2vec [40]
and UgraphEmbed [4], consider the problem of assign-
ing a vector space representation to entire graphs. Some
other papers seek to find vector representations for nodes
such that distances in the vector space preserve a graph’s
original neighborhood structure. Examples include mod-
eling random-walks through the nodes [44, 20], or ones
that preserve first and second-order proximity informa-
tion [63, 57], or ones that consider larger neighbor-

hood structures as captured by node coarsening [8].
Some other papers utilize graph convolutions, i.e., con-
volutions over the nodes, respecting their neighborhood
structure. Examples include graph signal processing [42,

14], or works that direct processing via the local graph
structure [31, 23]. Similar to the embedding approaches,
these papers also consider a single graph and operate

on the nodes of that graph. We refer the readers to [48]
for an overview of Graph Neural Networks (GNN).

A central problem studied in this paper is graph
matching. In this context, there are mainly two types of
approaches: exact matching and inexact matching [41].
The exact matching implies finding a bijective map such

that the nodes and edges across two graphs are in one-
to-one correspondence. If we can match two graphs ex-
actly, then the mapping is also called an isomorphism.
A related topic is subgraph isomorphism [6], where one
graph matches a subset of another graph. In contrast,
inexact matching seeks optimal registration between
graphs that may be dissimilar. The inexact matching
is more common in practice because of the complexi-
ties associated with real data. Since matching of two
sets of nodes is essentially a problem of combinatorics,

the problem of finding a global optimum for inexact
graph matching is NP-complete [11]. Therefore, most
algorithms for graph matching seek approximate solu-
tions based on different relaxations of the original prob-
lem. As described later, one achieves a mathematical
representation of registration of nodes (across graphs)
using a permutation group – a permutation of the or-
dering of nodes in a graph changes its registration with
an ordered set of nodes representing another graph.
The approximate solutions result from expanding be-

yond the permutation group to some larger set where

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 3

the solutions are more readily available. One idea is to
replace permutations by orthogonal matrices and then
use spectral (eigen-decomposition based) approaches to
find optimal rotations, see [59, 5]. Another direction
is to replace permutations with doubly stochastic ma-
trices and find a solution in that larger space. In all
these cases, the final solution is eventually restricted
to the discrete set of permutation matrices, see e.g.,
[18, 36, 68]. Besides these approximations, there are
some other algorithms for approximate graph match-
ing [2, 33, 47].

There is also a significant amount of work on analyz-
ing graphical data using graph kernel methods [34, 52,
61, 66]. The basic idea here is to design kernel functions
that measure similarities between graphs. These ker-
nels are then used in kernel-based methods, such as the
support vector machine (SVM). There are also kernel-
based statistical methodologies, including kernel mean
embedding [54] and kernel PCA [49]. However, the tasks
performed by graph kernel methods are mainly discrim-
inatory, and it is usually impossible to map the results

from a feature space back to the original graph space.
Recently, there has been progress in analysis of graph-

ical data using optimal transport (OT) [7, 9, 10, 39, 45,

50, 60]. More specifically, these papers use Gromov-
Wasserstein distance to handle the structured relational
information. The OT-based approaches seek a soft (prob-

abilistic) registration of nodes, but we need a hard node
permutation. Note that in certain cases, the soft regis-
tration is tight because the matching energy is concave
and the solution is a permutation [38]. The focus in our

paper is on shapes of graphs, both in a visual and a
mathematical sense. In these situations, the geodesics
and the mean shapes under the Gromov-Wasserstein

framework with soft registrations will be messy because
it will result in dense connections between nodes across
graphs. Furthermore, we seek a representation space of
graphs where statistical tools, such as mean, covariance,
and PCA, can be derived. So far, OT-based approaches
have developed only some of these tools.

The most relevant past research related to our ap-
proach comes from Jain et al. [28, 29, 26, 27] who first
introduced and developed a mathematical framework
of representing graphs as elements of quotient spaces.
These papers provided a rigorous theory for quotient
space geometry and developed some basic statistical
tools for graph data analysis.

1.2 Our Contributions

In this paper, we further develop the framework of [28,
29, 26, 27, 32], leading to a comprehensive approach
for comparing, summarizing, and analyzing the shapes

of graphs. The basic idea, first introduced in [28], repre-
sents graphs as matrices and formulates the registration
problem as that of permutation of entries in those ma-
trices. Mathematically speaking, we represent the reg-
istration variability using the permutation group’s ac-
tion on the set of matrices representing all graphs. To
remove this nuisance group, we form a quotient space
and inherit a metric on the quotient space from the
original set of matrices. This procedure is similar to the
development of shape spaces in the statistical analysis
of shapes [15, 55]. We use a standard Euclidean met-
ric with appropriate invariance properties because it
allows for efficient registration of nodes across graphs.
One can use the quotient space metric to define and
compute statistical summaries, such as sample mean,
covariance, and principal components. The principal
component analysis or PCA helps perform dimension
reduction and impose compact statistical models on
observed graphs. These models play essential roles in
hypothesis testing and other statistical inferences in-
volving graph data.

This paper borrows several ideas from the current
literature and develops them into a more comprehensive
theory that facilitates deeper statistical analysis and
modeling. The novel contributions of this paper are as

follows:

1. It adapts a quotient space metric structure on the
set of graph representations, originally introduced
in [28] and further developed in [29, 26, 27, 32],

and extends it to include both node and edge at-
tributes. It uses this metric structure to quantify
graph differences and to compute optimal deforma-

tions (geodesics) between graphs. Using this metric
structure, it establishes a framework for comput-
ing sample statistics such as mean and covariance

for graph data. In comparison, although the paper
[26] includes both node and edge attributes in the
analysis, it relies on a kernel representation to do
so. The limitations of a kernel-based approach have
been noted earlier.

2. A key idea here is that it does not assume the graphs
to be equal-sized and matched. That is, one allows
nodes to remain unmatched across the graphs. Past
metric-based approaches often insist on matching
every node to a proper node during graph compar-
isons.

3. It defines a notion of PCA for graphs and uses that
to develop low-dimensional representations of ob-
served graphs. Unlike the previous work [51], the

proposed PCA is invariant to the node ordering.
4. It develops a simple Gaussian-type model for cap-

turing graph variability in observed graphs and uses
it to generate random samples from such graphical

4 Xiaoyang Guo et al.

models. This sampling, in turn, can be used either
to augment graph neural networks or Bayesian in-
ferences involving graphical data, although we have
not pursued that direction here.

The rest of this paper is as follows. Section 2 de-
scribes the chosen mathematical representation of graphs
using symmetric matrices. Section 3 studies the graph
matching problem using the action of the permuta-
tion group. Section 4 extends this framework to in-
clude both node and edge attributes in the framework.
Section 5 presents techniques for statistical analysis of
graph data. Section 6 shows a number of experiments il-
lustrating this framework. The paper ends with a short
discussion and conclusions in Section 7.

2 Graph Representation and Metric Structure

In this section, we will present a framework for the
structure of graphs first developed in [28, 29, 26, 27, 32].
We apply and advance this framework as described be-

low.

2.1 Adjacency Matrix Representation

We start by providing a mathematical representation
for analyzing weighted graphs. A weighted graph G is
an ordered pair (V,w), where V is a set of nodes and

w is a weighting function: w : V × V → M. That is,
w(vi, vj) characterizes the edge between vi, vj ∈ V, i 6=
j, where elements of the set E = {(vi, vj) ∈ V ×V : i 6=
j} are the edges of G. In the literature, M is usually

limited to be R+, i.e., non-negative real numbers. How-
ever, we allow M to be any Riemannian manifold on
which one can define distances, averages, and covari-

ances. For example, in case of brain arterial network
shown in Fig. 1, the edges attributes are shapes of 3D
curves connecting the nodes (junctions). Assuming that
the number of nodes, denoted by |V |, is n, G can be rep-
resented by its adjacency matrix A = {aij} ∈ Mn×n,
where the element aij = w(vi, vj). For an undirected
graph G, we have w(vi, vj) = w(vj , vi) and therefore
A is a symmetric matrix. (In this paper, we only fo-
cus on undirected graphs although the framework is
extendable to directed graphs also.) The set of all such
matrices is given by A = {A ∈Mn×n|A = AT }.

