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• A regional crop simulation framework 
was proposed by coupling CropSyst with 
GIS. 

• Major crops’ annual yields were pre
dicted for a cropland-concentrated sub- 
watershed. 

• Low organic matter content and soil 
sand percentage caused nitrogen 
deficiency. 

• Crop yields could be effectively 
improved with the tested management 
strategies.  

A R T I C L E  I N F O   

Editor: Mark van Wijk  

Keywords: 
CropSyst 
Crop yield 
Decision-making 
GIS 
Nitrogen deficiency 

A B S T R A C T   

CONTEXT: In agricultural activities, the decision-making process is central to agricultural system management 
and subsequent crop yield. As a powerful tool in field-specific decision-making processes, crop simulation models 
have the potential to simulate crop yields on a large scale. However, their performance is often biased by the 
spatial heterogeneity of environment and management factors when applied over a large scale. 
OBJECTIVE: The major objectives of this study include: (1) Predicting and evaluating the annual yields of 
dominant crops with real rotation scenarios; (2) Locating fields with low crop yield and determining possible 
reasons; and (3) Evaluating the improvement for crop yield with different management strategies. 
METHODS: This study proposed a crop yield simulation framework at the regional level by coupling a cropping 
system model (CropSyst) with a geographic information system (QGIS) to provide more reliable information for 
the decision-making process. In the study of a cropland concentrated USGS sub-watershed (Hydrologic Unit 
Code: 031402030101) in Geneva County, Alabama, we estimated the annual yields of four regionally dominant 
crops (i.e., corn, cotton, soybean, and peanuts) from 2016 to 2018. Low yield fields were identified in the 
simulation results visualization. Moreover, four management strategies were tested at a field scale to improve 
annual yields. 
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RESULTS AND CONCLUSIONS: Overall, the simulated crop yields were significantly correlated with the recorded 
values (Pearson’s r = 0.99). However, the performance of the regional model varied for different crops. The 
model achieved the best performance for soybean with a high index of agreement (0.93) and modeling efficiency 
(0.86). For cotton, the model achieved positive model efficiency (0.23) and a good index of agreement (0.59). For 
peanut and maize, the model fitted records well but not sensitive enough. According to the visualization of 
simulation results, we located fields with low yields. The low organic matter content and high sand percentage of 
the soil were the potential causes of the nitrogen deficiency, which leads to the low yield subsequently. In field 
scale tests, four proposed management strategies could increase the cotton yields as high as 74.4%. But some 
strategies would also increase greenhouse gas emissions at the same time. 
SIGNIFICANCE: This study bridges the gap between local cropping system models and the regional estimation of 
crop yields. The GIS-based crop simulation framework developed here demonstrates the potential of cropping 
system models to provide reliable information at a regional scale and hence significantly broadens their appli
cation in the agricultural decision-making process.   

1. Introduction 

Decision-making is a selection among several alternatives based on 
values, possibilities, and personal preferences (Isen et al., 1982; Die
trich, 2010). In agricultural activities, the decision-making process is 
ubiquitous in cropland-related management, such as irrigation, fertil
ization, tillage, harvest, and residue treatment. One of the essential 
factors for agricultural decision-making is the maximization of farmers’ 
profit (Feather and Cooper, 1995; Perez, 2015), which leads to reluc
tance to accept potential risks. For example, some farmers still rely on a 
high dosage of fertilizer due to their concern about production loss 
(Stuart et al., 2014), even though increasing fertilizer efficiency rather 
than dosage would contribute to achieving economic optimum (Smith 
and Siciliano, 2015). A supporting system providing accurate crop yield 
prediction would ensure that farmers have rational risk perceptions and 
could play a critical role in profit maximization (Foster and Rausser, 
1991; Dury et al., 2012). 

Model simulation has been widely used to study agricultural activities 
for a long time (Bouman et al., 1996; Hansen, 1996). As an essential tool to 
quantitatively characterize an agricultural system, model simulation can 
integrate different dynamic processes associated with crops, soil, climate, 
and human activities (Zhang et al., 2002). The first crop growth model was 
developed by de Wit back in the 1960s, and it simulated photosynthesis of 
leaf canopies by combining physical and biological principles (de Wit, 
1958; de Wit, 1965). Beginning with the work from pioneers, the evolu
tion of agricultural modeling was boosted by increasing grant opportu
nities from the public and private sectors and the revolution in related 
technologies (Jones et al., 2017). Over more than six decades, numerous 
agricultural system models have been developed for different end-users 
with specific purposes. For examples, DSSAT and CropSyst are used for 
modeling the crop growth and yield; ADEL and OpenAlea are used for 
virtual plants simulation; DNDC and DayCent are used to simulate 
greenhouse gas emission from agriculture fields; agent-based models are 
used in the simulation of agricultural economics (Parton et al., 1998; 
Zhang et al., 2002; Fournier et al., 2003; Parker et al., 2003; Stöckle et al., 
2003; Pradal et al., 2008). Although the focuses of these modeling efforts 
are quite different, all of them help to understand the interaction between 
agricultural production, natural resources, and human factors. 

