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Abstract— Robotic prostheses provide new opportunities to
better restore lost functions than passive prostheses for trans-
femoral amputees. But controlling a prosthesis device automat-
ically for individual users in different task environments is an
unsolved problem. Reinforcement learning (RL) is a naturally
promising tool. For prosthesis control with a user in the loop,
it is desirable that the controlled prosthesis can adapt to
different task environments as quickly and smoothly as possible.
However, most RL agents learn or relearn from scratch when
the environment changes. To address this issue, we propose
the knowledge-guided Q-learning (KG-QL) control method as
a principled way for the problem. In this report, we collected
and used data from two able-bodied (AB) subjects wearing a RL
controlled robotic prosthetic limb walking on level ground. Our
ultimate goal is to build an efficient RL controller with reduced
time and data requirements and transfer knowledge from AB
subjects to amputee subjects. Toward this goal, we demonstrate
its feasibility by employing OpenSim, a well-established human
locomotion simulator. Our results show the OpenSim simulated
amputee subject improved control tuning performance over
learning from scratch by utilizing knowledge transfer from AB
subjects. Also in this paper, we will explore the possibility of
information transfer from AB subjects to help tuning for the
amputee subjects.

I. INTRODUCTION

The rapid development of robotic prostheses in both
research and commercial products brings them closer to real-
life scenarios. Compared to passive devices, robotic lower
limb prostheses promise to provide better functions to restore
natural gaits for amputees, such as decreased metabolic
consumption [1], improved adaptation to various terrains [2],
[3] or walking speed [4], and enhanced balance and stability
[5]. In robotic lower limb prosthetics, finite state impedance
control (FS-IC) [6], [7] is still the most common approach
in both prototypes or commercial devices. However, in order
to maximize the performance for each user, there are a large
number of control parameters in these devices that need to
be tuned by experienced clinicians.

Reinforcement learning allows learning from interacting
with the environment to generate suitable actions while
maximizing a performance reward in a particular situation.
Learning can take place under different formulations of
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a problem, including learning directly from data without
requiring an explicit mathematical description of the environ-
ment and the interacting dynamics between the controller and
the environment. This has given RL an expanded domain of
control applications beyond the capacity of traditional control
theory and practice. There have been several successful
demonstrations of RL applications to solving challenging
robotic control problems. Among those, deep RL methods at-
tracted most attentions. For example, Nair et al. [8] employed
deep deterministic policy gradients (DDPG) for a robotic arm
block stacking task with sparse reward. The authors of [9]
proposed deep latent policy gradient (DLPG) for learning
locomotion skills. However, deep RL based methods may be
not suitable for biomedical applications such as the human-
prosthesis control problem being discussed in this paper,
because training data involving amputee subjects are usually
difficult to acquire and expensive to collect. Additionally,
experimental sessions involving human subjects usually can-
not last more than one hour because of human fatigue and
safety considerations. To tackle this challenge, we proposed
several sample-efficient and easy-to-implement RL methods
in our previous works [10]-[13] allowing for directly learning
from data. In our application of prosthesis control, it is very
common that the robotic prosthesis need to be adapted for
a new user. However, these RL methods, as well as most
existing RL methods, are designed to learn from scratch
whenever a new task or new model is presented, and thus not
readily capable of storing and transferring knowledge gained
from one subject to another.

It is therefore of high priority that the RL agent is
designed to be training time and sample efficient when tuned
for a new user. To take advantage of previous knowledge
and information, we consider building a representation for
potentially transferable knowledge across subjects. In the
current study, we consider extracting knowledge from able-
bodied (AB) subjects and use that for future RL control
design for amputee subjects. It is known that transfer learning
has attracted great attention in the machine learning field
where it is typically considered for storing knowledge gained
while solving one problem and applying it to a different
but related problem [14]. In the context of general transfer
learning in the literature, our prosthesis parameter tuning
problem has the same state and action while the problem
calls for gaining knowledge from tuning parameters for AB
subjects (source task) and using that for tuning parameters
for amputee subjects (target task).

