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Abstract Storm direction modulates a hydrograph's magnitude and duration, thus having a
potentially large effect on local flood risk. However, how changes in the preferential storm direction affect
the probability distribution of peak flows remains unknown. We address this question with a novel Monte
Carlo approach where stochastically transposed storms drive hydrologic simulations over medium and
mesoscale watersheds in the Midwestern United States. Systematic rotations of these watersheds are used
to emulate changes in the preferential storm direction. We found that the peak flow distribution impacts
are scale-dependent, with larger changes observed in the mesoscale watershed than in the medium-

scale watershed. We attribute this to the high diversity of storm patterns and the storms' scale relative

to watershed size. This study highlights the potential of the proposed stochastic framework to address
fundamental questions about hydrologic extremes when our ability to observe these events in nature is
hindered by technical constraints and short time records.

Plain Language Summary Estimating the likelihood of extreme events such as floods is
becoming more challenging because climate change affects storm patterns worldwide. This study focuses
on understanding how storm direction affects the probability distribution of peak flows, which is essential
for floodplain mapping and engineering design of resilient infrastructure under future climate. Our results
suggest that storm direction has minor implications for these probability distributions in medium-sized
watersheds or smaller (order of 4,000 km?®) but can significantly affect larger watersheds, particularly for
the largest flood events. Our findings point to avenues for future interdisciplinary analyses of the complex,
dynamic role of rainfall structure in flooding.

1. Introduction

Flood frequency analysis (FFA)—estimating the probability distribution of peak flows—is a common prac-
tice in hydrology. It plays a central role in engineering design, floodplain mapping, river restoration, and
the assessment of ecosystem services along river corridors (Hansli, 2012). Over the last century, we have
seen significant theoretical and computational advances in FFA; however, fundamental challenges remain
due to the scarcity of peak flow observations (Perez, Mantilla, Krajewski, & Wright, 2019; Stedinger & Griff-
is, 2008) and the lack of a consistent framework that accounts for hydrologic nonstationarity due to natural
and anthropogenic changes in land use and climate (Hirabayashi et al., 2013; Milly et al., 2014).

Multiple hydrologic drivers and physical processes modulate peak flows, including the spatiotemporal var-
iability of rainfall, antecedent soil moisture conditions, hydraulic channel properties, and river network
topology and geometry. In particular, previous efforts have shown that storm direction, defined as the domi-
nant direction of the moving rainstorm as it traverses the domain of interest, significantly affects the magni-
tude of individual peak flow events (e.g., Volpi et al., 2013). The role of storm direction in shaping peak flow
distributions, however, remains unexplored, and its potential importance can be gleaned from two distinct
perspectives: The impact of climate change on storm tracks and the estimation of peak flow distributions
using so-called “regionalized” techniques (Dawdy et al., 2012).

Regarding the change of storm tracks in a changing climate, previous efforts to examine potential changes
in flood frequency under future climate projections have primarily focused on rainfall frequency and in-
tensity (e.g., Cheng & AghaKouchak, 2015), with no attention to how storm direction changes may alter
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peak flow response statistics. Global circulation models suggest that atmospheric circulation changes will
increase atmospheric water vapor and cause a poleward shift in storm tracks (Mbengue & Schneider, 2013;
Tamarin-Brodsky & Kaspi, 2017). However, it remains unknown how atmospheric circulation changes will
affect the local and regional trajectories of extreme storms, prompting calls for further research (W. Chang
et al., 2016). A recent empirical characterization of historical changes in storm direction across the contig-
uous United States found that a large fraction of the eastern United States has seen a clockwise trend in the
dominant direction of precipitation potentially associated with climate variability (Goodwell, 2020). The
ubiquitous nature of these trends emphasizes the importance of a mechanical perspective to understand
the potential implications for FFA.

