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Introduction 29 

Nearly all studies of plant responses to rising atmospheric CO2 compare plants grown at an am-30 
bient CO2 concentration (currently, slightly over 410 ppm CO2) with those exposed to an ele-31 
vated concentration that is at least 38% above ambient (Broberg et al., 2019; Tcherkez et al., 32 
2020). In most plants, such CO2 enrichment stimulates carbon fixation and inhibits photorespira-33 
tion (Cousins and Bloom, 2004), accelerating organic carbon accumulation but decreasing con-34 
version of nitrate nitrogen into protein in leaves (Bloom, 2015b; Bloom and Lancaster, 2018; 35 
Rubio-Asensio and Bloom, 2017). These changes increase the ratio of carbon to nitrogen in the 36 
shoots of the elevated CO2 treatment by about 20% (Sardans et al., 2012; Wang et al., 2019). 37 

The overall increase in atmospheric CO2 concentration at Mauna Loa, Hawaii between 1985 38 
and 2019 was 19% (Fig. S1 at Dryad Digital Repository, https://doi.org/10.25338/B8G34C; 39 
Bloom and Plant, 2021) (Lindsey, 2020), an increase which is half that used in most elevated 40 

Box 1. Key developments in understanding changes in wheat grain yields and 
protein over the past few decades. 

 Experiments on plant responses to atmospheric CO2 enrichment expose plants to un-
physiological conditions 

Broberg et al. (2019) and Tcherkez et al. (2020) documented that experiments on the influ-
ence of elevated CO2 concentrations on field-grown wheat (Triticum aestivum L.) exposed 
plants to CO2 concentrations that were at least 38% above ambient levels, an increase double 
that which occurs in situ. 

 Long-term wheat field trials expose plants to realistic CO2 enrichments, but usually 
cannot differentiate among the factors which influence yield and grain protein content 

Eichi et al. (2020) found that the experimental design of most wheat field trials was not ade-
quate to separate the complex genetic by environment interactions that influence yield and 
grain protein content. 

 Thirty-five years of annual field trials on 654 cultivars of fall-planted, common wheat 
conducted in 7 counties throughout the valleys of central California, USA, avoided 
many of the usual short-comings 

Lundy and Dubcovsky (2021) and the California Department of Water Resources (2021) 
compiled data that can distinguish between the influence of year, cultivar, location, degree-
days, soil temperature, total water applied, nitrogen fertilization, pathogen infestation, and 
vapor pressure deficit on wheat grain yield and protein content. 

 Wheat, when exposed to gradual CO2 enrichment, sacrifices grain yield and protein 
yield for stable grain protein content 

Bloom and Kameritsch (2017) and Bloom et al. (2020) highlighted two compensatory mech-
anisms—altered manganese to magnesium ratio in chloroplasts and altered balance between 
shoot and root nitrate assimilation—through which wheat sacrifices grain yield for more sta-
ble grain protein content. 
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CO2 studies. Thus, evaluation of plant responses to recent increases in atmospheric CO2 should 41 
subject plants to a smaller difference in CO2 concentration than is usual in most experiments. Of 42 
course, a smaller difference in CO2 concentration elicits a smaller change in plant responses and 43 
challenges our ability to discern it. One approach for discerning such a subtle difference is to in-44 
crease sample size. An untapped source for extensive information on plant responses to rising 45 
CO2 is crop field trials, some of which have generated datasets that contain several thousand en-46 
tries and span several decades. 47 

Datasets based on crop field trials present several challenges (Eichi et al., 2020). Primarily 48 
field trials serve to compare in a given year the performance of many cultivars for one crop at a 49 
few locations. Discerning trends over time is difficult because field trials (a) generally introduce 50 
new genotypes and new agricultural practices as they become available, (b) may change loca-51 
tions from year to year depending on rotations with other crops, and (c) periodically suffer break-52 
downs in resistance to local pathogens (Bogard et al., 2010; Fan et al., 2008; Hellemans et al., 53 
2018; Laidig et al., 2017; Mackay et al., 2011; Ormoli et al., 2015; Rao et al., 1993; Verrell and 54 
O'Brien, 1996). Thus, the experimental design of most field trials are not well suited for explor-55 
ing the complex interactions between genotype and environment that strongly influence grain 56 
yield/quality relationships over time (Eichi et al., 2020). 57 

Here, we examined 35 years of annual field trials on 654 cultivars of fall-planted, common 58 
wheat (Triticum aestivum L.) conducted in 7 counties throughout the valleys of central Califor-59 
nia, USA, ranging south more than 1000 km from the flood plains near the Sacramento River 60 
west of Chico, CA, to the deserts near the border with Mexico (Table S1 at Dryad (Lundy and 61 
Dubcovsky, 2021). These trials avoided many of the usual short-comings in that they (a) fol-62 
lowed best agricultural practices such as ample irrigation and fertilization, (b) included quantita-63 
tive evaluation for pathogen infestations when they became evident, (c) used the same cultivars 64 
as checks nearly every year, and (d) were conducted nearly every year at similar locations close 65 
to weather stations. Our focus was on trends in wheat grain yield, grain protein content, and 66 
grain protein yield over time. Year served as a proxy for atmospheric CO2 concentration because 67 
it was very highly correlated (r = 0.996) with the average CO2 concentrations at Mauna Loa, Ha-68 
waii. We used CO2 data from Mauna Loa from January through March, the primary growing sea-69 
son for fall-planted wheat in California, because the longest record for daily atmospheric CO2 70 
concentrations in California (Vaira Ranch in the foothills of central California) extends only 71 
from 2000 to 2019 (Fig. S1 at Dryad). 72 

Analyses 73 

Field trials: The dataset of fall-planted, common wheat cultivars from field trials conducted at 74 
multiple locations throughout central California has 6,508 records with values for (a) year; (b) 75 
cultivar entry number; (c) cultivar name; (d) location; (e) grain protein (%); (f) grain yield (kg); 76 
(g) quantitative scores for stripe rust, leaf rust, Septoria leaf blotch, and Yellow dwarf virus (area 77 
of flag-1 leaf affected at soft dough stage: 1 = 0 – 3%, 2 = 4 – 14%, 3 = 15 – 29%, 4 = 30 – 49%, 78 
5 = 50 – 69%, 6 = 70 – 84%, 7 = 85 – 95%, 8 = 96 – 100%); (h) planting date; (i) rainfall; (j) irri-79 
gation; and (k) N fertilizer application (Lundy and Dubcovsky, 2021). Soil temperatures, air de-80 
gree-days, and Vapor Pressure Deficit (VPD) were derived from hourly data collected at the 81 
closest California Irrigation Management Information System (CIMIS) station (California 82 
Department of Water Resources, 2021); degree-days were calculated based on temperatures 83 
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measured during January, February, and March via the single sine method with a horizontal up-84 
per cutoff with a maximum temperature for common wheat of 30°C and a minimum temperature 85 
of 7°C (Statewide Integrated Pest Management Program, 2021); and VPD was calculated from 86 
average air temperatures (Huang, 2018) and vapor pressures during January, February, and 87 
March at the closest California Irrigation Management Information System (CIMIS) station. Pro-88 
tein yield is the product of grain protein percentage and yield, and total water addition is the sum 89 
of rainfall and irrigation. Data for the cultivars Blanca Grande, Patwin, and Summit were merged 90 
with data for derivatives in which stripe rust resistance genes Yr5 and Yr15 were introduced by 91 
four backcross generations into the susceptible parent cultivar (Jackson, 2011). 92 

