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In Vivo Evaluation of Oxygenic Photogranules’ Photosynthetic
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Irradiance Curves
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ABSTRACT: The commingled microbial moiety of oxygenic
photogranules (OPGs) facilitates aeration-free wastewater treat-
ment. Embedded in an extracellular polymeric substances (EPS)
matrix, microbial producers and consumers of oxygen occupying
granular niches exchange substrates among themselves and with the
bulk fluid. An assessment of the OPG’s phototrophic potential or
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functional capacity may require combining different photoactivity
signals. The photosynthetic capacity was evaluated using photo-
synthetic oxygen evolution (POE) and chlorophyll fluorescence
(rapid light curves, RLC) measurements using OPGs grown at
different light intensities.. A maximum oxygen generating capacity
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for optimal OPGs and reactor conditions was determined to be
284.4 mgo, gyss ' h™' The OPGs exhibited photoelasticity, with

higher photosynthetic capacity in high light (HL) compared to that in low light (LL) adapted samples. Saturation irradiances before
the onset of photoinhibition for LL and HL samples were 1000 and 1200 ymolm > s™', respectively using POE signals, and
478 umolm™ s™' and 611 pmolm™ s~ using RLC signals. Moreover, HL adapted samples had higher nonphotochemical
quenching rates which allude to the OPG’s photoelastic potential. The correlation coefficients (k) between POE and RLCs were
lower than reported values for pure microbial cultures reflecting the enhanced contribution from different photosynthetic clades with
a variety of light-harvesting pigments present in OPGs. In an OPG reactor, the photochemical activity can be influenced by the
granular size, granular ecology, and reactor operation metrics related to irradiance interactions such as mixing, self-shading, light
intensity, photoperiods, and reactor depth. This presents opportunities for design of intensive wastewater resource recovery using
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phototrophic granular biomass.
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B INTRODUCTION

Light energy powers the bulk of primary production in the
biosphere with phototrophs transforming this energy into
chemical energy' for utility at different trophic levels. This light
energy is harvested by a moiety of light-harvesting complexes
(LHCs) comprising photoreceptors and associated protein
complexes.” These tetrapyrrole receptors include chlorophyll
and phycobilisomes pigments with the latter only present in
cyanobacteria®” and chlorophylls in all phototrophs.”> The
absorbed energy is transferred to reaction centers (II) and (I)
protein complexes through a specialized chain of intermediary
biomolecules and redox reactions to power carbon assimilation
in the Calvin-Benson cycle." Phototrophic autotrophs have
developed adaptations to variability in light quantity and
quality®™® in their environmental niches, such as leaf angles in
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higher plants and buoyancy regulation in algae and
cyanobacteria’ "' optimizing their photointeraction.

For emerging granular based wastewater systems, such as
oxygenic photogranules (OPGs), a consortium of microbes
coexists in different associations within the granular
ecosystem.'”~'* These biospheres are microreactors exchang-
ing substrates within their matrix'*"® and beyond their
structural boundary with the bulk fluid.'* This exchange is a
function of granular physical properties such as porosity and
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permeability affecting advective, dispersive and diffusive mass
transfer.'®'” These granular properties are in turn a result of
the microbial composition, their spatial distribution in the
granule morphology'® and interactions with environmental
stresses.

Oxygenic photogranules (OPGs) have a phototrophic outer
layer'®*° enhancing photointeraction. For phototrophs in this
layer, an oxygen-evolving complex in the photosystem II
(PSII) undertakes photooxidation of water via the KOKs
cycle’** producing oxygen. This self-aeration property can be
exploited to reduce the high energy demand and cost
associated with conventional wastewater treatment.'>'*'%?3
The dissolved oxygen can diffuse into the bulk fluid outside the
granular boundary or into the granular core where aerobic
oxidation of ammonia and organics by nitrifying bacteria and
heterotrophic bacteria, respectively, proliferating in the aerobic
zone'®** occurs. Concurrently, CO, from the oxidation of
organics is also available for phototrophic utility. Mature OPGs
with diameters >3 mm have anaerobic or anoxic conditions
within their stratified core.'® In this zone, denitrification
occurs, reducing nitrate to nitrogen gas.24 Similarly, nutrients
and organic substrates with a concentration gradient between
the bulk wastewater and granular environment diffuse into the
granular matrix.