From the perspective of hydrologic regionalization, widelyused regional flood frequency analysis (RFFA)
methods pool peak streamflow data from gauging stations to estimate peak flow distributions at gauged
and ungauged locations within a region of interest (Hamed & Rao, 2019). RFFA uses regression analysis
to estimate peak flows as a function of hydrogeomorphic predictors, typically in upstream watershed areas
alone (e.g., Perez et al., 2018b). These regression models are trained and validated with data from gauged
locations within a “homogeneous region” that has sufficiently similar climatologic and hydrologic charac-
teristics to justify the “pooling” of stations (Eash et al., 2013; Hosking & Wallis, 1993). The definition of this
homogeneous region does not consider the watershed orientation relative to the predominant storm tracks.
Therefore, RFFA implicitly assumes that peak flow distributions are unaffected by storm direction even
though adjacent watersheds can significantly differ in orientation within a region with similar preferential
storm patterns (see Figures S1 and S2).

From a mechanistic perspective, the role of storm direction in runoff generation has been explored with
laboratory experiments (de Lima & Singh, 2003) and rainfall-runoff modeling in natural and synthetic wa-
tersheds (C.-L. Chang, 2007; Han et al., 2004; Kim & Seo, 2013; Seo & Schmidt, 2013, 2014) forced by real
(Lee et al., 2015; Sigaroodi & Chen, 2016; ten Veldhuis et al., 2017) and synthetic (Fang et al., 2019; Gao
& Fang, 2019, Nunes et al., 2006) storms. In general, the importance of storm direction in the peak flow
response depends on the compounding effects of rainfall (e.g., storm extent, speed, duration, and intensity;
Marco & Valdés, 1998; Singh, 2005) and watershed (e.g., geometry and river network structure) charac-
teristics (Ayalew & Krajewski, 2017; Perez et al., 2018a). Based on these studies, the relationship between
peak flow response and storm properties can be summarized in the following conclusions: (1) The effect of
storm direction increases when the storm size is significantly smaller than the watershed size, and (2) the
peak flow response tends to increase when the storm travels downstream along the main channel (Gao &
Fang, 2019; Volpi et al., 2013).

This mechanistic understanding has not been translated into FFA and estimates of peak flow probability
distributions. This issue is particularly challenging because peak flow probability distributions encapsulate
a spectrum of rainfall-runoff events forced by storms of varying characteristics (Furey et al., 2016; Perez,
Mantilla, Krajewski, & Quintero, 2019) that can result in different levels of sensitivity to storm direction.
Furthermore, the extent to which the potential spectrum of storm characteristics and watershed response
are represented in instrumental records is difficult to determine. With this in mind, this study uses a novel
framework that combines physics-based hydrologic simulations with large numbers of stochastically gen-
erated rainfall events to derive flood frequency distributions under varying preferential storm directions for
two watersheds. This analysis is then used to identify the role of storm direction in flood frequency and its
implications for regionalization approaches.

2. Methods

We consider two unregulated watersheds within the central agricultural region of Iowa, U.S. (Figure 1).
These include the medium-scale Turkey River (TR) watershed with a drainage area of 4,385 km? and
the mesoscale Cedar River (CR) watershed with a drainage area of 20,168 km” The drainage area differ-
ence allows us to simultaneously evaluate the role of storm direction and scale in peak flow probability
distributions.
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Figure 1. Panel a shows the transposition domain used in RainyDay. The rose plot in panel b represents the number
of storms that are traveling to a specific direction over the transposition domain used in RainyDay and discretized by
the watershed's rainfall accumulation (colors). The blue lines in panel c represent individual parent storm trajectories
detected using the algorithm TITAN. Panel d shows four examples of watershed rotations. TITAN, thunderstorm
identification, tracking, analysis, and nowcasting.