Dataset:  California fall-planted wheat field trials (Lundy and Dubcovsky, 2021) provided at 93 
least 16 years of data for each of five locations: Sacramento Delta (“Delta”), Imperial County 94 
(“Imperial”), Kern County (“Kern”), Kings County (“Kings”), and Yolo County at the Univer-95 
sity of California Davis (“UCD”). We merged the data for Butte County and Colusa County, two 96 
adjacent counties that had very little temporal overlap, to form a sixth location (“North”) with 97 
more than 16 years of data. The six locations extend between latitudes 32.8°N and 39.8°N, from 98 
deserts near the Mexican border (Imperial and Kern) where plants received nearly all of their wa-99 
ter from irrigation to the Sacramento River flood plain (Delta and North) where plants received 100 
much of their water from precipitation and ground water. The trials also provided at least 18 101 
years of data for each of six check cultivars (Anza, Blanca Grande, Express, Klasic, Serra, and 102 
Yecora Rojo). The dataset of wheat parameters and environmental parameters that we used is 103 
available at Dryad Digital Repository https://doi.org/10.25338/B8G34C (Bloom and Plant 2021). 104 

Statistics:  We fit the models using generalized least squares linear regression implemented in R 105 
version 3.5.3 (R Core Team, 2013) using the gls function of the nlme package (Pinheiro et al., 106 
2017). All models were initially tested for temporal autocorrelation by testing at the p = 0.05 107 
level with the null hypothesis of no temporal autocorrelation against the alternative hypothesis of 108 
autocorrelation as modeled by an AR1 relationship. The null hypothesis was rejected for some, 109 
but not all, of the models, so for consistency all tests were carried out using the AR1 autocorrela-110 
tion model (Plant, 2019). By including the five environmental factors we were able to account 111 
for their effect, giving us the best ability to focus on the factors of interest: year, location, and 112 
cultivar. Models were developed using the standard mixed model analytical approach (Pinheiro 113 
and Bates, 2000) in which predictors were added to models in which grain yield, grain protein 114 
content, and grain protein yield were the response variables, and the significance of each addi-115 
tional predictor was tested. Probabilities ≤ 0.05 were considered significant. 116 

In the initial analysis we pooled across locations and cultivars. To account for factors that 117 
might influence grain yield, protein yield, and protein content we formulated for each of these 118 
quantities the following linear model 119 

Yij = b0 + b1yeari + b2DDij + b3STij + b4TWij + b5Nij + b6Pij + eij, 120 

where Yij is the value of the response variable (grain yield, protein yield, or protein content) in 121 
year i, DDij, is the degree-days, STij is the mean soil temperature, TWij is the total applied water, 122 
Nij is the total applied N fertilizer, and Pij is an indicator of the pathogen level, at location or cul-123 
tivar j. 124 

The models were tested for the influence of year along with the five other factors: degree-125 
days, soil temperature, total water applied = precipitation + irrigation, N (nitrogen) fertilization, 126 
and pathogen infestation level (Table 1, Fig. 1A–E). Data were sufficiently homoscedastic that 127 
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no transformations were necessary. Regression analysis is quite robust to non-normality of resid-128 
uals, and it is common practice not to test these for normality (Plant, 2019). Vapor Pressure Def-129 
icit (VPD) was not included because it did not change significantly over time in five of the six 130 
locations (Fig. 1f); moreover, VPD itself depends on degree-days and total water applied, and 131 
including this factor in the model would result in multiple pathways of influence in the model 132 
that would disrupt the analysis. In both cases, grain yield and grain protein yield declined signifi-133 
cantly over time, but grain protein content did not (Table 1). The five other factors usually, but 134 
not always, had a significant influence on grain yield, grain protein content, and grain protein 135 
yield (Table 1). Grain protein content generally decreased with grain yield (Fig. 2). 136 

We then used the same procedure to fit generalized least square models that included the in-137 
fluence of the same five factors to the data for (a) six locations and six check cultivars, (b) six 138 
locations and all 654 cultivars grown in these locations, (c) a particular location and six check 139 
cultivars, or (d) six locations and a particular check cultivar (Table 2 – 3). 140 

Yij = b0 + b1Yeari + b2Xj + b12Yeari ×Xj + b3DDij + b4STij + b5TWij + b6Nij + b7Pij + eij, 141 

where Xj represents the value of location or cultivar. 142 

Findings: Grain yield and grain protein yield for data pooled over the six locations and six check 143 
cultivars decreased significantly in general least squares models both excluding and including the 144 
influence of the factors degree-days, soil temperature, total water applied (precipitation plus irri-145 
gation), N (nitrogen) fertilization, and pathogen infestation level, whereas grain protein content 146 
did not change significantly (Table 1). Data for all 654 cultivars aggregated over the six loca-147 
tions also decreased significantly over time (Table 2). When data were disaggregated by loca-148 
tion, grain yield decreased over time in four of the six locations, significantly in two, and grain 149 
protein yield decreased significantly over time in three of the six locations, and changes in grain 150 
yield and grain protein yield over time in the other locations were not significant (Table 3). 151 
When data were disaggregated by cultivar, grain yield and grain protein yield in the six locations 152 
decreased significantly over time for five of the six check cultivars, but protein yield did not 153 
change significantly for the cultivar Blanca Grande (Table 3). Grain protein content (%) changed 154 
significantly over time in two of the six locations (increasing at North and decreasing at UCD) 155 
but did not change significantly for any of the six check cultivars (Table 3). We did not feel that 156 
a Bonferroni correction on the Locations or Cultivars models would provide any useful addi-157 
tional information. 158 

We investigated the breakdown of pathogen resistance over time for the 654 cultivars tested 159 
in 7 California counties with a focus on the influence of pathogen infestation level on grain yield, 160 
grain protein content, and grain protein yield (Fig. 5). As described above, each sample in these 161 
trials received an infestation score for stripe rust, leaf rust, Septoria leaf blotch, and Yellow 162 
dwarf virus (a score of “1” indicated that 0 to 3% of the area of the flag-1 leaf at the soft dough 163 
stage showed symptoms; “2” indicated that 4 to 14% of the area showed symptoms; “3” indi-164 
cated that 15 to 29% showed systems; “4” indicated 30 to 49%; “5” indicated 50 to 69%; “6” in-165 
dicated 70 to 84%; “7” indicated 85 to 95%; and “8” indicated 96 to 100%). Pathogen infestation 166 
level for a cultivar in a particular location and year was the highest infestation score among the 167 
four diseases. Years after introduction was the difference between the particular year and the 168 
first year in which the cultivar was placed in a California field trial. Plotted (Figs. 5A & 5B) are 169 
the pathogen infestation level, grain protein yield, grain yield, and grain protein content (mean ± 170 
SE) averaged over all cultivars and all locations having the same years after introduction. We 171 
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also plotted protein yield, grain protein yield, and grain protein content versus pathogen infesta-172 
tion level (Fig. 5C). 173 