Let dm denote the Riemannian distance on M. We
will use this to impose a metric on the representation
spaceA. For example, dm can be the Euclidean distance
ifM = R or a shape metric whenM is the shape space.
For any two A1, A2 ∈ A, with the corresponding en-
tries a1ij and a2ij , respectively, the metric da(A1, A2) ≡

√∑
i,j dm(a1ij , a

2
ij)

2 quantifies the difference the graphs

they represent. Under the chosen metric, the geodesic
or the shortest path between two points in A can be
written as a set of geodesics in M between the corre-
sponding components. That is, for any A1, A2 ∈ A, the
geodesic θ : [0, 1]→ A consists of components θ = {θij}
given by θij : [0, 1]→M, a geodesic path inM between
θ1ij and θ2ij . In case M = R, then A is a vector space,
equivalent to a Euclidean space of dimension n(n+1)/2,
and the geodesic between two points in A is a straight
line. That is, for any A1, A2 ∈ A, θ : [0, 1] → A given
by θ(t) = (1− t)A1 + tA2 is the geodesic path.

Since the ordering of nodes in graphs is often arbi-
trary, the subsequent analysis should not be dependent
on this arbitrary choice. We view the ordering variabil-
ity as a nuisance and seek to remove its influence from
the analysis. A different way to state this issue is that
nodes across graphs are registered during comparisons,
and we will use permutations to perform registration.
Let P be the set of all permutation matrices of size

n × n. A permutation matrix is a matrix that has ex-
actly one 1 in each row and each column, with all the
other entries being zero. This finite set forms a group,

with the group operation being matrix multiplication
and the identity element being the n × n identity ma-
trix. Note that P is a subgroup of O(n), the set of all

n× n orthogonal matrices. For any P ∈ P, the inverse
of P is given by PT , the transpose of P . We define the
action of P on A using the map:

P ×A 7→ A, (P,A) = PAPT .

One can easily verify that this is a proper group action.
For any A ∈ A, its orbit under the action of P is given

by:
[A] = {PAPT |P ∈ P} .

It is the set of all possible permutations of the node or-
dering in a graph represented by A. Since P is a finite

set, each orbit under P is also finite. Any two elements
of an orbit denote the same graph, except that the or-
dering of the nodes has been changed. Therefore, the
membership of an orbit defines an equivalent relation-
ship ∼ on the set A:

A1 ∼ A2 ⇔ ∃P ∈ P : PA1P
T = A2 . (1)

One can check that any two orbits [A1] and [A2], for
any A1, A2 ∈ A, are either equal or disjoint. The set of
all equivalence classes forms the quotient space or the

graph space:

G ≡ A/P = {[A]|A ∈ A} . (2)

G is a nonlinear space because it is a quotient space –
one cannot perform linear operations, such as addition

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 5

or multiplications on its elements directly. For exam-
ple, x1[A1] + x2[A2] is not well defined in G for arbi-
trary x1, x2 ∈ R. Actually, this type of space is called
an orbifold [28, 29, 26]. Next, we will impose a metric
structure on this quotient space and use this metric to
compute statistical summaries and to perform statisti-
cal analysis.

We can inherit the chosen distance da from A on
to the quotient space G, but that requires the following
result.

Lemma 1 The action of P on A is by isometries under
da. That is, for any A1, A2 ∈ A and P ∈ P, we have

da(PA1P
T , PA2P

T) = da(A1, A2) . (3)

The proof is easy since an identical permutation on both
graphs leaves the registration between nodes (across
graphs) remains unchanged. This lemma enables the
following definition.

Definition 1 (Graph Metric) Define a metric on the
graph space G according to:

dg([A1], [A2]) = min
P∈P

da(A1, PA2P
T)

= min
P∈P

da(A2, PA1P
T) (4)

The last equality comes from the fact that the action

of P is by isometry (Eqn. 3) and that P is a group.
The minimizer P ∗ provides the optimal registration be-
tween graphs A1 and A2. That is, any element of A1

is matched to the corresponding entry of the matrix
P ∗A2P

∗T .

What can we say about the existence and unique-

ness of the minimizer in Eqn. 4? Since P is finite, the
minimum exists. The uniqueness, however, is not guar-
anteed in all cases. In theory, it is possible to have mul-
tiple permutations that attain the minimum of da. This
can happen when an edge on one graph matches with
more than one edge on the other graph. However, if the
edge attributes are continuous variables, this event’s

probability is zero for non-zero edges. (It can happen
for trivial or zero edges, but that can be characterized
as trivial multiplicities). Therefore, in this case, the for-
mulation enjoys the uniqueness of the registration so-
lution as well. In the case of discrete edge attributes,
there may potentially be multiple optimal registrations.
In this case, any of these solutions work in the subse-
quent analysis. This uniqueness issue is further studied
experimentally later in Table 1.

One can define geodesics in the graph space G as
follows. For any two graphs, with the adjacency ma-
trices A1 and A2, and P ∗ the optimal permutation of
A2 to best register it with A1 (according to Eqn. 4).
Then, the geodesic path between [A1] and [A2] in G

is given by the line t 7→ [θ(t)], where the components
θij(t) denote geodesics inM between the registered el-
ements of A1 and P ∗A2P

∗T . This geodesic, in turn, is
useful in computing graph summaries and graph PCA,
as defined later. For any two graphs with continuous-
valued edge attributes, the registration solution exists
and is unique with probability one. Consequently, the
corresponding geodesic between them also exists and is
unique. There is a potential for multiple optimal reg-
istrations and multiple corresponding geodesics in the
graphs with discrete edge attributes. We can select one
of these multiple solutions for display and other uses.
The lack of uniqueness of geodesics is quite common in
shape analysis and is often handled that way in prac-
tice.

2.2 Alternative Representation: Laplacian Matrix

In the special case when M = R+, one can also use

graph Laplacian matrix [25, 51] as a mathematical rep-
resentation, instead of the adjacency matrix, for a graph.
The graph Laplacian matrix L = [lij] is defined as fol-
lows:

lij =

{
−w(vi, vj), if i 6= j∑
k 6=i w(vi, vk), if i = j .

(One can develop a notion for Laplacian on non-Euclidean

domains also but with some additional geometric nota-
tion.) One can consider Laplacian matrices to be ele-
ments of L, the set of all positive semidefinite matrices
of size n×n. There is a bijective mapping between adja-

cency matrices and Laplacian matrices φ : A → L with
φ defined as follows. Suppose A is an adjacency matrix
and L is the Laplacian matrix for the same graph G.

Then, L = φ(A) = D−A, where D = diag(A(11T −I))
and 1 is the vector of all ones. The inverse of φ is
given by: φ−1 : L → A, A = φ−1(L) = diag(L) − L.
The bijection of φ can be proved as follows. First, if
L1 = L2, D1 − A1 = D2 − A2 and it implies A1 = A2

(Injection). And ∀L ∈ L, we can find the pre-image
A = diag(L) − L ∈ A (Surjection). There are some in-
teresting properties associated with the two represen-
tations:

1. Since diag(PAPT (11T−I)) = Pdiag(A(11T−I))PT ,
we have φ(PAPT) = Pφ(A)PT , for all P ∈ P.

2. For any geodesic path θ(t) = (1−t)A1+tA2 inA, the
corresponding path in L is given by: β(t) = φ(θ(t))

= (1− t)(diag(A1(11
T − I))− A1) + t(diag(A2(11

T − I))− A2)

= diag(((1− t)A1 + tA2)(11
T − I))− ((1− t)A1 + tA2)

= (1− t)L1 + tL2 .

Note that β(t) is generally not a geodesic path in L
under the commonly used metrics on L (please refer
to [51] for these metrics). As an aside, we note that

6 Xiaoyang Guo et al.

the adjacency matrices, in general, are not positive
definite. So they are not elements of L.

3. A related fact is that, under the Frobenious norms
on A and L, the mapping φ is not isometric, i.e.
‖φ(A1)− φ(A2)‖ 6= ‖A1 −A2‖, in general.

The framework developed in this paper also applies to
the Laplacian representation, instead of the adjacency
representation. For simplicity, we mainly focus on the
adjacency matrix representation in this paper.

