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ABSTRACT

CONTEXT: In agricultural activities, the decision-making process is central to agricultural system management
and subsequent crop yield. As a powerful tool in field-specific decision-making processes, crop simulation models
have the potential to simulate crop yields on a large scale. However, their performance is often biased by the
spatial heterogeneity of environment and management factors when applied over a large scale.

OBJECTIVE: The major objectives of this study include: (1) Predicting and evaluating the annual yields of
dominant crops with real rotation scenarios; (2) Locating fields with low crop yield and determining possible
reasons; and (3) Evaluating the improvement for crop yield with different management strategies.

METHODS: This study proposed a crop yield simulation framework at the regional level by coupling a cropping
system model (CropSyst) with a geographic information system (QGIS) to provide more reliable information for
the decision-making process. In the study of a cropland concentrated USGS sub-watershed (Hydrologic Unit
Code: 031402030101) in Geneva County, Alabama, we estimated the annual yields of four regionally dominant
crops (i.e., corn, cotton, soybean, and peanuts) from 2016 to 2018. Low yield fields were identified in the
simulation results visualization. Moreover, four management strategies were tested at a field scale to improve
annual yields.
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RESULTS AND CONCLUSIONS: Overall, the simulated crop yields were significantly correlated with the recorded
values (Pearson’s r = 0.99). However, the performance of the regional model varied for different crops. The
model achieved the best performance for soybean with a high index of agreement (0.93) and modeling efficiency
(0.86). For cotton, the model achieved positive model efficiency (0.23) and a good index of agreement (0.59). For
peanut and maize, the model fitted records well but not sensitive enough. According to the visualization of
simulation results, we located fields with low yields. The low organic matter content and high sand percentage of
the soil were the potential causes of the nitrogen deficiency, which leads to the low yield subsequently. In field
scale tests, four proposed management strategies could increase the cotton yields as high as 74.4%. But some
strategies would also increase greenhouse gas emissions at the same time.

SIGNIFICANCE: This study bridges the gap between local cropping system models and the regional estimation of
crop yields. The GIS-based crop simulation framework developed here demonstrates the potential of cropping
system models to provide reliable information at a regional scale and hence significantly broadens their appli-
cation in the agricultural decision-making process.

1. Introduction

Decision-making is a selection among several alternatives based on
values, possibilities, and personal preferences (Isen et al., 1982; Die-
trich, 2010). In agricultural activities, the decision-making process is
ubiquitous in cropland-related management, such as irrigation, fertil-
ization, tillage, harvest, and residue treatment. One of the essential
factors for agricultural decision-making is the maximization of farmers’
profit (Feather and Cooper, 1995; Perez, 2015), which leads to reluc-
tance to accept potential risks. For example, some farmers still rely on a
high dosage of fertilizer due to their concern about production loss
(Stuart et al., 2014), even though increasing fertilizer efficiency rather
than dosage would contribute to achieving economic optimum (Smith
and Siciliano, 2015). A supporting system providing accurate crop yield
prediction would ensure that farmers have rational risk perceptions and
could play a critical role in profit maximization (Foster and Rausser,
1991; Dury et al., 2012).

Model simulation has been widely used to study agricultural activities
foralongtime (Boumanetal., 1996; Hansen, 1996). As an essential tool to
quantitatively characterize an agricultural system, model simulation can
integrate different dynamic processes associated with crops, soil, climate,
and human activities (Zhangetal., 2002). The first crop growth model was
developed by de Wit back in the 1960s, and it simulated photosynthesis of
leaf canopies by combining physical and biological principles (de Wit,
1958; de Wit, 1965). Beginning with the work from pioneers, the evolu-
tion of agricultural modeling was boosted by increasing grant opportu-
nities from the public and private sectors and the revolution in related
technologies (Jones et al., 2017). Over more than six decades, numerous
agricultural system models have been developed for different end-users
with specific purposes. For examples, DSSAT and CropSyst are used for
modeling the crop growth and yield; ADEL and OpenAlea are used for
virtual plants simulation; DNDC and DayCent are used to simulate
greenhouse gas emission from agriculture fields; agent-based models are
used in the simulation of agricultural economics (Parton et al., 1998;
Zhang et al., 2002; Fournier et al., 2003; Parker et al., 2003; Stockle et al.,
2003; Pradal et al., 2008). Although the focuses of these modeling efforts
are quite different, all of them help to understand the interaction between
agricultural production, natural resources, and human factors.

Previous studies have demonstrated that crop simulation models
successfully estimate the crop yield and the impact of different man-
agement strategies at field-specific scales for most of the cash crops in
the U.S., such as maize, soybean, and cotton (Farahani et al., 2009;
Setiyono et al., 2010; Liu et al., 2011; Archontoulis et al., 2014). With
accurate information about crops, soil, and weather, crop simulation
models can be applied to investigate the temporal variation of crop yield
at a scale where environmental conditions are relatively homogeneous
(Florin et al., 2009; Balkovic et al., 2013). However, in the decision-
making process, decision/policy makers often need the upscaled infor-
mation at larger spatial extents where the crop model simulation is often
biased by the spatial heterogeneity in soil distribution, climate pattern,

and human preference in rotation and management (Hansen and Jones,
2000; Priya and Shibasaki, 2001).