Many cultivars exhibited noticeable pathogen infestation in the year that they were introduced 174 
(pathogen infestation level = 1.46 ± 0.02, mean ± SE, n = 3777) (Fig. 5A). In subsequent years, 175 
up to 20 years after introduction, average pathogen infestation level remained between 1.0 ± 0.1 176 
(n = 28) and 2.3 ± 1.8 (n = 34) perhaps because cultivars that displayed high pathogen infesta-177 
tions for several years were more likely to be eliminated from further testing. Average pathogen 178 
infestation level jumped to 5.3 ± 2.4 (n = 37) at 21 years after introduction as most cultivars be-179 
came highly susceptible to pathogens in most locations (Fig. 5A). Grain yield and grain protein 180 
yield were highly negatively correlated with pathogen infestation level, whereas grain protein 181 
content was not (Fig. 5C). 182 

Conclusions 183 

Wheat grain directly supplies not only about 20% of the carbohydrate in the human diet, but also 184 
about 20% of the protein (FAOSTAT, 2021). Of critical concern to food security, therefore, is 185 
whether wheat grain yields (Hochman et al., 2017; Ray et al., 2012) and wheat protein yields 186 
(Amthor, 2001; Broberg et al., 2017; Carlisle et al., 2012; Fan et al., 2008; Fufa et al., 2005; 187 
Hellemans et al., 2018; Lollato et al., 2019; Myers et al., 2014; Ormoli et al., 2015; Taub et al., 188 
2008; Wang et al., 2013) will keep pace with human population growth under future environ-189 
mental conditions. Wheat grain yields worldwide increased 1% per year over the past 35 years 190 
(Fig. 6). Nonetheless, after accounting for changes in precipitation and temperature—but not for 191 
cultivars or agricultural practices—global wheat yields declined 0.9% from 1974 to 2008 (Ray et 192 
al., 2019). Indeed, wheat yields have remained stagnate for about two decades in regions that 193 
have practiced high-input agriculture (Brisson et al., 2010; Hochman et al., 2017; Schauberger et 194 
al., 2018) (Fig. 6). Wheat yields in California, for example, have not changed during the past 35 195 
years (Fig. 6). 196 

Wheat grain nutritional quality may decline over time because newly introduced cultivars may 197 
have lower grain protein contents (%) than those introduced decades ago (Fufa et al., 2005; 198 
Laidig et al., 2017; Mariem et al., 2020; Shewry et al., 2016; Voss-Fels et al., 2019) (Fig. S2 at 199 
Dryad). This might be an artifact of breeders releasing more feed wheat varieties (for animal 200 
consumption), which do not have to fulfill the same quality criteria (especially protein content) 201 
as wheat cultivars for human consumption, but we have no information about this possibility. In 202 
some studies, wheat grain protein contents of new cultivars have not changed significantly 203 
(Guzmán et al., 2017; Hucl et al., 2015). Here in California, for instance, grain protein contents 204 
of wheat cultivars during the year that they were introduced remained relatively constant (Fig. 7). 205 

Rising atmospheric CO2 concentration—a 19% increase over the past 35 years (Fig. S1 at 206 
Dryad)—probably has influenced wheat grain yields and protein yields. Elevated CO2 inhibits 207 
photorespiration and thereby malate production in shoots (Abadie et al., 2020; Gámez et al., 208 
2020). Oxidation of this malate generates the reductant required for converting nitrate and sulfate 209 
into respectively organic nitrogen and sulfur in amino acids (Abadie and Tcherkez, 2019; Bloom, 210 
2015a; Bloom et al., 2002; Cousins and Bloom, 2004; Rubio-Asensio and Bloom, 2017). CO2 211 
enrichment, thus, results in slower shoot amino acid production and lower wheat grain protein 212 
content (Broberg et al., 2017; Carlisle et al., 2012; Pleijel et al., 2019). 213 
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In most California locations, wheat grain yield and grain protein yield of most cultivars de-214 
clined significantly over the past 35 years even after accounting for changes in degree-days, soil 215 
temperature, total water applied, N fertilization, and pathogen infestation level (Table 2, Figs. 3 216 
and 4 left and right panels). On average for the six locations having the most data, grain yield 217 
and grain protein yield declined 0.4% per year. Notice that grain protein yield declined most rap-218 
idly in the Imperial location (Table 2), a desert area where plants are highly dependent on irriga-219 
tion and where they experienced no detectable pathogen infestation (Fig. 1e), and in the Delta 220 
location, an island in the Sacramento River delta where plants have highly dependent on precipi-221 
tation and ground water (Fig. 1C). The 13% decline in grain yield and grain protein yield over 222 
the 35 years of this study is a matter of concern, given that the world population rose 58% during 223 
this period. In contrast, grain protein content remained relatively constant over this period (Table 224 
1, Figs. 3 and 4 center panels) and did not vary with pathogen infestation level (Fig. 5C). 225 

Developmental stage of a plant may alter the influence of environmental factors (e.g., degree-226 
days, soil temperature, total water applied, N fertilization, and pathogen infestation level) on 227 
grain yield and grain protein yield, but our dataset (Lundy and Dubcovsky, 2021) generally pro-228 
vides only information about planting date. This dataset, however, has additional information on 229 
days to heading and days to maturity for a few years, a few sites, and a few cultivars. Such infor-230 
mation may prove useful in future investigations about the interactions between plant develop-231 
mental stage and environmental factors. 232 

We sought information about wheat field trials in locations outside of California, but datasets 233 
for these locations were much more limited. For example, the AHDB (Agriculture and Horticul-234 
ture Development Board) Cereals & Oilseeds Recommended Lists for Great Britain has only 433 235 
entries extending back only to 2002, and only one cultivar has values for fifteen years (AHDB 236 
Cereals & Oilseeds, 2020). A dataset for North Dakota extends back to 2001, but only one culti-237 
var has values for fifteen years (NDSU Publications, 2020); one for South Dakota extends back 238 
to 2002, but only one cultivar has values for eleven years (SDSU Extension, 2020); another for 239 
Australia only has data for the past 11 years (Eichi et al., 2020).Trends in grain protein over 240 
these shorter periods were not evident (data not shown). These datasets will warrant further anal-241 
ysis when information for additional years becomes available. 242 