3 Graph Matching Problem

The problem of optimizing over P, as stated in Eqn. 4,
becomes a key step in evaluating the graph metric and
performing statistical analysis. Let G1 = (V1, w1), G2 =
(V2, w2) be any two weighted graphs, and let A1, A2 be
the corresponding adjacency matrices. To simplify the
discussion on graph matching and existing literature,

we will completely focus on the case where M = R.
(For the non-Euclidean domains, we refer the reader to
a follow-up paper [21].) Then, the registration requires
solving the problem:

P ∗ = argmin
P∈P

‖PA1P
T −A2‖2 . (5)

So far we have assumed that the two graphs being
compared have the same number of nodes. In general,
the graphs G1 and G2 may have n1 and n2 nodes, re-

spectively, with n1 6= n2. To handle this situation, we
add n2, n1 null nodes to G1, G2, respectively, to bring
each of them to the same size n1 + n2. The null nodes

are unattached nodes with zero values for the edge and
node attributes. As a result, the new adjacency matri-
ces of G1 and G2 are:

A′1 =

(
A1 0n1×n2

0n2×n1
0n2×n2

)
, A′2 =

(
A2 0n2×n1

0n1×n2
0n1×n1

)
(6)

The new matrix dimensions areA′1, A
′
2 ∈ R(n1+n2)×(n1+n2)

and, therefore, we are back to matching graphs of the
same size. This idea of extending the adjacency matrix,
using Eqn. 6, can be applied even when the graphs be-
ing compared have the same number of nodes. This
extension results in a more flexible matching since it
allows the given nodes to match with null nodes. By
doing this, one has more degrees of freedom in order to
reach a better match. We elaborate on this flexibility
later in the experiments section.

In the next two subsections, we present two different
solutions for the optimization problem stated in Eqn. 5.

3.1 Umeyama Algorithm

First, we introduce a classic solution from [59] that is
based on the eigendecomposition of representation ma-
trices. This method is summarized in Algorithm 1 and
not repeated in the text here. Note that Algorithm 1
applies to the current discussion with λ = 0, the more
general case is discussed later in Section IV. As noted
in [59], the solution P is the global solution for iso-
morphic graphs but is usually a good initialization for
more general graph matching problems. Thus, we use
it as an initial condition for a greedy search (pairwise
exchanges of rows and columns) that seeks to improve
the solutions further.

We illustrate this idea using some simple examples
in Fig. 2. This dataset has binary graphs representing
uppercase English letters [46]. The edge attributes are
binary in this example. Each row shows the original
graphs G1 (first graph) and G2 (last graph), and their
matched versions G1p and G2p, in the middle. G1p is
the optimal permutation from Algorithm 1 of G1, while

G2p is same as G2 with possibly some null nodes added.
The first row shows the simpler case, where G1 and G2

have same number of nodes. We still add null nodes to

both of them and permute G1 to match G2, resulting in
G1p. As expected, the null nodes of G1 are registered
to null nodes of G2, and are not displayed here. For
the second row, the graphs G1 and G2 are different

letters. In the last row, where the two graphs G1 and
G2 have different sizes, a null node 5 has been added
to reach a natural matching. For display purposes, we

need to choose node attributes, i.e., the placements of
the null nodes. We have placed the null nodes at the
same coordinates as their corresponding non-null nodes
to improve the display.

3.2 Fast Approximate Quadratic Programming

Algorithm 1 generally works well for smaller graphs,
but it slows down when the number of nodes gets large.
Recently, [62, 36] have used the Frank-Wolfe algorithm
[17] to develop a different solution, called Fast Approx-
imate Quadratic or FAQ. The main idea is to restate
matching problem according to:

min
P∈P
‖PA1P

T −A2‖2 = min
P∈P

(
−Tr(A2PA1P

T)
)
.

The right-hand side of above equation is a special case
of quadratic assignment problem. One can solve it using
the gradient of the cost function f(P) = −Tr(A2PA1P

T).
In order to handle the discrete nature of permutation
matrix, the procedure first replaces the permutation

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 7

0

1

2

3 4

G1

3

2

1

4 0

G1p

0

1

2

3

4

G2p

0

1

2

3

4

G2

0

1

2

3 4

G1

2

3

4

1 0

G1p
0

1

2

3

4

G2p
0

1

2

3

4

G2

0

12

3

4

5

G1

2

41

3

5

0

G1p 0

1

2

3

4

5

G2p 0

1

2

3

4

G2

Fig. 2 Examples of graph matching using edge weights. In
each row, the corner graphs, labeled G1 and G2, are the orig-
inal graphs. The inner two, G1p and G2p, are outcomes that
are matched to each other. The outcome graphs may have
some null nodes added, and the indices of G1 are permuted
as G1p.

matrix by a doubly stochastic matrix:

min
P∈D

f(P) = min
P∈D

(
−Tr(A2PA1P

T)
)
, (7)

where D is the set of doubly stochastic matrices. These
are matrices whose: (1) all entries are non-negative, and
(2) rows sum, columns sum equal to one. After the opti-

mization, the solution P is projected back to the space
P. We summarize this approach in Algorithm 2, with
the current context applicable for λ = 0.

In theory, the algorithm should be able to find the

exact matching when two graphs are isometric, even
when we add null nodes to the graphs. However, how
well does it perform in practice? To study this ques-
tion, we randomly simulated graphs of different types

and sizes, and then randomly permuted their nodes.
We then solved for the registration between the original
graph and the permuted graph using the FAQ method.
(Although the two graphs are of the same size, we still
add null nodes.) Two types of graphs are studied – bi-
nomial and fully-connected real-valued graphs. Table 1
below shows the fraction of correct registrations mea-
sured over 1000 random graph matchings (for each en-
try). One can see that for continuous-valued edge at-
tributes, the algorithm finds the optimal matching per-
fectly. However, in the case of binary graphs, especially
with a small number of nodes, there is a possibility of
multiple global solutions. Thus, the algorithm may not

find the original registration. In all cases, the algorithm
is very robust to the addition of null nodes.

Table 1 Fraction of correctly registered nodes across random
graphs for different graph types and graph sizes.

Number of Nodes Binomial Graphs Fully Connected
Weighted Graphs
(weights ∼ t(1))

[5, 10] 0.634 1
[50, 60] 0.992 1

[100, 120] 0.999 1

4 Extension Involving Both Edge Weights and
Node Attributes

In many cases, the structure of a graph can be iden-
tified by comparing edge weight exclusively. However,
sometimes the information associated with the nodes
of graphs is also crucial in matching and comparing
graphs. Next, we extend the previous framework to in-
corporate node information also.

Let N be the set of potential node attributes and
let ε ∈ N be a distinguished element denoting the null
or void element. A node-attributed weighted graph is

represented by G = (V,w, α), consisting of: (i) a finite
nonempty set V of nodes, (ii) a weight function w for
edges, and (iii) an attribute function for nodes given by
α : V → N . Let dα be an appropriate distance in N ,

dα : N ×N → R+.

For any two graphs G1 = (V1, w1, α1) and G2 =
(V2, w2, α2), each with n nodes, let D denote the n ×
n matrix of pairwise squared distances between nodes

across the two graphs. That is,

D = [dij = d(α1(v
(1)
i), α2(v

(2)
j))2] ∈ Rn×n,

where v
(1)
i ∈ V1, v

(2)
j ∈ V2, i, j = 1, 2, ..., n. Now the

matching problem becomes:

P = argmin
P∈P

{||PA1P
T −A2||2 + λTr(PD)} , (8)

where λ > 0 is the tuning parameter to balance the
contributions of edge and node attributes in match-
ing. Using the same arguments as for Eqn. 4 earlier,
a solution for this matching problem exists and is also
unique (with probability one) when the node and edge
attributes are continuous variables. For FAQ, the equiv-
alent matching problem is defined as:

P = argmin
P∈P

[
−Tr(A2PA1P

T) + λTr(PD)
]
. (9)

The gradient for this objective function is (−A2PA
T
1 −

AT2 PA1+λDT). The previous algorithms can be simply
modified to handle the new formulation. In fact the so-
lutions of this extended problem are already presented

in Algorithms 1 and 2 for a general λ.