To enlarge the scale of crop simulation, geographic information
system (GIS) is technically necessary due to its ability to store, manip-
ulate, analyze, and visualize the relevant spatial data (Maguire, 1991;
Hartkamp et al., 1999). With the aid of GIS, crop simulation can be
applied over various scales. At relatively large extents (e.g., national and
global), GIS-based crop models are usually used to investigate the
response of agricultural systems to environmental stress. Liu (2009)
applied GEPIC model, the combination of ArcGIS and EPIC crop model,
to investigate the relationship between water management and crop
production at a global scale. Parry et al. (2004) analyzed the global
impact of climate change on crop production by integrating geospatial
input with a crop growth model (i.e., IBSNAT-ISACA). Large extent
applications are usually suffered from low resolution of input data and
cannot capture the spatial variation within modeling units. On the other
hand, GIS-based crop simulation applications at relatively small extents
(e.g., field to regional) usually study the impact of field variability (e.g.,
soil, cultivar, and management practices) on crop yield. Thorp et al.
(2008) developed an interface (i.e., Apollo), combing ArcGIS and DSSAT
crop growth model, to evaluate the impact of management practices and
environmental factors on crop yield at a field scale. Jin et al. (2017)
estimated wheat yield at a regional scale with remote sensing data and
AquaCrop crop model. Compared to the application at large extents,
GIS-based crop simulation at small extents could take advantage of fine
resolution inputs and better support decision-making processes in spe-
cific agricultural systems.

No matter the scales, current GIS-based crop simulation studies tend
to simplify or neglect crop modeling inputs, especially management
practices which vary greatly over space and time. Among those prac-
tices, rotation is often excluded from the consideration. Integrating crop
rotation into the simulation requires a great modeling effort since
agricultural land uses (e.g., crop species, crop proportion, and field area)
often changes constantly even in a single field. In addition, the degree of
this variation is highly dependent on the field owner’s personal prefer-
ence and experience, which would also introduce a large spatial varia-
tion. Due to these difficulties, existing GIS-based crop simulation studies
mostly focused on single-year and single-crop analyses (Thorp et al.,
2008; Resop et al., 2012; Kadiyala et al., 2015; Jin et al., 2017). How-
ever, crop rotation is regarded as a prominent strategy to increase the
sustainability of agricultural systems and is widely applied all over the
world. Kollas et al. (2015) indicated that, compared to the simulation of
single years and single crops, the simulation of multi-year crop rotations
provided more reliable results with fewer errors at specific fields in
Europe. Among previous GIS-based crop simulations, only a few studies
considered crop rotation with simplification. Zhang et al. (2010) eval-
uated biofuel crop production from 10 assumed crop rotations in several
counties in Michigan State. Morari et al. (2004) studied the impact of
fertilization and irrigation on crop production at a sub-watershed scale,
in which the rotation is simplified by assuming the major crop (i.e., the
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crop with the largest cropping area) as the only crop in a modeling unit.

In this study, a crop growth model is jointed in a GIS-based frame-
work to simulate the crop yield at a sub-watershed scale. Among various
types of crop growth models, CropSyst (version 4) (Stockle et al., 2003)
is selected since this processes-based crop model can easily generate a
combination of predefined input factors (i.e., soil, weather, management
practices, and crop rotation) through its scenario generator. On the
other hand, given its open-access toolbox and easy-to-use interface, the
QGIS (version 3.6.3) platform (QGIS Development Team, 2016) is
selected for inputs preparation and outputs visualization in this study.
Compared with previous GIS-based crop simulation, this study applied
more realistic crop rotations, which would contribute to a more reliable
prediction. Subsequently, the framework developed in this study would
better bridge the gap between local cropping system models and the
regional estimation of crop yields. Our major objectives include: (1)
Predicting and evaluating the annual yields of dominant crops at an
agricultural-land-concentrated sub watershed; (2) Locating fields with
low crop yield and determining their possible reasons; and (3) Evalu-
ating the improvement for crop yield with different management stra-
tegies in testing scenarios.

2. Method
2.1. CropSyst-GIS framework

A GIS-based framework was established to investigate the crop yield
simulation at a regional scale (Fig. 1) (Hartkamp et al., 1999; Stockle
et al., 2003). This framework consisted of a crop simulation model and a
GIS platform. The CropSyst (version 4), a multi-year multi-crop daily
time-step model, was used to simulate crop yield, while the QGIS
(version 3.6.3) software was used for preparing model inputs and
visualizing simulation outputs (Stockle et al., 2003, QGIS Development
Team, 2016). Based on the combination of different types of local in-
formation (i.e., rotation scenarios, soil types, and weather), the study
area was segmented into different polygons, in which modeling inputs
were homogeneous. And, crop yields simulation was conducted by the
CropSyst (version 4) within each polygon. The simulation results were
then visualized for all the polygons according to the predicted annual
yields of corresponding crops.