Previous studies have demonstrated that crop simulation models 
successfully estimate the crop yield and the impact of different man
agement strategies at field-specific scales for most of the cash crops in 
the U.S., such as maize, soybean, and cotton (Farahani et al., 2009; 
Setiyono et al., 2010; Liu et al., 2011; Archontoulis et al., 2014). With 
accurate information about crops, soil, and weather, crop simulation 
models can be applied to investigate the temporal variation of crop yield 
at a scale where environmental conditions are relatively homogeneous 
(Florin et al., 2009; Balkovič et al., 2013). However, in the decision- 
making process, decision/policy makers often need the upscaled infor
mation at larger spatial extents where the crop model simulation is often 
biased by the spatial heterogeneity in soil distribution, climate pattern, 

and human preference in rotation and management (Hansen and Jones, 
2000; Priya and Shibasaki, 2001). 

To enlarge the scale of crop simulation, geographic information 
system (GIS) is technically necessary due to its ability to store, manip
ulate, analyze, and visualize the relevant spatial data (Maguire, 1991; 
Hartkamp et al., 1999). With the aid of GIS, crop simulation can be 
applied over various scales. At relatively large extents (e.g., national and 
global), GIS-based crop models are usually used to investigate the 
response of agricultural systems to environmental stress. Liu (2009) 
applied GEPIC model, the combination of ArcGIS and EPIC crop model, 
to investigate the relationship between water management and crop 
production at a global scale. Parry et al. (2004) analyzed the global 
impact of climate change on crop production by integrating geospatial 
input with a crop growth model (i.e., IBSNAT-ISACA). Large extent 
applications are usually suffered from low resolution of input data and 
cannot capture the spatial variation within modeling units. On the other 
hand, GIS-based crop simulation applications at relatively small extents 
(e.g., field to regional) usually study the impact of field variability (e.g., 
soil, cultivar, and management practices) on crop yield. Thorp et al. 
(2008) developed an interface (i.e., Apollo), combing ArcGIS and DSSAT 
crop growth model, to evaluate the impact of management practices and 
environmental factors on crop yield at a field scale. Jin et al. (2017) 
estimated wheat yield at a regional scale with remote sensing data and 
AquaCrop crop model. Compared to the application at large extents, 
GIS-based crop simulation at small extents could take advantage of fine 
resolution inputs and better support decision-making processes in spe
cific agricultural systems. 

No matter the scales, current GIS-based crop simulation studies tend 
to simplify or neglect crop modeling inputs, especially management 
practices which vary greatly over space and time. Among those prac
tices, rotation is often excluded from the consideration. Integrating crop 
rotation into the simulation requires a great modeling effort since 
agricultural land uses (e.g., crop species, crop proportion, and field area) 
often changes constantly even in a single field. In addition, the degree of 
this variation is highly dependent on the field owner’s personal prefer
ence and experience, which would also introduce a large spatial varia
tion. Due to these difficulties, existing GIS-based crop simulation studies 
mostly focused on single-year and single-crop analyses (Thorp et al., 
2008; Resop et al., 2012; Kadiyala et al., 2015; Jin et al., 2017). How
ever, crop rotation is regarded as a prominent strategy to increase the 
sustainability of agricultural systems and is widely applied all over the 
world. Kollas et al. (2015) indicated that, compared to the simulation of 
single years and single crops, the simulation of multi-year crop rotations 
provided more reliable results with fewer errors at specific fields in 
Europe. Among previous GIS-based crop simulations, only a few studies 
considered crop rotation with simplification. Zhang et al. (2010) eval
uated biofuel crop production from 10 assumed crop rotations in several 
counties in Michigan State. Morari et al. (2004) studied the impact of 
fertilization and irrigation on crop production at a sub-watershed scale, 
in which the rotation is simplified by assuming the major crop (i.e., the 
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crop with the largest cropping area) as the only crop in a modeling unit. 
In this study, a crop growth model is jointed in a GIS-based frame

work to simulate the crop yield at a sub-watershed scale. Among various 
types of crop growth models, CropSyst (version 4) (Stöckle et al., 2003) 
is selected since this processes-based crop model can easily generate a 
combination of predefined input factors (i.e., soil, weather, management 
practices, and crop rotation) through its scenario generator. On the 
other hand, given its open-access toolbox and easy-to-use interface, the 
QGIS (version 3.6.3) platform (QGIS Development Team, 2016) is 
selected for inputs preparation and outputs visualization in this study. 
Compared with previous GIS-based crop simulation, this study applied 
more realistic crop rotations, which would contribute to a more reliable 
prediction. Subsequently, the framework developed in this study would 
better bridge the gap between local cropping system models and the 
regional estimation of crop yields. Our major objectives include: (1) 
Predicting and evaluating the annual yields of dominant crops at an 
agricultural-land-concentrated sub watershed; (2) Locating fields with 
low crop yield and determining their possible reasons; and (3) Evalu
ating the improvement for crop yield with different management stra
tegies in testing scenarios. 

2. Method 

2.1. CropSyst-GIS framework 

A GIS-based framework was established to investigate the crop yield 
simulation at a regional scale (Fig. 1) (Hartkamp et al., 1999; Stöckle 
et al., 2003). This framework consisted of a crop simulation model and a 
GIS platform. The CropSyst (version 4), a multi-year multi-crop daily 
time-step model, was used to simulate crop yield, while the QGIS 
(version 3.6.3) software was used for preparing model inputs and 
visualizing simulation outputs (Stöckle et al., 2003, QGIS Development 
Team, 2016). Based on the combination of different types of local in
formation (i.e., rotation scenarios, soil types, and weather), the study 
area was segmented into different polygons, in which modeling inputs 
were homogeneous. And, crop yields simulation was conducted by the 
CropSyst (version 4) within each polygon. The simulation results were 
then visualized for all the polygons according to the predicted annual 
yields of corresponding crops. 