Some may question whether wheat trends in California over the past 35 years are related to 243 
the 19% increase in atmospheric CO2 concentration that occurred during this period. Although 244 
exposure of wheat to elevated CO2 atmospheres generally increases grain yield (Broberg et al., 245 
2019; Pleijel et al., 2019) and decreases grain protein content (Broberg et al., 2017; Pleijel et al., 246 
2019), most studies subject plants to an elevated CO2 treatment in which the CO2 concentration 247 
is more than 38% above an ambient control treatment (Broberg et al., 2019; Tcherkez et al., 248 
2020). Such an elevated CO2 treatment upsets the balance between carbon fixation and pho-249 
torespiration (Cousins and Bloom, 2004) and increases shoot carbon to nitrogen ratio by about 250 
20% (Sardans et al., 2012; Wang et al., 2019) because carbohydrates accumulate and conversion 251 
of nitrate into shoot protein decelerates when deprived of the reductant generated during pho-252 
torespiration (Abadie et al., 2020; Bloom and Lancaster, 2018). Grain protein content, in that it 253 
derives mostly from shoot protein, declines under more severe elevated CO2 treatments. 254 

In the field trials examined here, the overall difference in atmospheric CO2 between 1985 and 255 
2019 was less than half of that used in most elevated CO2 studies. Under less extreme CO2 en-256 
richment, wheat increases the manganese to magnesium ratio in chloroplasts. Substituting man-257 



 Blooming Plant by Bloom and Plant 

8 

ganese for magnesium in the metal binding sites of Rubisco significantly inhibits the carboxyla-258 
tion reaction while it accelerates the oxygenation reaction (Bloom, 2019), slowing carbon fixa-259 
tion while enhancing photorespiration and nitrate assimilation, thus bringing plant organic car-260 
bon and nitrogen back into balance (Bloom and Kameritsch, 2017; Bloom and Lancaster, 2018). 261 
Also exposure to elevated atmospheric CO2 increases carbohydrate export from shoot to roots, 262 
which enhances root nitrate assimilation and thus offsets diminished shoot nitrate assimilation 263 
(Bloom et al., 2020). 264 

These two compensatory mechanisms—altered manganese to magnesium ratio in chloroplasts 265 
and altered balance between shoot and root nitrate assimilation—sacrifice grain yield for more 266 
stable grain protein content. Both natural selection and wheat breeding should favor stable grain 267 
protein content because this trait is critical for sustaining both the vigor of seedlings after germi-268 
nation and the value of the crop for human nutrition (Wakasa and Takaiwa, 2013). Consequently, 269 
from an evolutionary perspective, the observed declining yields but stable protein contents in the 270 
wheat field trials seem reasonable. Consistent with this trend are recent meta-analyses of FACE 271 
(Free-air CO2 enrichment) experiments on wheat in which elevated CO2 downregulated carbon 272 
fixation, altered grain metabolism, and had minimal effects on grain yield and grain protein con-273 
tent (Broberg et al., 2019; Tcherkez et al., 2020). 274 

Data Availability 275 
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are available at https://doi.org/10.25338/B8G34C. 277 

Acknowledgements 278 

This work was funded in part by USDA-IWYP-16-06702, NSF grants IOS-16-55810 and CHE-279 
19- 04310, and the John B. Orr Endowment. We thank Jorge Dubcovsky, Daniel Geisseler, and 280 
Mark E. Lundy for their discussions on the topic. The authors have no conflict of interest to de-281 
clare. 282 

Author contributions 283 

A.J.B. conceptualized the study, collected the data, administered the project, wrote the original 284 
manuscript, reviewed the comments and suggestions, and revised the manuscript. R. P. con-285 
ducted the statistical analyses and reviewed and edited the manuscript.  286 



 Blooming Plant by Bloom and Plant 

9 

References 
Abadie C, Lalande J, Limami A, Tcherkez G. 2020. Non-targeted 13C metabolite analysis 
demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary. 
Plant, Cell & Environment, 1-13. 

Abadie C, Tcherkez G. 2019. Plant sulphur metabolism is stimulated by photorespiration. 
Communications Biology 2, 379. 

AHDB Cereals & Oilseeds. 2020. AHDB Recommended Lists. Kenilworth, GB: Agriculture 
and Horticulture Development Board, https://ahdb.org.uk/knowledge-library/harvest-results-
archive, accessed April 29, 2020. 

Amthor JS. 2001. Effects of atmospheric CO2 concentration on wheat yield: Review of results 
from experiments using various approaches to control CO2 concentration. Field Crops Research 
73, 1-34. 

Bloom AJ. 2015a. The increasing importance of distinguishing among plant nitrogen sources. 
Current Opinion in Plant Biology 25, 10-16. 

Bloom AJ. 2015b. Photorespiration and nitrate assimilation: a major intersection between plant 
carbon and nitrogen. Photosynthesis Research 123, 117-128. 

Bloom AJ. 2019. Metal regulation of metabolism. Current Opinion in Chemical Biology 49, 33-
38. 

Bloom AJ, Kameritsch P. 2017. Relative association of Rubisco with manganese and 
magnesium as a regulatory mechanism in plants. Physiologia Plantarum 161, 545-559. 

Bloom AJ, Kasemsap P, Rubio-Asensio JS. 2020. Rising atmospheric CO2 concentration 
inhibits nitrate assimilation in shoots but enhances it in roots of C3 plants. Physiologia 
Plantarum 168, 963-972. 

Bloom AJ, Lancaster KM. 2018. Manganese binding to Rubisco could drive a photorespiratory 
pathway that increases the energy efficiency of photosynthesis. Nature Plants 4, 414-422. 

Bloom AJ, Plant RE. 2021. Dryad Dataset. https://doi.org/10.25338/B8G34C 

Bloom AJ, Smart DR, Nguyen DT, Searles PS. 2002. Nitrogen assimilation and growth of 
wheat under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the 
United States of America 99, 1730-1735. 

Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J-M, Jeuffroy M-H, Gate P, 
Martre P, Le Gouis J. 2010. Deviation from the grain protein concentration–grain yield 
negative relationship is highly correlated to post-anthesis N uptake in winter wheat. Journal of 
Experimental Botany 61, 4303-4312. 

Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F. 2010. Why are wheat yields 
stagnating in Europe? A comprehensive data analysis for France. Field Crops Research 119, 
201-212. 

Broberg M, Högy P, Pleijel H. 2017. CO2-induced changes in wheat grain composition: Meta-
analysis and response functions. Agronomy 7, 32. 



 Blooming Plant by Bloom and Plant 

10 

Broberg MC, Högy P, Feng Z, Pleijel H. 2019. Effects of elevated CO2 on wheat yield: Non-
linear response and relation to site productivity. Agronomy 9, 243. 

California Department of Water Resources. 2021. California Irrigation Management 
Information System. https://cimis.water.ca.gov/Default.aspx, accessed February 25, 2021. 