8 Xiaoyang Guo et al.

More generally, for G1, G2 with n1, n2 (n1 ≤ n2)
nodes, we extend the n1 × n1 matrix D according to:

D′ =

(
D D∗n1×n2

D∗n2×n1
0n2×n2

)
. (10)

Here, the off-diagonal elements dij = d(α1(v
(1)
i), ε)2 in

D∗n1×n2
represent the node-attribute squared distance

between v
(1)
i ∈ V1 and jth null node ε in G2. The choice

for the null node attribute is arbitrary. The smaller val-
ues in D∗n1×n2

encourage real nodes to register to null
nodes while larger values prevent it. The explanation
applies to D∗n2×n1

as well. There are also some similar
ideas used in the G-W framework for comparing graphs
with different sizes [19, 43]

Algorithm 1 Umeyama with Extension Involving
Node Attributes
Given graphs G1 and G2 and the associated adjacency matri-
ces A1 and A2, and D is the node attribute squared distance
matrix.

1: Compute the eigendecompositions A1 = U1Σ1UT1 and
A2 = U2Σ2UT2

2: Find P = argmax Tr(PT (Ū1ŪT2 − λDT)) using the Hun-
garian algorithm [35]. As earlier, Ūi, i = 1, 2 denotes a
matrix with values that are magnitudes of the correspond-
ing elements of Ui.

3: (Optional) Find the best exchange of two nodes of G1

based on P , call it P∗, such that P∗ = argmin ‖PA1PT−
A2‖2 + λTr(PD) and update P = P∗

4: Repeat 3 until the value of ‖PA1PT −A2‖2 + λTr(PD)
does not decreases.

Algorithm 2 FAQ with Extension Involving Node At-
tributes
Given graphs G1 and G2 and the associated adjacency matri-
ces A1 and A2, and D is the node attribute squared distance
matrix.

1: Choose an initial P ∈ P.
2: Compute the gradient of f(P): ∇f(P) = −A2PAT1 −
AT2 PA1 + λDT .

3: Approximate f(P) by first order Taylor expansion around
the current estimate P∗: f(P) ≈ f(P∗) +∇f(P∗)T (P −
P∗) and use Hungarian algorithm to minimize it, get Q.

4: Line search to determine the optimal step size η ∈ (0, 1)
5: Update the doubly stochastic matrix P∗ = P∗ + η(Q −
P∗)

6: Repeat 2-5 until convergence
7: Project back to the permutation matrix using Hungarian

algorithm.

Our approach here for choosing the null node at-
tribute ε is the following. We let this value be a variable
and let the data dictate what it should be. Note that the
node attributes are entered in the framework through

the extended distance matrix D∗, so the choice of node
attributes is implicit. In Eqn. 10 we set all entries of
D∗ corresponding to one or both null nodes to be zero.
This implies that the null node attribute is set equal
to the attribute of the matched node. So, the null node
attribute can change from node to node and registra-
tion to registration, but this attribute is never explicitly
stated. This choice is logical because the introduction
of null nodes does not contribute to the cost. In other
words, we do not want the attributes of the null node
(which is a synthetic addition) to add to the matching
cost in any way.

In Fig. 3 we present some illustrations of graph
matching using both edge and node attributes. In this
example, we use the planar coordinates of nodes of let-
ter graphs as their attributes and keep the edge at-
tributes binary-valued. The first row is the case with-
out using any node attributes, i.e. λ = 0 (in Eqn. 8). In
second row, we add node attributes with λ = 0.5. Com-
pared to the first row, this case shows a better corre-

spondence across graphs since the edges 0 − 1 are now
registered across graphs. If we further increase the node
attributes’ weight, as the last row (λ = 1) shows, the

matching mostly ignores the edge correspondence. In
the second row, only one edge 2 − 5 of G1p is matched
to a null edge, while in the last row, two edges: 0 − 6

and 5 − 6 of G1p are matched with null edges. We can
also see both G1p and G2p are padded with null nodes
in the last row.

An important strength of this framework is that it
provides geodesic paths between graphs in the quotient
space G. The geodesics in the pre-spaceA and the graph

space G are linear interpolations, except for the optimal
registration in the latter case. Fig. 4 is a comparison
between geodesics in A (top row) and G (bottom row)
between the same two graphs. The two original graphs

are at the two ends, representing the letter ’A’ and the
letter ’F’. In this example, we also use the 2D (centered)
coordinates of nodes as node attributes with λ = 1.
As one can see, geodesic in G shows a more natural
deformation from one graph to the other, resulting from
an improved matching of nodes.

As stated in the previous section, we can also use
Laplacian matrices to represent graphs. Although one
can easily map an adjacency matrix to a Laplacian
matrix using φ, and vice-versa, the past literature has
rarely used the Laplacian representation for graph match-
ing. We present an example in Fig. 5 where we per-

form matching under both the representations – adja-
cency matrix and Laplacian matrix, using Algorithm
1. This implies that we are using the Frobenious norm
for the Laplacian representation, although other norms
can also be used instead. Since the mapping φ is not

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 9

0

1

2

3

4 5

G1

5

1

0

2

4 3

G1p
0

1

2

3 4

5

G2p
0

1

2

3 4

G2

λ = 0

0

1

2

3

4 5

G1

1

0

2

5

3 4

G1p
0

1

2

3 4

5

G2p
0

1

2

3 4

G2

λ = 0.5

0

1

2

3

4 5

G1

1

0

6

5

3 4

2
G1p

0

1

2

3 4

5

6

G2p
0

1

2

3 4

G2

λ = 1

Fig. 3 Example of graph matching using both edge weight
and node attributes with different λ. In each row, the out-
ermost graphs, labeled G1 and G2, are the original graphs.
The inner two, G1p and G2p, are the matched graphs. The
matched graphs may have some null nodes added, and the
indices of G1 are optimally permuted to reach G1p.

an isometry under the Frobenious norm between the
two representations, the minimization of ‖PA1P

T −
A2‖2 results in a different solution than minimization

of ‖PL1P
T − L2‖2.

To demonstrate the generalizability of this frame-

work to more complex (edge and node) attributes, we
present an example of registration and geodesic involv-
ing shape graphs. Here the edges are 2D curves connect-

ing some planar nodes, and their attributes are shapes
of these curves. The shape space of these curves is non-
Euclidean and requires more elaborate procedures for

computing node registration and graph geodesics. For
more details on these constructions, we refer the reader
to the paper [21]. As the figure shows, the geodesic in
G shows a more natural deformation than that in A.

Another simple extension of this framework is to
include directed graphs, i.e., have graphs with directed
edges. The only difference between directed and undi-
rected graphs is that the symmetry of the adjacency
matrices is lost for the directed graphs. All the other
parts of the approach remain the same. We present an
example between geodesic in graph space and interpo-
lation in adjacency matrix space in Fig. 7. The geodesic

in graph space better matches the edges and thus shows
a more natural deformation.

5 Statistical Analysis of Graphs

We have developed a metric space G for representing,
matching, and comparing graphs. Additionally, we have
tools for computing geodesic paths in G between arbi-
trary graphs. Together, these tools help us derive sta-
tistical summaries of graph data and develop analytical
stochastic models to capture the observed variability in
given data. We start by defining sample means and co-
variances.

5.1 Mean of Graph Data

Given a set of graphical data, it is important to sum-
marize given graphs using the notion of a mean or a
median. However, a simple average of the adjacency
matrices does not make much sense if the nodes are
not registered, which is usually the case in practice.
Therefore, we would like to seek the mean in the graph
space G [28, 29, 26, 27]. Given a set of m graphs, Gi ∈
G, i = 1, ..,m, with corresponding adjacency matrices
Ai ∈ Rn×n, the adjacency matrix of the mean graph is
defined as:

[Aµ] = argmin
A∈G

m∑
i=1

dg([A], [Ai])
2 , (11)

where dg([A], [Ai]) is as defined in Eqn. 4.

What about the existence and uniqueness of this
mean graph? As discussed earlier, the optimal registra-
tion between any two graphs (with continuous-valued

attributes) exists and is unique. That is, for a gen-
eral A, the optimal permutations A∗i of Ai that at-
tain dg([A], [Ai]) = da(A,A∗i) are unique. Furthermore,
given all A∗i , their Euclidean mean is also unique, result-
ing in the existence and uniqueness of [Aµ]. For graphs
with discrete attributes, the uniqueness of registration
is not guaranteed, and the mean [Aµ] may be set-valued.