Current practices for estimating phototrophic activity
involve the use of photosynthetic irradiance (P—I) relations
and rapid light curves (RLC).>*® The P—I curve relates
phototrophic activity as oxygen generated or carbon ('*C)
consumed in the ordinate over an increasing light intensity
11,26 RLC, on the other hand, utilizes the fluorescence
characteristics of chlorophyll light-harvesting complexes.”’
Incident pulses of amplitude modulated (PAM) light results
in oxidation of reduced reaction centers (RC) and quenching
of the incident energy.”® While P—I curves quantify net
photosynthesis, RLC indicates the gross photosynthetic
activity.zs’29

The phototrophic production of both microalgal and
cyanobacteria cultures has been widely characterized in pure
and mixed cultures.”’>* However, similar characterization in
OPGs and other photogranular biomass existing in a
commingled moiety with concurrent production and con-
sumption of substrates in wastewater treatment has not been
undertaken. In the tightly coupled microbial environment of
phototrophic granules, concurrent generation and consump-
tion of carbon and oxygen within the granular matrix may
impede accurate quantification using P—I curves. Moreover,
other inherent limitations of the P—I approach include their
low sensitivity to low O, concentrations and differential uptake
of "C/™C.> On the other hand, phototrophic clades present
in OPGs have different accessory light-harvesting pigments
such as phycobilins in cyanobacteria which interfere with
fluorescence emission while generating RLCs.”

In the present work, we explore the photochemical potential
of OPGs applied in wastewater treatment using both the P—I
curve approach and RLC methods. The P—I approach was
modified by utilizing bulk substrate transformations in
estimating photosynthetic oxygen production. This character-
ization will indicate peak oxygen generation, system capacity,
and optimal light demand forestalling light’s deleterious effects.
These parameters are essential for the design of scaled-up
photogranular wastewater resource recovery facilities (WRRF).

abscissa.
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Source of Oxygenic Photogranules (OPGs). A sequenc-
ing batch reactor (SBR) operated at a 1-d hydraulic retention
time (HRT) and fed with wastewater from a local utility was
used as a source of OPGs for experimental work. The reactor
was seeded with OPG granules'”*° and operated for 90 days
under 200 + 22 umol m~2 s~ conditions prior to experimental
period. The reactor operation was undertaken with sequential
light and dark cycles each 3 h long, feeding at the start of the
light cycle and a decanting phase at the start of the dark cycle
preceded by a 10 min settling phase. Both the decanting and
filling events were each undertaken for 5 min. For experimental
purposes, the 8 L SBR was operated under two light intensities,
200 + 22 pmol m2s7! (low light) and 460 + 13 ymol m2s7!
(high light), each for 30 d before sampling. The light was
provided using daylight mimicking 9 W LEDs (EcoSmart,
daylight- 5000 K) with a luminosity of 840 Lumens. In
addition, light microscopy (EVOS FL Color AMEFC-4300)
was conducted using bright field and epifluorescence (RFP
light cube-532 excitation/590 Emission) to characterize
morphology and microbial composition. OPGs which have a
characteristic cyanobacterial enrichment have golden-orange
fluorescence due to the cyanobacteria’s phycobiliproteins.””

Sample Analysis. Biomass characterization of total
suspended solids (TSS) and volatile suspended solids (VSS)
were undertaken using Standard Methods 2540D/E** and
chlorophyll pigments extraction and quantification using
Standard Methods 10200H.”® The phycobilin extraction
protocol outlined by Abouhend et al.'® was modified by
centrifuging samples at 12000 rpm for 20 min during
processing. The Bennett and Bogorad equation™ was used
to quantify phycobilins substituting 615 nm with abundant 620
nm peaks."”~** Effluent samples were also filtered through
both 1.5 and 0.45 um filters and used for analysis of total
chemical oxygen demand (COD) and soluble COD fractions,
respectively, using Standard Methods 5220C.>® The 0.45 um
filtrate was also used for the analysis of soluble fractions of
total dissolved nitrogen (TDN) and dissolved organic carbon
using a TN/TOC analyzer (TOC-VCPH, Shimadzu, USA).
Dissolved organic nitrogen was determined as the sum of
inorganic nitrogen species (ammonia, nitrite, and nitrate) from
TDN. A Metrohm 850 Professional Ion Chromatograph (IC)
(Metrohm, Switzerland) was used to measure phosphate and
dissolved inorganic nitrogen species.

Photosynthetic Oxygen Evolution (POE). In construct-
ing P—I (hereafter referred to as POE) curves, granules of 0.5
mm to 1 mm in diameter were collected from the reactor by
sieve analysis. This size class has been reported as being the
most abundant and as having the highest oxygen productivity
in OPG reactors.'® The size sorted granules were then
suspended in deionized water (DI) and dark-adapted for 12
h to reduce the reaction centers of photosystems in the light
harvesting complexes.27 In a darkened room, a 1 L glass reactor
was then inoculated with the dark-adapted granules and
primary effluent wastewater from the local utility prefiltered
through 1.5 pum filters. An airtight rubber seal was then used to
cap the reactor jar to limit atmospheric interaction. A
multiparameter probe (Hanna Instruments) matted to this
capping seal and calibrated before every test was then used to
record dissolved oxygen, temperature, and pH data at 1 min
intervals. A 3 mm diameter tubing drilled into the rubber cap
was used as a sampling port. A magnetic stirrer bar calibrated
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Figure 1. POE determination for OPGs grown at (a) 200 (low light) and (b) 460 gmol m™ s™* (high light) with increasing light intensity. Error
bars are standard errors of derived oxygen evolution rates for duplicate reactors with average initial biomass concentrations of 1020 and 1210 mg

LY, respectively. Note different scale used for y axis in these figures.

at 100 rpm was used to provide continuous mixing, while a
heat sink was used to maintain the reactor temperature
between 22 and 24 °C.

