
1. Introduction

Flood frequency analysis (FFA)—estimating the probability distribution of peak flows—is a common prac-

tice in hydrology. It plays a central role in engineering design, floodplain mapping, river restoration, and 

the assessment of  ecosystem services along river corridors (Hanslı, ). Over the last century, we have 2012

seen significant theoretical and computational advances in FFA; however, fundamental challenges remain 

due to the scarcity of peak flow observations (Perez, Mantilla, Krajewski, & Wright, ; Stedinger & Griff2019 -

is,2008) and the lack of a consistent framework that accounts for hydrologic nonstationarity due to natural 

and anthropogenic changes in land use and climate (Hirabayashi etal., ; Milly etal., ).2013 2014

Multiple hydrologic drivers and physical processes modulate peak flows, including the spatiotemporal var-

iability of  rainfall, antecedent soil moisture conditions, hydraulic channel properties, and river network 

topology and geometry. In particular, previous efforts have shown that , defined as the domistorm direction -

nant direction of the moving rainstorm as it traverses the domain of interest, significantly affects the magni-

tude of individual peak flow events (e.g., Volpi etal.,2013). The role of storm direction in shaping peak flow 

distributions, however, remains unexplored, and its potential importance can be gleaned from two distinct 

perspectives: The impact of climate change on storm tracks and the estimation of  peak flow distributions 

using so-called “regionalized” techniques (Dawdy etal., ).2012

Regarding the change of storm tracks in a changing climate, previous efforts to examine potential changes 

in flood frequency under future climate projections have primarily focused on rainfall frequency and in-

tensity (e.g.,Cheng & AghaKouchak, ), with no attention to how storm direction changes may alter 2015
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peak flow response statistics. Global circulation models suggest that atmospheric circulation changes will 

increase atmospheric water vapor and cause a poleward shift in storm tracks (Mbengue & Schneider,2013; 

Tamarin-Brodsky & Kaspi, ). However, it remains unknown how atmospheric circulation changes will 2017

affect the local and regional trajectories of extreme storms, prompting calls for further research (W. Chang 

etal.,2016). A recent empirical characterization of historical changes in storm direction across the contig-

uous United States found that a large fraction of the eastern United States has seen a clockwise trend in the 

dominant direction of  precipitation potentially associated with climate variability (Goodwell,2020). The 

ubiquitous nature of  these trends emphasizes the importance of a mechanical perspective to understand 

the potential implications for FFA.

From the perspective of  hydrologic regionalization, widelyused regional flood frequency analysis (RFFA) 

methods pool peak streamflow data from gauging stations to estimate peak flow distributions at gauged 

and ungauged locations within a region of  interest (Hamed & Rao, ). RFFA uses regression analysis 2019

to estimate peak flows as a function of hydrogeomorphic predictors, typically in upstream watershed areas 

alone (e.g., Perez etal., ). These regression models are trained and validated with data from gauged 2018b

locations within a “homogeneous region” that has sufficiently similar climatologic and hydrologic charac-

teristics to justify the “pooling” of stations (Eash etal.,2013; Hosking & Wallis,1993). The definition of this 

homogeneous region does not consider the watershed orientation relative to the predominant storm tracks. 

Therefore, RFFA implicitly assumes that peak flow distributions are unaffected by storm direction even 

though adjacent watersheds can significantly differ in orientation within a region with similar preferential 

storm patterns (see Figures  and ).S1 S2

From a mechanistic perspective, the role of  storm direction in runoff  generation has been explored with 

laboratory experiments (de Lima & Singh, ) and rainfall-runoff modeling in natural and synthetic wa2003 -

tersheds (C.-L. Chang, ; Han etal., ; Kim & Seo, ; Seo & Schmidt, ) forced by real 2007 2004 2013 2013 2014,

(Lee etal., ; Sigaroodi & Chen, ; ten Veldhuis etal., ) and synthetic (Fang etal., ; Gao 2015 2016 2017 2019

& Fang, , Nunes etal., ) storms. In general, the importance of  storm direction in the peak flow 2019 2006

response depends on the compounding effects of rainfall (e.g., storm extent, speed, duration, and intensity; 

Marco & Valdés, 1998; Singh, ) and watershed (e.g., geometry and river network structure) charac2005 -

teristics (Ayalew & Krajewski, ; Perez etal., ). Based on these studies, the relationship between 2017 2018a

peak flow response and storm properties can be summarized in the following conclusions: (1) The effect of 

storm direction increases when the storm size is significantly smaller than the watershed size, and (2) the 

peak flow response tends to increase when the storm travels downstream along the main channel (Gao & 

Fang,2019; Volpi etal.,2013).