That is, there may be several different graphs that at-
tain the minima in Eqn. 11. In that case, one can use
any element of this set for further analysis.

An algorithm for computing this mean is given next.
This algorithm is based on a greedy algorithm and may
result in a local solution of the optimization problem
presented in Eqn. 11. One can use improved initializa-
tions, stochastic searches, or some more advanced ideas

to mitigate this problem.

In case the node attributes are also included in the
analysis, we will need to endow the node attribute space
N with a metric structure so that one can average the
node attributes directly. For Euclidean node attributes,
that is straightforward. However, in the case of categor-
ical node attributes, one needs to embed these values

10 Xiaoyang Guo et al.

0

1

2

3

4 5

0.0

0

1

2

3

4 5

0.1

0

1

2

3

4 5

0.2

0

1

2

3

4 5

0.3

0
1

2

3

4 5

0.4

0

1

2
3

4 5

0.6

0

1

2
3

4 5

0.7
0

1

2

3
4 5

0.8
0

1

2

3 4 5

0.9
0

1

2

3 4 5

1.0

Geodesic Interpolation in A

0

1

2

3 4

5

6

0.0

0

1

2

3 4

5

6

0.1
0

1

2

3 4

5

6

0.2
0

1

2

3 4

5

6

0.3
0

1

2

3 4

5

6

0.4
0

1

2

3 4

5

6

0.6
0

1

2

3 4

5

6

0.7
0

1

2

3 4

5

6

0.8
0

1

2

3 4

5

6

0.9
0

1

2

3 4

5

6

1.0

Geodesic Interpolation in G

Fig. 4 Comparison between geodesics in original space and graph space for two different graphs, λ = 1. The time point is
labeled on the top of each graph, while 0 and 1 indicate the original graphs. Dash lines imply that the edges are changing.

0

12

3

4

0

0

1
2

3

4

0.25

0

1

2

3

4

0.5

0
1

2
3

4

0.75
0 1

2 3

4

1

Geodesic Interpolation in G (Adjacency Representation)

0

1

2

3 4

0
0

1
2

3 4

0.25
0

1
2

3 4

0.5
0

1

2
3 4

0.75
0 1

2 34

1

Geodesic Interpolation in G (Laplacian Representation)

Fig. 5 Comparison between geodesics in graph space using
adjacency and Laplacian matrix representation, λ = 0. Time
point is labeled on the top of each graph while 0 and 1 indi-
cate the original graphs. Dash lines imply that the edges are
changing.

Geodesic Interpolation in A

Geodesic Interpolation in G

Fig. 6 Comparison between geodesics in original space and
graph space for two different graphs whenM is a shape space.
The leftmost and rightmost are two graphs whose edges are
attributed as shapes. The correspondence is encoded in color.

in a metric space (such as one-hot encoding) and use
that structure to compute the mean node value. We
observe that when comparing multiple graphs, the two-
way null nodes padding (making both graphs the same
size n1+n2) results in a slower algorithm. Therefore, in

0

1

2

3

4

0

1

2

3

4

0

1

2
3

4

0

1

2

3

4

0

1

2

3
4

Geodesic

0

1

2

34 0

1

2

34

01

2
3

4

0

1 2

3
4

0

1

2

3
4

Interpolation

Fig. 7 An example of comparing two directed graphs: the top
shows the geodesic in the quotient space, while the bottom
shows an interpolation in A.

Algorithm 3 graph Mean in G
Given graphs Gi and the associated adjacency matrix Ai,
i = 1, ..,m:

1: Initialize a mean template Aµ (e.g., the largest one).
2: Match Ai to Aµ using Algorithm 1 or 2 and store the

matched graph as A∗
i , for i = 1, ..,m.

3: Update Aµ = 1
m

∑m
i=1A

∗
i . In case we include node at-

tributes in the analysis, we also perform an averaging of
the registered nodes, as discussed below.

4: Repeat 2 and 3 until
∑m
i=1 ‖A∗

i −Aµ‖2 convergence.

some cases, we implement a faster approximation that
applies only one-way null node padding. Given multiple
graphs, we pad all the other graphs with null nodes to
register with the largest graph.

5.2 Principal Component Analysis (PCA) of Graphs

The high dimensionality of graph data is a problem in
many domains. For a graph with n nodes, the number
of potential edges can be as high as

(
n
2

)
. It will be useful

to have a technique for projecting graph data to smaller
dimensions while capturing as much intrinsic variabil-

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 11

ity in the data as possible. We use PCA as a simple
linear projection and dimension reduction tool and dis-
cover dominant directions/subspaces in data space. As
mentioned earlier, the non-registration of nodes in the
raw data can be an obstacle in applying PCA directly
on elements of A. Instead, one can apply PCA in the
quotient space G, as summarized in Algorithm 4. With
PCA, graphs are represented as low-dimensional Eu-
clidean vectors that facilities further statistical model-
ing and analysis. While several graph embedding tech-
niques can be used to map graphs into Euclidean vec-
tors, see for example [3], the PCA approach comes with
well-known optimality, and one can map the principal
scores back to the graphs.

Given a set of graphs with adjacency matrices Ai ∈
A, let [Aµ] denote their sample mean in G (obtained
using Algorithm 3) and A∗i be the matrices registered
to Aµ. Then, the differences {A∗i − Aµ} are elements
of the vector space A and one can vectorize them and
compute a covariance matrix, whose SVD provides the

desired PCA. The algorithm for PCA follows.

Algorithm 4 Graph PCA
Given graphs Gi and the associated adjacency matrix Ai,
i = 1, ..,m:

1: Obtain the mean Aµ and the matched graph A∗
i , i =

1, 2, ..,m, using Algorithm 3
2: Vectorize A∗

i −Aµ, compute their covariance matrix and
use SVD of this matrix to perform PCA. Obtain direc-
tions and singular values for the principal components.

The extended adjacency matrices can be used for
the graphs with the different sizes, as mentioned before.
One can also append {A∗i − Aµ} with node attributes
when nodes are taken into account. The details are left
out here to save space.

5.3 Generative Graph Model

In some situations involving statistical inferences, it
is useful to develop analytical generative models for
graphical data. For example, it can be useful to pro-
duce new chemical molecules [65]. However, model esti-
mation directly from observed graphs may have extra-

neous variance because the graphs are not registered.
We introduce a simple Gaussian-type model in graph
space G to better capture the essential variability of
graphical data. In conjunction with the graph PCA and
potential dimension reduction, we can reach a straight-
forward and efficient statistical model.

Assume that we have a set of graphs with adjacency
matrices Ai, i = 1, ...,m. By applying Algorithm 4, we

can get the PC scores si ∈ Rk by projecting each Ai
to the first k principal components space. For model-
ing the principal scores si’s, we impose a k dimensional
Gaussian model with sample mean and covariance as
the model parameters. Note that while we use a Gaus-
sian model here, one can also use any other paramet-
ric or nonparametric model instead. As alternatives,
some machine learning methods [48] can also provide
ways of reaching Euclidean representations of graphs
and learning generative models directly. For example,
[24] presents a generative graph model where one needs
to gradually add nodes and edges to get a new sample
graph.

6 Experiments and Applications

To illustrate this framework, we have implemented it
on various graph datasets and present the results next.

6.1 Letter Graphs

The Letter Graphs dataset is a part of the IAM Graph
Database used in [46], and consist of small graphs de-
picting 15 uppercase letters (A, E, F, H, I, K, L, M,

N, T, V, W, X, Y, Z) that can be drawn using straight
lines. The edge weights in these graphs are either one
or zero. The nodes have location coordinates in R2 so

that the collection of edges form the shape of a letter.
The authors also introduced distortions to the proto-
type graphs at three different levels: low, medium, and

high. Fig. 8 shows some sample graphs of letter ’A’ at
these three different distortion levels.

First, we use Algorithm 3 to compute mean graphs
of 50 observations associated with the letter ’A’, at each
of the three distortion levels. Fig. 9 shows the results.
To match nodes across multiple graphs, one has to add
several null nodes in the mean shape, as seen in the
resulting means. The mean graphs resemble the letter
’A’ in all three cases, despite a significant variability
and distortions in the original data.

