

1 **Article Title**

2 Wheat grain yield decreased over the past 35 years, but protein content did not change

3 **Short Title**

4 Blooming Plant

5 **Authors Names, Addresses, and Affiliations**

6 Arnold J. Bloom <https://orcid.org/0000-0001-6006-1495>, Department of Plant Sciences, University

7 of California at Davis, Davis, CA 95616; ajbloom@ucdavis.edu

8 Richard E. Plant, Departments of Plant Sciences and Biological and Agricultural Engineering,
9 University of California at Davis, Davis, CA 95616; replant@ucdavis.edu

10 **Author for Contact Details**

11 Arnold J. Bloom ajbloom@ucdavis.edu

12 **Highlights**

13 Annual field trials in California from 1985 to 2019 indicated that common wheat, when exposed
14 to gradual CO₂ enrichment, sacrificed grain yield and protein yield for stable grain protein content.

16 **Abstract**

17 The extent to which rising atmospheric CO₂ concentration has already influenced food production
18 and quality is uncertain. Here, we analyzed annual field trials of fall-planted common wheat
19 in California from 1985 to 2019, a period during which global atmospheric CO₂ concentration
20 increased 19%. Even after accounting for other major factors (cultivar, location, degree-days,
21 soil temperature, total water applied, nitrogen fertilization, and pathogen infestation), wheat
22 grain yield and protein yield declined 13% over this period, but grain protein content did not
23 change. These results suggest that exposure to gradual CO₂ enrichment over the past 35 years has
24 adversely affected wheat grain and protein yield, but not grain protein content.

25 **Keywords**

26 Food Security, Grain Yield, Protein Content, Rising Atmospheric CO₂, Trends over Time, Wheat
27 Field Trials

28

Box 1. Key developments in understanding changes in wheat grain yields and protein over the past few decades.

- **Experiments on plant responses to atmospheric CO₂ enrichment expose plants to unphysiological conditions**
Broberg et al. (2019) and Tcherkez et al. (2020) documented that experiments on the influence of elevated CO₂ concentrations on field-grown wheat (*Triticum aestivum* L.) exposed plants to CO₂ concentrations that were at least 38% above ambient levels, an increase double that which occurs *in situ*.
- **Long-term wheat field trials expose plants to realistic CO₂ enrichments, but usually cannot differentiate among the factors which influence yield and grain protein content**
Eichi et al. (2020) found that the experimental design of most wheat field trials was not adequate to separate the complex genetic by environment interactions that influence yield and grain protein content.
- **Thirty-five years of annual field trials on 654 cultivars of fall-planted, common wheat conducted in 7 counties throughout the valleys of central California, USA, avoided many of the usual short-comings**
Lundy and Dubcovsky (2021) and the California Department of Water Resources (2021) compiled data that can distinguish between the influence of year, cultivar, location, degree-days, soil temperature, total water applied, nitrogen fertilization, pathogen infestation, and vapor pressure deficit on wheat grain yield and protein content.
- **Wheat, when exposed to gradual CO₂ enrichment, sacrifices grain yield and protein yield for stable grain protein content**
Bloom and Kameritsch (2017) and Bloom et al. (2020) highlighted two compensatory mechanisms—altered manganese to magnesium ratio in chloroplasts and altered balance between shoot and root nitrate assimilation—through which wheat sacrifices grain yield for more stable grain protein content.

29 Introduction

30 Nearly all studies of plant responses to rising atmospheric CO₂ compare plants grown at an am-
31 bient CO₂ concentration (currently, slightly over 410 ppm CO₂) with those exposed to an ele-
32 vated concentration that is at least 38% above ambient (Broberg et al., 2019; Tcherkez et al.,
33 2020). In most plants, such CO₂ enrichment stimulates carbon fixation and inhibits photorespira-
34 tion (Cousins and Bloom, 2004), accelerating organic carbon accumulation but decreasing con-
35 version of nitrate nitrogen into protein in leaves (Bloom, 2015b; Bloom and Lancaster, 2018;
36 Rubio-Asensio and Bloom, 2017). These changes increase the ratio of carbon to nitrogen in the
37 shoots of the elevated CO₂ treatment by about 20% (Sardans et al., 2012; Wang et al., 2019).

38 The overall increase in atmospheric CO₂ concentration at Mauna Loa, Hawaii between 1985
39 and 2019 was 19% (Fig. S1 at Dryad Digital Repository, <https://doi.org/10.25338/B8G34C>;
40 Bloom and Plant, 2021) (Lindsey, 2020), an increase which is half that used in most elevated

41 CO₂ studies. Thus, evaluation of plant responses to recent increases in atmospheric CO₂ should
42 subject plants to a smaller difference in CO₂ concentration than is usual in most experiments. Of
43 course, a smaller difference in CO₂ concentration elicits a smaller change in plant responses and
44 challenges our ability to discern it. One approach for discerning such a subtle difference is to in-
45 crease sample size. An untapped source for extensive information on plant responses to rising
46 CO₂ is crop field trials, some of which have generated datasets that contain several thousand en-
47 tries and span several decades.

48 Datasets based on crop field trials present several challenges (Eichi *et al.*, 2020). Primarily
49 field trials serve to compare in a given year the performance of many cultivars for one crop at a
50 few locations. Discerning trends over time is difficult because field trials (*a*) generally introduce
51 new genotypes and new agricultural practices as they become available, (*b*) may change loca-
52 tions from year to year depending on rotations with other crops, and (*c*) periodically suffer break-
53 downs in resistance to local pathogens (Bogard *et al.*, 2010; Fan *et al.*, 2008; Hellemans *et al.*,
54 2018; Laidig *et al.*, 2017; Mackay *et al.*, 2011; Ormoli *et al.*, 2015; Rao *et al.*, 1993; Verrell and
55 O'Brien, 1996). Thus, the experimental design of most field trials are not well suited for explor-
56 ing the complex interactions between genotype and environment that strongly influence grain
57 yield/quality relationships over time (Eichi *et al.*, 2020).

58 Here, we examined 35 years of annual field trials on 654 cultivars of fall-planted, common
59 wheat (*Triticum aestivum* L.) conducted in 7 counties throughout the valleys of central Califor-
60 nia, USA, ranging south more than 1000 km from the flood plains near the Sacramento River
61 west of Chico, CA, to the deserts near the border with Mexico (Table S1 at Dryad (Lundy and
62 Dubcovsky, 2021). These trials avoided many of the usual short-comings in that they (*a*) fol-
63 lowed best agricultural practices such as ample irrigation and fertilization, (*b*) included quantita-
64 tive evaluation for pathogen infestations when they became evident, (*c*) used the same cultivars
65 as checks nearly every year, and (*d*) were conducted nearly every year at similar locations close
66 to weather stations. Our focus was on trends in wheat *grain yield*, *grain protein content*, and
67 *grain protein yield* over time. *Year* served as a proxy for atmospheric CO₂ concentration because
68 it was very highly correlated ($r = 0.996$) with the average CO₂ concentrations at Mauna Loa, Ha-
69 waii. We used CO₂ data from Mauna Loa from January through March, the primary growing sea-
70 son for fall-planted wheat in California, because the longest record for daily atmospheric CO₂
71 concentrations in California (Vaira Ranch in the foothills of central California) extends only
72 from 2000 to 2019 (Fig. S1 at Dryad).

73 Analyses

74 *Field trials*: The dataset of fall-planted, common wheat cultivars from field trials conducted at
75 multiple locations throughout central California has 6,508 records with values for (*a*) year; (*b*)
76 cultivar entry number; (*c*) cultivar name; (*d*) location; (*e*) grain protein (%); (*f*) grain yield (kg);
77 (*g*) quantitative scores for stripe rust, leaf rust, Septoria leaf blotch, and Yellow dwarf virus (area
78 of flag-1 leaf affected at soft dough stage: 1 = 0 – 3%, 2 = 4 – 14%, 3 = 15 – 29%, 4 = 30 – 49%,
79 5 = 50 – 69%, 6 = 70 – 84%, 7 = 85 – 95%, 8 = 96 – 100%); (*h*) planting date; (*i*) rainfall; (*j*) irri-
80 gation; and (*k*) N fertilizer application (Lundy and Dubcovsky, 2021). Soil temperatures, air de-
81 gree-days, and Vapor Pressure Deficit (VPD) were derived from hourly data collected at the
82 closest California Irrigation Management Information System (CIMIS) station (California
83 Department of Water Resources, 2021); degree-days were calculated based on temperatures

84 measured during January, February, and March via the single sine method with a horizontal up-
 85 per cutoff with a maximum temperature for common wheat of 30°C and a minimum temperature
 86 of 7°C (Statewide Integrated Pest Management Program, 2021); and VPD was calculated from
 87 average air temperatures (Huang, 2018) and vapor pressures during January, February, and
 88 March at the closest California Irrigation Management Information System (CIMIS) station. Pro-
 89 tein yield is the product of grain protein percentage and yield, and total water addition is the sum
 90 of rainfall and irrigation. Data for the cultivars Blanca Grande, Patwin, and Summit were merged
 91 with data for derivatives in which stripe rust resistance genes Yr5 and Yr15 were introduced by
 92 four backcross generations into the susceptible parent cultivar (Jackson, 2011).

93 *Dataset:* California fall-planted wheat field trials (Lundy and Dubcovsky, 2021) provided at
 94 least 16 years of data for each of five *locations*: Sacramento Delta (“Delta”), Imperial County
 95 (“Imperial”), Kern County (“Kern”), Kings County (“Kings”), and Yolo County at the Univer-
 96 sity of California Davis (“UCD”). We merged the data for Butte County and Colusa County, two
 97 adjacent counties that had very little temporal overlap, to form a sixth *location* (“North”) with
 98 more than 16 years of data. The six locations extend between latitudes 32.8°N and 39.8°N, from
 99 deserts near the Mexican border (Imperial and Kern) where plants received nearly all of their wa-
 100 ter from irrigation to the Sacramento River flood plain (Delta and North) where plants received
 101 much of their water from precipitation and ground water. The trials also provided at least 18
 102 years of data for each of six check *cultivars* (Anza, Blanca Grande, Express, Klasic, Serra, and
 103 Yecora Rojo). The dataset of wheat parameters and environmental parameters that we used is
 104 available at Dryad Digital Repository <https://doi.org/10.25338/B8G34C> (Bloom and Plant 2021).