Light was provided at increasing intensities from 50 pmol
m~2 s to 2000 pmol m™> s7! (£10) using an LED panel
(6500 K) and calibrated using a Li-Cor 193S underwater
spherical sensor (LI-COR Biosciences) at the surface of the
reactor. Bulk samples were collected at time 0 and
subsequently at two 15 min intervals for every light intensity.
In the intervening period between light intensities, the reactor
was stored in a darkened enclosure for an average of 8 min.
Wastewater was added to suppress dissolved oxygen (DO)
saturation in the reactor bulk fluid and to prevent gas loss into
the headspace. Net POE was determined as the sum of
differential changes in DO concentration, gross nitrification, **
and COD removal. An oxygen consumption rate of 4.57
mgO,/mgNH;—N for the oxidation of ammonia*>™* and a
ratio of 1 mgO,/mgCOD was used for biological oxidation of
dissolved organics.

Fluorescence Analysis. Dark-adapted (12 h) granule
samples were also analyzed using an imaging pulse amplitude
modulation (PAM) fluorometer (M-Series Maxi Version, Walz
GmbH, Effeltrich, Germany). Analysis of average light
induction (Kautsky effect)”> was followed by RLC (light-
adapted) measurements for granules (n > 30) each delineated
as a zone of interest. Samples were collected before and after
POE experiments and mounted in DI or wastewater (WW).
For light induction measurements, the duration of the light
pulses was set to 415 s, with a 40 s interval. Actinic light
intensities were set to 186 gmol m™* s™! and 460 gmol m™> s~!
for low-light and high-light cultivation conditions, respectively,
while the saturating pulses were 5000 ymol m™> s™'. The
obtained dark-adapted fluorescence (F,) and maximal
fluorescence (F,,) values were utilized to determine maximal
PSII quantum yield™ as

Fv/Fm = (Fm — Fo)/Fm (1)

where the variable fluorescence (F,) is the difference between
F, and F.

RLCs characterizing the electron transport rate (ETR) were
developed via a stepwise increase of saturating pulses from 0 to
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1250 pumol m™ s™%. The effective quantum yield (¢psy) was

evaluated over increasing irradiances using light adapted
25,29

granules and was defined as

bpsyy = (Fm’ — Fo')/Fm’ (2)
where F_’ is the light-adapted maximum fluorescence obtained
at saturation of reaction centers and F,’ is the light-adapted
fluorescence intensity estimated from F,’ measurements.*®
The relative electron transport rate (rETR) was determined as

©)

which approximates the electron flow in the photosynthetic
electron transport chain as a fraction of absorbed quanta to
PSII from the ETR determination where PAR is the incident
irradiance. Photochemical quenching (gP) which measures the
overall reaction center (RC) openness’ was determined as,

rETR = ¢, *PAR

gP = (Fm’ — F)/(Fm’' — Fo') (4)
We also evaluated the coeflicient of nonphotochemical
quenching (qN) describing quenching mechanisms not related
to photochemistry.”

gN = (Fm — Fm’)/(Fm — Fo') (s)
A Stern—Volmer coeflicient of nonphotochemical quenching
(NPQ) which is independent of Fo’ and has a hi%her
sensitivity to energy quenching within the antennae matrix’ "*°
was also determined.

NPQ = (Fm — Fm')/(Fm’) (6)

Curve Fitting. Characteristic photosynthetic parameters
were determined by fitting the RLC data with a curve. The
Platt empirical estimation (eq 7)** describing photosynthesis
as a single continuous function of incident light was used.”
The function covers both the initial increasing photosynthetic
rates and the diminishing rate due to irradiance-driven
photoinhibition.*”*° rETR data was exported into origin Pro
(v.2020) and processed using the nonlinear curve fit function.
A double decay exponential function was fitted onto the data
using an orthogonal distance regression algorithm,
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Table 1. Summary of Photosynthetic Parameters from Chlorophyll Fluorescence Experiments®

POE RLC
200 + 22 460 + 13 186 460
actinic light (imol photons m™ s7") POE POE pre-POE post-POE pre-POE
(a) P, 4.95 x 10™ 2.03 x 10% 6.81 x 10% 3.58 x 10™ 1.26 x 10® 111 x 10%
std. error 3.34 x 10% 4.59 x 10% 2.97 x 10% 5.14 x 10% 3.35 x 10" 2.51 x 10%
(b) alpha (@) 0.78 1.59 0.38 0.37 0.35 0.29
std. error 0.55 0.78 0.02 0.02 0.02 0.01
(c) beta (B) 72.5 112.8 17.1 64.2 0.08 17.3
std. error 491 x 10% 2.58 x 10% 7.53 x 10% 9.23 x 10% 490 x 107 3.94 x 10
(d) rETRmax 196 1044 55 76 70 69
(e) E; (umol m™' s7%) 250 656 145 205 196 235