Additionally, we perform PCA on this letter data
in the quotient space G and display results in Figs. 10,
11 and 12, for low, medium and high distortion graphs,
respectively. In these figures, each row depicts shape
variability along a principal direction in the given data
in the form of graphs at mean 0,±1,±2 standard de-
viation. This analysis helps identify the main modes of

structural variability in the original data. For example,
Fig. 10 shows graphs along the first three principal di-
rections of variability in the low distortion dataset. In
all these graphs, the primary edges are stable, and there
are no significant changes in principal directions. This

12 Xiaoyang Guo et al.

0

1

2

3

4 5

0

1

2

3 4
0

1

2
3

4 5

0

1

2

3 4

0

1

2

3 4

Low Distortion

0

1

2

3 45

0

1

2
3

4

0

12
3

0

1

2

3 45
6

0

1

23 4

Medium Distortion

0

1

2
3 4

0

1

2
3

4
5

0

1
2

3
4

0

1

2
3

4
0

1
2

3

4

5

High Distortion

Fig. 8 Sample graphs of Letter ’A’ in different levels of dis-
tortion

Low Distortion Medium Distortion High Distortion

Fig. 9 Mean graphs of letter ’A’.

implies that observations in this set are quite similar
in shape. However, the results for the medium distor-
tion data shown in Fig. 11 are different. The horizontal
edge 5 − 6 changes significantly in the first principal
direction. In the high distortion level case, there are
significant changes in shapes along all principal direc-

tions. For instance, there are extra edges in the top row
(1 − 4 and 4 − 0) that dominate each principal direc-
tion.

Additionally, we fitted a Gaussian model on PC
scores of these letter graphs. We first use PCA to re-
duce the dimension to capture approx. 80% variance,
resulting in the first 6, 13, and 13 principal compo-
nents out of 35 dimensions for low, medium, and high
distortion letters, respectively. Then, we impose a mul-
tivariate Gaussian model on these principal component
scores. To evaluate this model, we generate some ran-
dom samples from this model and project them into
graph space, presented in Fig. 13. A visible similarity
of these random samples to the original graphs under-
scores the goodness of the model.

Fig. 10 First three principal variations of letter ’A’, low dis-
tortion. From top to bottom, each row shows the variation for
the first, second and third principal directions, respectively.
For each row, the middle one is mean while toward left and
right, they are the graphs after perturbing the mean by one
and two square root of singular value.

Fig. 11 Same as Fig. 10, medium distortion.

Fig. 12 Same as Fig. 10, high distortion.

Another vital application of PCA is dimension re-
duction – perform PCA on all graph data and represent
each one using its first few PC scores. In this experi-

ment, we project all 750 samples (50 samples in each
letter class) into the first two principal scores and dis-
play them as their class symbols in Fig. 14. Although
we do not use the class information in this PCA, note
that low-dimensional representations of letter graphs

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 13

Low Distortion

Medium Distortion

High Distortion

Fig. 13 Random samples of letter ’A’ from Gaussian models,
for the three letter A datasets.

−1.0 −0.5 0.0 0.5 1.0 1.5
PC1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

PC
2

Fig. 14 Low distortion letter graphs project into two-
dimensional principal subspace.

separate well into different clusters, according to their
classes.

6.2 Molecular Graphs

In this section, we analyze another graph dataset from
IAM Graph Database [46], this time involving molecu-
lar compounds. These molecules are straightforwardly

C
CC

Cl

C
C

C

S
N

C
C C
C

N

C
C

OO

C

O

O

C
O

C

CC

C
CS

NC
C

C

CC

C

C

Cl

N
O C

C

C

O
C

C

CS

N

C

C
C

C

C

C

CC

O

C

OC

C
C

C
C

Active

C

N

C

N N

C C

P

C

O

O

O

O

O

S

O O

O O

C

C

C

Inactive

Fig. 15 Sample graphs of molecules.

converted into graphs by representing atoms as nodes
and the chemical bonds as edges. This dataset con-
sists of two classes (active, inactive), which denotes

whether the molecules are active against HIV or not.
Fig. 15 shows some example graphs of active and in-
active molecules. We use the binary edge weights and
atom labels (converted to one-hot vector) as node at-

tributes in these experiments. Setting λ = 1 for match-
ing graphs, we present two pairs of geodesics in A and
G in Fig. 16. One can see that the path in G has a more

natural deformation.

The complex structure of molecules results in the
high-dimensional representation in the graph space G,
but we can reduce the representation size using graph
PCA. We perform a graph PCA on the molecule data
as follows. For the 50 active molecules, due to lim-
ited sample size, we only use edge weights (and not

the node attributes) to perform graph PCA. However,
for 200 inactive modules, we utilize both edge weights
and node attributes. Fig. 17 plots the captured variance
versus the number of principal components. We use the
first 22 and 36 principal components for active and in-
active classes, respectively, containing roughly 80% of
the total variance to represent these molecules. For ac-

tive classes, we reconstruct them from the principal
scores. As shown in Fig. 18, one can successfully re-
construct the original graphs with the chosen smaller
dimensions. For inactive classes, we fit a multivariate
Gaussian model to the principal scores. Fig. 19 shows
some random samples generated from the model. Since
the model includes both node atoms and their chemical
bonds, the sample graphs contain both these attributes.

14 Xiaoyang Guo et al.

0
12
3

4

5
6

7
8

9
10
11

12 13

14
15 16

17
1819

20

21

0

0
12

3

4

5
6

7
8

9

10
1112 13

14

15
16

17 1819

20

21

0.2

0
12

3

4

5
6
78

9

1011
12 13

14

15
16 17 1819

20

21

0.5

0
1

2

3
4

5
67

8
9
10

11

1213 14

15

16
17
1819

20

21

0.8

0
1

2

34

5
6

7

8
9
10

11

12
13

14

15

16

17
18

19
20

21

1

0
1

2

3

4

5 6
7

8 9
10

0
0

1

2

3

4

5 6
7

8 9
10

0.2
0

1

2

3

4

5 67

8
9

10

0.5
0

1

2
3

4

5 6
7

8
9

10

0.8
0

1

2
3 4

5 6
7

8
9

10

1

Geodesic Interpolation in A

0

1

23
4

5
6

7

8

9
10

11
12
13

14

15

16

17

18
19

20 21

0
0

1

2
3
4

5
6

7

8

9
10

11

12

13

14

15

16

17

18
1920

21

0.2

0

1

2
3
4

5
6

7

8

9

10

11

12

13

14

15

16

17

181920

21

0.5

0

1

2

34
5

6
7

8

9

10

11

12
13

14

15

16

17
18 19
20

21

0.8

0
1

2

34

5
6

7

8
9
10

11

12
13

14

15

16

17
18

19
20

21

1

0

1

2
3

4

5

6
7

8

910

0

0

1

2
3

4
5

6
7

8

910

0.2

0

1

23

45

67
8

910

0.5
0

1

2
3

4
5

6
7

8

910

0.8
0

1

2
3 4

5 6
7

8

910

1

Geodesic Interpolation in G

Fig. 16 Comparison between geodesics in original space and
graph space for two different molecule graphs in the same
class. In each subplot, the top is for active molecules, while
the bottom is for inactive molecules. The time point is labeled
on the top of each graph, while 0 and 1 indicate the original
graphs. Dashed lines imply that the edges are changing.

0 10 20 30 40 50
Number of Principal Components

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl
ai
ne

d
Va

ria
tio

n

Active

0 50 100 150 200
Number of Principal Components

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl
ai
ne

d
Va

ria
tio

n

Inactive

Fig. 17 Cumulative explained variation of molecules by
PCA. The vertical axis is the percentage of explained vari-
ation, while the horizontal axis is the number of principal
components.

6.3 Wikipedia Graphs

Our last example comes from communication networks
of the Chinese Wikipedia [1, 56]. In these graphs, the
nodes represent the Chinese Wikipedia users, and an
edge (0 or 1) denotes whether one user left a message
on the talk page to another user at a certain timestamp.
We emphasize that the goal here is to study connectiv-
ity patterns between users and the actual user identity

is not important. We take monthly graphs from the
year 2004, resulting in a sample size of 12 graphs, see

C C

F

FC O

C

C

C

C

C

C N

S

N

C

N

C

C

C

C
O

C

C

C

NC

C

F

F

S

NC

CN

C C

C

C

C

C
C

C

C
S N

N

C

C

C

C C

C

C

C

C

C

C

S

C

N

C

O

C

C
C N

C

C O

C
NC

C

C
C

S
C

N

S
C

C

C

C

C

C

Fig. 18 Reconstructed graphs of active molecules. For each
pair, left is the reconstruction while right is the original graph.
Some weak edges (around 10% edges weight) have been re-
moved to focus on the prominent edges.