Recently, many successful applications of structural
knowledge transfer have been reported in the literature.
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Fig. 1. Schematic of knowledge-guided RL control. (a) Knowledge representation by regression models of the system are obtained using data from two
able-bodied subjects. (b) The online learning process in OpenSim: an actor-critic agent is trained to optimize the impedance parameters by interacting with
the lower limb walking model in OpenSim, with the help of the transferred knowledge represented in the function of Q′(xk, uk). (c) Gray dashed line:
normal knee kinematics, blue line: actual measured knee kinematics.

Barreto et al. [15] solved the problem where rewards change
but environments remain the same using successor features, a
value function representation that decouples the dynamics of
the environment from the rewards. Asadi et al. [16] proposed
a learning architecture which transfers control knowledge in
the form of behavioral skills and representation hierarchy,
which separates the subgoals so that a more compact state
space can be learned. In [17], researchers demonstrated that
Schema network is capable to perform zero-shot transfer
between tasks where cause-effect relationship remains un-
changed, such as learning to play the breakout game with
different maps. In [18], target apprentice learning is proposed
for cross-domain transfer, e.g. from balancing a cart-pole to
balancing a bike.

Unlike the above approaches, we propose a new knowl-
edge transfer framework for the class of problems that
transfer from a source task to a target task while main-
taining the same state and control problems. We built a
knowledge representation from AB subjects into the actor-
critic update, and the knowledge transfer schedule results
in a diminishing influence of previous knowledge, which
simultaneously allows for increased attention to learning of
the target task on hand. Specifically, we first collected data
from AB subjects, then we built regression models on these
data, which then became transferred knowledge to guide a Q-
learning process, namely our proposed knowledge guided Q-
learning (KG-QL) process. Our method introduces two new
advances from the existing transfer learning methods. First,
we provided a flexible framework where the representation
of the transferred knowledge can be either a value function
or a regression model or both. Second, the amount of
transferred knowledge into a new task can be programmed
in a convenient way to address different applications’ needs.

II. METHODS

Fig. 1 is a schematic diagram of our proposed transfer
learning-based or knowledge guided reinforcement learning
framework for prosthesis parameter tuning.

A. Finite State Impedance Control of Human-Prosthesis Sys-
tem

From the perspective of a RL agent, the integrated human-
prosthesis system can be treated as a nonlinear dynamic
system of the form

xk+1 = F (xk, uk), k = 0, 1, 2, . . . (1)

where k is the discrete time index or gait cycle in this
study, xk ∈ R2 is the state vector, uk ∈ R3 is the action
or control vector, and F describes the intrinsic human-
prosthesis system dynamics of how a new state at k + 1
evolves from a current state and control at k. Specifically,
state xk is defined as the differences (errors) between the
measured knee angle profile and the target knee profile at
the feature points. The target knee profile is identical to
those normative knee kinematics reported in [19]. In Fig.
1(c), for each of the four phases there is a pair of such feature
points with black and red markers, where their vertical and
horizontal differences are peak error ∆Pk ∈ R and duration
error ∆Dk ∈ R, respectively:

xk = [∆Pk,∆Dk]T . (2)

The RL controller is realized within an established FS-
IC platform. In FS-IC, a complete gait cycle is divided into
four sequential gait phases based on knee joint kinematics
and ground reaction force (GRF) by a finite state machine
(FSM). These four gait phases are stance flexion (STF),
stance extension (STE), swing flexion (SWF) and swing
extension (SWE). In real-time experiments, phase transitions
are realized as those in [7] based on Dempster-Shafer theory
(DST). In each phase, the prosthetic system mimics a pas-
sive spring-damper-system with a group of three predefined
impedance parameters as

Ik = [Kk, Bk, θe,k] ∈ R3, (3)

where Kk is stiffness, Bk is damping coefficient and θe,k
is equilibrium position. For all four phases, there are 12
impedance parameters in total. Four RL controllers sharing
identical structure are designed separately for the four phases
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, and each of them has its own parameters. The knee joint
torque T ∈ R is generated based on the following impedance
control law

Tk = Kk(θ − θe,k) +Bkω. (4)

Correspondingly, the action uk of the RL agent is defined as
adjustments ∆Ik to the impedance parameters Ik,

uk = ∆Ik = [∆Kk,∆Bk,∆θe,k]. (5)

B. Human Gait Data Collection

To perform knowledge transfer from a source task to a
target task, first we need to obtain the transferable knowl-
edge, which can be represented in the form of raw data,
policy, value function, or others. Here we define a function
Q′(xk, uk) to store such information for transfer. It takes
state and action as input to generate the state-action value
function or Q-value function Q(x, u) as in the RL literature.
Although Q′ can be a previously learned Q-value function
from a RL agent, it can also be represented in other forms.
In this work, we construct Q′ using regression model based
on the source task data.