105 *Statistics:* We fit the models using generalized least squares linear regression implemented in R
 106 version 3.5.3 (R Core Team, 2013) using the *gls* function of the *nlme* package (Pinheiro *et al.*,
 107 2017). All models were initially tested for temporal autocorrelation by testing at the $p = 0.05$
 108 level with the null hypothesis of no temporal autocorrelation against the alternative hypothesis of
 109 autocorrelation as modeled by an AR1 relationship. The null hypothesis was rejected for some,
 110 but not all, of the models, so for consistency all tests were carried out using the AR1 autocorrela-
 111 tion model (Plant, 2019). By including the five environmental factors we were able to account
 112 for their effect, giving us the best ability to focus on the factors of interest: *year*, *location*, and
 113 *cultivar*. Models were developed using the standard mixed model analytical approach (Pinheiro
 114 and Bates, 2000) in which predictors were added to models in which *grain yield*, *grain protein*
 115 *content*, and *grain protein yield* were the response variables, and the significance of each addi-
 116 tional predictor was tested. Probabilities ≤ 0.05 were considered significant.

117 In the initial analysis we pooled across locations and cultivars. To account for factors that
 118 might influence grain yield, protein yield, and protein content we formulated for each of these
 119 quantities the following linear model

$$120 \quad Y_{ij} = b_0 + b_1 \text{year}_i + b_2 \text{DD}_{ij} + b_3 \text{ST}_{ij} + b_4 \text{TW}_{ij} + b_5 \text{N}_{ij} + b_6 \text{P}_{ij} + e_{ij},$$

121 where Y_{ij} is the value of the response variable (grain yield, protein yield, or protein content) in
 122 year i , DD_{ij} is the degree-days, ST_{ij} is the mean soil temperature, TW_{ij} is the total applied water,
 123 N_{ij} is the total applied N fertilizer, and P_{ij} is an indicator of the pathogen level, at *location* or *cultivar* j .

125 The models were tested for the influence of *year* along with the five other factors: *degree-*
 126 *days*, *soil temperature*, *total water applied* = precipitation + irrigation, *N* (nitrogen) *fertilization*,
 127 and *pathogen infestation level* (Table 1, Fig. 1A–E). Data were sufficiently homoscedastic that

128 no transformations were necessary. Regression analysis is quite robust to non-normality of residuals,
 129 and it is common practice not to test these for normality (Plant, 2019). *Vapor Pressure Deficit* (VPD) was not included because it did not change significantly over time in five of the six
 130 locations (Fig. 1f); moreover, VPD itself depends on degree-days and total water applied, and
 131 including this factor in the model would result in multiple pathways of influence in the model
 132 that would disrupt the analysis. In both cases, grain yield and grain protein yield declined signifi-
 133 cantly over time, but grain protein content did not (Table 1). The five other factors usually, but
 134 not always, had a significant influence on grain yield, grain protein content, and grain protein
 135 yield (Table 1). Grain protein content generally decreased with grain yield (Fig. 2).

137 We then used the same procedure to fit generalized least square models that included the in-
 138 fluence of the same five factors to the data for (a) six *locations* and six check *cultivars*, (b) six
 139 *locations* and all 654 *cultivars* grown in these locations, (c) a particular *location* and six check
 140 *cultivars*, or (d) six *locations* and a particular check *cultivar* (Table 2 – 3).

$$141 \quad Y_{ij} = b_0 + b_1 Year_i + b_2 X_j + b_{12} Year_i \times X_j + b_3 DD_{ij} + b_4 ST_{ij} + b_5 TW_{ij} + b_6 N_{ij} + b_7 P_{ij} + e_{ij},$$

142 where X_j represents the value of location or cultivar.

143 *Findings:* Grain yield and grain protein yield for data pooled over the six locations and six check
 144 cultivars decreased significantly in general least squares models both excluding and including the
 145 influence of the factors *degree-days*, *soil temperature*, *total water applied* (precipitation plus irri-
 146 gation), *N* (nitrogen) *fertilization*, and *pathogen infestation level*, whereas grain protein content
 147 did not change significantly (Table 1). Data for all 654 *cultivars* aggregated over the six *loc-*
 148 *tions* also decreased significantly over time (Table 2). When data were disaggregated by loca-
 149 tion, grain yield decreased over time in four of the six *locations*, significantly in two, and grain
 150 protein yield decreased significantly over time in three of the six *locations*, and changes in grain
 151 yield and grain protein yield over time in the other *locations* were not significant (Table 3).
 152 When data were disaggregated by cultivar, grain yield and grain protein yield in the six *locations*
 153 decreased significantly over time for five of the six check *cultivars*, but protein yield did not
 154 change significantly for the *cultivar* Blanca Grande (Table 3). Grain protein content (%) changed
 155 significantly over time in two of the six *locations* (increasing at North and decreasing at UCD)
 156 but did not change significantly for any of the six check *cultivars* (Table 3). We did not feel that
 157 a Bonferroni correction on the Locations or Cultivars models would provide any useful addi-
 158 tional information.

159 We investigated the breakdown of pathogen resistance over time for the 654 *cultivars* tested
 160 in 7 California counties with a focus on the influence of pathogen infestation level on grain yield,
 161 grain protein content, and grain protein yield (Fig. 5). As described above, each sample in these
 162 trials received an infestation score for stripe rust, leaf rust, Septoria leaf blotch, and Yellow
 163 dwarf virus (a score of “1” indicated that 0 to 3% of the area of the flag-1 leaf at the soft dough
 164 stage showed symptoms; “2” indicated that 4 to 14% of the area showed symptoms; “3” indi-
 165 cated that 15 to 29% showed systems; “4” indicated 30 to 49%; “5” indicated 50 to 69%; “6” in-
 166 dicated 70 to 84%; “7” indicated 85 to 95%; and “8” indicated 96 to 100%). Pathogen infestation
 167 level for a *cultivar* in a particular *location* and *year* was the highest infestation score among the
 168 four diseases. Years after introduction was the difference between the particular *year* and the
 169 first year in which the cultivar was placed in a California field trial. Plotted (Figs. 5A & 5B) are
 170 the pathogen infestation level, grain protein yield, grain yield, and grain protein content (mean \pm
 171 SE) averaged over all cultivars and all locations having the same years after introduction. We

172 also plotted protein yield, grain protein yield, and grain protein content versus pathogen infesta-
173 tion level (Fig. 5C).

174 Many *cultivars* exhibited noticeable pathogen infestation in the year that they were introduced
175 (pathogen infestation level = 1.46 ± 0.02 , mean \pm SE, $n = 3777$) (Fig. 5A). In subsequent years,
176 up to 20 years after introduction, average pathogen infestation level remained between 1.0 ± 0.1
177 ($n = 28$) and 2.3 ± 1.8 ($n = 34$) perhaps because cultivars that displayed high pathogen infesta-
178 tions for several years were more likely to be eliminated from further testing. Average pathogen
179 infestation level jumped to 5.3 ± 2.4 ($n = 37$) at 21 years after introduction as most cultivars be-
180 came highly susceptible to pathogens in most locations (Fig. 5A). Grain yield and grain protein
181 yield were highly negatively correlated with pathogen infestation level, whereas grain protein
182 content was not (Fig. 5C).

183 Conclusions

184 Wheat grain directly supplies not only about 20% of the carbohydrate in the human diet, but also
185 about 20% of the protein (FAOSTAT, 2021). Of critical concern to food security, therefore, is
186 whether wheat grain yields (Hochman *et al.*, 2017; Ray *et al.*, 2012) and wheat protein yields
187 (Amthor, 2001; Broberg *et al.*, 2017; Carlisle *et al.*, 2012; Fan *et al.*, 2008; Fufa *et al.*, 2005;
188 Hellemans *et al.*, 2018; Lollato *et al.*, 2019; Myers *et al.*, 2014; Ormoli *et al.*, 2015; Taub *et al.*,
189 2008; Wang *et al.*, 2013) will keep pace with human population growth under future environ-
190 mental conditions. Wheat grain yields worldwide increased 1% per year over the past 35 years
191 (Fig. 6). Nonetheless, after accounting for changes in precipitation and temperature—but not for
192 cultivars or agricultural practices—global wheat yields declined 0.9% from 1974 to 2008 (Ray *et*
193 *al.*, 2019). Indeed, wheat yields have remained stagnant for about two decades in regions that
194 have practiced high-input agriculture (Brisson *et al.*, 2010; Hochman *et al.*, 2017; Schuberger *et*
195 *al.*, 2018) (Fig. 6). Wheat yields in California, for example, have not changed during the past 35
196 years (Fig. 6).

197 Wheat grain nutritional quality may decline over time because newly introduced cultivars may
198 have lower grain protein contents (%) than those introduced decades ago (Fufa *et al.*, 2005;
199 Laidig *et al.*, 2017; Mariem *et al.*, 2020; Shewry *et al.*, 2016; Voss-Fels *et al.*, 2019) (Fig. S2 at
200 Dryad). This might be an artifact of breeders releasing more feed wheat varieties (for animal
201 consumption), which do not have to fulfill the same quality criteria (especially protein content)
202 as wheat cultivars for human consumption, but we have no information about this possibility. In
203 some studies, wheat grain protein contents of new cultivars have not changed significantly
204 (Guzmán *et al.*, 2017; Hucl *et al.*, 2015). Here in California, for instance, grain protein contents
205 of wheat cultivars during the year that they were introduced remained relatively constant (Fig. 7).