For each crop, the simulated yields were divided into five categories, 
namely below 60%, 60 to 70%, 70 to 80%, 80 to 90%, and beyond 90% 
of the maximum recorded yields (i.e., 1102 kg/ha, 3807 kg/ha, 8742 
kg/ha, and 3255 kg/ha for cotton, peanut, maize, and soybean, 
respectively) in the study area (USDA-NASS, 2003). The polygons with 
crop yields less than 60% of the maximum records were regarded as low 
yield polygons. In this study, a nitrogen stress index (NSI) was computed 
daily by the CropSyst (version 4) to quantify the plant response to ni
trogen deficiency condition. The NSI ranges from 0 to 1 with higher 
values indicating greater nitrogen stress in crop growth (Stöckle et al., 
2003). The daily NSI values were then summed for each year to 

represent the annual accumulation of nitrogen stress. 
Two assumptions underlay the framework. First, the deterministic 

field crop simulation is also valid at a regional scale. According to the 
development of modeling units (i.e., polygons), modeling inputs within 
each unit are homogenous. Therefore, crop growth modeling in each 
unit is reliable and the overall performance of the framework depends 
on the accuracy of modeling inputs. Second, the physical transferring 
processes between neighboring modeling units are neglected. Two 
possible transferring processes include runoff water and contained nu
trients. Runoff water can be neglected here since water demand is easily 
satisfied by rainfall. Nutrients in runoff water could be an extra input. 
However, runoff water from the neighboring field will pass on until 
reach a drain in a sequence of fields. 

2.2. Study area 

By incorporating the National Watershed Boundary Dataset, a 
cropland-concentrated USGS sub-watershed (Hydrologic Unit Code: 
031402030101) near the City of Hartford, Alabama, was selected as the 
study area (U.S. Geological Survey, 2019) (Fig. 2). The total area of the 
selected sub-watershed was around 24.86 km2, in which agricultural 
land use accounted for approximately 82%. Based on the annual geo
spatial information of cropland from the U.S. Department of Agriculture 
(USDA, 2019), five dominant agricultural land uses were defined in the 
study area from 2016 to 2018, namely cotton, peanuts, maize, soybean, 
and fallow. Each selected land use accounts for over 5% of the total 
agricultural area in at least one of the three years. Among the five land 
uses, cotton and peanuts are the most dominant land uses. Together, 
they account for more than 67%, 78%, and 91% of the total agricultural 
area in 2016, 2017, and 2018, respectively. The cropping area of each 
selected land use is summarized in Supplementary Materials (Table S1). 
According to local weather, rotation scenarios, and soil types, the 
studied area was segmented into 904 polygons with each polygon con
taining uniform local variables in each year. 

2.3. Rotation 

For the study area, the annual geo-referenced and agricultural land- 
cover datasets from 2016 to 2018 were downloaded from the CropScape 
Crop Data Layer (CDL) database as raster files (USDA, 2019). Besides the 
five dominant land uses, the raw raster datasets also included other 
trivial agricultural lands (e.g., sugarcane, wheat, and oats) and non- 
agricultural land uses (e.g., forest, water, and developed area). These 
non-interest areas were reclassified as a land-cover type of “null” to 
obtain annual cropland maps with only the dominant land uses. The 
generated annual raster files were then vectorized as polygons in QGIS 
(version 3.6.3). Since the CDL datasets were developed based on the 
classified LANDSAT satellite imagery at a moderate resolution (30 m), 
some polygons in the obtained cropland maps may not be precisely 
located within agricultural fields. Therefore, only polygons with an area 
over 4 LANDSAT pixels (0.0036 km2) were selected from the annual 
cropland maps. Then, by overlaying all the annual cropland maps 
together, a dataset containing all dominant rotation scenarios was 
generated for the years from 2016 to 2018. Specifically, 85 crop rotation 
scenarios were obtained from historical records in the study area. Based 
on the dataset of rotation scenarios, the individual rotation files were 
built for the crop yield simulation. The 15 dominant rotation scenarios 
and their applied percentages are summarized in the Supplementary 
Materials (Table S2). 

2.4. Soil 

The soil map of the study area was downloaded from the SSURGO 
database (Soil Survey Staff, 2019). The primary soil characteristics used 
in the simulation included soil layers’ thickness, texture, organic matter 
content, permanent wilt point, field capacity, bulk density, water Fig. 1. GIS-based framework for the regional crop yield simulation.  
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potential at field capacity, saturated hydraulic conductance, air entry 
potential, water saturation, pH value, etc. For the study area, the 
dominant soil types were Orangeburg sandy loam and Dothan fine sandy 
loam, which accounted for 50.6% and 44.6% of the total agricultural 
area, respectively. The critical parameters of the dominant soil types are 
described in Supplementary Materials (Table S3). By using the soil 
convertor utility of the CropSyst (version 4), the unique soil files were 
built automatically prior to the crop yield simulation. 