2.1. Process-Based Framework for Flood Frequency Analysis (FFA)

We estimate peak flow distributions using a process-based framework that combines realistic synthetic rain-
fall scenarios and distributed hydrologic modeling, hereafter the RainyDay- Hillslope-Link Model (HLM)
framework. Previous efforts have used this approach to assess the importance of the level of detail in the
spatial and temporal patterns of storms (Zhu et al., 2018) and climate-driven shifts in the seasonality of
snowmelt and soil moisture (Yu et al., 2019) in peak flow distributions. Similarly, Perez, Mantilla, Krajew-
ski, and Wright et al. (2019) used the RainyDay-HLM framework to examine the implications of sampling
and model errors in RFFA.
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2.1.1. Realistic Synthetic Rainfall Scenarios

The RainyDay software generates realistic synthetic storms via temporal resampling and spatial transpo-
sition of selected storms extracted from gridded data sets from a transposition domain A’ that surrounds
the watershed of interest. The selected storms are the largest noncontemporaneous rainfall events over
A, where the magnitude of each event is defined in terms of rainfall accumulation over a user-defined
duration r and with the same size, shape, and orientation of the watershed of interest. The storms selected
for stochastic storm transposition (SST) are called the “parent storms.” Based on a transposition domain A’
bounded by latitudes 40.2°N and 45°N and longitudes 90.2°W and 96.7°W and using April-November Stage
IV rainfall data for 2002-2018 (Du, 2011), we selected a total of 350 and 135 parent storms for TR and CR
watersheds, respectively. Finally, following the approach proposed by Wright et al. (2017, 2020), we used
RainyDay to generate 20 realizations of 500 synthetic annual rainfall scenarios for a total of 10,000 synthetic
annual storms for each watershed (See the supporting information for a detailed description of the Rainy-
Day procedure).

The direction, extent, and intensity of the parent storms were estimated using the thunderstorm identi-
fication, tracking, analysis, and nowcasting (TITAN) storm characterization algorithm (Dixon & Wie-
ner, 1993) and the object-based storm identification algorithm proposed by Davis et al. (2006) (Figure S3;
Li et al., 2020). This analysis shows that the catalog of storms selected for the TR watershed exhibits a
strong west-east directionality with an average direction &, = 92° clockwise from the north (Figure 1b;
similar results for CR watershed are not shown), consistent with the storm climatology in the region (Prein
et al., 2020).

2.1.2. Distributed Hydrologic Modeling and Flood Frequency Analysis

We simulated the spectrum of extreme hydrologic response for each watershed by forcing the distributed hy-
drologic HLM with the 10,000 synthetic annual storms generated with RainyDay. HLM is a modular hydro-
logic model developed by the Iowa Flood Center (IFC) at the University of Iowa (Quintero et al., 2016, 2020)
which decomposes the landscape into hillslopes and channels to represent a myriad of hydrologic processes
including infiltration, overland flow, percolation, base flow, and channel routing. Here we use the HLM
configuration currently implemented by the IFC for flood forecasting within Iowa to capture the flood
dynamics in the region (Quintero et al., 2016). Continuous, long-term simulations from 2002 to 2018 using
Stage IV radar rainfall data demonstrate the HLM's ability to capture the flood dynamics for the study wa-
tersheds (Figure S4). The reader can find additional details about the assumptions behind the HLM and the
specific configuration used in this study in the work of Quintero et al. (2016).

After verifying and validating the HLM for each watershed (Figure S4), we simulated the streamflow re-
sponse for each of the 10,000 synthetic annual storms created with RainyDay. For each storm, we initialized
the model using the procedure described by Yu et al. (2019), where initial soil moisture and baseflow con-
ditions are randomly drawn from the long-term hydrologic simulations. This random selection was con-
strained to ensure the realistic “pairing” of rainstorms with seasonally consistent watershed conditions. We
used a simulation period of 30 days to capture the peak in the hydrograph.

Finally, we derived nonparametric peak flow probability distributions from the simulated peak flows.
The exceedance probability p for a single peak flow simulation within a distribution is calculated as
p=jl (1 + T ), where j is the rank of the peak and Ti.x is the number of storms in the distribution (i.e.,
500 annual storms). Thus, this approach allows us to estimate exceedance probabilities as low as 0.002 (i.e.,
the 500-year recurrence interval). The 20 realizations of 500 storms allowed us to estimate 20 distinct peak
flow distributions for each watershed, providing a measure of our estimates’ uncertainty.