206 Rising atmospheric CO₂ concentration—a 19% increase over the past 35 years (Fig. S1 at
207 Dryad)—probably has influenced wheat grain yields and protein yields. Elevated CO₂ inhibits
208 photorespiration and thereby malate production in shoots (Abadie *et al.*, 2020; Gámez *et al.*,
209 2020). Oxidation of this malate generates the reductant required for converting nitrate and sulfate
210 into respectively organic nitrogen and sulfur in amino acids (Abadie and Tcherkez, 2019; Bloom,
211 2015a; Bloom *et al.*, 2002; Cousins and Bloom, 2004; Rubio-Asensio and Bloom, 2017). CO₂
212 enrichment, thus, results in slower shoot amino acid production and lower wheat grain protein
213 content (Broberg *et al.*, 2017; Carlisle *et al.*, 2012; Pleijel *et al.*, 2019).

214 In most California locations, wheat grain yield and grain protein yield of most *cultivars* de-
215 clined significantly over the past 35 years even after accounting for changes in degree-days, soil
216 temperature, total water applied, N fertilization, and pathogen infestation level (Table 2, Figs. 3
217 and 4 left and right panels). On average for the six *locations* having the most data, grain yield
218 and grain protein yield declined 0.4% per year. Notice that grain protein yield declined most rap-
219 idly in the Imperial location (Table 2), a desert area where plants are highly dependent on irriga-
220 tion and where they experienced no detectable pathogen infestation (Fig. 1e), and in the Delta
221 location, an island in the Sacramento River delta where plants have highly dependent on precipi-
222 tation and ground water (Fig. 1C). The 13% decline in grain yield and grain protein yield over
223 the 35 years of this study is a matter of concern, given that the world population rose 58% during
224 this period. In contrast, grain protein content remained relatively constant over this period (Table
225 1, Figs. 3 and 4 center panels) and did not vary with pathogen infestation level (Fig. 5C).

226 Developmental stage of a plant may alter the influence of environmental factors (e.g., degree-
227 days, soil temperature, total water applied, N fertilization, and pathogen infestation level) on
228 grain yield and grain protein yield, but our dataset (Lundy and Dubcovsky, 2021) generally pro-
229 vides only information about planting date. This dataset, however, has additional information on
230 days to heading and days to maturity for a few years, a few sites, and a few cultivars. Such infor-
231 mation may prove useful in future investigations about the interactions between plant develop-
232 mental stage and environmental factors.

233 We sought information about wheat field trials in locations outside of California, but datasets
234 for these locations were much more limited. For example, the AHDB (Agriculture and Horticul-
235 ture Development Board) Cereals & Oilseeds Recommended Lists for Great Britain has only 433
236 entries extending back only to 2002, and only one cultivar has values for fifteen years (AHDB
237 Cereals & Oilseeds, 2020). A dataset for North Dakota extends back to 2001, but only one culti-
238 var has values for fifteen years (NDSU Publications, 2020); one for South Dakota extends back
239 to 2002, but only one cultivar has values for eleven years (SDSU Extension, 2020); another for
240 Australia only has data for the past 11 years (Eichi *et al.*, 2020). Trends in grain protein over
241 these shorter periods were not evident (data not shown). These datasets will warrant further anal-
242 ysis when information for additional years becomes available.

243 Some may question whether wheat trends in California over the past 35 years are related to
244 the 19% increase in atmospheric CO₂ concentration that occurred during this period. Although
245 exposure of wheat to elevated CO₂ atmospheres generally increases grain yield (Broberg *et al.*,
246 2019; Pleijel *et al.*, 2019) and decreases grain protein content (Broberg *et al.*, 2017; Pleijel *et al.*,
247 2019), most studies subject plants to an elevated CO₂ treatment in which the CO₂ concentration
248 is more than 38% above an ambient control treatment (Broberg *et al.*, 2019; Tcherkez *et al.*,
249 2020). Such an elevated CO₂ treatment upsets the balance between carbon fixation and pho-
250 torespiration (Cousins and Bloom, 2004) and increases shoot carbon to nitrogen ratio by about
251 20% (Sardans *et al.*, 2012; Wang *et al.*, 2019) because carbohydrates accumulate and conversion
252 of nitrate into shoot protein decelerates when deprived of the reductant generated during pho-
253 torespiration (Abadie *et al.*, 2020; Bloom and Lancaster, 2018). Grain protein content, in that it
254 derives mostly from shoot protein, declines under more severe elevated CO₂ treatments.

255 In the field trials examined here, the overall difference in atmospheric CO₂ between 1985 and
256 2019 was less than half of that used in most elevated CO₂ studies. Under less extreme CO₂ en-
257 richment, wheat increases the manganese to magnesium ratio in chloroplasts. Substituting man-

258 ganese for magnesium in the metal binding sites of Rubisco significantly inhibits the carboxyla-
259 tion reaction while it accelerates the oxygenation reaction (Bloom, 2019), slowing carbon fixa-
260 tion while enhancing photorespiration and nitrate assimilation, thus bringing plant organic car-
261 bon and nitrogen back into balance (Bloom and Kameritsch, 2017; Bloom and Lancaster, 2018).
262 Also exposure to elevated atmospheric CO₂ increases carbohydrate export from shoot to roots,
263 which enhances root nitrate assimilation and thus offsets diminished shoot nitrate assimilation
264 (Bloom *et al.*, 2020).

265 These two compensatory mechanisms—altered manganese to magnesium ratio in chloroplasts
266 and altered balance between shoot and root nitrate assimilation—sacrifice grain yield for more
267 stable grain protein content. Both natural selection and wheat breeding should favor stable grain
268 protein content because this trait is critical for sustaining both the vigor of seedlings after germi-
269 nation and the value of the crop for human nutrition (Wakasa and Takaiwa, 2013). Consequently,
270 from an evolutionary perspective, the observed declining yields but stable protein contents in the
271 wheat field trials seem reasonable. Consistent with this trend are recent meta-analyses of FACE
272 (Free-air CO₂ enrichment) experiments on wheat in which elevated CO₂ downregulated carbon
273 fixation, altered grain metabolism, and had minimal effects on grain yield and grain protein con-
274 tent (Broberg *et al.*, 2019; Tcherkez *et al.*, 2020).

275 Data Availability

276 The supplementary figures S1 and S2 as PDF files and the full dataset as an Excel spreadsheet
277 are available at <https://doi.org/10.25338/B8G34C>.

278 Acknowledgements

279 This work was funded in part by USDA-IWYP-16-06702, NSF grants IOS-16-55810 and CHE-
280 19- 04310, and the John B. Orr Endowment. We thank Jorge Dubcovsky, Daniel Geisseler, and
281 Mark E. Lundy for their discussions on the topic. The authors have no conflict of interest to de-
282 clare.

283 Author contributions

284 A.J.B. conceptualized the study, collected the data, administered the project, wrote the original
285 manuscript, reviewed the comments and suggestions, and revised the manuscript. R. P. con-
286 ducted the statistical analyses and reviewed and edited the manuscript.

References

Abadie C, Lalande J, Limami A, Tcherkez G. 2020. Non-targeted ^{13}C metabolite analysis demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary. *Plant, Cell & Environment*, 1-13.

Abadie C, Tcherkez G. 2019. Plant sulphur metabolism is stimulated by photorespiration. *Communications Biology* **2**, 379.

AHDB Cereals & Oilseeds. 2020. AHDB Recommended Lists. Kenilworth, GB: Agriculture and Horticulture Development Board, <https://ahdb.org.uk/knowledge-library/harvest-results-archive>, accessed April 29, 2020.

Amthor JS. 2001. Effects of atmospheric CO_2 concentration on wheat yield: Review of results from experiments using various approaches to control CO_2 concentration. *Field Crops Research* **73**, 1-34.

Bloom AJ. 2015a. The increasing importance of distinguishing among plant nitrogen sources. *Current Opinion in Plant Biology* **25**, 10-16.

Bloom AJ. 2015b. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. *Photosynthesis Research* **123**, 117-128.

Bloom AJ. 2019. Metal regulation of metabolism. *Current Opinion in Chemical Biology* **49**, 33-38.

Bloom AJ, Kameritsch P. 2017. Relative association of Rubisco with manganese and magnesium as a regulatory mechanism in plants. *Physiologia Plantarum* **161**, 545-559.

Bloom AJ, Kasemsap P, Rubio-Asensio JS. 2020. Rising atmospheric CO_2 concentration inhibits nitrate assimilation in shoots but enhances it in roots of C_3 plants. *Physiologia Plantarum* **168**, 963-972.

Bloom AJ, Lancaster KM. 2018. Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. *Nature Plants* **4**, 414-422.

Bloom AJ, Plant RE. 2021. Dryad Dataset. <https://doi.org/10.25338/B8G34C>

Bloom AJ, Smart DR, Nguyen DT, Searles PS. 2002. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. *Proceedings of the National Academy of Sciences of the United States of America* **99**, 1730-1735.

Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J-M, Jeuffroy M-H, Gate P, Martre P, Le Gouis J. 2010. Deviation from the grain protein concentration–grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. *Journal of Experimental Botany* **61**, 4303-4312.

Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F. 2010. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. *Field Crops Research* **119**, 201-212.

Broberg M, Högy P, Pleijel H. 2017. CO_2 -induced changes in wheat grain composition: Meta-analysis and response functions. *Agronomy* **7**, 32.

Broberg MC, Högy P, Feng Z, Pleijel H. 2019. Effects of elevated CO₂ on wheat yield: Non-linear response and relation to site productivity. *Agronomy* **9**, 243.

California Department of Water Resources. 2021. California Irrigation Management Information System. <https://cimis.water.ca.gov/Default.aspx>, accessed February 25, 2021.

Carlisle E, Myers SS, Raboy V, Bloom AJ. 2012. The effects of inorganic nitrogen form and CO₂ concentration on wheat yield and nutrient accumulation and distribution. *Frontiers in Plant Science* **3**, 195.