2.5. Weather 

The variations of key weather characteristics were less than 2% in 
the selected sub-watershed (Table S4, Supplementary Materials). 
Accordingly, the weather information at one location (31◦6′N, 85◦42′W) 
within the sub-watered was extracted to represent the local weather 
condition of the study area. The weather data from 2016 to 2018 were 
downloaded from the Daymet database (Thornton et al., 2018), which 
provided gridded estimates of daily weather parameters. The primary 
weather characteristics included daily maximum temperature, mini
mum temperature, solar radiation, precipitation, and relative humidity. 
The daily weather conditions at the selected location were plotted in 
Supplementary Materials (Fig. S2). Based on the extracted Daymet 
weather data, an individual weather file was created using the weather 
converter utility of the CropSyst (version 4). 

2.6. Management 

There are several significant aspects of the decision-making process 
in agricultural management, which include rotation, planting date, 
fertilization, irrigation, harvesting, and tillage. Among these aspects, 
rotation scenarios were determined for this study through the approach 
described in Section 2.3. Harvesting was performed five days after crop 
maturation. The detailed harvesting practices are predefined in the 
CropSyst (version 4) according to National Resources Conservation 
Service (NRCS) field operation. Specifically, the harvesting practices for 
cotton, peanut, and maize could be directly found in CropSyst (version 

4) database. For soybean, the harvesting practices for general cover crop 
were applied. Irrigation was not applied in this study according to the 
comparison between estimated effective precipitation and reference 
crop evapotranspiration (Table S5, Supplementary Materials). CropSyst 
(version 4) allows users to specify fertilizer type and applied nitrogen in 
the forms of ammonium and nitrate. Since the real management de
cisions are not accessible, we assumed uniform fertilizer type of urea, 
which accounts for the largest global fertilizer usage (i.e., 57%) and 
leads ammonium as the only nitrogen form (Heffer and Prud’homme, 
2016). Other critical management decisions, including planting, fertil
ization schedule, and tillage, were determined based on practical rec
ommendations (Kissel and Sonon, 2008; NASS, 2010; NRCS, 2017) and 
summarized in the Supplementary Materials (Table S6). A unique 
management file was built for each major crop as an input dataset for the 
model. 

2.7. Crop calibration 

The primary crops’ phenological parameters were calibrated before 
they were used in the simulation. The parameter calibration process was 
based on the measured total biomass and leaf area index from four 
published independent field studies, which were performed in the 
nearby states (i.e., Florida, Georgia, and Mississippi) having a weather 
pattern similar to the study area (Cherr et al., 2007; Ortiz et al., 2009; 
Dzotsi et al., 2015; Zhang et al., 2016). For the parameter calibration, 
model inputs related to soil characteristics and management decisions 
were directly obtained from the field studies. While the corresponding 
weather data were downloaded from the Daymet database according to 
the location of each field study. In the calibration process of each crop, 
weather, soil, and management input files were generated prior to the 
crop yield simulation. The rotation was not considered in calibration 
since all the selected field studies were focused on the growth of a single 
crop within one year. The critical information of these field studies was 
summarized in Supplementary Materials (Table S7). 

Fig. 2. Dominant Land Use in the Study Area. Note: The land use of 2016 is presented as an example.  
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2.8. Statistical evaluation 

The calibration process was evaluated by comparing the simulated 
results with recorded total biomass and LAI. On the other hand, area- 
weighted average yields were computed for each crop. And the 
regional simulation performance was evaluated by comparing the 
average yields with the annual crop yield records of Geneva County, 
Alabama (USDA-NASS, 2003). 

Pi,ave =
∑

j
Pi,j ×

Ai,j
∑

jAi,j
(1)  

in which, Pi, ave is the area-weighted average yield of crop i in each year, 
Pi, j is the annual yield of crop i in polygon j, Ai, j is the planting area of 
crop i in polygon j in each year. 

Statistical parameters used in this study include Pearson’s correla
tion coefficient (r), mean error (E), root mean square error (RMSE), 
normalized RMSE (n-RMSE), modeling efficiency (EF), and an index of 
agreement (d) (Confalonieri et al., 2009; Yang et al., 2014). Each 
parameter was further described in the Supplementary Materials. 

3. Results and discussion 

3.1. Crop parameter calibration 

Key phenological parameters (Table 1) were determined based on 
the literature review about previous crop simulation research. The pa
rameters were classified into five categories (i.e., thermal time accu
mulation, transpiration, canopy development, phenology, and others) 
and were determined based on three primary sources: (1) default values 
provided by CropSyst (version 4), (2) reported values from previous 
studies, and (3) adjusted values from the parameter calibration process 
in this study. The calibration process was adapted from previous Crop
Syst simulation studies (Donatelli et al., 1997; Sommer et al., 2008; 
Todorovic et al., 2009). Specifically, calibration started with adjusting 
the thermal time accumulation parameters (i.e., base and cutoff tem
perature) and phenology parameters (i.e., thermal time to achieve 
emergence, end of canopy growth, beginning of flowering, and matu
rity) to guarantee a good match between the simulated and observed 
phenological stages. Then, other parameters were refined iteratively so 
that the simulated total biomass and LAI fit well with the observed data. 
Among all the key phenological parameters, values from model default 
settings and previously published studies were preferred in the cali
bration process, while the rest parameters were manually adjusted in a 
reliable range provided by the CropSyst (version 4). 