Source task data was collected from two AB participants
(both male, 25-35 years old) while walking at a constant
speed of 0.6 m/s on a treadmill with force platforms em-
bedded within each belt. All participants provided written
informed consent prior to participating according to protocols
approved by the Institutional Review Board at North Carolina
State University. A certified prosthetist aligned the robotic
knee prosthesis for each subject. The AB subjects used an
L-shape adaptor (with one leg bent 90 degrees) to walk with
the robotic knee prosthesis (Fig. 1(a)) [11].

The gait data used in this study includes a total of
N = 1120 pairs of state-action tuples (xk, uk) from the
two AB subjects (AB1: 480 pairs, AB2: 640 pairs) using the
same prosthesis device. During data collection, the prosthesis
impedance parameters were controlled by the dHDP based
RL approach that we investigated previously [11], [20]. Note
that the dHDP was only to provide some control to the
prosthesis instead of providing optimal control to achieve a
performance measure. In other words, the data were drawn
from the online learning process of the dHDP RL controller
rather than generated by a well-learned policy to provide
sufficient exploration of the control policy space. Actually, a
RL controller is not unique for data collection. Any sampling
method is acceptable as long as it sufficiently samples the
control parameter space, and it maintains practical stability
of the human-prosthesis system. Note that during data col-
lection, the impedance parameters Ik were updated every
seven gait cycles, and state xk was averaged by the seven
gait cycles conditioned on the same impedance parameters
Ik. That is to say, to reduce step-by-step variability in feature
measurements, the time index k here corresponds to every
seven gait cycles.

C. Extracting Knowledge from Human Gait Data

We performed linear regression to establish a relationship
between prosthesis impedance parameters and the human-
prosthesis system kinematics as follows,

xk+1 = F(xk, uk) = F(zk) = β0 + β1zk + e, (6)

where xk+1 ∈ R2 is the next state, β0 ∈ R is the intercept,
β1 ∈ R2×5 is the regression coefficient (or the slope), zk =
[xk, uk] ∈ R5 is the predictor variable formed by the current
state xk and action uk, and e ∈ R2 is the error term. Least-
square solution of the coefficients β0 and β1 can be found
using the (xk, uk, xk+1) tuples. Equation (6) characterizes
the human-prosthesis system qualitatively because when a
controller enables the human-prosthesis system to generate
improved locomotion performance, we generally observe that
|xk+1| ≤ |xk|.

After the regression model F is obtained, we can formu-
late Q′(xk, uk) based on F(xk, uk). How Q′ is formulated
also relates to the stage reward or cost in RL. In our work, we
set the stage cost variable rk = 0 for success and rk = 1 for
failure (see (9)), which implied that the goal for the RL agent
was to minimize the total cost-to-go. Accordingly, inspired
by LQR control objective function, Q′ was formulated as a
quadratic form such that Q′ ≥ 0,which was consistent with
rk ≥ 0 and Qi ≥ 0 (Qi is the iterative Q-value function
defined in (14) and (15)):

Q′ = 0.02x2k+1 = 0.02(F(xk, uk))2. (7)

Note that here the form of Q′ was manually defined and was
not unique. The ratio of 0.02 was set manually to make Q′

within a comparable range of the stage cost rk. As shown
later, knowledge represented in Q′ can be adopted by the
designer at a preferred rate. Fig. 2 Illustrates kinematics and
Q-values as knowledge representations.

D. Knowledge Guided Reinforcement Learning

Algorithm 1 Knowledge Guided Q-Learning (KG-QL) for
prosthesis control with a human in the loop
Input: Transferred knowledge Q′ from a source task
Initialization: Random actor NN weights and critic NN
weights. i = 0, k = 0.