2.2. Watershed Rotation in Process-Based Flood Frequency Analysis

The RainyDay-HLM framework was used to quantify the effect of storm direction in the peak flow probabil-
ity distribution. To this end, we changed the direction of synthetic storms while preserving their other spati-
otemporal characteristics (extent, duration, intensity, and velocity) and analyzed the resulting hydrographs.
Storm direction is defined as the dominant direction of the moving rainstorm as it traverses the domain of
interest, and it should not be confused with instantaneous fluctuations in the storm’s trajectory due to local
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variability of the velocity field. Figures 1b and 1c illustrate the dominant storm trajectories and their statis-
tics for the transposition domain used by RainyDay.

Changes in the storm direction were explored by systematically rotating the watershed clockwise by an an-
gle # about its centroid, equivalent to a counterclockwise rotation of the rainfall events. This rotation results
in relative changes in the preferential direction of storm trajectories across the region (&,) and the water-
shed orientation [aw ), defined asa = [rxw + 0) — a,. The relative change « is at the core of our analyses and
interpretations. We repeat the storm identification, resampling, transposition, and subsequent hydrologic
simulations for each rotation as described in Section 2.1. Example watershed rotations with the respective
relative rotation & are shown in Figure 1d. We explored watershed rotations from 0° to 330° in steps of 30°
for a total of 12 different rotations. With 10,000 events for each rotation, a total of 120,000 rainfall-runoff
simulations were performed for each watershed.

3. Results and Discussion
3.1. Rotation Effects on Peak Flow Events

We begin by analyzing the effect of storm direction on specific rainfall-runoff events. This analysis provides
a baseline to understand differences between sensitivity to storm direction in rainfall-runoff events and
peak flow probability distributions. Three storms were selected at random for each watershed from the
original parent storm catalog (¢ = 0“) to illustrate the contrasting storm dynamics. To perform a fair com-
parison, where the watershed is forced by an equally extreme event in every direction, these storms were
transposed for each watershed rotation to maximize the total watershed-average precipitation.

Spatial patterns of accumulated precipitation, calculated with the original rainfall data set, for the six select-
ed events are shown in Figure S5. The precipitation amount depends on the watershed's size and orientation
and the rainfall field's spatial structure as illustrated for each storm and different watershed rotations in
Figures 2a and 2b. For instance, with ac = 18% (¢ = 0°) in the TR watershed, Event 1 produces an average of
195 mm over 72 h (the watershed's time of concentration); for the same event with a @ = 78° (¢ = 60°), the
watershed only receives an average of 140 mm. Differences in total rainfall amounts for the mesoscale CR
watershed are lower. This observation can be explained by the larger size and longer accumulation period
(12 days) which is more likely to encompass the storm core irrespective of the rotation angle.

We performed hydrologic simulations based on these six rainfall events and initialized the watershed with
100 different randomly sampled antecedent soil moisture conditions as explained in Section 2.1. The result-
ing hydrographs for rotations # = 0° and # = 60° with the three events are shown in Figure S6. For the TR
watershed, the peak flow and total rainfall respond similar to the watershed rotation presenting the highest
peak flows for storms traveling roughly in a downstream direction along the main channel (& = 18°; Fig-
ures 2a and 2c). In contrast, for the CR watershed, we found substantial differences in the effects of storm
direction (i.e., watershed rotation) in the peak flow and total rainfall (Figures 2b and 2d). Specifically, the
total rainfall presents limited variability as a function of rotation while the peak flow is highly sensitive.
These results indicate that peak flows in larger watersheds are not necessarily maximized by storms trave-
ling downstream along the main channel. It is also worth noting that the effect of storm direction in peak
flows is not symmetric (Figure 2d), suggesting that the dynamic of runoff generation during extreme events
is more complex in larger watersheds due to the variability in the rainfall positioning over the watershed.