Fig. 3 shows the parameter calibration for the selected four crops. For 
all crops, n-RMSE is less than 15.3%, EF is larger than 0.77, and d is 
larger than 0.81 (Table 2), indicating a good fitting with acceptable 
errors (Yang et al., 2014). As displayed in Fig. 4, the simulated values of 
LAI and total biomass are highly correlated with corresponding mea
surements, with Pearson’s correlation coefficients of 0.979 and 0.980 for 
LAI and total biomass, respectively. Overall, good agreement was ach
ieved for the selected phenological parameters in the calibration, 
although differences still existed between the predicted and measured 
values. Particularly, the calibration of cotton parameters failed to cap
ture the detailed trend of total biomass due to the lack of field mea
surements (Fig. 3a). Moreover, maize simulation fails to capture the 
total biomass increase in grain filling period, which may lead to un
derestimation of yield (Fig. 3d). On the other hand, peanut and soybean 
simulation have reliable performance. However, the standard deviation 
of observed data was relatively large. The mean-based calibration may 
lead to potential errors in later regional simulation. The calibrated 
phenological parameters were fixed in the regional simulation of annual 
crop yields. 

3.2. CropSyst-GIS performance 

The regional simulation of crop yield in the study area is presented in 
Fig. 5. Simulated yields ranged from 588 to 1187 kg/ha, 2797 to 3676 
kg/ha, 6347 to 6846 kg/ha, and 2446 to 3295 kg/ha for cotton, peanut, 
maize, and soybean, respectively. 

As displayed in Fig. 6, the area-weighted average annual yields were 
compared with the records from 2016 to 2018. Overall, the regional 
simulation achieved a Pearson’s correlation coefficient of 0.99, indi
cating an overall satisfactory match between simulation and observa
tion. Furthermore, according to the 1:1 line (Fig. 6), the agreement 
between the simulated and recorded annual yields was relatively high 
for cotton, peanut, and soybean. However, the simulation under
estimated maize yield in 2017 by 1425 kg/ha. 

According to the calculated statistical parameters (Table 3), the 
regional simulation successfully predicted the annual yields of soybean 
with a small n-RMSE of only 2.2% and a high index of agreement of 0.93. 
Besides, the corresponding modeling efficiency (0.86) was also close to 
1, indicating the significant predictive power of soybean yield simula
tion. For the simulation of peanut yield, the computed n-RMSE (7.0%) 
and index of agreement (0.42) were both satisfactory. A negative 
average error of −240 kg/ha suggested that the recorded peanut yields 

Table 1 
Key phenological parameters used in the CropSyst (version 4) simulation.  

Parameters (unit) Cotton Peanut Soybean Maize 

Thermal time 
Base temperature (◦C) 6.0 (R1) 6.0 (R) 5.0 (R) 8.0 (R) 
Cutoff temperature (◦C) 20.0 (R) 24.0 (R) 22.0 (R) 26.0 (R)  

Transpiration 
Canopy extinction coefficient for 

total solar radiation (−) 
0.5 (D2) 0.5 (D) 0.5 (D) 0.5 (D) 

Evapotranspiration crop 
coefficient at full canopy (−) 

1.0 (D) 0.8 (C3) 1.16 (R) 1.20 (R) 

Leaf water potential at the onset 
of stomatal closure (J/kg) 

−1100 
(R) 

−700 
(D) 

−1000 
(D) 

−700 
(D) 

Wilting leaf water potential (J/ 
kg) 

−1600 
(R) 

−1100 
(R) 

−1500 
(D) 

−1600 
(D) 

Maximum water uptake (mm/ 
day) 

12.0 (R) 10.0 (R) 12.0 (D) 14.0 (R)  

Attainable growth 
Radiation use efficiency (g/MJ) 2.88 (R) 2.20 (R) 4.00 (R) 4.00 (R) 
Above-ground biomass 

transpiration coefficient (Pa) 
4.00 (C) 7.50 (C) 6.30 (C) 12.50 

(C)  

Canopy development 
Max expected leaf area index 

(m2/m2) 
10.0 (R) 6.0 (R) 10.0 (R) 5.0 (D) 

Specific leaf area at optimum 
temperature (m2/kg) 

26.0 (C) 24.0 (R) 28.0 (C) 22.0 (D) 

Fraction of Max LAI at 
physiological maturity (−) 

0.15 (C) 0.87 (C) 0.63 (C) 0.15 (C) 

Stem/leaf partition coefficient 
(−) 

2.30 (C) 2.75 (R) 3.00 (D) 5.50 (C) 

Leaf area duration (◦C-Days) 750 (C) 1600 
(C) 

900 (R) 800 (D)  

Phenology 
Emergence (◦C-Days) 100 (D) 100 (D) 35 (C) 40 (R) 
End canopy growth (◦C-Days) 996 (D) 1040 

(D) 
1040 (D) 690 (C) 

Begin flowering (◦C-Days) 996 (D) 1000 
(D) 

1000 (D) 650 (C) 

Physiological maturity (◦C-Days) 1975 
(C) 

2270 
(C) 

1800 (C) 1190 
(R)  

Others 
Max root depth (m) 1.50 (D) 1.50 (D) 1.70 (D) 1.50 (D) 
Harvest Index (−) 0.50 (D) 0.40 (R) 0.50 (D) 0.58 (R) 