This mechanistic understanding has not been translated into FFA and estimates of  peak flow probability 

distributions. This issue is particularly challenging because peak flow probability distributions encapsulate 

a spectrum of  rainfall-runoff  events forced by storms of  varying characteristics (Furey etal., ; Perez, 2016

Mantilla, Krajewski, & Quintero, ) that can result in different levels of sensitivity to storm direction. 2019

Furthermore, the extent to which the potential spectrum of storm characteristics and watershed response 

are represented in instrumental records is difficult to determine. With this in mind, this study uses a novel 

framework that combines physics-based hydrologic simulations with large numbers of stochastically gen-

erated rainfall events to derive flood frequency distributions under varying preferential storm directions for 

two watersheds. This analysis is then used to identify the role of storm direction in flood frequency and its 

implications for regionalization approaches.

2. Methods

We consider two unregulated watersheds within the central agricultural region of  Iowa, U.S. (Figure1). 

These include the medium-scale Turkey River (TR) watershed with a drainage area of  4,385 km2  and 

the mesoscale Cedar River (CR) watershed with a drainage area of  20,168km2. The drainage area differ-

ence allows us to simultaneously evaluate the role of  storm direction and scale in peak flow probability 

distributions.
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2.1. Process-Based Framework for Flood Frequency Analysis (FFA)

We estimate peak flow distributions using a process-based framework that combines realistic synthetic rain-

fall scenarios and distributed hydrologic modeling, hereafter the RainyDay- Hillslope-Link Model (HLM) 

framework. Previous efforts have used this approach to assess the importance of  the level of  detail in the 

spatial and temporal patterns of  storms (Zhu etal., ) and climate-driven shifts in the seasonality of  2018

snowmelt and soil moisture (Yu etal., ) in peak flow distributions. Similarly, Perez, Mantilla, Krajew2019 -

ski, and Wright etal.( ) used the RainyDay-HLM framework to examine the implications of sampling 2019

and model errors in RFFA.
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Figure 1.  Panel a shows the transposition domain used in RainyDay. The rose plot in panel b represents the number 
of storms that are traveling to a specific direction over the transposition domain used in RainyDay and discretized by 
the watershed's rainfall accumulation (colors). The blue lines in panel c represent individual parent storm trajectories 
detected using the algorithm TITAN. Panel d shows four examples of watershed rotations. TITAN, thunderstorm 
identification, tracking, analysis, and nowcasting.
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2.1.1. Realistic Synthetic Rainfall Scenarios

The RainyDay software generates realistic synthetic storms via temporal resampling and spatial transpo-

sition of  selected storms extracted from gridded data sets from a transposition domain  that surrounds 

the watershed of  interest. The selected storms are the largest noncontemporaneous rainfall events over 

, where the magnitude of  each event is defined in terms of  rainfall accumulation over a user-defined 

duration  and with the same size, shape, and orientation of the watershed of interest. The storms selected 

for stochastic storm transposition (SST) are called the “parent storms.” Based on a transposition domain  

bounded by latitudes 40.2°N and 45°N and longitudes 90.2°W and 96.7°W and using April–November Stage 

IV rainfall data for 2002–2018 (Du, ), we selected a total of 350 and 135 parent storms for TR and CR 2011

watersheds, respectively. Finally, following the approach proposed by Wright etal.( ), we used 2017 2020,

RainyDay to generate 20 realizations of 500 synthetic annual rainfall scenarios for a total of 10,000 synthetic 

annual storms for each watershed (See the supporting information for a detailed description of the Rainy-

Day procedure).

The direction, extent, and intensity of  the parent storms were estimated using the thunderstorm identi-

fication, tracking, analysis, and nowcasting (TITAN) storm characterization algorithm (Dixon & Wie-

ner,1993) and the object-based storm identification algorithm proposed by Davis etal.( ) (Figure2006 S3; 