Cousins AB, Bloom AJ. 2004. Oxygen consumption during leaf nitrate assimilation in a C₃ and C₄ plant: the role of mitochondrial respiration. *Plant, Cell and Environment* **27**, 1537-1545.

Eichi VR, Okamoto M, Garnett T, Eckermann P, Darrier B, Riboni M, Langridge P. 2020. Strengths and weaknesses of National Variety Trial data for multi-environment analysis: A case study on grain yield and protein content. *Agronomy* **10**, 753.

Fan M-S, Zhao F-J, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP. 2008. Evidence of decreasing mineral density in wheat grain over the last 160 years. *Journal of Trace Elements in Medicine and Biology* **22**, 315-324.

FAOSTAT. 2021. Food and Agricultural Data. Food and Agriculture Organization of the United Nations, <http://www.fao.org/faostat/en/#home>, accessed January 25, 2021.

Fufa H, Baenziger PS, Beecher B, Graybosch RA, Eskridge KM, Nelson LA. 2005. Genetic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. *Euphytica* **144**, 187-198.

Gámez AL, Vicente R, Sanchez-Bragado R, Jauregui I, Morcuende R, Goicoechea N, Aranjuelo I. 2020. Differential flag leaf and ear photosynthetic performance under elevated (CO₂) conditions during grain filling period in durum wheat. *Frontiers in Plant Science* **11**.

Guzmán C, Autrique E, Mondal S, Huerta-Espino J, Singh RP, Vargas M, Crossa J, Amaya A, Peña RJ. 2017. Genetic improvement of grain quality traits for CIMMYT semi-dwarf spring bread wheat varieties developed during 1965–2015: 50 years of breeding. *Field Crops Research* **210**, 192-196.

Hellemans T, Landschoot S, Dewitte K, Van Bockstaele F, Vermeir P, Eeckhout M, Haesaert G. 2018. Impact of crop husbandry practices and environmental conditions on wheat composition and quality: A review. *Journal of Agricultural and Food Chemistry* **66**, 2491-2509.

Hochman Z, Gobbiott DL, Horan H. 2017. Climate trends account for stalled wheat yields in Australia since 1990. *Global Change Biology* **23**, 2071-2081.

Huang J. 2018. A simple accurate formula for calculating saturation vapor pressure of water and ice. *Journal of Applied Meteorology and Climatology* **57**, 1265-1272.

Hucl P, Briggs C, Graf RJ, Chibbar RN. 2015. Genetic gains in agronomic and selected end-use quality traits over a century of plant breeding of Canada western red spring wheat. *Cereal Chemistry* **92**, 537-543.

Jackson L. 2011. Wheat cultivars for California. Davis, CA: UC ANR, https://smallgrains.ucdavis.edu/cereal_files/WhtCVDescLJ11.pdf.

Laidig F, Piepho H-P, Rentel D, Drobek T, Meyer U, Huesken A. 2017. Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983–2014. *Theoretical and Applied Genetics* **130**, 223-245.

Lindsey R. 2020. Climate Change: Atmospheric Carbon Dioxide. NOAA: Climate.gov, <https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide>, accessed March 19, 2020.

Lollato RP, Figueiredo BM, Dhillon JS, Arnall DB, Raun WR. 2019. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments. *Field Crops Research* **236**, 42-57.

Lundy M, Dubcovsky J. 2021. Variety Selection. *Small Grains*. Agronomy Research & Information Center: University of California, <http://smallgrains.ucanr.edu/Variety/>, accessed February 24, 2021.

Ma S, Baldocchi DD, Xu L, Hehn T. 2007. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. *Agricultural and Forest Meteorology* **147**, 157-171.

Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H. 2011. Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. *Theoretical and Applied Genetics* **122**, 225-238.

Mariem SB, Gámez AL, Larraya L, Fuertes-Mendizabal T, Cañameras N, Araus JL, McGrath SP, Hawkesford MJ, Murua CG, Gaudeul M, Medina L, Paton A, Cattivelli L, Fangmeier A, Bunce J, Tausz-Posch S, Macdonald AJ, Aranjuelo I. 2020. Assessing the evolution of wheat grain traits during the last 166 years using archived samples. *Scientific Reports* **10**, 21828.

Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y. 2014. Increasing CO₂ threatens human nutrition. *Nature* **510**, 139-142.

National Agricultural Statistics Service. 2021. QuickStats. USDA, <https://quickstats.nass.usda.gov/results/BE4D97D3-ED8C-321F-B8BA-B9F5D61DBBF4>, accessed January 25, 2021.

NDSU Publications. 2020. Publications on Wheat. <https://www.ag.ndsu.edu/publications/crops/browse-by-crop/wheat>, accessed April 30, 2020.

Ormoli L, Costa C, Negri S, Perenzin M, Vaccino P. 2015. Diversity trends in bread wheat in Italy during the 20th century assessed by traditional and multivariate approaches. *Scientific Reports* **5**, 8574.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2017. nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-131. <https://CRAN.R-project.org/package=nlme>.

Pinheiro JC, Bates DM. 2000. *Mixed-Effects Models in S and S-PLUS*. New York, NY: Springer.

Plant RE. 2019. *Spatial Data Analysis in Ecology and Agriculture using R*. 2nd Ed: CRC Press.

Pleijel H, Broberg MC, Högy P, Uddling J. 2019. Nitrogen application is required to realize wheat yield stimulation by elevated CO₂ but will not remove the CO₂-induced reduction in grain protein concentration. *Global Change Biology* **25**, 1868–1876.

R Core Team. 2013. *R: A Language and Environment for Statistical Computing*. Vienna: R Foundation for Statistical Computing.

Rao ACS, Smith JL, Jandhyala VK, Papendick RI, Parr JF. 1993. Cultivar and climatic effects on the protein content of soft white winter wheat. *Agronomy Journal* **85**, 1023-1028.

Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 2012. Recent patterns of crop yield growth and stagnation. *Nature Communications* **3**, 1293.

Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. 2019. Climate change has likely already affected global food production. *Plos One* **14**, e0217148.

Rubio-Asensio JS, Bloom AJ. 2017. Inorganic nitrogen form: a major player in wheat and *Arabidopsis* responses to elevated CO₂. *Journal of Experimental Botany* **68**, 2611-2625.

Sardans J, Rivas-Ubach A, Peñuelas J. 2012. The C: N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. *Perspectives in Plant Ecology, Evolution and Systematics* **14**, 33-47.

Schauberger B, Ben-Ari T, Makowski D, Kato T, Kato H, Ciais P. 2018. Yield trends, variability and stagnation analysis of major crops in France over more than a century. *Scientific Reports* **8**, 16865.

SDSU Extension. 2020. Spring Wheat Variety Trial Results.
<https://extension.sdsstate.edu/wheat-variety-trial-results>, accessed April 30, 2020.

Shewry PR, Pellny TK, Lovegrove A. 2016. Is modern wheat bad for health? *Nature Plants* **2**, 1-3.

Statewide Integrated Pest Management Program. 2021. Weather, models, & degree-days. University of California Agriculture & Natural Resources,
<http://ipm.ucanr.edu/WEATHER/index.html>, accessed February 24, 2021.

Taub DR, Miller B, Allen H. 2008. Effects of elevated CO₂ on the protein concentration of food crops: a meta-analysis. *Global Change Biology* **14**, 565-575.

Tcherkez G, Ben Mariem S, Larraya L, García-Mina JM, Zamarreño AM, Paradela A, Cui J, Badeck F-W, Meza D, Rizza F, Bunce J, Han X, Tausz-Posch S, Cattivelli L, Fangmeier A, Aranjuelo I. 2020. Elevated CO₂ has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. *Journal of Experimental Botany* **71**, 5990–5600.

Verrell A, O'Brien L. 1996. Wheat protein trends in northern and central NSW, 1958 to 1993. *Australian Journal of Agricultural Research* **47**, 335-354.

Voss-Fels KP, Stahl A, Wittkop B, Lichthardt C, Nagler S, Rose T, Chen T-W, Zetzsche H, Seddig S, Majid Baig M, Ballvora A, Frisch M, Ross E, Hayes BJ, Hayden MJ, Ordon F, Leon J, Kage H, Friedt W, Stützel H, Snowdon RJ. 2019. Breeding improves wheat productivity under contrasting agrochemical input levels. *Nature Plants* **5**, 706-714.

Wakasa Y, Takaiwa F. 2013. Seed Storage Proteins. In: Maloy S, Hughes KT, eds. *Brenner's Encyclopedia of Genetics*, 346-348.

Wang J, Liu X, Zhang X, Li L, Lam SK, Pan G. 2019. Changes in plant C, N and P ratios under elevated [CO₂] and canopy warming in a rice-winter wheat rotation system. *Scientific Reports* **9**, 1-9.

Wang L, Feng Z, Schjoerring JK. 2013. Effects of elevated atmospheric CO₂ on physiology and yield of wheat (*Triticum aestivum* L.): A meta-analytic test of current hypotheses. *Agriculture, Ecosystems & Environment* **178**, 57-63.

287 **Figure Legends**

288 **Fig. 1A – F.** *Degree-days, soil temperature, total water applied, N fertilization, pathogen infes-*
 289 *tation level, and vapor pressure deficit* during the growing season for fall-planted common wheat
 290 versus year at six Californian locations where field trials were conducted. Symbols represent the
 291 values for each year during which trials were conducted, and the lines are the least square linear
 292 regressions over the entire period to aid the eye in discerning patterns in the data; Table S1 pro-
 293 vides the slopes, intercepts, and r^2 values for these lines.