Note: 1. R stands for reference; 2. D stands for default; 3. C stands for calibration. 
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were generally higher than the corresponding predicted values. How
ever, the modeling efficiency of peanut yield (−0.40) was less than 0. In 
this case, due to the small relative standard deviation of the recorded 
peanut yields (6.0%), the model was not sensitive enough to predict the 
relatively stable annual yields of peanut in the study area (Moriasi et al., 
2007). For the yield simulation of cotton, although the index of agree
ment was relatively high (0.59) and the modeling efficiency (0.23) was 
greater than 0.0, the n-RMSE (14.2%) was higher than all the other 
primary crops. The regional simulation accurately predicted the cotton 
yields for the first two years and captured the decreasing trend of the 
measured yields to a certain degree. However, the decrease in the 
observed cotton yields was more significant than the prediction, which 
led to a large difference between the simulation and observation in 2018 
(i.e., 169 kg/ha). As to the maize, although the regional simulation 
achieved a satisfactory index of agreement (0.41), it underestimated 
annual yields of maize in the first two years, especially for 2017 with the 
difference reaching 1425 kg/ha. The n-RMSE of maize yield simulation 
was 10.5%, indicating an unsatisfactory match. Moreover, a negative 
modeling efficiency (−0.11) suggested that the regional model is not 
sensitive to the yield changes of maize. 

3.3. Nitrogen deficiency 

As displayed in Fig. 7, the accumulated nitrogen stress in the study 
area was classified into five categories (i.e., trivial, low, medium, high, 
and extremely high). In 2016, the summed NSI was close to zero no 
matter which crop was planted, with the greatest value of only 0.025 in 
the study area. Since the nitrogen demand was mostly fulfilled, the yield 
in each polygon reached its maximum with given weather, soil, and 
management conditions, which also led to evenly distributed yields 
(Fig. 5a). In the latter two years, nitrogen stress was dramatically piled 
up in some regions. A general overlap was identified between polygons 
with relatively high annual nitrogen stress (Fig. 7) and low annual crop 
yields over the three years, especially in 2017 and 2018 when nitrogen 
from soil organic matters and fertilizers could not satisfy the demand of 
crop growth (Fig. 7b and c). 

Furthermore, we observed that the accumulated nitrogen stress was 
closely related to the crop species and soil type. From the aspect of crop 
species, the nitrogen deficiency often occurred in areas planted with 
crops having high nitrogen demand, such as cotton. Previous studies 
have indicated that cotton typically require more than 78 kg N/ha of 
nitrogen in growing season (Boquet et al., 2004; Kissel and Sonon, 

Fig. 3. Critical phenological parameter calibration for the four crops: (a) Cotton, (b) Peanut, (c) Maize, and (d) Soybean.  

Table 2 
Statistical evaluation for parameter calibration.  

Crop Cotton Peanut Maize Soybean  

Total Biomass LAI Total Biomass LAI Total Biomass LAI Total Biomass LAI 

RMSE 978 0.31 539 0.30 944 0.13 1302 0.45 
n-RMSE 15.3 11.1 8.3 9.9 15.0 8.1 12.3 12.5 
EF 0.77 0.88 0.90 0.87 0.86 0.92 0.82 0.81 
d 0.81 0.90 0.95 0.94 0.93 0.96 0.91 0.90  
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2008). In 2017, there were 87 out of 904 polygons in the study area with 
at least a medium level of nitrogen deficiency. Among them, polygons 
planted with cotton, peanut, and soybean accounted for 62.1%, 32.2%, 
and 5.7%, respectively. In 2018, the number of the same type of poly
gons increased to 473 with 84.4% of them planted with cotton. 
Numerous studies have verified that cotton requires a large amount of 
nitrogen, which plays an essential role in fueling the growth of cotton 
(Bondada and Oosterhuis, 2001; Dong et al., 2012). As to peanut and 
soybean, although they can fix nitrogen from the atmosphere, they may 
also need fertilization when nitrogen from symbiosis cannot satisfy their 
needs of crop growth and canopy development (Ball et al., 1983; Zhang 
et al., 2017). 

On the other hand, nitrogen deficiency normally happened in regions 
with relatively low soil fertility. With the lowest organic matter content 

Fig. 4. Comparison between the measured and simulated phenological pa
rameters of the four major crops: (a) Total biomass, and (b) Leaf area 
index (LAI). 

Fig. 5. Regionally simulated yields of the four primary crops in the study area: (a) 2016, (b) 2017, and (c) 2018.  

Fig. 6. Comparison between the simulated and recorded annual yields of the 
four primary crops in the study area. 
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(0.25%) among all dominant soil types in this study (Table 1), the 
Orangeburg sandy loam (i.e., OrA, OrB, and OrC) was found in a ma
jority of the nitrogen-deficient polygons. These soil types accounted for 
76.3% of polygons with at least a medium level of nitrogen deficiency in 
2018. Specifically, OrA contributed to the 77.1% of the polygons with 
extremely high nitrogen deficiency. Moreover, we compared the total 
nitrogen budgets between the most nitrogen deficient OrA scenarios and 
the scenarios with the same rotation but different soil types (Table S8). 
For each rotation, OrA related scenarios had less nitrogen mineralization 
and more nitrogen leaching, which are the potential causes for the ni
trogen deficiency. Low organic matter content would lead to less release 
of organically bonded nitrogen. While OrA also has a relatively high 
percentage of sand in texture (80.5%) and is consequently hard to hold 
water and nutrient content for crop growth (Hamdi et al., 2019). 