Li et al., ). This analysis shows that the catalog of  storms selected for the TR watershed exhibits a 2020

strong west-east directionality with an average direction  = 92° clockwise from the north (Figure1b; 

similar results for CR watershed are not shown), consistent with the storm climatology in the region (Prein 

etal., ).2020

2.1.2. Distributed Hydrologic Modeling and Flood Frequency Analysis

We simulated the spectrum of extreme hydrologic response for each watershed by forcing the distributed hy-

drologic HLM with the 10,000 synthetic annual storms generated with RainyDay. HLM is a modular hydro-

logic model developed by the Iowa Flood Center (IFC) at the University of Iowa (Quintero etal.,2016 2020, ) 

which decomposes the landscape into hillslopes and channels to represent a myriad of hydrologic processes 

including infiltration, overland flow, percolation, base flow, and channel routing. Here we use the HLM 

configuration currently implemented by the IFC for flood forecasting within Iowa to capture the flood 

dynamics in the region (Quintero etal., ). Continuous, long-term simulations from 2002 to 2018 using 2016

Stage IV radar rainfall data demonstrate the HLM's ability to capture the flood dynamics for the study wa-

tersheds (FigureS4). The reader can find additional details about the assumptions behind the HLM and the 

specific configuration used in this study in the work of Quintero etal.( ).2016

After verifying and validating the HLM for each watershed (Figure ), we simulated the streamflow reS4 -

sponse for each of the 10,000 synthetic annual storms created with RainyDay. For each storm, we initialized 

the model using the procedure described by Yu etal.( ), where initial soil moisture and baseflow con2019 -

ditions are randomly drawn from the long-term hydrologic simulations. This random selection was con-

strained to ensure the realistic “pairing” of rainstorms with seasonally consistent watershed conditions. We 

used a simulation period of 30days to capture the peak in the hydrograph.

e ed nonparametric peak flow prob ility distributions from the simulated peak flows. 

e e nc probability  for a single peak flo  simulation within a distribution is calculated as 

  , where  is the rank of the peak and  is the number of storms in the distribution (i.e., 

500 annual storms). Thus, this approach allows us to estimate exceedance probabilities as low as 0.002 (i.e., 

the 500-year recurrence interval). The 20 realizations of 500 storms allowed us to estimate 20 distinct peak 

flow distributions for each watershed, providing a measure of our estimates' uncertainty.

2.2.  Watershed Rotation in Process-Based Flood Frequency Analysis

The RainyDay-HLM framework was used to quantify the effect of storm direction in the peak flow probabil-

ity distribution. To this end, we changed the direction of synthetic storms while preserving their other spati-

otemporal characteristics (extent, duration, intensity, and velocity) and analyzed the resulting hydrographs. 

Storm direction is defined as the dominant direction of the moving rainstorm as it traverses the domain of 

interest, and it should not be confused with instantaneous fluctuations in the storm's trajectory due to local 
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variability of the velocity field. Figures  and  illustrate the dominant storm trajectories and their statis1b 1c -

tics for the transposition domain used by RainyDay.

Changes in t irectio tematically rotating the watershed clockwise by an an-

gle  about its , equival wise rotation of the rainfall events. This rotation results 

in relative cha  the prefe storm trajectories across the region ( ) and the water-

shed orientation w , defined as w s. The relative change  is at the core of our analyses and 

interpretations. We repeat the storm identification, resampling, transposition, and subsequent hydrologic 

simulations for each rotation as described in Section . Example watershed rotations with the respective 2.1

relative rotation  are shown in Figure . We explored watershed rotations from 0° to 330° in steps of 30° 1d

for a total of  12 different rotations. With 10,000 events for each rotation, a total of  120,000 rainfall-runoff  

simulations were performed for each watershed.

3. Results and Discussion

3.1. Rotation Effects on Peak Flow Events

We begin by analyzing the ef  direction on specific rainfall-runoff events. This analysis provides 

a baseline to understand dif etween sensitivity to storm direction in rainfall-runoff  events and 

peak flow probability distrib hree storms were selected at random for each watershed from the 

original parent storm catalog ) to illustrate the contrasting storm dynamics. To perform a fair com-

parison, where the watershed is forced by an equally extreme event in every direction, these storms were 

transposed for each watershed rotation to maximize the total watershed-average precipitation.

Spatial patterns of accumulated precipitation, calculated with the original rainfall data set, for the six select-

ed events are shown in FigureS5. The precipitation amount depends on the watershed's size and orientation 

and the rainfall field's spatial structure as illustrated for each storm and different watershed rotations in 

Figures2a 2b and . For instance, with a  ( ) in the TR watershed, Event 1 produces an average of 

195mm over 72h (the watershed's time of concentration); for the same event with a  ( ), the 

watershed only receives an average of 140mm. Differences in total rainfall amounts for the mesoscale CR 

watershed are lower. This observation can be explained by the larger size and longer accumulation period 

(12days) which is more likely to encompass the storm core irrespective of the rotation angle.