1: Start from a random initial state x0.
2: repeat
3: Get uk from xk according to actor NN (ε-greedy).
4: Take action uk, observe cost rk and next state xk+1.
5: Update actor NN weights to minimize (22).
6: Update critic NN weights to minimize (24).
7: xk+1 ← xk.
8: i← i+ 1, k ← k + 1.
9: until xk is a terminal state

We have introduced how the transferred knowledge Q′

is obtained through regression. Now we can move onto the
online learning process of the RL agent as shown in Fig. 1(b).
We call this RL algorithm a knowledge-guided Q-learning
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algorithm (KG-QL) because when determining a best action
for the next step, its decision is guided and biased by the
transferred knowledge Q′.

At time index k, the RL agent starts from state xk and
takes the action uk. Then it ends up at the next state xk+1,
and receives a cost rk. This process repeats for k = 1, 2, ...
until a terminal state is reached. The total cost-to-go function
or value function is defined as

J(xk, uk) =
∞∑
j=k

γj−krk, (8)

where rk = r(xk, uk) is the stage cost, and γ is the discount
factor with 0 < γ < 1. In our work, we defined rk as

rk = r(xk, uk) =


0, if xk+1 is a success state
1, if xk+1 is a failure state
0.01, otherwise

(9)

In this work, a success state is defined as when the state is
in the target range, and a failure state is defined as the state
is out of the safety range. Further details can be found in
III-A.

Equation (8) can be written as

J(xk, uk) = rk + γJ(xk+1, uk+1). (10)

According to Bellman’s optimality principle [21], the optimal
cost function J∗ satisfies the action dependent discrete time
Hamilton–Jacobi–Bellman (HJB) equation

J∗(xk, uk) = rk + γmin
uk+1

J∗(xk+1, uk+1). (11)

Besides, the optimal control π∗ can be expressed as

π∗(xk) = arg min
uk

J∗(xk, uk). (12)

By substituting (12) into (11), the discrete time HJB equation
becomes

J∗(xk, uk) = rk + γJ∗(xk+1, π
∗(xk+1)). (13)

For an actor-critic agent, we have the following structure,

πi(xk) = arg min
uk

Qi(xk, uk), (14)

Qi+1(xk, uk) = rk + γQi(xk+1, πi(xk+1)), (15)

where i is the iterative index, πi and Qi are the iterative
control policy and iterative Q-value function, respectively.
Combining (14) and (15), we have

Qi+1(xk, uk) = rk + γmin
uk+1

Qi(xk+1, uk+1). (16)

Accordingly, the knowledge-guided form of actor-critic
learning can be written as

πi(xk) = arg min
uk

[Qi(xk, uk) + αiQ
′(xk, uk)], (17)

Qi+1(xk, uk) = rk + γ[Qi(xk+1, πi(xk+1))

+ αiQ
′(xk+1, πi(xk+1))],

(18)

where Q′ is an positive semi-definite function that represents
previously learned knowledge, and 0 ≤ αi ≤ 1 is a weighting
factor such that αi+1 ≤ αi, and αi → 0 when i → ∞.
Here we simply let αi be a uniformly decreasing sequence
of 0.5,0.49,0.48,...,0 as i increases. Combining the above two
equations, we have

Qi+1(xk, uk) = rk + γmin
uk+1

[Qi(xk+1, uk+1)

+ αiQ
′(xk+1, uk+1)]

(19)

E. Actor-Critic Implementation
Algorithm 1 summarizes our implementation of the the

proposed KG-QL method. Note that i increases with k at the
same time in our implementation. These two indexes i and
k have different meanings, and they are not equal in general
(though they are equal in this work), so we did not combine
them. We implemented KG-QL with an actor-critic structure
[22], [23], where (17) was implemented by an actor, and (18)
was implemented by a critic. Both actor and critic were feed-
forward neural networks (NN) with one hidden layer (5-6-1
for the critic, and 2-6-3 for the actor). The critic has the state
xk and the action uk as inputs, and outputs an approximation
of the Q-value function, denoted by Q̂(xk, uk). The actor
has state xk as inputs, and outputs the control action uk.
The actor used a tangent sigmoid activation function ϕ(v) in
both the hidden layer and output layer,

ϕ(v) =
1− exp(−v)

1 + exp(−v)
(20)

where v is the input vector for the activation function. Note
that −1 < ϕ(v) < 1. For the critic, it also used the same
tan-sigmoid function ϕ(v) in its hidden layer. But it used a
linear activation function φ(v) = v in its output layer.