“The curvilinear double decay function defined in eq 7 was used to estimate growth () and decay (/) coefficients, which were then used to
compute maximum rETR and Ey. Model parameters are shown in rows a—e with standard errors where included.
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Figure 2. Fluorescence signal plots during light induction (Kautsky effect). (a) OPG biomass grown at 200 gmol m™ s™' with plots taken before
(solid) and after (dashed) photosynthetic oxygen evolution (POE) experiments mounted in deionized water (DI). (b) OPG biomass grown at 460
umol m™2 s~ (pre-POE) mounted in DI (solid) and wastewater (WW) (dashed) before oxygen evolution experiments. The vertical axis shows the
fluorescence units (arbitrary) with initial maxima and subsequent fluorescence peaks (F’) with each saturating pulse. The horizontal axis is in
seconds. Representative curves for >60 independent measurements and each peak represents a saturating pulse (5000 ymol m™> s™') while actinic
light (adapted irradiance) is provided at the intervals. The initial peak (F,,) is the maximal fluorescence yield for dark-adapted biomass. PAM
fluorescence measurements for low light (200 ymolm™ s™") cultivation were undertaken at instrument setting equivalent within the range of

growth intensity of 186 ymolm™ s™".
P=p(1 - e—(aEd/Ps)) o~ (PE4/Ps) ) hr™!), which was 5.5 times higher than those grown at
200 umolm™ s™' (low-light condition). Peak photosynthetic
where P is the photosynthetic rate with Ey (umolm™ s7) activity was observed at 1000 ugmolm™* s™' and
incident radiation, P, is the light-saturated rETR without 1200 ymol m ™2 s™" for low-light and high-light grown granules,
photoinhibition, @ is the initial slope of the RLC before respectively. A regression fit using eq 7 and various
saturation, and f characterizes the slope of the RLC during photosynthetic parameters are presented in Table 1. The
photoinhibition. Additionally, the relative maximum electron light saturation coefficient (@) in the low-light grown OPGs
transport rate (rETR,,,,) and minimum saturating irradiance was 2 times lower than that in high-light OPGs. Moreover, the
(E,) were obtained using the equations described by Ralph et decay coefficient () in the low-light samples was also 1.6
al”> The regression analysis was run over 100 iterations to times lower than in the high-light samples while minimum
convergence. A coefficient (k) was determined relating the saturation irradiances (E,) were 250 gumolm™ s™' and
ETR and POE linear regression in the light-limited region.Il 656 pumol m2 s for low-light and high-light granules,
respectively (Table 1, Figure 1). These higher values for
B RESULTS AND DISCUSSION high-light adapted granules allude to photoelasticity of the
Photosynthetic Oxygen Evolution (POE) Character- photosynthetic clades™ present in OPGs.
ization. The mean TSS values during POE evaluations were Fluorescence Induction in OPGs. The light induction

-1

1288 mg L' and 1259 mg L™" using low light and high light fluorescence yields by OPGs grown under 200 gmolm™ s
adapted granule, respectively. VSS/TSS was 0.9 for both and 460 ymolm™ s are presented in Figure 2. Following
sample sets with std.dev 0.01. Mean biomass concentrations exposure of the low-light OPGs to high irradiances during
evaluated using the t-statistic indicated no statistical difference POE experiment (up to 2000 gmolm~> s™"), the dark-adapted
at P = 0.0S. POE curves for both OPG growth irradiances fluorescence yields (F,) increased from 0.14 to 0.22 (Figure 2-
exhibited a typical curvilinear trend with increasing light a). In addition, a 33% decrease in the quantum yield (F,/F,)
intensity (Figure 1). Granules cultivated under 460 ymol m™> (0.612 — 0.408) ensued from the POE light exposure. These
s~ (high-light condition) showed higher photosynthetic changes allude to high sensitivity of PSII reduction potential in
productivity with a peak (1364 ymolO, mgChlorophyll a™* post-POE samples even with dark adaptation, potentially due
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Figure 3. Derived quenching coefficients from RLC applied to light-adapted OPG biomass: photochemical quenching (qP), nonphotochemical
quenching (qN), and Stern—Volmer coefficient of nonphotochemical quenching (NPQ) expressed as a function of increasing PAR (umolm™>s™").
(a) qN and qP for low-light OPGs pre (O) and post (A) POE experiments and mounted in DI, (b) NPQ for 200 umolm™ s, (c) qN and qP
parameters for 460 ymolm™ s™' (pre-POE) growth irradiance and dark-adapted in DI (0) and WW () and (d) NPQ_for 460 ymolm™> s™'
growth irradiances. Each representative curve for >60 independent measurements.

to legacy stress, resulting in lower yields.”” The curves indicate
similar trends with relatively constant steady-state fluorescence
(F) yields. Moreover, low-light OPGs mounted in DI before
and after POE experiments showed comparable maximal
fluorescence yields (F,,) of 0.36 and 0.39, respectively (Figure
2-a). The pre-POE samples were dark-adapted for 12 h
compared to 4 h for the post-POE samples. Dark-adaptation of
phototrophs for long durations can eliminate long-lasting
photoinhibition effects (>hours)*> explaining the similarity in
F yields. The similar steady-state yields also suggest that the
induced POE irradiance stress was not perpetual.