C

C

C

C

C

C

C

C

O

O
C

C

C

C

O

C

S

O

N

C

C

C
C

C

C

N

C

ON

Fig. 19 Random samples from the Gaussian model for inac-
tive molecules.

Fig 20. On average, each graph has around 300 nodes
and 431 edges. We compute the mean in graph space
G, with results shown in Fig. 21. This graph shows a
clear clustering of users, implying that major subsets of
users actively interact with others in their clusters.

Month 1 Month 2 Month 3 Month 4

Month 5 Month 6 Month 7 Month 8

Month 9 Month 10 Month 11 Month 12

Fig. 20 Wikipedia graphs

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 15

Mean in G

0 1 2 3 4
0

2000

4000

6000

8000

10000

Energy vs Iteration

Energy vs Iteration

Fig. 21 Karcher mean for Wikipedia graphs.

The results from PCA analysis of these graphs are
shown in Fig. 22. These results show that most of the
user interactions are stable and remain unchanged, while
principal variations in the data come only from a hand-
ful of active users.

6.4 Classification

Even though our prime goal is to develop analytical gen-
erative models for graph data, the framework also eas-

ily applies to classification problems. Here we present
classification results on some benchmark graph datasets
using the proposed framework as follows. We use SVM

with Radial Basis Function (RBF) kernel as the classi-
fier and distance vectors dg (between an unlabelled test
graph and a set of labeled training graphs) as the input.
We first report the results on the letter and molecule

graphs from IAM database [46] in Table 2. The data
have already been split into training, validation, and
test set by the owners. So we report results on the

same test set as in [46]. Additionally, we also apply
this method on some graph datasets from the popular
TU database [30]. For this, we adopt the nested five-
fold cross-validation technique, similar to [34, 60]. The

hyperparameters of SVM are searched on a grid in the
inner loop, while the results are reported on the test
folds of the outer loop. We compare the results with
[60] that uses optimal transport-based distances and
the interquartile interval of corresponding results from
different graph kernels in [34]. (One can find a larger

comparison of graph neural networks in [16].) As the
results show, the proposed metric achieves classifica-
tion results that are comparable with other published
methods.

7 Discussion & Conclusion

In this paper, we build on the foundation laid by Jain
et al. and develop a statistical framework for learning
and analyzing structures of graphs. The quotient space

formulation removes the nuance permutation variability
and helps register nodes across graphs in a natural way.
Due to the isometric action of the permutation group,
the quotient space inherits metric that enables metric-
based statistical analysis of graphs – geodesics, means,
PCA, and Gaussian-type models.

The set of tools developed in this paper are use-
ful in several contexts. For instance, one can use them
to analyze geometrical deep learning methods, where
both data and inferences can involve graphs in different
forms. Low-dimensional Euclidean representations of
graphs will enable direct use of more sophisticated sta-
tistical models, including many deep learning architec-
tures. The ability to reconstruct full graphs from these
representations is vital in synthesizing new graphs.

Acknowledgements The authors would like to thank the
creators of different public datasets used in this paper. The
authors also thank Dr. Adam Duncan for his contributions in
the implementation of a preliminary version of the approach
and Dr. Derek Tucker for his contribution in the Python im-
plementation of FAQ algorithm. This research was supported
in part by the grants NSF CDS&E DMS 1953087 and NSF
IIS 1955154 to AS, and NSF IIS 1956050 to SS.

References

1. (2017) Wikipedia talk, chinese network dataset
– KONECT. URL http://konect.uni-koblenz.

de/networks/wiki_talk_zh

2. Almohamad H, Duffuaa SO (1993) A linear pro-
gramming approach for the weighted graph match-
ing problem. IEEE Transactions on pattern analy-

sis and machine intelligence 15(5):522–525
3. Bahonar H, Mirzaei A, Sadri S, Wilson R (2019)

Graph embedding using frequency filtering. IEEE

transactions on pattern analysis and machine intel-
ligence

4. Bai Y, Ding H, Qiao Y, Marinovic A, Gu K, Chen

T, Sun Y, Wang W (2019) Unsupervised inductive
graph-level representation learning via graph-graph
proximity. In: IJCAI

5. Caelli T, Kosinov S (2004) An eigenspace projec-
tion clustering method for inexact graph matching.
IEEE transactions on pattern analysis and machine
intelligence 26(4):515–519

6. Carletti V, Foggia P, Saggese A, Vento M (2017)
Challenging the time complexity of exact subgraph
isomorphism for huge and dense graphs with vf3.
IEEE transactions on pattern analysis and machine
intelligence 40(4):804–818

7. Chapel L, Alaya MZ, Gasso G (2020) Partial
optimal transport with applications on positive-

unlabeled learning. arXiv preprint arXiv:200208276

16 Xiaoyang Guo et al.

Fig. 22 First three principal variations of Wikipedia graphs. From top to bottom, each row shows the variation for the first,
second and third principal directions, respectively. The middle graph in each row is the mean, while left and right graphs result
from perturbing the mean by one and two square root of singular value.

Table 2 Letter and molecule graph classification results

Letter: Low Distortion Letter: Medium Distortion Letter: High Distortion Molecule

Ours 98.5% 96.4% 93.6% 99.6%
[46] 99.6% 94.0% 90.0% 97.3%

Table 3 Classification results on some TU graph datasets

% BZR IMDB-B IMDB-M MUTAG PROTEIN PTC-MR

Ours 83.21±2.54 71.60±3.86 49.73±3.49 83.50±7.57 74.84 ± 3.05 59.84±7.34
[60] 85.12±4.15 63.80±3.49 48.00±3.22 83.26±10.30 74.55±2.74 55.71±6.74

(Quartile 1, Quartile 3)[34] (85.2, 88.0) (61.0, 71.2) (42.1, 49.3) (83.7, 87.3) (74.1, 75.7) (59.0, 61.0)

8. Chen H, Perozzi B, Hu Y, Skiena S (2018) Harp:
Hierarchical representation learning for networks.
In: Thirty-Second AAAI Conference on Artificial
Intelligence

9. Chizat L, Peyré G, Schmitzer B, Vialard FX
(2018) Scaling algorithms for unbalanced optimal
transport problems. Mathematics of Computation
87(314):2563–2609

10. Chowdhury S, Needham T (2019) Gromov-
wasserstein averaging in a riemannian framework.
arXiv preprint arXiv:191004308

11. Conte D, Foggia P, Sansone C, Vento M (2004)
Thirty years of graph matching in pattern recog-

nition. International journal of pattern recognition
and artificial intelligence 18(03):265–298

12. Dai M, Zhang Z, Srivastava A (2016) Testing sta-
tionarity of brain functional connectivity using
change-point detection in fmri data. In: Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp 19–27

13. De Souza FD, Sarkar S, Srivastava A, Su J (2014)

Pattern theory-based interpretation of activities.
In: Pattern Recognition (ICPR), 2014 22nd Inter-
national Conference on, IEEE, pp 106–111

14. Defferrard M, Bresson X, Vandergheynst P (2016)
Convolutional neural networks on graphs with fast

A Quotient Space Formulation for Generative Statistical Analysis of Graphical Data 17

localized spectral filtering. In: Advances in neural
information processing systems, pp 3844–3852

15. Dryden IL, Mardia KV (1998) Statistical Shape
Analysis. John Wiley & Son

16. Errica F, Podda M, Bacciu D, Micheli A (2019) A
fair comparison of graph neural networks for graph
classification. arXiv preprint arXiv:191209893

17. Frank M, Wolfe P (1956) An algorithm for
quadratic programming. Naval research logistics
quarterly 3(1-2):95–110

18. Gold S, Rangarajan A (1996) A graduated assign-
ment algorithm for graph matching. IEEE Transac-
tions on pattern analysis and machine intelligence
18(4):377–388