294 **Fig. 2.** *Grain protein content* versus *grain yield* at six Californian locations where field trials
 295 were conducted. Symbols represent the values for each year during which trials were conducted,
 296 and the lines are the least square linear regressions over the entire period to aid the eye in dis-
 297 cerning patterns in the data. The linear trends are

$$\begin{aligned} \text{Delta: } & y = -0.3582x + 14.326, r^2 = 0.1152; \\ \text{Imperial: } & y = -0.1092x + 13.951, r^2 = 0.0255; \\ \text{Kern: } & y = -0.2495x + 14.867, r^2 = 0.1109; \\ \text{Kings: } & y = -0.3008x + 14.964, r^2 = 0.1109; \\ \text{North: } & y = -0.1092x + 13.951, r^2 = 0.0233; \\ \text{UCD: } & y = -0.0907x + 13.175, r^2 = 0.0229. \end{aligned}$$

304 **Fig. 3.** Regressions of grain yield (Mg ha^{-1}) (left column); protein content (%) (middle column);
 305 and protein yield (Mg ha^{-1}) (right column) versus year at six locations in California common
 306 wheat field trials. These are based on generalized linear models that included the influence of
 307 year, degree-days, soil temperatures, total water applied, N fertilization, and pathogen infesta-
 308 tion. A data point at a given year is the mean for one of six check cultivars. The slopes and inter-
 309 cepts of the lines are generated from the generalized least squares model for the subset of data
 310 for a location. The coefficients of the lines are given in Table S2.

311 **Fig. 4.** Regressions of grain yield (Mg ha^{-1}) (left column); protein content (%) (middle column);
 312 and protein yield (Mg ha^{-1}) (right column) versus year for six cultivars in California common
 313 wheat field trials. These are based on generalized linear models that included the influence of
 314 year, degree-days, soil temperatures, total water applied, N fertilization, and pathogen infesta-
 315 tion. A data point at a given year is the mean for one of six locations. The slopes and intercepts
 316 of the lines are generated from the generalized least squares model for the subset of data for a lo-
 317 cation. The coefficients of the lines are given in Table S2.

318 **Fig. 5A & B.** Changes in pathogen infestation level, grain protein yield, grain yield, and grain
 319 protein content with the years after a cultivar was introduced. Shown are means \pm SE. **C.**
 320 Changes in pathogen level, grain protein yield, grain yield, and grain protein content with patho-
 321 gen infestation level. Shown are linear regressions labelled with slopes, intercepts, and corre-
 322 lations squared.

323 **Fig. 6.** Wheat grain yields over time at different locations. Symbols represent the values for each
 324 year, and the lines are the quadratic polynomial regressions for the entire period. “Austral./NZ”
 325 denotes Australia and New Zealand; “Least devel.” denotes those nations that the United Nations
 326 considers to be least developed in terms of economic activities. Data derived from public data-
 327 bases (FAOSTAT, 2021; National Agricultural Statistics Service, 2021). The quadratic trends are

$$\begin{aligned} \text{UK: } & y = -15.747x^2 + 63537x - 6 \times 10^7, r^2 = 0.5384; \\ \text{Germany: } & y = -28.154x^2 + 113254x - 1 \times 10^8, r^2 = 0.6466; \end{aligned}$$

330 France: $y = -22.544x^2 + 90582x - 9 \times 10^7$, $r^2 = 0.3741$;
331 California: $y = -5.1093x^2 + 20487x - 2 \times 10^7$, $r^2 = 0.0134$;
332 China: $y = 7.1205x^2 - 27688x + 3 \times 10^7$, $r^2 = 0.9753$;
333 USA: $y = 4.0775x^2 - 16050x + 2 \times 10^7$, $r^2 = 0.7370$;
334 World: $y = 4.6593x^2 - 18293x + 2 \times 10^7$, $r^2 = 0.9614$;
335 Austral./NZ: $y = 0.8438x^2 - 3254x + 3 \times 10^6$, $r^2 = 0.1220$;
336 Least devel.: $y = 15.398x^2 - 61276x + 6 \times 10^7$, $r^2 = 0.9497$.

337 **Fig. 7.** Wheat grain protein content (%) of spring-planted common wheat cultivars during the
338 year they were introduced into Californian field trials. Shown are mean \pm SE and the linear trend
339 line ($y = -0.0017 x + 16.106$, $r^2 = 0.0007$).
340

341 **Tables:**

Table 1. Coefficients (Coef.) and probabilities (*p*) for generalized least squares models of *grain yield* (kg ha⁻¹), *grain protein content*, and *grain protein yield* (kg ha⁻¹) for data pooled at six *locations* in California and for six check *cultivars* from 1985 to 2019 (*n* = 754). The models included the influence of *year* alone or *year* with *degree-days*, *soil temperature*, *total water applied* (precipitation plus irrigation), *N* (nitrogen) *fertilization*, and *pathogen infestation level*.

Factor	Grain Yield		Protein % $\times 10^{-4}$		Protein Yield	
	Coef.	<i>p</i>	Coef.	<i>p</i>	Coef.	<i>p</i>
Year alone	-47.63	<0.001	0.55	0.57	-5.62	<0.001
Year with other factors	-25.19	0.019	0.99	0.91	-2.98	0.040
Degree-days	1.86	0.001	-0.004	0.393	0.22	0.005
Soil temperature	-187.6	0.008	16.5	0.012	-12.50	0.195
Total water applied	-0.49	0.162	0.007	0.026	-0.005	0.910
N fertilization	2.54	0.027	0.20	0.041	0.45	0.004
Pathogen infestation level	-340.5	<0.001	0.02	0.568	-42.70	<0.001

343

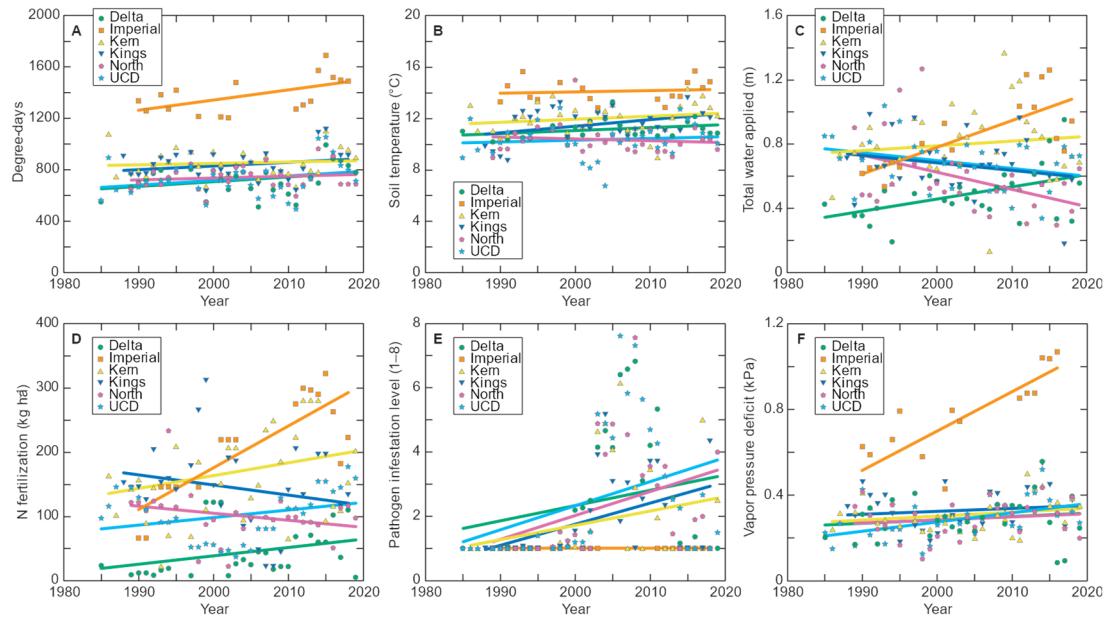
Table 2. Coefficients (Coef.) and probabilities (*p*) for the influence of *year* in generalized least squares models of *grain yield* (kg ha⁻¹), *grain protein content* (%) and *grain protein yield* (kg ha⁻¹) at six *locations* in California and for six check *cultivars* or all 654 *cultivars*. The models included the influence of *year*, *degree-days*, *soil temperature*, *total water applied*, *N fertilization*, and *pathogen infestation level*.

				Grain Yield		Protein %		Protein Yield	
Location	Cultivar	Years	<i>n</i>	Coef.	<i>p</i>	Coef. $\times 10^{-4}$	<i>p</i>	Coef.	<i>p</i>
6 locations	6 cultivars	85–19	754	-25.19	0.019	0.01	0.917	-2.98	0.040
6 locations	654 cultivars	85–19	6508	-16.15	0.001	0.59	0.170	-1.62	0.016

Table 3. Coefficients (Coef.) and probabilities (*p*) for the influence of *year* in generalized least squares models of *grain yield* (kg ha⁻¹), *grain protein content* (%) and *grain protein yield* (kg ha⁻¹) at six *locations* in California and for six check *cultivars*. The models included the influence of *year*, *location* or *cultivar*, *location* \times *Year* or *cultivar* \times *Year*, *degree-days*, *soil temperature*, *total water applied*, *N fertilization*, and *pathogen infestation level*, and, as indicated, *location* or *cultivar*.

				Grain Yield		Protein %		Protein Yield	
Location	Cultivar	Years	<i>n</i>	Coef.	<i>p</i>	Coef. $\times 10^{-4}$	<i>p</i>	Coef.	<i>p</i>
Delta	6 cultivars	85–19	122	–66.7	0.004	5.74	0.002	–9.66	0.015
Imperial	6 cultivars	90–18	69	–85.3	0.005	–3.20	0.20	–12.77	0.036
Kern	6 cultivars	86–19	141	23.8	0.27	–1.72	0.32	1.57	0.562
Kings	6 cultivars	88–18	132	18.0	0.46	–0.67	0.74	3.74	0.171
North	6 cultivars	89–19	152	–23.8	0.33	7.80	<0.0001	–0.50	0.885
UCD	6 cultivars	85–19	138	–7.0	0.74	–2.19	0.20	–8.84	0.001
6 locations	Anza	85–17	171	–29.1	0.03	–1.20	0.31	–7.56	<0.001
6 locations	Blanca Grande	01–19	101	–62.8	0.01	–1.09	0.57	2.28	0.593
6 locations	Express	88–13	126	–35.5	0.04	–2.42	0.09	–11.99	<0.001
6 locations	Klasic	85–03	86	–63.3	0.02	0.14	0.95	–19.27	<0.001
6 locations	Serra	85–04	91	–65.2	0.009	2.04	0.31	–17.68	<0.001
6 locations	Yecora Rojo	85–19	179	–41.9	0.002	–0.93	0.43	–8.54	0.001

346 Figures and figure legends:



347 **Fig. 1A – F.** Degree-days, soil temperature, total water applied, N fertilization, pathogen infestation level,
 348 and vapor pressure deficit during the growing season for fall-planted common wheat versus year at six
 349 Californian locations where field trials were conducted. Symbols represent the values for each year during
 350 which trials were conducted, and the lines are the least square linear regressions over the entire period to
 351 aid the eye in discerning patterns in the data; Table S1 provides the slopes, intercepts, and r^2 values for
 352 these lines.