Carlisle E, Myers SS, Raboy V, Bloom AJ. 2012. The effects of inorganic nitrogen form and 
CO2 concentration on wheat yield and nutrient accumulation and distribution. Frontiers in Plant 
Science 3, 195. 

Cousins AB, Bloom AJ. 2004. Oxygen consumption during leaf nitrate assimilation in a C3 and 
C4 plant: the role of mitochondrial respiration. Plant, Cell and Environment 27, 1537-1545. 

Eichi VR, Okamoto M, Garnett T, Eckermann P, Darrier B, Riboni M, Langridge P. 2020. 
Strengths and weaknesses of National Variety Trial data for multi-environment analysis: A case 
study on grain yield and protein content. Agronomy 10, 753. 

Fan M-S, Zhao F-J, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP. 2008. 
Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace 
Elements in Medicine and Biology 22, 315-324. 

FAOSTAT. 2021. Food and Agricultural Data. Food and Agriculture Organization of the United 
Nations, http://www.fao.org/faostat/en/#home, accessed January 25, 2021. 

Fufa H, Baenziger PS, Beecher B, Graybosch RA, Eskridge KM, Nelson LA. 2005. Genetic 
improvement trends in agronomic performances and end-use quality characteristics among hard 
red winter wheat cultivars in Nebraska. Euphytica 144, 187-198. 

Gámez AL, Vicente R, Sanchez-Bragado R, Jauregui I, Morcuende R, Goicoechea N, 
Aranjuelo I. 2020. Differential flag leaf and ear photosynthetic performance under elevated 
(CO2) conditions during grain filling period in durum wheat. Frontiers in Plant Science 11. 

Guzmán C, Autrique E, Mondal S, Huerta-Espino J, Singh RP, Vargas M, Crossa J, 
Amaya A, Peña RJ. 2017. Genetic improvement of grain quality traits for CIMMYT semi-
dwarf spring bread wheat varieties developed during 1965–2015: 50 years of breeding. Field 
Crops Research 210, 192-196. 

Hellemans T, Landschoot S, Dewitte K, Van Bockstaele F, Vermeir P, Eeckhout M, 
Haesaert G. 2018. Impact of crop husbandry practices and environmental conditions on wheat 
composition and quality: A review. Journal of Agricultural and Food Chemistry 66, 2491-2509. 

Hochman Z, Gobbett DL, Horan H. 2017. Climate trends account for stalled wheat yields in 
Australia since 1990. Global Change Biology 23, 2071-2081. 

Huang J. 2018. A simple accurate formula for calculating saturation vapor pressure of water and 
ice. Journal of Applied Meteorology and Climatology 57, 1265-1272. 

Hucl P, Briggs C, Graf RJ, Chibbar RN. 2015. Genetic gains in agronomic and selected end‐
use quality traits over a century of plant breeding of Canada western red spring wheat. Cereal 
Chemistry 92, 537-543. 

Jackson L. 2011. Wheat cultivars for California. Davis, CA: UC ANR, 
https://smallgrains.ucdavis.edu/cereal_files/WhtCVDescLJ11.pdf. 



 Blooming Plant by Bloom and Plant 

11 

Laidig F, Piepho H-P, Rentel D, Drobek T, Meyer U, Huesken A. 2017. Breeding progress, 
environmental variation and correlation of winter wheat yield and quality traits in German 
official variety trials and on-farm during 1983–2014. Theoretical and Applied Genetics 130, 223-
245. 

Lindsey R. 2020. Climate Change: Atmospheric Carbon Dioxide. NOAA: Climate.gov, 
https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-
carbon-dioxide, accessed March 19, 2020. 

Lollato RP, Figueiredo BM, Dhillon JS, Arnall DB, Raun WR. 2019. Wheat grain yield and 
grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term 
experiments. Field Crops Research 236, 42-57. 

Lundy M, Dubcovsky J. 2021. Variety Selection. Small Grains. Agronomy Research & 
Information Center: University of California, http://smallgrains.ucanr.edu/Variety/, accessed 
February 24, 2021. 

Ma S, Baldocchi DD, Xu L, Hehn T. 2007. Inter-annual variability in carbon dioxide exchange 
of an oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology 
147, 157-171. 

Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H. 2011. Reanalyses of the 
historical series of UK variety trials to quantify the contributions of genetic and environmental 
factors to trends and variability in yield over time. Theoretical and Applied Genetics 122, 225-
238. 

Mariem SB, Gámez AL, Larraya L, Fuertes-Mendizabal T, Cañameras N, Araus JL, 
McGrath SP, Hawkesford MJ, Murua CG, Gaudeul M, Medina L, Paton A, Cattivelli L, 
Fangmeier A, Bunce J, Tausz-Posch S, Macdonald AJ, Aranjuelo I. 2020. Assessing the 
evolution of wheat grain traits during the last 166 years using archived samples. Scientific 
Reports 10, 21828. 

Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey ADB, Bloom AJ, Carlisle E, Dietterich 
LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, 
Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y. 2014. Increasing CO2 threatens 
human nutrition. Nature 510, 139-142. 

National Agricultural Statistics Service. 2021. QuickStats. USDA, 
https://quickstats.nass.usda.gov/results/BE4D97D3-ED8C-321F-B8BA-B9F5D61DBBF4, 
accessed January 25, 2021. 

NDSU Publications. 2020. Publications on Wheat. 
https://www.ag.ndsu.edu/publications/crops/browse-by-crop/wheat, accessed April 30, 2020. 

Ormoli L, Costa C, Negri S, Perenzin M, Vaccino P. 2015. Diversity trends in bread wheat in 
Italy during the 20th century assessed by traditional and multivariate approaches. Scientific 
Reports 5, 8574. 

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2017. nlme: Linear and Nonlinear 
Mixed Effects Models_. R package version 3.1-131. https://CRAN.R-project.org/package=nlme. 

Pinheiro JC, Bates DM. 2000. Mixed-Effects Models in S and S-PLUS. New York, NY: 
Springer. 



 Blooming Plant by Bloom and Plant 

12 

Plant RE. 2019. Spatial Data Analysis in Ecology and Agriculture using R. 2nd Ed: CRC Press. 

Pleijel H, Broberg MC, Högy P, Uddling J. 2019. Nitrogen application is required to realize 
wheat yield stimulation by elevated CO2 but will not remove the CO2-induced reduction in grain 
protein concentration. Global Change Biology 25, 1868–1876. 

R Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna: R 
Foundation for Statistical Computing. 

Rao ACS, Smith JL, Jandhyala VK, Papendick RI, Parr JF. 1993. Cultivar and climatic 
effects on the protein content of soft white winter wheat. Agronomy Journal 85, 1023-1028. 

Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 2012. Recent patterns of crop 
yield growth and stagnation. Nature Communications 3, 1293. 

Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. 2019. Climate 
change has likely already affected global food production. Plos One 14, e0217148. 

Rubio-Asensio JS, Bloom AJ. 2017. Inorganic nitrogen form: a major player in wheat and 
Arabidopsis responses to elevated CO2. Journal of Experimental Botany 68, 2611-2625. 