To further verify the impact of nitrogen deficiency, the simulated 
annual yields of four primary crops in each polygon were plotted against 
the corresponding annually accumulated NSI from 2016 to 2018 (Fig. 8). 
The annual yields of cotton and peanut clearly decreased with increasing 
nitrogen stress. However, in a few polygons without remarkable accu
mulated NSI, the simulated yields of these two crops were also relatively 
low. In those polygons, the daily NSI was large over a short period at the 
beginning stage of crop growth. This observation is consistent with the 
results of previous field studies, which have indicated that the shortage 

Table 3 
Statistical evaluation for the yield simulation of the four crops.  

Crop Recorded yields (kg/ha) Simulated yields (kg/ha) E1 (kg/ha) RMSE2 (kg/ha) n-RMSE3 (%) EF4 (−) d5 (−)  

2016 2017 2018 2016 2017 2018      

Cotton 1102 824 683 1187 927 851 119 124 14.2 0.23 0.59 
Peanut 3787 3807 3411 3416 3628 3242 −240 257 7.0 −0.40 0.42 
Maize 8702 8742 7330 8334 7317 7604 −506 864 10.5 −0.11 0.41 
Soybean 2273 3255 2757 2246 3238 2856 18 60 2.2 0.86 0.93 

Note: 1. E stands for mean error; 2. RMSE stands for root mean square error; 3. n-RMSE stands for normalized root mean square error; 4. EF stands for modeling 
efficiency; 5. d stands for index of agreement. 

Fig. 7. Annually summed nitrogen stress indices (NSI) of each polygon in the study area from 2016 to 2018.  

Fig. 8. Influence of accumulated nitrogen stress on the yields of the pri
mary crops. 
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of nitrogen nutrient at the early growth stage would affect the canopy 
development, nutrient content, and final yields of crops (Ball et al., 
1983; Naegle et al., 2005; Stamatiadis et al., 2006; Schlüter et al., 2012). 
For soybean, no clear trend could be identified between nitrogen stress 
and annual yields. As to maize, its annually accumulated NSI was less 
than 0.03 in each polygon, which demonstrated that the applied nitro
gen amount (i.e., 135 kg N/ha in total) was enough to support the 
predicted annual yields during the three years. 

3.4. Yield improvement 

To improve yields in identified low yield polygons, the nitrogen 
demand for crop growth needs to be better satisfied. Therefore, four 
types of management strategies to alleviate the nitrogen deficiency were 
tested at field scale. Although cotton and peanuts are the two most 
significant crops in the study area, the tests were focused on cotton yield 
improvement, since peanut yields were higher than the 90%, 86%, and 
74% of the maximum recorded values (i.e., 3807 kg/ha) in 2016, 2017, 
and 2018 respectively, and were not considered as low yields. To better 
estimate and compare the impacts of these managements, they were 
only applied for the polygons having the low cotton yields in 2018 when 
the planted area and nitrogen deficiency of cotton both reached their 
highest levels. 

In the first type of management, the second nitrogen fertilizer (56 kg 
N/ha) was applied as sidedress at different phenological stages, 
including germination, first square, active growth, first bloom, and grain 
filling, to determine the optimal timing (Fig. 9a). In the original simu
lation process, this sidedress was applied at the stage of active growth. 
The highest average yield with an increase of 4.7% was obtained when 
the sidedress was applied at the germination stage. When the sidedress 

was applied at the first square, active growth, or first blooming, the 
average and median of simulated yields generally declined as crops 
grew, though their highest yields were comparable to each other. A 
sharp decrease in simulated cotton yield was observed when the side
dress was applied at the grain filling. The site simulation result indicated 
that applying the sidedress at the germination stage could slightly 
improve the yields of cotton in the study area. On the contrary, a late 
sidedress application could lead to high nitrogen deficit at the early 
stage of cotton growth, which might hinder the full development of 
canopy, decrease the concentration of leaf chlorophyll, and therefore 
lower the annual yield (Radin and Boyer, 1982; Fridgen and Varco, 
2004; Stamatiadis et al., 2006). 

In the second type of management, the total amount of nitrogen 
fertilizer was gradually raised from 84 kg N/ha to 152 kg N/ha with one- 
third applied at the planting stage and the rest applied as sidedress at the 
stage of active growth (Fig. 9b). Among them, the fertilization of 84 kg 
N/ha was the same as the original simulation process. As more nitrogen 
fertilizer was applied, the simulated cotton yields increased with a 
shrinking interquartile range, indicating a reduction in nitrogen stress. 
When 152 kg N/ha of nitrogen fertilizer was applied, no nitrogen defi
ciency was found in the selected polygons, and the maximum cotton 
yield (1059 kg/ha) was reached under given conditions. Although the 
addition of total nitrogen fertilizer improved the average cotton yield by 
74.4%, it could dramatically increase the emission of greenhouse gas (i. 
e., N2O) (Huang et al., 2014; Ruan et al., 2016). Meanwhile, excessive 
nitrogen fertilizing might delay cotton maturity, cause rank growth, 
intensify insect infestations, increase the risk of boll rot, and reduce lint 
quality (Boquet and Breitenbeck, 2000). 