The pre-POE, high-light granules in DI had a higher
F,(0.21) compared to similarly treated low-light OPGs (Figure
2). In addition, the F,, for these high-light OPGs was also 38%
greater than that for low-light OPGs suggesting higher
potential capacity of the LHCs compared to low-light OPGs.
The quantum yield, F,/F,, in high-light OPGs was hence 5%
lower than in low-light OPGs. This lowering is a strong
indicator of stress conditions on the PSII*” of high-light OPGs.
In comparison to short-term POE irradiance stress on low-light
OPGs, high-light OPGs exposed to high irradiances for an
extended duration during POE experiments induced persistent
stress, seen with higher F levels (Figure 2). The high-light
OPGs showed no variability in steady-state fluorescence yields
when mounted in WW but had a 20% lower PSII quantum
yield than DI-mounted high-light OPGs (Figure 2). Thus, the
availability of organic carbon and nutrients in wastewater
seems to act a PSII stressor in the high-light OPGs.
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Fluorescence Quenching in OPGs. Excess absorbed
photon energy is dissipated via photochemical and non-
photochemical pathways characterized by the qP, gN, and
NPQ coefficients (Figure 3). The plotted quenching
coeflicients showed an apparent increase in both qN and
NPQ, with a corresponding decrease in qP. For pre-POE, low-
light OPGs, the loss in qP capacity diminished to zero at 950
umolm™ s™'. In contrast, for post-POE, low-light OPGs, the
qP diminished to zero at 1200 ymol m~> s™!(Figure 3-a). This
alludes to a persistent photochemical capacity with a higher
proportion of open PSII reaction centers,”””* a potential
legacy of exposure to high irradiances in post-POE samples.
The increase of qP between pre- and post-POE OPGs also
suggests an elasticity in the photochemical capacity of the
photosynthetic clades in OPGs with growth irradiances.

The heat dissipation coefficients QN and NPQ for the pre-
POE low-light granules increased rapidly while those of post-
POE samples experienced an initial lag followed by a linear
increase (Figure 3-a,b). Linear regression on the initial linear
data points resulted in qN slope coeflicients of 0.0007 and
0.000S, both showing r*=0.98, for pre-POE and post-POE
samples, respectively (Figure 3-a). Similar fits on the NPQ data
resulted in slope coefficients of 0.0003 and 0.00006 (r*=0.98)
(Figure 3-b) equivalent to a rate of S times more quenching
efficiency for pre-POE biomass. The maximum nonphoto-
chemical quenching potential (NPQ) for pre-POE low-light
OPGs was 2 times higher than that of post-POE biomass
(Figure 3-a,b). This disparity suggests a higher sensitivity and
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efficiency of nonphotochemical energy dissipation capacity in
the pre-POE samples compared to post-POE samples which
had a higher irradiance history.

The differences in induction (Figure 2) and quenching
parameters (Figure 3) observed between pre-POE and post-
POE low-light OPGs can also be attributed to photochemical
recovery kinetics. A component of nonphotochemical quench-
ing associated with photoinhibition (qI)*”*" has been reported
to have slower relaxation >30 min to hours. This slow
relaxation is also responsible for energy redistribution to
PSIL* Quenching related to energy-dependent and state
transition occurs over shorter time scales (<30
min) 25274951,52

The qP coeflicients in high-light adapted OPGs decreased to
a minimum at 1251 ymolm™ s™" (Figure 3-c) for OPGs in
both DI and WW, comparable to low-light post-POE samples.
With WW the qP potential was higher by 0.15 r.u up to 800
umol m~* s™! as compared to high-light samples in DI. The qN
coefficient for OPGs in DI had a steep linear increase up to
0.32 at low PAR at 21 ymol m™> 5™/, subsequently lagging to a
maximum of 0.52 at 1251 ymolm™ s™'. On the other hand,
samples in WW experienced a lower gN capacity with a rapid
linear increase to 0.28 at a higher intensity of 111 gmolm™>s~"
and a maximum of 0.4S at 1251 ymol m™ s™". The regression
coefficient fit on the linear increase slope was 0.005 for DI
mounted samples and 0.002 for WW inoculates (r*=0.97).