Sardans J, Rivas-Ubach A, Peñuelas J. 2012. The C: N: P stoichiometry of organisms and 
ecosystems in a changing world: a review and perspectives. Perspectives in Plant Ecology, 
Evolution and Systematics 14, 33-47. 

Schauberger B, Ben-Ari T, Makowski D, Kato T, Kato H, Ciais P. 2018. Yield trends, 
variability and stagnation analysis of major crops in France over more than a century. Scientific 
Reports 8, 16865. 

SDSU Extension. 2020. Spring Wheat Variety Trial Results. 
https://extension.sdstate.edu/wheat-variety-trial-results, accessed April 30, 2020. 

Shewry PR, Pellny TK, Lovegrove A. 2016. Is modern wheat bad for health? Nature Plants 2, 
1-3. 

Statewide Integrated Pest Management Program. 2021. Weather, models, & degree-days. 
University of California Agriculture & Natural Resources, 
http://ipm.ucanr.edu/WEATHER/index.html, accessed February 24, 2021. 

Taub DR, Miller B, Allen H. 2008. Effects of elevated CO2 on the protein concentration of food 
crops: a meta-analysis. Global Change Biology 14, 565-575. 

Tcherkez G, Ben Mariem S, Larraya L, García-Mina JM, Zamarreño AM, Paradela A, 
Cui J, Badeck F-W, Meza D, Rizza F, Bunce J, Han X, Tausz-Posch S, Cattivelli L, 
Fangmeier A, Aranjuelo I. 2020. Elevated CO2 has concurrent effects on leaf and grain 
metabolism but minimal effects on yield in wheat. Journal of Experimental Botany 71, 5990–
5600. 

Verrell A, O'Brien L. 1996. Wheat protein trends in northern and central NSW, 1958 to 1993. 
Australian Journal of Agricultural Research 47, 335-354. 

Voss-Fels KP, Stahl A, Wittkop B, Lichthardt C, Nagler S, Rose T, Chen T-W, Zetzsche H, 
Seddig S, Majid Baig M, Ballvora A, Frisch M, Ross E, Hayes BJ, Hayden MJ, Ordon F, 
Leon J, Kage H, Friedt W, Stützel H, Snowdon RJ. 2019. Breeding improves wheat 
productivity under contrasting agrochemical input levels. Nature Plants 5, 706-714. 



 Blooming Plant by Bloom and Plant 

13 

Wakasa Y, Takaiwa F. 2013. Seed Storage Proteins. In: Maloy S, Hughes KT, eds. Brenner's 
Encyclopedia of Genetics, 346-348. 

Wang J, Liu X, Zhang X, Li L, Lam SK, Pan G. 2019. Changes in plant C, N and P ratios 
under elevated [CO2] and canopy warming in a rice-winter wheat rotation system. Scientific 
Reports 9, 1-9. 

Wang L, Feng Z, Schjoerring JK. 2013. Effects of elevated atmospheric CO2 on physiology 
and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses. 
Agriculture, Ecosystems & Environment 178, 57-63. 

 

  



 Blooming Plant by Bloom and Plant 

14 

Figure Legends 287 

Fig. 1A – F.  Degree-days, soil temperature, total water applied, N fertilization, pathogen infes-288 
tation level, and vapor pressure deficit during the growing season for fall-planted common wheat 289 
versus year at six Californian locations where field trials were conducted. Symbols represent the 290 
values for each year during which trials were conducted, and the lines are the least square linear 291 
regressions over the entire period to aid the eye in discerning patterns in the data; Table S1 pro-292 
vides the slopes, intercepts, and r2 values for these lines. 293 

Fig. 2. Grain protein content versus grain yield at six Californian locations where field trials 294 
were conducted. Symbols represent the values for each year during which trials were conducted, 295 
and the lines are the least square linear regressions over the entire period to aid the eye in dis-296 
cerning patterns in the data. The linear trends are 297 

Delta: y = –0.3582x + 14.326, r2 = 0.1152; 298 
Imperial: y = –0.1092x + 13.951, r2 = 0.0255; 299 
Kern: y = –0.2495x + 14.867, r2 = 0.1109; 300 
Kings: y = –0.3008x + 14.964, r2 = 0.1109; 301 
North: y = –0.1092x + 13.951, r2 = 0.0233; 302 
UCD: y = –0.0907x + 13.175, r2 = 0.0229. 303 

Fig. 3.  Regressions of grain yield (Mg ha–1) (left column); protein content (%) (middle column); 304 
and protein yield (Mg ha-1) (right column) versus year at six locations in California common 305 
wheat field trials. These are based on generalized linear models that included the influence of 306 
year, degree-days, soil temperatures, total water applied, N fertilization, and pathogen infesta-307 
tion. A data point at a given year is the mean for one of six check cultivars. The slopes and inter-308 
cepts of the lines are generated from the generalized least squares model for the subset of data 309 
for a location. The coefficients of the lines are given in Table S2. 310 

Fig. 4.  Regressions of grain yield (Mg ha–1) (left column); protein content (%) (middle column); 311 
and protein yield (Mg ha-1) (right column) versus year for six cultivars in California common 312 
wheat field trials. These are based on generalized linear models that included the influence of 313 
year, degree-days, soil temperatures, total water applied, N fertilization, and pathogen infesta-314 
tion. A data point at a given year is the mean for one of six locations. The slopes and intercepts 315 
of the lines are generated from the generalized least squares model for the subset of data for a lo-316 
cation. The coefficients of the lines are given in Table S2. 317 

Fig. 5A & B.  Changes in pathogen infestation level, grain protein yield, grain yield, and grain 318 
protein content with the years after a cultivar was introduced. Shown are means ± SE. C. 319 
Changes in pathogen level, grain protein yield, grain yield, and grain protein content with patho-320 
gen infestation level. Shown are linear regressions labelled with slopes, intercepts, and correla-321 
tions squared. 322 

Fig. 6.  Wheat grain yields over time at different locations. Symbols represent the values for each 323 
year, and the lines are the quadratic polynomial regressions for the entire period. “Austral./NZ” 324 
denotes Australia and New Zealand; “Least devel.” denotes those nations that the United Nations 325 
considers to be least developed in terms of economic activities. Data derived from public data-326 
bases (FAOSTAT, 2021; National Agricultural Statistics Service, 2021). The quadratic trends are 327 

UK: y = –15.747x2 + 63537x – 6×107, r2 = 0.5384; 328 
Germany: y = –28.154x2 + 113254x – 1×108, r2 = 0.6466; 329 
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France: y = –22.544x2 + 90582x – 9×107, r2 = 0.3741; 330 
California: y = –5.1093x2 + 20487x – 2×107, r2 = 0.0134; 331 
China: y = 7.1205x2 – 27688x + 3×107, r2 = 0.9753; 332 
USA: y = 4.0775x2 – 16050x + 2×107, r2 = 0.7370; 333 
World: y = 4.6593x2 – 18293x + 2×107, r2 = 0.9614; 334 
Austral./NZ: y = 0.8438x2 – 3254x + 3×106, r2 = 0.1220; 335 
Least devel.: y = 15.398x2 – 61276x + 6×107, r2 = 0.9497. 336 