353

354

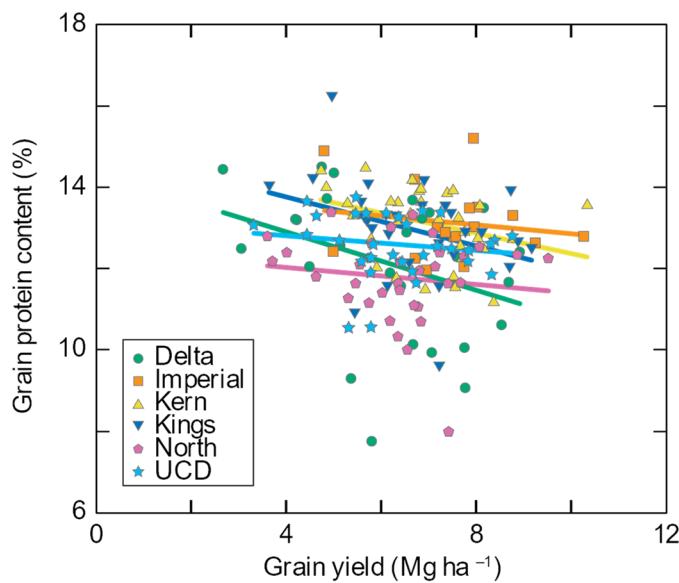


Fig. 2. *Grain protein content versus grain yield at six Californian locations where field trials were conducted. Symbols represent the values for each year during which trials were conducted, and the lines are the least square linear regressions over the entire period to aid the eye in discerning patterns in the data. The linear trends are*

Delta: $y = -0.3582x + 14.326, r^2 = 0.1152$;
 Imperial: $y = -0.1092x + 13.951, r^2 = 0.0255$;
 Kern: $y = -0.2495x + 14.867, r^2 = 0.1109$;
 Kings: $y = -0.3008x + 14.964, r^2 = 0.1109$;
 North: $y = -0.1092x + 13.951, r^2 = 0.0233$;
 UCD: $y = -0.0907x + 13.175, r^2 = 0.0229$.

355

Blooming Plant by Bloom and Plant

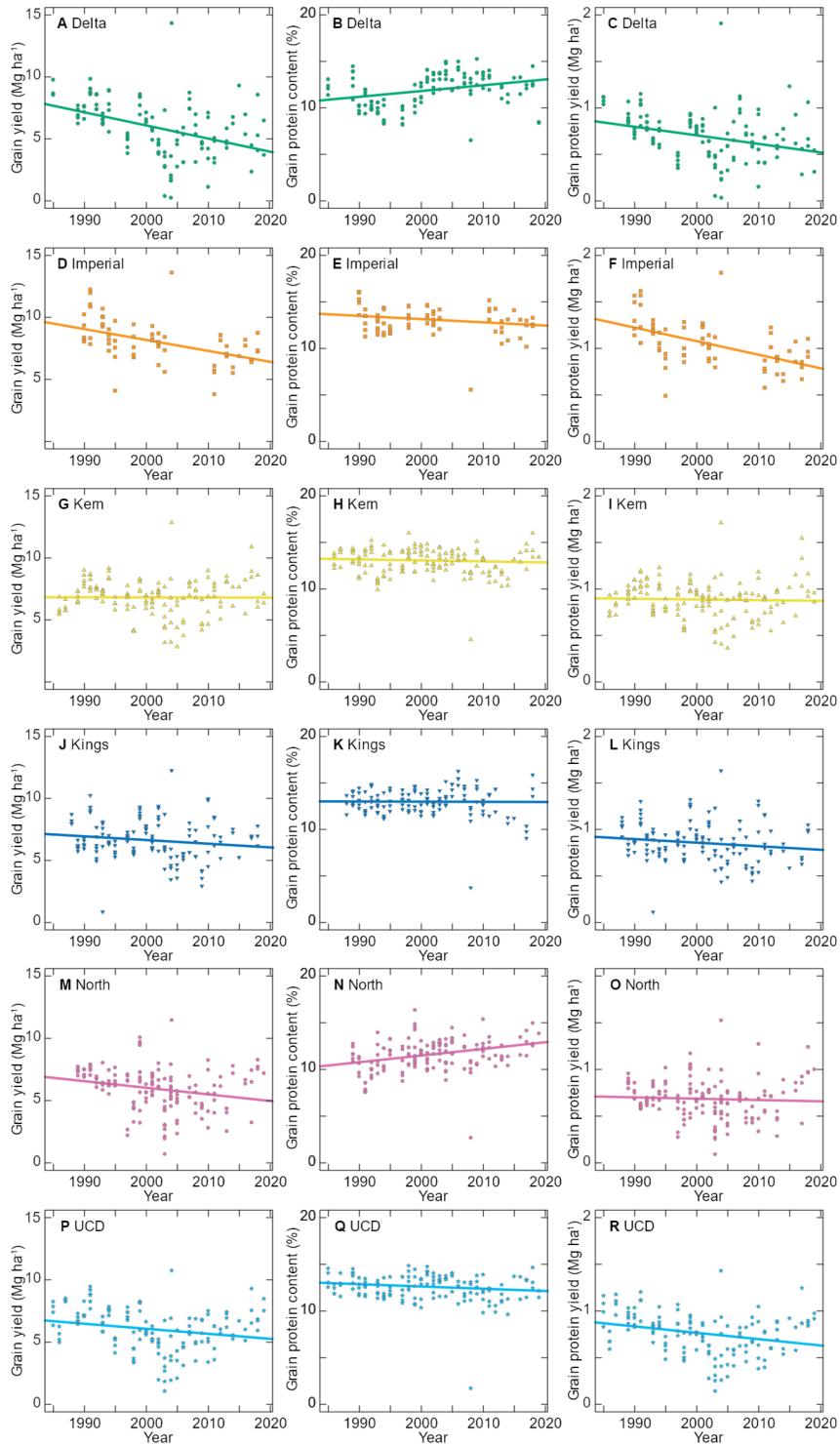


Fig. 3. Regressions of grain yield (Mg ha^{-1}) (left column); protein content (%) (middle column); and protein yield (Mg ha^{-1}) (right column) versus year at six locations in California common wheat field trials. These are based on generalized linear models that included the influence of year, degree-days, soil temperatures, total water applied, N fertilization, and pathogen infestation. A data point at a given year is the mean for one of six check cultivars. The slopes and intercepts of the lines are generated from the generalized least squares model for the subset of data for a location. The coefficients of the lines are given in Table S2.