We performed hydrologic simulations based on these six rainfall events and initialized the watershed with 

100 different randomly sampled antecedent soil moisture conditions as explained in Section2.1. The result-

ing hydrographs for rotations  and  with the three events are shown in Figure . For the TR S6

watershed, the peak flow and total rainfall respond similar to the watershed rotation presenting the highest 

peak flows for storms traveling roughly in a downstream direction along the main channel ( ; Fig-

ures2a and2c). In contrast, for the CR watershed, we found substantial differences in the effects of storm 

direction (i.e., watershed rotation) in the peak flow and total rainfall (Figures  and ). Specifically, the 2b 2d

total rainfall presents limited variability as a function of  rotation while the peak flow is highly sensitive. 

These results indicate that peak flows in larger watersheds are not necessarily maximized by storms trave-

ling downstream along the main channel. It is also worth noting that the effect of storm direction in peak 

flows is not symmetric (Figure2d), suggesting that the dynamic of runoff generation during extreme events 

is more complex in larger watersheds due to the variability in the rainfall positioning over the watershed.

3.2. Rotation Effects on Peak Flow Distributions

We focus on the peak flows ( ) with 25-, 100-, and 500-year recurrence intervals ) as proxies for the 

peak flow probability distributions (Figures  and ). For each recurrence interval and storm direction, 3c 3d

we quantify the variability of  the  estimates in terms of  the 25th, 50th, and 75th quantiles from the 20 

independent realizations of the RainyDay-HLM framework (shaded bands in Figures  and ).3c 3d

Our results demonstrate that peak flow distributions at the scale of  TR watershed or smaller are roughly 

independent of the storm direction. The symmetric nature of the rose diagrams for the TR watershed (Fig-

ure3c) and four of  its subwatersheds (Figure ) support this conclusion. In contrast, for the larger CR S7
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watershed, the peak flows with 100- and 500-year return periods increase up to 25% for  (a rotation 

of ; Figure ). These results are consistent with the mean standard deviation and skewness of the peak 3d

flow simulations where significant variations are only observed for the CR watershed (Figure ).S8

We compared the peak flow distributions calculated with the standard FFA (England, ) and RFFA 2018

(Eash etal.,2013) for the two watersheds (Figure4). In general, the FFA estimated with the RainyDay-HLM 

framework under the current preferential storm direction ( ) is characterized by higher peak flow es-

timates than the standard FFA (referred to as B17C). This difference in peak flow estimates increases with 

the return period for the TR watershed and is relatively constant for the CR watershed. This finding can be 

explained by an ongoing period of elevated flood activity across the region over the last two decades when 

radar-based rainfall estimates are available and are consistent with previous FFA results using RainyDay in 

the TR watershed (Wright etal.,2017; Yu etal.,2019 2018; Zhu etal., ).

The differences caused by changes in the preferential storm direction relative to the watershed orientation 

(mimicked by a watershed rotation here) are of particular interest. An  ( ) results in mini-

mal changes for the peak flow quantiles in the TR watershed (red and blue lines in Figure ). Similar re4a -

sults are found for other rotations of the TR watershed (not shown). In contrast, on highlighting the effect of 

scale, the peak flow quantiles show a drastic change, with differences increasing with the return period for a 

 ( ) in the CR watershed (red and blue lines in Figure4b); we selected this rotation because it 

displays the largest difference in peak flow quantiles between rotation angles. These results suggest a spatial 

scale between the TR watershed (4,385km2) and the CR watershed (20,168km2) for which changes in the 

storm direction substantially influence the distribution of peak flows.

We argue that the influence of  storm direction (including the footprint of  rainfall accumulation) in the 

mesoscale CR watershed, and lack thereof  in the medium-scale TR watershed, is driven by differences 

in flood mechanistic processes that depend on the interplay between storm scale and watershed size. For 

instance, the typical characteristic area for the parent storms is approximately 1,680 km2  with a range 
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Figure 2.  Total precipitation (Panels a and b) and peak flows (Panels c and d) for three specific rainfall-runoff events 
resulting from systematic watershed rotations from 0° to 330°, the angles are denoted by . Total precipitation for the 
TR watershed and CR watershed was calculated over 72h and 12days, respectively. The green bands on the peak flows 
represent the interquartile range based on 100 different initial conditions. CR, Cedar River; TR, Turkey River.
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Figure 3.  Total precipitation (Panels a and b) and peak flows (Panels c and d) for 25-, 100-, and 500-year recurrence 
intervals associated with rotations from 0° to 330°, the angles are denoted by . Green and blue bands represent the 
interquartile range based on 20 independent realizations of the RainyDay-HLM framework. HLM, Hillslope-Link 
Model.