Fig. 7.  Wheat grain protein content (%) of spring-planted common wheat cultivars during the 337 
year they were introduced into Californian field trials. Shown are mean ± SE and the linear trend 338 
line (y = –0.0017 x + 16.106, r2 = 0.0007). 339 
  340 



 Blooming Plant by Bloom and Plant 

16 

Tables: 341 

Table 1.   Coefficients (Coef.) and probabilities (p) for generalized least squares mod-
els of grain yield (kg ha–1), grain protein content, and grain protein yield (kg ha–1) for 
data pooled at six locations in California and for six check cultivars from 1985 to 
2019 (n = 754). The models included the influence of year alone or year with degree-
days, soil temperature, total water applied (precipitation plus irrigation), N (nitrogen) 
fertilization, and pathogen infestation level.  

Factor 

Grain Yield Protein %×10–4 Protein Yield 

Coef. p Coef. p Coef. p 

Year alone –47.63 <0.001 0.55 0.57 –5.62 <0.001 
Year with other factors –25.19 0.019 0.99 0.91 –2.98 0.040 
Degree-days 1.86 0.001 –0.004 0.393 0.22 0.005 

Soil temperature –187.6 0.008 16.5 0.012 –12.50 0.195 

Total water applied –0.49 0.162 0.007 0.026 –0.005 0.910 

N fertilization 2.54 0.027 0.20 0.041 0.45 0.004 

Pathogen infestation level –-340.5 <0.001 0.02 0.568 –42.70 <0.001 

  343 
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Table 2.   Coefficients (Coef.) and probabilities (p) for the influence of year in generalized least squares models 
of grain yield (kg ha–1), grain protein content (%) and grain protein yield (kg ha–1) at six locations in California 
and for six check cultivars or all 654 cultivars. The models included the influence of year, degree-days, soil tem-
perature, total water applied, N fertilization, and pathogen infestation level. 

 Grain Yield Protein % Protein Yield 
Location Cultivar Years n Coef. p Coef.×10–4 p Coef. p 
6 locations 6 cultivars 85–19 754 –25.19 0.019 0.01 0.917 –2.98 0.040 
6 locations 654 cultivars 85–19 6508 –16.15 0.001 0.59 0.170 –1.62 0.016 

  344 
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Table 3.   Coefficients (Coef.) and probabilities (p) for the influence of year in generalized least squares models of 
grain yield (kg ha–1), grain protein content (%) and grain protein yield (kg ha–1) at six locations in California and 
for six check cultivars. The models included the influence of year, location or cultivar, location × Year or cultivar × 
Year, degree-days, soil temperature, total water applied, N fertilization, and pathogen infestation level, and, as indi-
cated, location or cultivar. 

 Grain Yield Protein % Protein Yield 

Location Cultivar Years n Coef. p Coef.×10–4 p Coef. p 

Delta 6 cultivars 85–19 122 –66.7 0.004 5.74 0.002 –9.66 0.015 

Imperial 6 cultivars 90–18 69 –85.3 0.005 –3.20 0.20 –12.77 0.036 

Kern 6 cultivars 86–19 141 23.8 0.27 –1.72 0.32 1.57 0.562 

Kings 6 cultivars 88–18 132 18.0 0.46 –0.67 0.74 3.74 0.171 

North 6 cultivars 89–19 152 –23.8 0.33 7.80 <0.0001 –0.50 0.885 

UCD 6 cultivars 85–19 138 –7.0 0.74 –2.19 0.20 –8.84 0.001 

6 locations Anza 85–17 171 –29.1 0.03 –1.20 0.31 –7.56 <0.001 

6 locations Blanca Grande 01–19 101 –62.8 0.01 –1.09 0.57 2.28 0.593 

6 locations Express 88–13 126 –35.5 0.04 –2.42 0.09 –11.99 <0.001 

6 locations Klasic 85–03 86 –63.3 0.02 0.14 0.95 –19.27 <0.001 

6 locations Serra 85–04 91 –65.2 0.009 2.04 0.31 –17.68 <0.001 

6 locations Yecora Rojo 85–19 179 –41.9 0.002 –0.93 0.43 –8.54 0.001 

  345 
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Figures and figure legends: 346 

 
Fig. 1A – F.  Degree-days, soil temperature, total water applied, N fertilization, pathogen infestation level, 347 
and vapor pressure deficit during the growing season for fall-planted common wheat versus year at six 348 
Californian locations where field trials were conducted. Symbols represent the values for each year during 349 
which trials were conducted, and the lines are the least square linear regressions over the entire period to 350 
aid the eye in discerning patterns in the data; Table S1 provides the slopes, intercepts, and r2 values for 351 
these lines. 352 
  353 
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 354 

 
Fig. 2. Grain protein content versus grain yield at six 
Californian locations where field trials were conducted. 
Symbols represent the values for each year during which 
trials were conducted, and the lines are the least square 
linear regressions over the entire period to aid the eye in 
discerning patterns in the data. The linear trends are 

Delta: y = –0.3582x + 14.326, r2 = 0.1152; 
Imperial: y = –0.1092x + 13.951, r2 = 0.0255; 
Kern: y = –0.2495x + 14.867, r2 = 0.1109; 
Kings: y = –0.3008x + 14.964, r2 = 0.1109; 
North: y = –0.1092x + 13.951, r2 = 0.0233; 
UCD: y = –0.0907x + 13.175, r2 = 0.0229. 

 
  355 
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Fig. 3.  Regressions of grain yield (Mg ha–1) (left column); protein content (%) (middle column); and pro-
tein yield (Mg ha-1) (right column) versus year at six locations in California common wheat field trials. 
These are based on generalized linear models that included the influence of year, degree-days, soil tem-
peratures, total water applied, N fertilization, and pathogen infestation. A data point at a given year is the 
mean for one of six check cultivars. The slopes and intercepts of the lines are generated from the general-
ized least squares model for the subset of data for a location. The coefficients of the lines are given in Ta-
ble S2. 
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Fig. 4.  Regressions of grain yield (Mg ha–1) (left column); protein content (%) (middle column); and pro-
tein yield (Mg ha-1) (right column) versus year for six cultivars in California common wheat field trials. 
These are based on generalized linear models that included the influence of year, degree-days, soil tem-
peratures, total water applied, N fertilization, and pathogen infestation. A data point at a given year is the 
mean for one of six locations. The slopes and intercepts of the lines are generated from the generalized 
least squares model for the subset of data for a cultivar. The coefficients of the lines are given in Table S2. 
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Fig. 5A & B.  Changes in pathogen infestation level, grain protein yield, grain yield, and grain protein con-
tent with the years after a cultivar was introduced. Shown are means ± SE. C. Changes in pathogen level, 
grain protein yield, grain yield, and grain protein content with pathogen infestation level. Shown are linear 
regressions labelled with slopes, intercepts, and correlations squared. 