19. Gramfort A, Peyré G, Cuturi M (2015) Fast opti-
mal transport averaging of neuroimaging data. In:
International Conference on Information Process-
ing in Medical Imaging, Springer, pp 261–272

20. Grover A, Leskovec J (2016) node2vec: Scalable fea-
ture learning for networks. In: Proceedings of the
22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM, pp
855–864

21. Guo X, Bal AB, Needham T, Srivastava A (2020)

Statistical shape analysis of brain arterial networks
(bans). arXiv:200704793

22. Hakimi SL (1965) Optimum distribution of switch-

ing centers in a communication network and some
related graph theoretic problems. Operations re-
search 13(3):462–475

23. Hamilton W, Ying Z, Leskovec J (2017) Inductive

representation learning on large graphs. In: Ad-
vances in Neural Information Processing Systems,
pp 1024–1034

24. Han L, Wilson RC, Hancock ER (2015) Generative
graph prototypes from information theory. IEEE
transactions on pattern analysis and machine intel-
ligence 37(10):2013–2027

25. Horaud R (2012) A short tutorial on graph lapla-
cians, laplacian embedding, and spectral clustering

26. Jain BJ (2016) On the geometry of graph spaces.
Discrete Applied Mathematics 214:126–144

27. Jain BJ (2016) Statistical graph space analysis.
Pattern Recognition 60:802–812

28. Jain BJ, Obermayer K (2009) Structure
spaces. Journal of Machine Learning Research
10(Nov):2667–2714

29. Jain BJ, Obermayer K (2012) Learning in rieman-

nian orbifolds. arXiv preprint arXiv:12044294
30. Kersting K, Kriege NM, Morris C, Mutzel P, Neu-

mann M (2020) Benchmark data sets for graph ker-
nels. URL http://www.graphlearning.io/

31. Kipf TN, Welling M (2016) Semi-supervised classi-
fication with graph convolutional networks. arXiv
preprint arXiv:160902907

32. Kolaczyk ED, Lin L, Rosenberg S, Walters J, Xu J,
et al. (2020) Averages of unlabeled networks: Ge-
ometric characterization and asymptotic behavior.
The Annals of Statistics 48(1):514–538

33. Krcmar M, Dhawan A (1994) Application of ge-
netic algorithms in graph matching. In: Proceedings
of 1994 IEEE International Conference on Neural
Networks (ICNN’94), IEEE, vol 6, pp 3872–3876

34. Kriege NM, Johansson FD, Morris C (2020) A
survey on graph kernels. Applied Network Science
5(1):1–42

35. Kuhn HW (1955) The hungarian method for the
assignment problem. Naval research logistics quar-
terly 2(1-2):83–97

36. Lyzinski V, Fishkind DE, Fiori M, Vogelstein JT,
Priebe CE, Sapiro G (2016) Graph matching: Re-
lax at your own risk. IEEE transactions on pattern
analysis and machine intelligence 38(1):60–73

37. Mackaness WA, Beard KM (1993) Use of graph
theory to support map generalization. Cartography
and Geographic Information Systems 20(4):210–
221

38. Maron H, Lipman Y (2018) (probably) concave
graph matching. arXiv preprint arXiv:180709722

39. Mémoli F (2011) Gromov–wasserstein distances

and the metric approach to object matching. Foun-
dations of computational mathematics 11(4):417–
487

40. Narayanan A, Chandramohan M, Venkatesan R,

Chen L, Liu Y, Jaiswal S (2017) graph2vec: Learn-
ing distributed representations of graphs. arXiv
preprint arXiv:170705005

41. Neuhaus M, Bunke H (2007) Bridging the gap be-
tween graph edit distance and kernel machines,
vol 68. World Scientific

42. Ortega A, Frossard P, Kovačević J, Moura JM,
Vandergheynst P (2018) Graph signal processing:
Overview, challenges, and applications. Proceed-
ings of the IEEE 106(5):808–828

43. Pele O, Werman M (2008) A linear time histogram
metric for improved sift matching. In: European
conference on computer vision, Springer, pp 495–
508

44. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk:
Online learning of social representations. In: Pro-
ceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data min-
ing, ACM, pp 701–710

45. Peyré G, Cuturi M, Solomon J (2016) Gromov-
wasserstein averaging of kernel and distance ma-

18 Xiaoyang Guo et al.

trices. In: International Conference on Machine
Learning, pp 2664–2672

46. Riesen K, Bunke H (2008) Iam graph database
repository for graph based pattern recognition and
machine learning. In: Joint IAPR International
Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR), Springer, pp 287–297

47. Riesen K, Bunke H (2009) Approximate graph edit
distance computation by means of bipartite graph
matching. Image and Vision computing 27(7):950–
959

48. Sato R (2020) A survey on the expressive
power of graph neural networks. arXiv preprint
arXiv:200304078

49. Schölkopf B, Smola A, Müller KR (1998) Nonlinear
component analysis as a kernel eigenvalue problem.
Neural computation 10(5):1299–1319

50. Séjourné T, Vialard FX, Peyré G (2020) The
unbalanced gromov wasserstein distance: Conic
formulation and relaxation. arXiv preprint

arXiv:200904266
51. Severn K, Dryden IL, Preston SP (2019) Manifold

valued data analysis of samples of networks, with

applications in corpus linguistics. arXiv preprint
arXiv:190208290

52. Shervashidze N, Schweitzer P, Van Leeuwen EJ,

Mehlhorn K, Borgwardt KM (2011) Weisfeiler-
lehman graph kernels. Journal of Machine Learning
Research 12(77):2539–2561

53. Shirley MD, Rushton SP (2005) The impacts of net-

work topology on disease spread. Ecological Com-
plexity 2(3):287–299

54. Song L, Fukumizu K, Gretton A (2013) Kernel

embeddings of conditional distributions: A unified
kernel framework for nonparametric inference in
graphical models. IEEE Signal Processing Maga-
zine 30(4):98–111

55. Srivastava A, Klassen EP (2016) Functional and
shape data analysis. Springer

56. Sun J, Kunegis J, Staab S (2016) Predicting user
roles in social networks using transfer learning with
feature transformation. In: Proc. ICDM Workshop
on Data Mining in Networks

57. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q
(2015) Line: Large-scale information network em-
bedding. In: Proceedings of the 24th international
conference on world wide web, International World

Wide Web Conferences Steering Committee, pp
1067–1077

58. Ugander J, Karrer B, Backstrom L, Marlow C
(2011) The anatomy of the facebook social graph.
arXiv preprint arXiv:11114503

59. Umeyama S (1988) An eigendecomposition ap-
proach to weighted graph matching problems.
IEEE transactions on pattern analysis and machine
intelligence 10(5):695–703

60. Vayer T, Chapel L, Flamary R, Tavenard R,
Courty N (2018) Optimal transport for structured
data with application on graphs. arXiv preprint
arXiv:180509114

61. Vishwanathan SVN, Schraudolph NN, Kondor R,
Borgwardt KM (2010) Graph kernels. Journal of
Machine Learning Research 11(Apr):1201–1242

62. Vogelstein JT, Conroy JM, Lyzinski V, Podrazik
LJ, Kratzer SG, Harley ET, Fishkind DE, Vo-
gelstein RJ, Priebe CE (2015) Fast approximate
quadratic programming for graph matching. PLOS
one 10(4):e0121002

63. Wang D, Cui P, Zhu W (2016) Structural deep
network embedding. In: Proceedings of the 22nd
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, pp 1225–
1234

64. Westenberg MA, van Hijum SA, Lulko AT, Kuipers
OP, Roerdink JB (2008) Interactive visualization
of gene regulatory networks with associated gene
expression time series data. In: Visualization in

Medicine and Life Sciences, Springer, pp 293–311
65. White D, Wilson RC (2010) Generative models for

chemical structures. Journal of chemical informa-

tion and modeling 50(7):1257–1274
66. Yanardag P, Vishwanathan S (2015) Deep graph

kernels. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery

and Data Mining, pp 1365–1374
67. Yang J (2003) Market segmentation and informa-

tion asymmetry in chinese stock markets: A var

analysis. Financial Review 38(4):591–609
68. Zhou F, De la Torre F (2015) Factorized graph

matching. IEEE transactions on pattern analysis
and machine intelligence 38(9):1774–1789