3.2. Rotation Effects on Peak Flow Distributions

We focus on the peak flows (@7,) with 25-, 100-, and 500-year recurrence intervals (7}) as proxies for the

peak flow probability distributions (Figures 3c and 3d). For each recurrence interval and storm direction,
we quantify the variability of the Oy, estimates in terms of the 25th, 50th, and 75th quantiles from the 20
independent realizations of the RainyDay-HLM framework (shaded bands in Figures 3c and 3d).

Our results demonstrate that peak flow distributions at the scale of TR watershed or smaller are roughly
independent of the storm direction. The symmetric nature of the rose diagrams for the TR watershed (Fig-
ure 3c) and four of its subwatersheds (Figure S7) support this conclusion. In contrast, for the larger CR
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Turkey River at Garber Cedar River near Conesville
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Figure 2. Total precipitation (Panels a and b) and peak flows (Panels ¢ and d) for three specific rainfall-runoff events
resulting from systematic watershed rotations from 0° to 330°, the angles are denoted by «. Total precipitation for the
TR watershed and CR watershed was calculated over 72 h and 12 days, respectively. The green bands on the peak flows
represent the interquartile range based on 100 different initial conditions. CR, Cedar River; TR, Turkey River.

watershed, the peak flows with 100- and 500-year return periods increase up to 25% for @ = 103" (a rotation
of 60°; Figure 3d). These results are consistent with the mean standard deviation and skewness of the peak
flow simulations where significant variations are only observed for the CR watershed (Figure S8).

We compared the peak flow distributions calculated with the standard FFA (England, 2018) and RFFA
(Eash et al., 2013) for the two watersheds (Figure 4). In general, the FFA estimated with the RainyDay-HLM
framework under the current preferential storm direction (¢ = 0°) is characterized by higher peak flow es-
timates than the standard FFA (referred to as B17C). This difference in peak flow estimates increases with
the return period for the TR watershed and is relatively constant for the CR watershed. This finding can be
explained by an ongoing period of elevated flood activity across the region over the last two decades when
radar-based rainfall estimates are available and are consistent with previous FFA results using RainyDay in
the TR watershed (Wright et al., 2017; Yu et al., 2019; Zhu et al., 2018).

The differences caused by changes in the preferential storm direction relative to the watershed orientation
(mimicked by a watershed rotation here) are of particular interest. An a = 138" (¢ = 120°) results in mini-
mal changes for the peak flow quantiles in the TR watershed (red and blue lines in Figure 4a). Similar re-
sults are found for other rotations of the TR watershed (not shown). In contrast, on highlighting the effect of
scale, the peak flow quantiles show a drastic change, with differences increasing with the return period for a
a = 103°(8 = 60°) in the CR watershed (red and blue lines in Figure 4b); we selected this rotation because it
displays the largest difference in peak flow quantiles between rotation angles. These results suggest a spatial
scale between the TR watershed (4,385 km?®) and the CR watershed (20,168 km?) for which changes in the
storm direction substantially influence the distribution of peak flows.

We argue that the influence of storm direction (including the footprint of rainfall accumulation) in the
mesoscale CR watershed, and lack thereof in the medium-scale TR watershed, is driven by differences
in flood mechanistic processes that depend on the interplay between storm scale and watershed size. For
instance, the typical characteristic area for the parent storms is approximately 1,680 km® with a range
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Figure 3. Total precipitation (Panels a and b) and peak flows (Panels ¢ and d) for 25-, 100-, and 500-year recurrence
intervals associated with rotations from 0° to 330°, the angles are denoted by . Green and blue bands represent the
interquartile range based on 20 independent realizations of the RainyDay-HLM framework. HLM, Hillslope-Link
Model.
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Figure 4. Peak flow quantiles estimated from Bulletin 17C (England, 2018), regional regression equations (Eash, 2015), observed peak flows, and RainyDay-
HLM with (a) # = 0° Rotation (SST-Rot0) and # = 120° Rotation (SST-Rot120) for TR watershed and (b) # = 60° Rotation (SST-Rot60) for CR watershed. The
regional regression for the CR watershed does not exist due to the large watershed size. CR, Cedar River; HLM, Hillslope-Link Model; SST, stochastic storm