Blooming Plant by Bloom and Plant

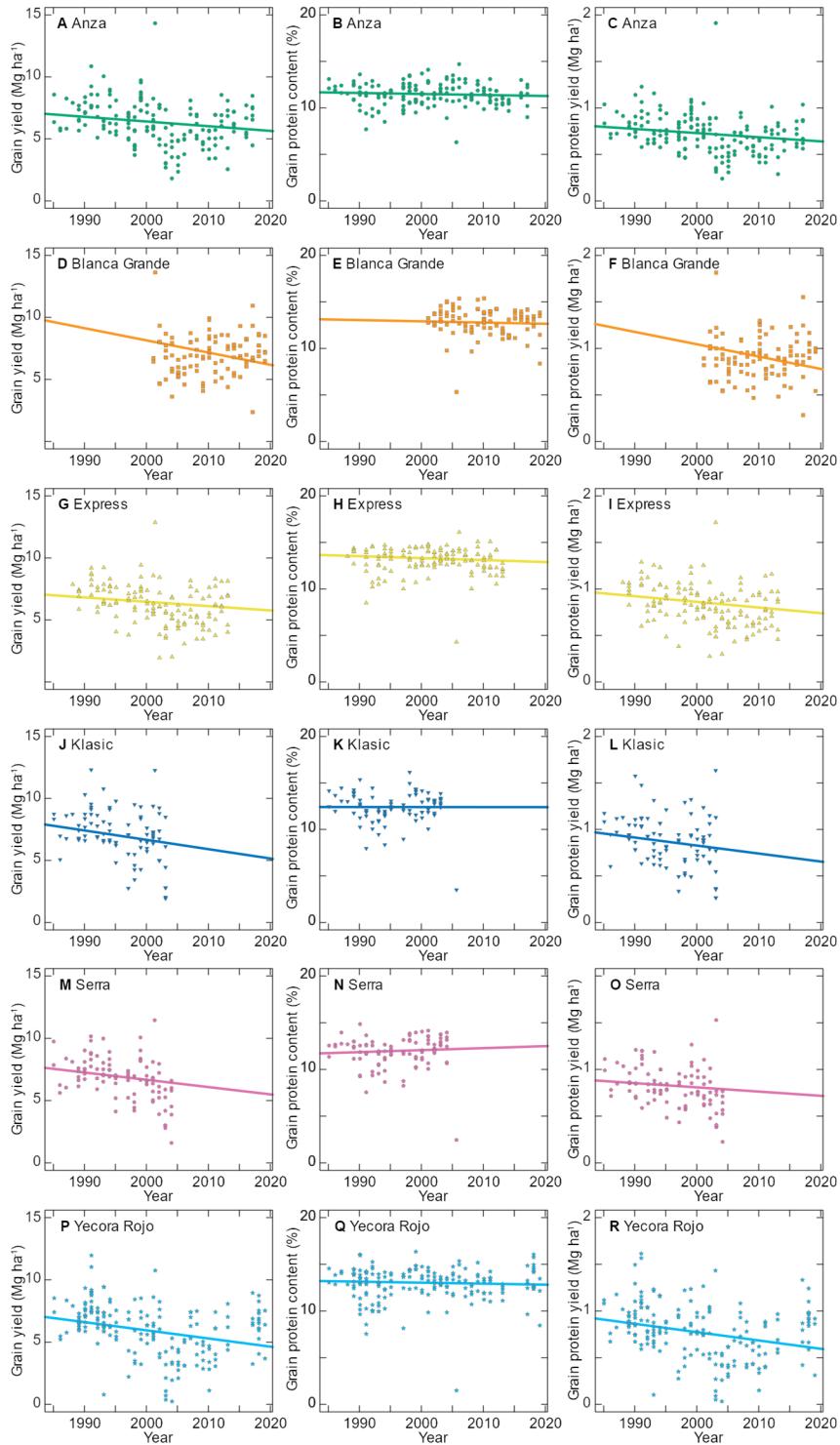


Fig. 4. Regressions of grain yield (Mg ha^{-1}) (left column); protein content (%) (middle column); and protein yield (Mg ha^{-1}) (right column) versus year for six cultivars in California common wheat field trials. These are based on generalized linear models that included the influence of year, degree-days, soil temperatures, total water applied, N fertilization, and pathogen infestation. A data point at a given year is the mean for one of six locations. The slopes and intercepts of the lines are generated from the generalized least squares model for the subset of data for a cultivar. The coefficients of the lines are given in Table S2.

Blooming Plant by Bloom and Plant

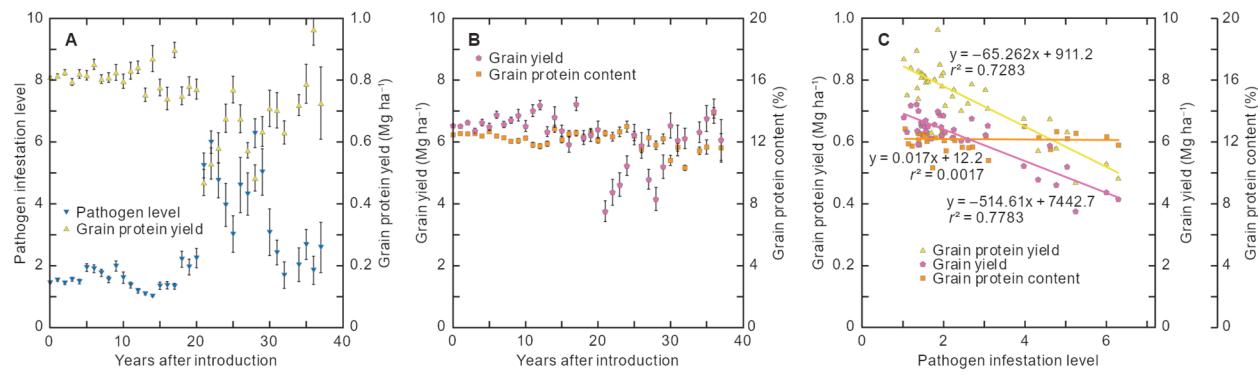


Fig. 5A & B. Changes in pathogen infestation level, grain protein yield, grain yield, and grain protein content with the years after a cultivar was introduced. Shown are means $\pm \text{SE}$. **C.** Changes in pathogen level, grain protein yield, grain yield, and grain protein content with pathogen infestation level. Shown are linear regressions labelled with slopes, intercepts, and correlations squared.

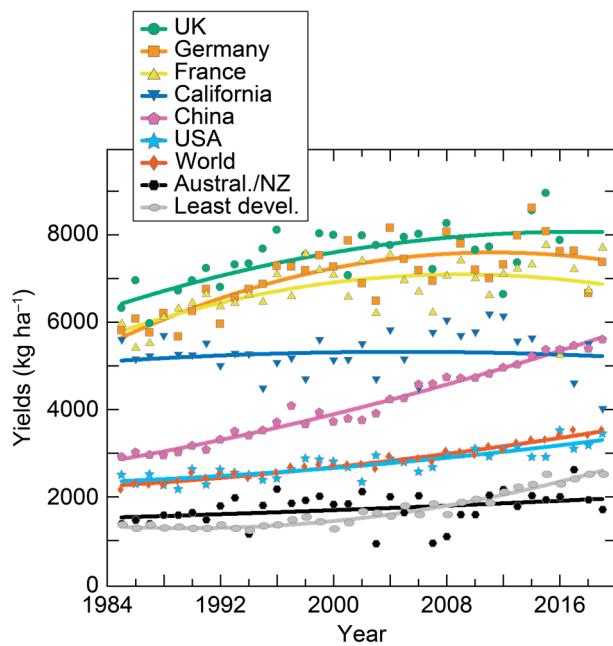


Fig. 6. Wheat grain yields over time at different locations. Symbols represent the values for each year, and the lines are the quadratic polynomial regressions for the entire period. “Austral./NZ” denotes Australia and New Zealand; “Least devel.” denotes those nations that the United Nations considers to be least developed in terms of economic activities. Data derived from public databases (FAOSTAT, 2021; National Agricultural Statistics Service, 2021). The quadratic trends are

UK: $y = -15.747x^2 + 63537x - 6 \times 10^7, r^2 = 0.5384$;
 Germany: $y = -28.154x^2 + 113254x - 1 \times 10^8, r^2 = 0.6466$;
 France: $y = -22.544x^2 + 90582x - 9 \times 10^7, r^2 = 0.3741$;
 California: $y = -5.1093x^2 + 20487x - 2 \times 10^7, r^2 = 0.0134$;
 China: $y = 7.1205x^2 - 27688x + 3 \times 10^7, r^2 = 0.9753$;
 USA: $y = 4.0775x^2 - 16050x + 2 \times 10^7, r^2 = 0.7370$;
 World: $y = 4.6593x^2 - 18293x + 2 \times 10^7, r^2 = 0.9614$;
 Austral./NZ: $y = 0.8438x^2 - 3254x + 3 \times 10^6, r^2 = 0.1220$;
 Least devel.: $y = 15.398x^2 - 61276x + 6 \times 10^7, r^2 = 0.9497$.

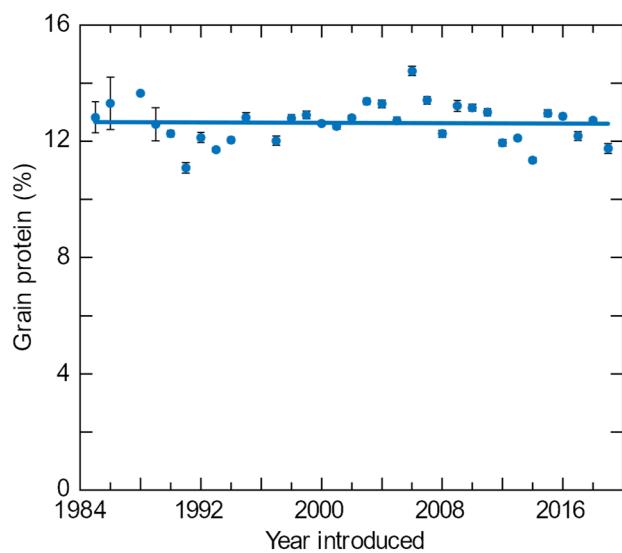


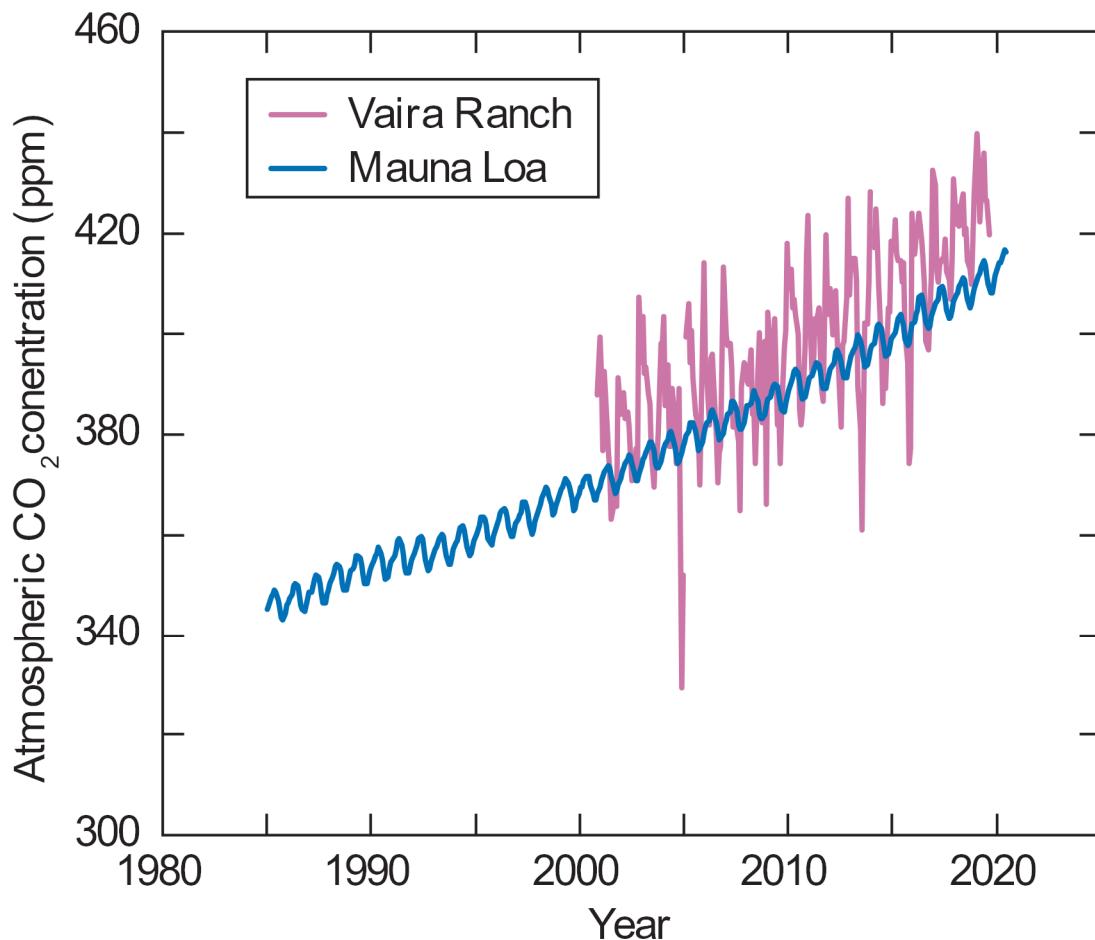
Fig. 7. Wheat grain protein content (%) of spring-planted common wheat cultivars during the year they were introduced into Californian field trials. Shown are mean \pm SE and the linear trend line ($y = -0.0017x + 16.106$, $r^2 = 0.0007$).