During training, the actor and critic back-propagated their
prediction error to update their weights (Steps 5 & 6 in
Algorithm 1). The prediction error of the actor ea,k ∈ R
is to realize (17),

ea,k = Q̂i(xk, uk) + αiQ
′(xk, uk). (21)

Then the squared error Ea for the actor is

Ea =
1

2
e2a,k. (22)

The prediction error of the critic ec,k ∈ R is the temporal
difference (TD) error of (18),

ec,k = rk + γ[Q̂i(xk+1, πi(xk+1))

+ αiQ
′(xk+1, πi(xk+1))]− Q̂i+1(xk, uk)

(23)

which is the difference between the left-hand side and right-
hand side of (18). To correct the prediction error, the weight
update objective was to minimize the squared performance
error Ec,

Ec =
1

2
e2c,k. (24)

III. RESULTS

In the following experiments, knowledge was extracted
from AB subjects and then transferred to an OpenSim
simulated amputee subject.
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(a) (b)

Fig. 2. Knowledge extraction and representation based on AB human
subjects. Data shown here is from the SWF phase. (a) The regression model
in (6). (b) Knowledge representation in the form of Q′ in (7).

(a) (b)

Fig. 3. Knee angle profiles. (a) Before Tuning (b) After Tuning

A. OpenSim Experiment Setup

The OpenSim lower limb walking model (Fig. 1(a)) used
in this work is adopted from [24] and identical to the one
in [10]. In this model, five rigid-body segments linked by
one degree-of-freedom pin joints are used to model human
walking dynamics. For the tuning task, we defined a target
range of ±1° and ±0.01 s for peak error ∆Pk and duration
error ∆Dk, respectively. Only if for all four phases both
|∆Pk| < 1° and |∆Dk| < 0.01s were met then we said
the state xk was in the target range. If |∆Pk| or |∆Dk| are
greater than some preset values, then state xk was out of
the safety range and the control system resets to the default
position of initial impedance parameters to ensure human
subject safety. More details about the target range and safety
range can be found in our previous work [10, Table I].
An episode is the process from learning step k = 0 until
termination which can either be that the state xk enters the
target range for 10 consecutive gait cycles or runs out of
safety range. If terminated, the state xk was reset with the
initial impedance and initial state as the next episode began.
Each OpenSim session consisted of multiple episodes with
a total of maximum 500 gait cycles.

The common parameters used in the OpenSim experiment
are listed as follows except those mentioned elsewhere. The
discount factor γ was set to 0.95, the initial NN weights for
both actor and critic were uniformly distributed between −1
and 1.

B. Knowledge Representation Results

Fig. 2 depicts the regression results data from two AB
subjects in the SWF phase. In Fig 2(a), the z-axis is the
next peak error ∆Pk+1, which is the first element of the
next state xk+1. Its values were obtained from the linear
regression model (6) by varying one of the state variable peak
error ∆Pk and one of the action variable ∆θe,k, while other
state and action variables remain unchanged. We can learn
how the next peak angle θk+1 may change from Fig 2(a).
For example, suppose ∆Pk = −5°. If ∆θe,k = −2°, then
∆Pk+1 < −5° according to Fig 2(a). Vice versa, if ∆θe,k =
2°, then ∆Pk+1 > −5°. So 2° may be a better choice than
−2° for ∆θe,k in this case, as it makes the deviation of the
next peak error ∆Pk+1 smaller. Fig 2(b) shows the values of
Q′ which are computed from (7). Q′ has a minimum value
0 at (0, 0). Larger Q′ value indicates greater cost, which is
unfavorable by the RL agent.

C. Results of Reinforcement Learning with Knowledge
Transfer

Fig. 3 shows the knee kinematics with different initial
impedance parameters in the 10 simulation sessions were
distant from the target profile, especially the peak angle
errors. Clearly, after the impedance parameters were adjusted
by the proposed RL controller, knee kinematics of the final
acclimation stages approached the target points. Specifically,
the averaged absolute values of the peak errors over the three
sessions deceased from 1.23° ± 0.77° to 0.36° ± 0.32° for
STF, from 3.13° ± 0.31° to 0.52° ± 0.24° for STE, from
5.53° ± 0.89° to 0.63° ± 0.68° degrees for SWF and from
2.72°±1.67° to 0.12°±0.25° for SWE. The results indicate
that the proposed knowledge guided QL controller is able to
adjust the prosthetic knee kinematics to reproduce the target
knee profile under different initial conditions.