In addition, the NPQ_potential for high-light OPGs was
higher in DI than WW with a maximum of 0.19 and 0.12,
respectively (Figure 3-d). Regression fit on the linearly
increasing NPQ_data points resulted in slope coeflicients of
0.001 for DI and 0.0003 for WW mounted samples (r*=0.97),
indicating a 3.3 times higher NPQ_efficiency for high-light
OPGs mounted in DI. Despite the similarity of steady-state
fluorescence (F) yields (Figure 3-b), inoculating HL OPGs in
WW  confers some photochemical quenching resilience
compared to DI. This can be attributed to amendment of
photosynthetic activity by substrates in WW. NPQ_for DI
mounted samples was also higher in high-light OPGs
compared to low-light OPGs and similar to observed
fluorescence yield trends, indicating a higher heat loss rate
constant.
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The high-light OPGs had higher photosynthetic quenching
(qP) capacity than low-light OPG biomass (Figure 3).
Similarly, low-light OPGs exposed to high light intensities
during POE experiments exhibited similar qP trend and
saturating intensity (1251 ymolm™ s™") to high-light OPGs.
These results indicate the inherent elasticity of photochemical
moiety in the OPG biomass. Both the low-light and high-light
OPGs mounted in DI exhibited a similar trend of non-
photochemical quenching (gN and NPQ) potential, but high-
light OPGs had higher peaks (Figure 3). The initial rate of QN
increase was also 2.9 times higher for high-light OPGs in DI
than comparable low-light OPG conditions. This non-
photochemical quenching trend again suggests that OPG
growth at higher irradiances results in more rapid responses to
inhibiting light.

Photochemical Efficiency in OPGs. The product of
effective quantum yield (¢hpg;) and PAR gives a relative
indication of actual electron transport efficiency”>”” since the
¢psy; is independent of light-harvesting pigment concentra-
tions. The plots of rETR and irradiance exhibited a curvilinear
relationship (Figure 4) characterized by monotonic increase, a
light-limited butte with maximum rETR and an electron
transport limited decrease. Low-light OPGs experienced a 1.4
times increase in rETR peak (from S5 to 75.8) by exposure to
higher light during POE experiments (Figure 4-a). Pre-POE
OPGs cultivated under high-light conditions had comparable
rETR, ., of 69.6 and 69.3 when inoculated in DI and WW,
respectively, attained at irradiance of 611 ymol m™> s (Figure
4-b).

The model fit on the RLC and POE data revealed the light
saturation coefficient () for both low-light and high-light
samples at 0.35 = 0.04 under all conditions (Table 1-b). This
result alludes to comparable photosynthetic clades and
response for the OPGs analyzed, in light-limited conditions.
In contrast, the decay coefficient () for pre-POE low-light
OPGs was 17.1, 3.8 times lower than that of post-POE
samples. This RLC decay coefficient for post-POE samples
(64.2) was comparable to values obtained from the POE
model of low-light samples (72.5) (Table 1). In high-light
samples, a lower f was obtained for DI mounted samples
(0.08) compared to WW mounted samples (17.3), indicating a
lower sensitivity to saturating light conditions. The higher
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Figure S. Microscopic images of oxygenic photogranule (OPGs) from reactor used in photochemical evaluation. (A) Brightfield light microscopy
(scale bar 500 ym). (B) Phycobilin autofluorescence of filamentous cyanobacteria within the photogranule shown in panel A (scale bar is S00 ym).

decay rate could be reflective of elevated microbial activity in
WW compared to DI

A lower minimum saturating irradiance (Ek) was obtained
for pre-POE low-light OPG samples, 145 ymolm™ s7/, as
compared to 205 ymolm™ s™" for post-POE samples (Table
1). This result parallels the higher qP values in post-POE
samples (Figure 3) suggesting plasticity of OPG photo-
synthetic clades. A higher proportion of PSII centers remain
open”” at higher irradiances even with short-term adaptation to
higher light intensity. The difference in pre- and post-POE
minimum saturating irradiances could also be imputed to
either design differences of RLC and POE experiments and or
OPG morphology.''® The Ek for high-light samples (pre-
POE) were 196 ymolm™ s~ and 235 pmolm™ s~! when
mounted in DI and WW, respectively (Table 1). These
irradiances were lower than those determined from POE
experiments with high-light OPGs (656 ymol m™* s™') (Table
1). The efficiency relation parameter (x)>° was significantly
higher (P = 0.05) for high-light OPGs (1.8) compared to low-
light OPGs (0.7) with a linear relationship observed (Figure
5). A narrow range of this relation has been reported for green
algae (1.9—4.9) compared to that of cyanobacteria (2.9-9.2)
and diatoms (0.6—6.4),"" which are all present in OPGs.">>**

Light intensity within the photochemical range of the
granular biomass fosters optimal production and consumption
of oxygen. The maximum rETR (196) for POE experiments at
the saturating rate was 5.3 times lower in low-light than high-
light OPGs with a corresponding saturating irradiances (E,)
ratio of 2.6 (Table 1). This represents a doubling of the rETR
with increase in POE saturating irradiance. In addition, the
saturation rate coefficient (a) increased 2-fold for POE
experiments (Table 1) equivalent to the ratio growth
irradiances. One theory to explain this increase is the higher
light penetration into the granular matrix at higher irradiances
activating more photoactivity.
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In WRREF processes, target dissolved oxygen levels indicate
the treatment efficacy.”® These results therefore suggest that
when light is limited, the hydraulic retention times in OPG
reactors can be increased to reflect the reduced oxygen
generation capacity of the system. High photon energy can, on
the other hand, results in photoinhibition.”” From the POE
model fit (Table 1), high-light OPGs had a 1.6 times higher
decay coefficient (/) than low-light OPGs. Despite adaptation
to higher growth irradiance, which can be learned from higher
qP and fluorescence yields compared to low-light OPGs, the
higher decay coefficient, QN and NPQ_in high-light OPGs
indicates a rapid loss of photosynthetic potential.