transposition; TR, Turkey River.
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of 227 to 13,000 km® (see the distribution of hourly estimates of storm area in Figure S3). The area of
the TR watershed is 4,385 km* (A yersned / Asorm ~ 2-6), and the area of the CR watershed is 20,168 km*
(Ayaershed ! Asom ~ 12). The size of the storms driving runoff generation in the TR watershed is in the order
of the size of the watershed, leading to a similar distribution of rainfall fluxes for different rotations. In
contrast, the CR watershed is large when compared to the average storm scale (about 12 times larger), and
therefore the rotation results in the runoff activation of different parts of the landscape with a marked effect
in the peak flow distribution. This argument is supported by the rainfall patterns of the five highest peak
flows for the TR and CR watersheds with rotations of & = 0°and & = 60° (see videos in the supporting infor-
mation). In this case, the rainfall patterns are nearly invariant for # = 0°and ¢ = 60° in the TR watershed.
The patterns for the CR watershed show a more dynamic and heterogeneous behavior; for instance, the
highest peak flow in the simulations for the CR watershed with & = 60° is generated by the compounding
effect of an initial storm located in the upper part of the watershed followed by a second storm at the lower
part, a behavior absent for & = 0°,

3.3. Potential Implications Under Future Shifts in the Preferential Storm Direction

The mesoscale CR watershed results suggest that watersheds in the study region with « e [60"1500] (See

Figure 3d) are the most vulnerable to extreme changes in peak flow distributions due to changes in prefer-
ential storm directions. For instance, a shift of & from 73° to 103° equivalent to a counterclockwise change
of 30° in the preferential storm direction could increase the 100-year flood by ~20% (Figure 3d). These
results could be considered as an initial approximation to understand how sensitive the neighboring water-
sheds are to changes in peak flows by variations in @, (See Figure S2 for an example showing the variability
of & at a regional scale). Nonetheless, further analysis considering different watersheds under contrasting
climatological conditions is needed to understand the impacts in a larger spectrum of watershed geometries
in tandem with different storm sizes.

4. Conclusions

Using realistic storm scenarios, we found that the role of the preferential storm direction on rainfall-runoff
events strongly depends on the characteristic scale of the rainfall events relative to the watershed's size, with
the sensitivity increasing for smaller storms. In particular, peak flow probability distributions are independ-
ent of storm direction at the spatial scale of the TR watershed (4,385 km?) and a series of its subwatersheds.
In contrast, the peak flow probability distribution for the mesoscale CR watershed (20,168 km?) is signifi-
cantly affected by storm direction, showing an increase in peak flow quantiles of up to 25%.

These findings provide a critical step toward a deeper understanding of the potential implications of future
shifts in storm directions under a changing climate. In particular, it sets expectations for changes in flood
frequency statistics and highlights the limitations of regionalization techniques. RFFA efforts that neglect
storm direction are liable to greatly misrepresent the actual flood behavior in certain watersheds, particular-
ly those that are relatively large or whose geometry differs substantially from the prevailing watershed ori-
entation in the region. Meanwhile, high-resolution regional climate model projections should be assessed
for changes in the simulated storm direction.

Data Availability Statement

Documentation and codes of HLM are available at https://asynch.readthedocs.io/en/latest/ and https://
github.com/Iowa-Flood-Center/asynch. The RainyDay software is available at https://github.com/danielb-
wright/RainyDay2. The peak flow values generated from the RainyDay-HLM framework for the TR and CR
watersheds can be downloaded from https://github.com/gjperez/GRL_Peak Flows_Rotations.
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