  356 
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Fig. 6.  Wheat grain yields over time at different locations. Symbols repre-
sent the values for each year, and the lines are the quadratic polynomial 
regressions for the entire period. “Austral./NZ” denotes Australia and New 
Zealand; “Least devel.” denotes those nations that the United Nations 
considers to be least developed in terms of economic activities. Data de-
rived from public databases (FAOSTAT, 2021; National Agricultural 
Statistics Service, 2021). The quadratic trends are 

UK: y = –15.747x2 + 63537x – 6×107, r2 = 0.5384; 
Germany: y = –28.154x2 + 113254x – 1×108, r2 = 0.6466; 
France: y = –22.544x2 + 90582x – 9×107, r2 = 0.3741; 
California: y = –5.1093x2 + 20487x – 2×107, r2 = 0.0134; 
China: y = 7.1205x2 – 27688x + 3×107, r2 = 0.9753; 
USA: y = 4.0775x2 – 16050x + 2×107, r2 = 0.7370; 
World: y = 4.6593x2 – 18293x + 2×107, r2 = 0.9614; 
Austral./NZ: y = 0.8438x2 – 3254x + 3×106, r2 = 0.1220; 
Least devel.: y = 15.398x2 – 61276x + 6×107, r2 = 0.9497. 

  357 



 Blooming Plant by Bloom and Plant 

25 

 
Fig. 7.  Wheat grain protein content (%) of spring-
planted common wheat cultivars during the year they 
were introduced into Californian field trials. Shown are 
mean ± SE and the linear trend line (y = –0.0017 x + 
16.106, r2 = 0.0007). 

  358 
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Table S1.   Linear least square regressions for the data in Figure 1. 

Parameter Location Slope Intercept r2 

Degree-days Delta 3.2691 -5822 0.0727 
 Imperial 8.4973 -15652 0.3597 
 Kern 2.0383 -3232 0.0351 
 Kings 4.0883 -7348 0.0906 
 North 1.8094 -2883 0.0260 
 UCD 4.8974 -9081 0.1071 

Soil temp. Delta 0.0244 -37.65 0.1041 
 Imperial 0.0094 -4.665 0.0132 
 Kern 0.0333 -54.648 0.0641 
 Kings 0.0424 -73.375 0.093 
 North -0.0162 42.91 0.0166 
 UCD 0.0144 18.509 0.0101 

Total water applied Delta 0.0087859 -17.117 0.2323 
 Imperial 0.016597 -32.407 0.5411 
 Kern 0.0007312 -0.6623 0.0009 
 Kings -0.0068206 14.331 0.108 
 North -0.0093402 19.287 0.1188 
 UCD -0.0054087 11.519 0.1025 

N fertilization Delta 1.3473 -2655 0.0995 
 Imperial 6.609 13044 0.6970 
 Kern 1.7780 -3388 0.0246 
 Kings 1.5644 3282 0.0410 
 North 0.9277 1956 0.0389 
 UCD 2.1899 -4290 0.2408 

Pathogen infestation Delta 0.0182 -34.664 0.0395 
 Imperial 0.0 1.0 1.000 
 Kern 0.0127 -24.023 0.0249 
 Kings 0.0389 -76.248 0.1806 
 North 0.0346 -67.579 0.1019 
 UCD 0.0251 -48.390 0.074 

VPD Delta 1.4137 -2542.8 0.0234 
 Imperial 18.357 -36013 0.7207 
 Kern 1.8538 -3405.5 0.060 
 Kings 1.3753 -2446.1 0.0167 
 North 1.4137 -2542.8 0.0223 
 UCD 4.3149 -8354.7 0.239 
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Table S2.   Coefficients (Coef.), intercepts (Int.), and probabilities (p) for the influence of year in generalized least squares models of 
grain yield (kg ha–1), grain protein content, and grain protein yield (kg ha–1) for subsets of the data that contained one of six locations 
in California and all six check cultivars or that contained one of six check cultivars and all six locations. These values are used to con-
struct the lines shown in Figs. 3 and 4. The columns labeled Int. show the value of the regression in 1985. 

 Grain Yield Protein % Protein Yield 

Location Cultivar Years n Coef. Int. p 
Coef. 
×10–4 Int. p Coef. Int. p 

Delta 6 cultivars 85–19 122 –108.4 7728 0.0002 3.74 0.113 0.27 –9.79 855 0.01 

Imperial 6 cultivars 90–18 69 –92.4 9564 <0.0001 –2.68 0.134 0.13 –14.26 1283 <0.0001 

Kern 6 cultivars 86–19 141 –0.18 6832 0.99 –1.30 0.132 0.44 –1.01 904 0.72 

Kings 6 cultivars 88–18 132 –28.9 7061 0.29 –0.41 0.131 0.83 –4.07 918 0.23 

North 6 cultivars 89–19 152 –55.6 6869 0.022 7.38 0.104 <0.001 –1.29 705 0.69 

UCD 6 cultivars 85–19 138 –38.0 6665 0.18 –2.41 0.130 0.04 –7.10 874 0.03 

6 locations Anza 85–17 171 –51.8 7155 0.0004 –2.21 0.118 0.10 –6.92 832 <0.0001 

6 locations Blanca Grande 01–19 101 48.0 5712 0.10 –3.98 0.139 0.14 3.97 796 0.37 

6 locations Express 88–13 126 –79.0 7554 <0.0001 –1.99 0.135 0.31 –11.15 1008 <0.0001 

6 locations Klasic 85–03 86 –177.9 8843 <0.0001 –0.02 0.124 0.99 –24.37 1115 <0.0001 

6 locations Serra 85–04 91 –160.2 8541 <0.0001 1.32 0.119 0.67 –17.64 1001 <0.0001 

6 locations Yecora Rojo 85–19 179 –55.1 6864 0.0007 –0.16 0.130 0.92 –7.44 894 0.01 
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 361 
Fig. S1.  Monthly average atmospheric CO2 concentrations (ppm) measured at Vaira 362 
Ranch in the foothills of central California (Ma et al., 2007) or at the Mauna Loa Obser-363 
vatory on the big island of Hawaii (Lindsey, 2020). The higher seasonal CO2 variation in 364 
California derives from higher primary productivity. 365 
  366 
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 367 
Fig. S2.  Changes in wheat grain protein content (%) versus year of registration in field 368 
trials of elite winter wheat cultivars released during the past 50 years in western Europe, 369 
particularly Germany (Voss-Fels et al., 2019). Plots received 220 kg ha–1 N fertilizer and 370 
fungicide or no fungicide or 110 kg ha–1 N fertilizer and no fungicide. Shown are linear 371 
regressions labelled with slopes, intercepts, and correlations squared. 372 