Comparison between PAM and RLCs. PAM utilizes
chlorophyll fluorescence signals to characterize photochemical
activity. The RLC derived from fluorescence experiments
resulted in lower peak irradiances (Figure 4) compared to POE
(Figure 1). Maximum saturation rates () from RLC data for
low-light OPGs and high-light OPGs were comparable (0.38
and 0.35) for DI mounted samples (Table 1). However, these
rates were 2.1 and 5.4 times lower than corresponding POE
data, respectively. Similarly, the decay rates were also 4.2 and
6.5 times lower for RLC experiments (Table 1). POE
experiments induce steady-state conditions at each light
intensity while short light pulses utilized in RLC experiments
could account for the lower RLC model coefficients.””

Moreover, RLCs are dependent on the light prehistory of
the phototrophic moiety while POE curves indicate the
optimal conditions independent of light history.”> As both
POE and RLC samples were pretreated similarly, their
different coefficient values can also be attributed to the
morphology and stratification of the OPGs.”'® OPG
morphology consists of layered microbial niches with the
phototrophic zone at their surface.'® Internally localized
heterotrophs oxidize organic carbon in wastewater generating
CO, available for photosynthesis. The diffusive transfer of
these substrates into and out of the different OPG layers may
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to photosynthesis efficiency. Error bars are standard errors of derived POE and rETR relation.

occur at temporal magnitudes higher than that of the
fluorescence pulses. This contrasts with apparent substrate
amendment of photochemical electron sinks in POE
evaluation.

Additionally, RLC illumination of the photosynthetic culture
is 1-dimensional, similar to that of pure cultures and
plants.'">>*® The resulting fluorescence and estimations of
ETR represent partial light utility in the spheroidal OPG
aggregates. In comparison, POE experiments which exhibited
higher model coefficients and saturating irradiances reflect
overall granule utility. Granular spin resulting from mixing
operations and particle—particle interactions in POE determi-
nation could expose more photosynthetic apparatus to light
(Figure S). Moreover, variable light penetration in relation to
OPG stratification'® could result in shading and, hence, lower
POE activity.”” This variable interaction can impact light utility
within a reactor setting.

The observed differences in POE and RLC parameters
(Table 1) can also be attributed to the cyanobacterial
population in OPGs.”” The presence of fluorescent accessory
pigments such as phycobilins can compromise interpretation of
cyanobacteria fluorescence (Figure 5-b).”? In addition,
cyanobacteria have evolved energy redistribution mechanisms
between the photosystems (I and II), eliminating electron
transport imbalances.”” These rapid state transitions present
even in the dark can compromise the determination of
nonphotochemical quenching (qN).'' In cyanobacteria,
production and consumption pathways intersect in the same
thylakoid membranes while also sharing the z-scheme
plastoquinone acceptors.”” At high irradiances, significant
electron losses can occur in cyanobacteria with losses of 50—
70% of average rates reported in Synechosystis sp. PCC 6803.""

Additionally, oxygen uptake by respiration, cyclic electron
flow around PSII, and Mehler reactions where oxygen becomes
reduced forming superoxide radicals occurs in cyanobac-
teria.””*”*® These competing needs can lead to under-
estimation of the oxygen generation from cyanobacteria,”” an
integral clade in OPGs and seen with different POE and rETR
saturation values (Table 1). In addition, nitrogen assimilation
can cause lower photon yields (¢) of both POE and rETR.*®
Chlorophyll quenching has been reported to consistently
understate the efficiency of the photosynthetic production in
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cyanobacteria. The low values can be attributed to understated
yield parameters (F, and F,).”” Schuurmans et al. hence
suggested a qualitative interpretation of RLC data.””

The relation of POEand RLC yields characterized by the
parameter (Figure 6) for low-light OPGs (0.7) and high-light
OPGs (1.8) are within the range of literature reported values
for pure culture phototrophic microbes.'' These values reflect
a mean activity of the commingled phototrophic consortia in
OPGs and are lower than maximum values reported for
cyanobacteria (k = 9.2) but within the lower limit reported for
diatoms (x = 0.6). RLCs result in higher variability of this
correlation for cyanobacteria and diatoms' ">’ and hence they
are recommended for use qualitatively to describe the state of
PSIL'"?