Fig. 4 illustrates the evolution of the state, i.e. peak errors
∆Pk and duration errors ∆Dk, during the experimental
session under one of the sets of initial parameters. Since
similar results were obtained from other experiment ses-
sions, hereafter we only present the result from the first
session as an example. Because all four phases were tuned
simultaneously, the parameter changes in one phase would
affect its subsequent phases. In Fig. 4, notice that the sharp
edges on the curves indicate the impedance parameters being
reset to their initial values, because failure occurred. In this
example episode, the KG-QL agent was able to reduce all
peak errors and duration errors to zero after approximately
150 gait cycles.

Fig. 5 illustrates the averaged root-mean-square error
(RMSE) of the gait knee profile over the 10 experimental
sessions. With the transferred knowledge from AB subjects,
the RMSE of the proposed KG-QL algorithm drops faster
than the QL without knowledge transfer, i.e., learning with
αi = 0 in (18). Our proposed KG-QL achieved a RMSE
performance less than 1° after only 100 gait cycles, however,
QL without knowledge transfer can only achieved similar
performance after about 400 gait cycles. Fig. 4 and Fig. 5
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(a) (b) (c) (d)

Fig. 4. Evolution of states in the four gait phases (a) phase STF (b) phase STE (c) phase SWF (d) phase SWE.

Fig. 5. Comparison of root-mean-square error (RMSE) for the with
knowledge guide case and the without knowledge guide case.

show that the target task time was significantly reduced with
knowledge transfer.

IV. DISCUSSIONS AND CONCLUSIONS

We developed a new KG-QL framework to integrate
and transfer knowledge from AB subjects to OpenSim
simulated amputee subjects with a common goal of opti-
mizing impedance parameters for robotic knee prosthesis.
The knowledge for transfer can be obtained offline using
historical data, aka, from AB subjects in our study, to
facilitate online reinforcement learning for amputee subjects.
Our OpenSim simulation results validated this new approach
and showed that our new scheme can help restore near-
normal knee kinematics, in a time and sample-efficient
manner compared to the naive learner. Our results suggested
that the proposed KG-QL controller is a promising new
framework when performing the cross-subject learning for
the robotic knee prosthesis with human in the loop. Our
demonstrated effectiveness of transfer learning from AB
subjects to OpenSim simulated amputee subject may be
due to the fundamental principle guiding human gaiting.
Or in other words, the underlying physiology and physics
represented in the relationships from impedance parameters
in the FS-IC to knee joint torque and further to locomotion,
should be preserved in both AB subjects and the OpenSim

simulated amputee subjects, where in the latter case, the
forward dynamics model should capture such relationships.

Based on experimental measurements from two AB sub-
jects, we established a knowledge representation in the form
of a regression model of the human-prosthesis dynamics, and
a Q-value integration of this knowledge for transferring to the
target task. We demonstrated the effectiveness of this KG-QL
control framework. Our results show that, with transferred
knowledge, QL was able to reach a comparable performance
in the target task of an OpenSim simulated subject, but saving
at least 60% of the learning time.

Our contribution is not limited to the demonstration of
the feasibility of such transfer learning. It also includes
our proposed RL control design framework that allows for
flexible knowledge representation in the value function or
system dynamics or both. In addition, we provided additional
flexibility by allowing for a designer to determine how much
information can be transferred from the source task to the
target task. In addition, our KG-RL control framework pro-
vides a principled way to solving transfer learning problems
that involve the same states and controls. Thus, it can be
integrated with other TD-based methods such as SARSA
and value iteration, as well as their deep learning variants,
to name a few.

In this work, we demonstrated the feasibility of KG-QL
based control to automatically tune robotic prostheses. To
validate the full potential of our approach, we need to further
evaluate it with transfers between AB subjects as well as
amputees. Also, the normative (target) knee kinematics being
used in this paper may not be an ideal design goal for the
RL agent. We will explore other design goals that better
quantify the human-prosthesis gait performance, such as gait
symmetry index and stability margin.
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