In the third type of management, different combinations of nitrogen 
fertilizer types (i.e., ammonium and nitrate) were applied with the 

Fig. 9. Four types of management strategies to improve the simulated cotton yields in the selected polygons in 2018: (a) adjusting the application timing of sidedress, 
(b) increasing the total amount of nitrogen fertilizer, (c) changing the proportion of nitrate fertilizer, and (d) adjusting the content of soil organic matters. 
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percentage of NO3
−-N increasing from 0 to 100% (Fig. 9c). In the original 

simulation process, no fertilizer was applied in the form of nitrate. When 
the proportion of nitrate fertilizer was over 50%, the cotton yields were 
improved by increasing crop nitrogen uptake. Compared with the 
original simulation result, the average cotton yield was raised by 19.7% 
when nitrate was the only form of fertilizer. The improvement of 
simulated yields diminished after the percentage of nitrate fertilizer 
reached 75%, which could be an optimal strategy for nitrogen fertil
ization in the study area. When nitrate accounted for 25% of the applied 
fertilizers, the average cotton yield was 3.5% lower than the original 
simulation result. Even if the application of nitrate did not guarantee 
higher cotton yields, other advantages might be achieved through 
applying nitrate fertilizer, such as no volatile loss, improved uptake of 
cations (i.e., potassium, calcium, and magnesium), and reduced soil 
acidification (Haynes and Goh, 1978; Bouman et al., 1995; Sommer 
et al., 2004). 

In the last type of management, the soil organic matter content was 
adjusted between the lowest (0.25%) and the highest recorded values 
(5.0%) in the studied area (Table S3). Specifically, this management 
strategy could be achieved by the application of soil amendment with 
high organic content such as biosolids (Cheng et al., 2007). As the soil 
organic matter content rose, more nitrogen was available from organic 
matter decomposition, which promoted the simulated cotton yields 
(Fig. 9d). Once the soil organic matter content reached 3.0%, the cotton 
yields no longer increased and all converged to the maximum value 
(1059 kg/ha) under given conditions. The trend of cotton yields under 
this type of management was similar to the result of the second type 
management since both managements led to more available nitrogen. 
However, the total soil ammonium (i.e., applied ammonium fertilizer 
and ammonium decomposed from soil organic matters) was 1.5 times 
higher under the fourth type of management, which would lead to a 
higher N2O emission during the nitrification process (Sánchez-García 
et al., 2014). 

The above four types of management strategies successfully 
increased the average simulated cotton yield by as high as 74.4% in the 
selected polygons in 2018. Each type of management had its advantages 
and drawback. Among them, increasing the nitrogen fertilizer amount 
and the soil organic matter content achieved the most significant 
improvement. However, these two types of management would both 
potentially emit more greenhouse gas (i.e., N2O). Changing application 
timing of sidedress only had a trivial impact on improving cotton yields. 
Furthermore, a late sidedress would even cause the failure of grain 
filling. Switching the fertilizer type from ammonium to nitrate improved 
the average cotton yield by 19.7%. This management tends to reduce 
N2O emission since the most important source of the nitrification pro
cess, ammonium, was replaced by nitrate and the denitrification process 
was usually limited under aerobic conditions. Overall, a combination of 
the tested management strategies should be applied to sustainably 
improve crop yields without having negative impacts on the 
environment. 

3.5. Implication 

Compared with previous GIS-based crop simulation, the developed 
framework applied more realistic crop rotations. The rotation input was 
very close to the real scenarios since it was directly derived from 
recorded agricultural land uses in each year (USDA, 2019). Taking this 
advantage, the simulation would contribute to a more reliable predic
tion and subsequently better bridge the gap between local cropping 
system models and the regional estimation of crop yields. On the other 
hand, the major limitations of the simulation came from excluding 
cultivar variance in the study area and pests/diseases events. The 
cultivar variance could be added in the simulation as another input layer 
if related data was available. However, the simulation may not be able to 
handle the pests/diseases events since the selected crop model is not 
equipped with related function. 

4. Conclusion 

By coupling a field-scale cropping system model (i.e., CropSyst, 
version 4) with a GIS platform (i.e., QGIS, version 3.6.3), a GIS-based 
framework was established in this study to simulate the primary crop 
yields in a cropland-concentrated USGS sub-watershed in the Geneva 
County, Alabama from 2016 to 2018. With well-prepared input data, 
crop yields were accurately predicted for dominant crops at a regional 
level with an overall Pearson’s correlation coefficient of 0.99. The low 
yields polygons were identified according to the visualization of 
regional simulation results. Based on total nitrogen budget analysis, we 
found that low organic matter content and high sand percentage in 
texture are two potential causes for the nitrogen deficiency. And the 
annual cotton yield was severely impacted in 2018. Specifically, 84 
cotton polygons were found having a yield in the lowest level. To 
address the low yields, we simulate the performance of four manage
ment strategies, which were able to increase the cotton yield by as high 
as 74.4%. Because of the potential negative impact (i.e., more N2O 
emission), a combination of the tested management strategies should be 
taken to promote crop yields sustainably. This study demonstrated the 
ability of a GIS-based framework to simulate crop yields at a regional 
level. 
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