Implications on OPGs’ Photosynthetic Capacity and
Reactor Operation. Typical POE experiments entail strict
quantifying of carbon consumption or oxygen evolution from
the prototrophic assemblage.'"*>** However, this pioneering
approach to characterize phototrophic activity in granular
structures presents challenges. Specifically, granular stratifica-
tion and variable distribution of phototrophic biomass within
the granules of different sizes'”® negate the equivalence of
bulk and individual granule photochemical capacities. The
OPG size class (0.5—1 mm) utilized for determination of
photochemical capacity in this study were reported to be most
abundant within an OPG reactor and as having the highest
oxygen generation potential (specific oxygen production rate of
219 + 1.3 mgg, gvss h™1).'%2%%* This oxygen production
rate was also 75% higher than that of the mixed reactor
biomass'®** and approximates to a POE of 60 pumolg
mgchlomphyua_l h™". This generation is 4 times lower than the
determined maximum POE value, 247 pmolg, mgchlorophyllu_l
h™, of low-light OPGs (Figure 1).

Similarly, we can infer a mixed biomass oxygen production
of 141 pmoly, mgchlomphyua_l h™' (51.5 mgo, gyss ' h™') from
our reported POE data for low-light OPGs. The maximum
POE obtained using high-light OPGs of 1364.7 pmoly,
mgchlomphyuu_l h™! equates to a mixed biomass specific oxygen
production of 284.4 mg, gyss~' h™'. This ideal capacity is
sufficient for treatment of most domestic wastewater streams at
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modest retention times. However, light interaction limitations
in reactors can adversely limit this capacity in addition to
photoinhibitory effects where bright sunlight is utilized.”” The
POE data indicates that irradiances above 1200 ymolm™ s~!
would generally result in decreased photosynthetic production
by OPGs, while full sunlight has about 2000 ymolm™ s™".
Beyond inhibition, long-term exposure to this irradiance would
result in photooxidation and cellular mortality’”® of OPG
photosynthetic moieties.

High oxygen concentration within the granular matrix can
inhibit denitrification'* while low concentrations can result in
reduced COD oxidation and nitrification rates by aerobic
microbes within the g1'anule.23’36’54 Above saturation concen-
trations of oxygen within granules can induce oxidative stress
in cells from reactive oxygen species and competition with
CO,(low CO,/ O,) for ribulose-1,5-bisphosphate carboxylase/
oxygenase (Rubisco)® and, hence, decrease the electron
transport rates. Additionally, some oxygen generated within the
OPGs dissolves into the bulk fluid. At high light intensities, the
photosynthetic rate can be greater than the rate of oxygen
consumption hence respiration becomes the rate-limiting
process for wastewater treatment. In the design of photo-
bioreactors,”’ maintaining a balance between oxygen con-
sumption and production should, therefore, be considered in
the determination of hydraulic retention time.

Moreover, carbon transfers within the granule occur via
multiple pathways.”’ Organic carbon is oxidized to CO, by
heterotrophic oxidation. This carbon product can become
available for photosynthetic activity resulting in mutualistic
associations."* Inorganic carbon from the atmosphere can also
be available for phototrophic activity via carboxylation®”®* in
the wastewater stream, a process enhanced by mixing
operations. We operated the POE experiments with minimal
environmental interaction to limit this external addition of
CO,. Typical carbon tracing for POE construction quantifies
photosynthetic targeted inorganic carbon (**C)**** and may
not capture organic source derived carbon. Additionally,
phototrophic microbes, including cyanobacteria, present in
OPGs have versatile carbon assimilation and concentration
mechanisms.””*> Members of the genus Oscillatoria and
Microcoleus and chlorophytes genera Scenedesmus, which are
dominant in OPGs,**** have been reported mixotrophic
capacity.”>*® This metabolic diversity enables microbes to
survive in light-limited conditions by the synthesis of organic
carbon sources. Hence, carbon use within an OPG reactor may
be understated due to this uptake in light-limited granule zones
affecting POE estimations. This versatility also incurs a
metabolic cost that may depress electron transport values for
RLC estimations.

In OPG reactors, the optimal photochemical capacity
determined via POE experiments and dependent on growth
irradiances can be lessened by variable particle flow within the
reactor.””*® The mixing speed influences the frequency of
“OPGs to see light” events””’® and longer exposures to supra
saturating irradiances generally above 1000—1200 ymol m™
s can result in photoinhibition.”””"”* Extended periods in
the dark facilitate recovery from photoinhibition but can also
lead to elevated respiration.”””*”* Self-shading effects resulting
from particle interaction in relation to the optical path also
depend on the size and biomass concentrations (Figure 5).”” A
priori, the bulk-fluid mixing pattern is a function of reactor size,
impeller design, and mixing intensity. Moreover, particulate
interactions and intragranule substrate transfers depend on
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their physical permeability and porous characteristics. Avail-
ability of substrates for photosynthesis can also impact this
optimal photochemical capacity as seen with WW mounted
OPGs. These factors can cause deviation from maximal
photosynthetic capacity in operation of photogranular WW
treatment adding to optimization complexity. Further research
and evaluation of these reactor operation matrices is necessary
to optimize these systems.
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