Figure 4.  Peak flow quantiles estimated from Bulletin 17C (England, ), regional regression equations (Eash, ), observed peak flows, and RainyDay-2018 2015
HLM with (a)  Rotation (SST-Rot0) and  Rotation (SST-Rot120) for TR watershed and (b)  Rotation (SST-Rot60) for CR watershed. The 
regional regression for the CR watershed does not exist due to the large watershed size. CR, Cedar River; HLM, Hillslope-Link Model; SST, stochastic storm 
transposition; TR, Turkey River.
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of  227 to 13,000 km2 (see the distribution of  hourly estimates of  storm area in Figure ). The area of S3

the TR watershed is 4,385km2  (A A
watershed storm/ .2 6), and the area of  the CR watershed is 20,168km2 

(A A
watershed storm

/ 12). The size of the storms driving runoff generation in the TR watershed is in the order 

of  the size of  the watershed, leading to a similar distribution of rainfall fluxes for different rotations. In 

contrast, the CR watershed is large when compared to the average storm scale (about 12 times larger), and 

therefore the rotation results in the runoff activation of different parts of the landscape with a marked effect 

in the peak flow distribution. This argument is supported by the rainfall patterns of the five highest peak 

flows for the TR and CR watersheds with rotations of  and  (see  in the supporting inforvideos -

mation). In this case, the rainfall patterns are nearly invariant for  and  in the TR watershed. 

The patterns for the CR watershed show a more dynamic and heterogeneous behavior; for instance, the 

highest peak flow in the simulations for the CR watershed with  is generated by the compounding 

effect of an initial storm located in the upper part of the watershed followed by a second storm at the lower 

part, a behavior absent for .

3.3. Potential Implications Under Future Shifts in the Preferential Storm Direction

The mesoscale CR watershed results suggest that watersheds in the study region with   60 150  (See 

Figure3d) are the most vulnerable to extreme changes in peak flow distributions due to changes in prefer-

ential storm directions. For instance, a shift of  from 73° to 103° equivalent to a counterclockwise change 

of  30° in the preferential storm direction could increase the 100-year flood by 20% (Figure 3d). These 

results could be considered as an initial approximation to understand how sensitive the neighboring water-

sheds are to changes in peak flows by variations in  (See Figure  for an example showing the variability S2

of  at a regional scale). Nonetheless, further analysis considering different watersheds under contrasting 

climatological conditions is needed to understand the impacts in a larger spectrum of watershed geometries 

in tandem with different storm sizes.

4. Conclusions

Using realistic storm scenarios, we found that the role of the preferential storm direction on rainfall-runoff 

events strongly depends on the characteristic scale of the rainfall events relative to the watershed's size, with 

the sensitivity increasing for smaller storms. In particular, peak flow probability distributions are independ-

ent of storm direction at the spatial scale of the TR watershed (4,385km2) and a series of its subwatersheds. 

In contrast, the peak flow probability distribution for the mesoscale CR watershed (20,168km2) is signifi-

cantly affected by storm direction, showing an increase in peak flow quantiles of up to 25%.

These findings provide a critical step toward a deeper understanding of the potential implications of future 

shifts in storm directions under a changing climate. In particular, it sets expectations for changes in flood 

frequency statistics and highlights the limitations of regionalization techniques. RFFA efforts that neglect 

storm direction are liable to greatly misrepresent the actual flood behavior in certain watersheds, particular-

ly those that are relatively large or whose geometry differs substantially from the prevailing watershed ori-

entation in the region. Meanwhile, high-resolution regional climate model projections should be assessed 

for changes in the simulated storm direction.

Data Availability Statement

Documentation and codes of  HLM are available at https://asynch.readthedocs.io/en/latest/ https:// and 

github.com/Iowa-Flood-Center/asynch. The RainyDay software is available at https://github.com/danielb-

wright/RainyDay2. The peak flow values generated from the RainyDay-HLM framework for the TR and CR 

watersheds can be downloaded from https://github.com/gjperez/GRL_Peak_Flows_Rotations.
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