Table S1. Linear least square regressions for the data in Figure 1.

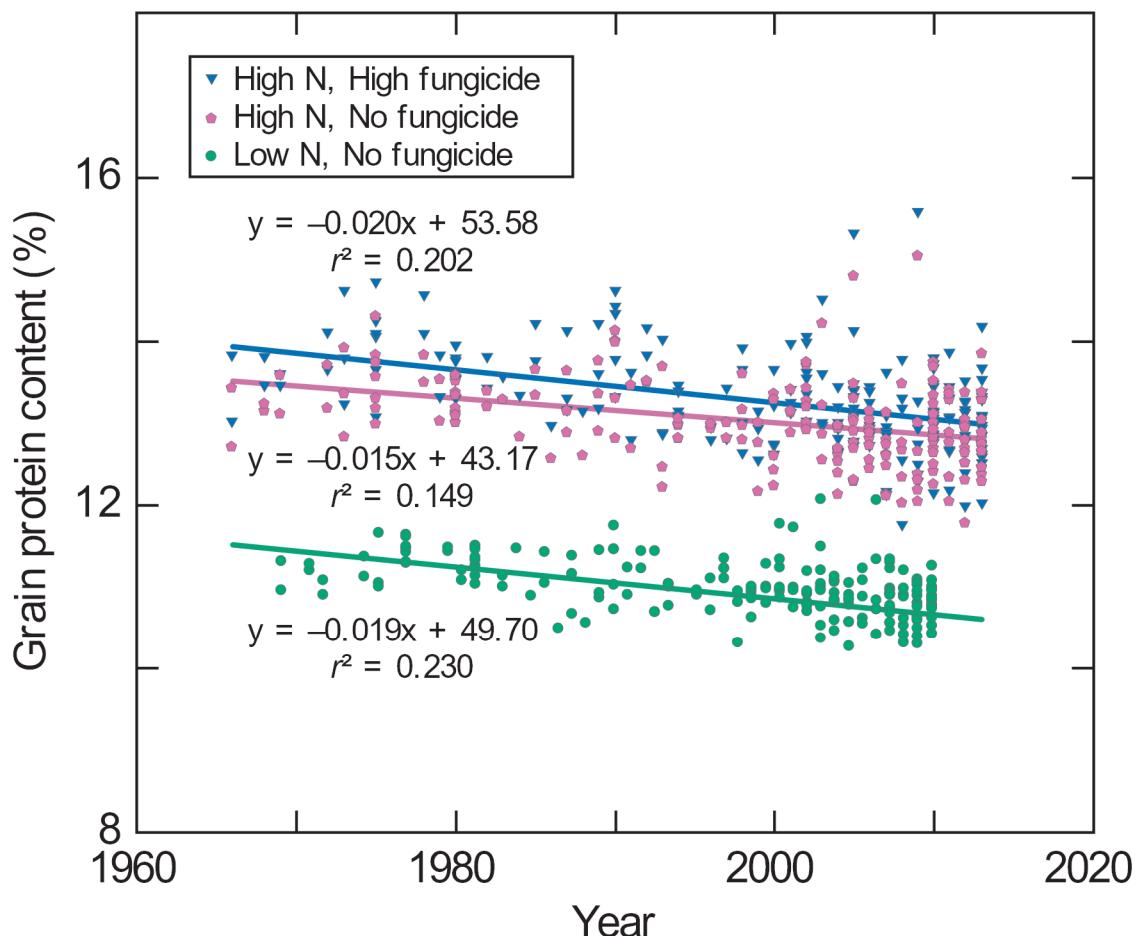
Parameter	Location	Slope	Intercept	r^2
Degree-days	Delta	3.2691	-5822	0.0727
	Imperial	8.4973	-15652	0.3597
	Kern	2.0383	-3232	0.0351
	Kings	4.0883	-7348	0.0906
	North	1.8094	-2883	0.0260
	UCD	4.8974	-9081	0.1071
Soil temp.	Delta	0.0244	-37.65	0.1041
	Imperial	0.0094	-4.665	0.0132
	Kern	0.0333	-54.648	0.0641
	Kings	0.0424	-73.375	0.093
	North	-0.0162	42.91	0.0166
	UCD	0.0144	18.509	0.0101
Total water applied	Delta	0.0087859	-17.117	0.2323
	Imperial	0.016597	-32.407	0.5411
	Kern	0.0007312	-0.6623	0.0009
	Kings	-0.0068206	14.331	0.108
	North	-0.0093402	19.287	0.1188
	UCD	-0.0054087	11.519	0.1025
N fertilization	Delta	1.3473	-2655	0.0995
	Imperial	6.609	13044	0.6970
	Kern	1.7780	-3388	0.0246
	Kings	1.5644	3282	0.0410
	North	0.9277	1956	0.0389
	UCD	2.1899	-4290	0.2408
Pathogen infestation	Delta	0.0182	-34.664	0.0395
	Imperial	0.0	1.0	1.000
	Kern	0.0127	-24.023	0.0249
	Kings	0.0389	-76.248	0.1806
	North	0.0346	-67.579	0.1019
	UCD	0.0251	-48.390	0.074
VPD	Delta	1.4137	-2542.8	0.0234
	Imperial	18.357	-36013	0.7207
	Kern	1.8538	-3405.5	0.060
	Kings	1.3753	-2446.1	0.0167
	North	1.4137	-2542.8	0.0223
	UCD	4.3149	-8354.7	0.239

Table S2. Coefficients (Coef.), intercepts (Int.), and probabilities (*p*) for the influence of *year* in generalized least squares models of *grain yield* (kg ha⁻¹), *grain protein content*, and *grain protein yield* (kg ha⁻¹) for subsets of the data that contained one of six *locations* in California and all six check *cultivars* or that contained one of six check cultivars and all six locations. These values are used to construct the lines shown in Figs. 3 and 4. The columns labeled Int. show the value of the regression in 1985.

Location	Cultivar	Years	<i>n</i>	Grain Yield			Protein %			Protein Yield		
				Coef.	Int.	<i>p</i>	Coef. $\times 10^{-4}$	Int.	<i>p</i>	Coef.	Int.	<i>p</i>
Delta	6 cultivars	85–19	122	-108.4	7728	0.0002	3.74	0.113	0.27	-9.79	855	0.01
Imperial	6 cultivars	90–18	69	-92.4	9564	<0.0001	-2.68	0.134	0.13	-14.26	1283	<0.0001
Kern	6 cultivars	86–19	141	-0.18	6832	0.99	-1.30	0.132	0.44	-1.01	904	0.72
Kings	6 cultivars	88–18	132	-28.9	7061	0.29	-0.41	0.131	0.83	-4.07	918	0.23
North	6 cultivars	89–19	152	-55.6	6869	0.022	7.38	0.104	<0.001	-1.29	705	0.69
UCD	6 cultivars	85–19	138	-38.0	6665	0.18	-2.41	0.130	0.04	-7.10	874	0.03
6 locations	Anza	85–17	171	-51.8	7155	0.0004	-2.21	0.118	0.10	-6.92	832	<0.0001
6 locations	Blanca Grande	01–19	101	48.0	5712	0.10	-3.98	0.139	0.14	3.97	796	0.37
6 locations	Express	88–13	126	-79.0	7554	<0.0001	-1.99	0.135	0.31	-11.15	1008	<0.0001
6 locations	Klasic	85–03	86	-177.9	8843	<0.0001	-0.02	0.124	0.99	-24.37	1115	<0.0001
6 locations	Serra	85–04	91	-160.2	8541	<0.0001	1.32	0.119	0.67	-17.64	1001	<0.0001
6 locations	Yecora Rojo	85–19	179	-55.1	6864	0.0007	-0.16	0.130	0.92	-7.44	894	0.01



361
362 **Fig. S1.** Monthly average atmospheric CO₂ concentrations (ppm) measured at Vaira
363 Ranch in the foothills of central California (Ma et al., 2007) or at the Mauna Loa Obser-
364 vatory on the big island of Hawaii (Lindsey, 2020). The higher seasonal CO₂ variation in
365 California derives from higher primary productivity.
366



367
368
369
370
371
372

Fig. S2. Changes in wheat grain protein content (%) versus year of registration in field trials of elite winter wheat cultivars released during the past 50 years in western Europe, particularly Germany (Voss-Fels et al., 2019). Plots received 220 kg ha⁻¹ N fertilizer and fungicide or no fungicide or 110 kg ha⁻¹ N fertilizer and no fungicide. Shown are linear regressions labelled with slopes, intercepts, and correlations squared.