For each crop, the simulated yields were divided into five categories,
namely below 60%, 60 to 70%, 70 to 80%, 80 to 90%, and beyond 90%
of the maximum recorded yields (i.e., 1102 kg/ha, 3807 kg/ha, 8742
kg/ha, and 3255 kg/ha for cotton, peanut, maize, and soybean,
respectively) in the study area (USDA-NASS, 2003). The polygons with
crop yields less than 60% of the maximum records were regarded as low
yield polygons. In this study, a nitrogen stress index (NSI) was computed
daily by the CropSyst (version 4) to quantify the plant response to ni-
trogen deficiency condition. The NSI ranges from 0 to 1 with higher
values indicating greater nitrogen stress in crop growth (Stockle et al.,
2003). The daily NSI values were then summed for each year to
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Fig. 1. GIS-based framework for the regional crop yield simulation.
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represent the annual accumulation of nitrogen stress.

Two assumptions underlay the framework. First, the deterministic
field crop simulation is also valid at a regional scale. According to the
development of modeling units (i.e., polygons), modeling inputs within
each unit are homogenous. Therefore, crop growth modeling in each
unit is reliable and the overall performance of the framework depends
on the accuracy of modeling inputs. Second, the physical transferring
processes between neighboring modeling units are neglected. Two
possible transferring processes include runoff water and contained nu-
trients. Runoff water can be neglected here since water demand is easily
satisfied by rainfall. Nutrients in runoff water could be an extra input.
However, runoff water from the neighboring field will pass on until
reach a drain in a sequence of fields.

2.2. Study area

By incorporating the National Watershed Boundary Dataset, a
cropland-concentrated USGS sub-watershed (Hydrologic Unit Code:
031402030101) near the City of Hartford, Alabama, was selected as the
study area (U.S. Geological Survey, 2019) (Fig. 2). The total area of the
selected sub-watershed was around 24.86 km?, in which agricultural
land use accounted for approximately 82%. Based on the annual geo-
spatial information of cropland from the U.S. Department of Agriculture
(USDA, 2019), five dominant agricultural land uses were defined in the
study area from 2016 to 2018, namely cotton, peanuts, maize, soybean,
and fallow. Each selected land use accounts for over 5% of the total
agricultural area in at least one of the three years. Among the five land
uses, cotton and peanuts are the most dominant land uses. Together,
they account for more than 67%, 78%, and 91% of the total agricultural
area in 2016, 2017, and 2018, respectively. The cropping area of each
selected land use is summarized in Supplementary Materials (Table S1).
According to local weather, rotation scenarios, and soil types, the
studied area was segmented into 904 polygons with each polygon con-
taining uniform local variables in each year.

2.3. Rotation

For the study area, the annual geo-referenced and agricultural land-
cover datasets from 2016 to 2018 were downloaded from the CropScape
Crop Data Layer (CDL) database as raster files (USDA, 2019). Besides the
five dominant land uses, the raw raster datasets also included other
trivial agricultural lands (e.g., sugarcane, wheat, and oats) and non-
agricultural land uses (e.g., forest, water, and developed area). These
non-interest areas were reclassified as a land-cover type of “null” to
obtain annual cropland maps with only the dominant land uses. The
generated annual raster files were then vectorized as polygons in QGIS
(version 3.6.3). Since the CDL datasets were developed based on the
classified LANDSAT satellite imagery at a moderate resolution (30 m),
some polygons in the obtained cropland maps may not be precisely
located within agricultural fields. Therefore, only polygons with an area
over 4 LANDSAT pixels (0.0036 km?) were selected from the annual
cropland maps. Then, by overlaying all the annual cropland maps
together, a dataset containing all dominant rotation scenarios was
generated for the years from 2016 to 2018. Specifically, 85 crop rotation
scenarios were obtained from historical records in the study area. Based
on the dataset of rotation scenarios, the individual rotation files were
built for the crop yield simulation. The 15 dominant rotation scenarios
and their applied percentages are summarized in the Supplementary
Materials (Table S2).

2.4. Soil

The soil map of the study area was downloaded from the SSURGO
database (Soil Survey Staff, 2019). The primary soil characteristics used
in the simulation included soil layers’ thickness, texture, organic matter
content, permanent wilt point, field capacity, bulk density, water
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Fig. 2. Dominant Land Use in the Study Area. Note: The land use of 2016 is presented as an example.

potential at field capacity, saturated hydraulic conductance, air entry
potential, water saturation, pH value, etc. For the study area, the
dominant soil types were Orangeburg sandy loam and Dothan fine sandy
loam, which accounted for 50.6% and 44.6% of the total agricultural
area, respectively. The critical parameters of the dominant soil types are
described in Supplementary Materials (Table S3). By using the soil
convertor utility of the CropSyst (version 4), the unique soil files were
built automatically prior to the crop yield simulation.

2.5. Weather

The variations of key weather characteristics were less than 2% in
the selected sub-watershed (Table S4, Supplementary Materials).
Accordingly, the weather information at one location (31°6’N, 85°42'W)
within the sub-watered was extracted to represent the local weather
condition of the study area. The weather data from 2016 to 2018 were
downloaded from the Daymet database (Thornton et al., 2018), which
provided gridded estimates of daily weather parameters. The primary
weather characteristics included daily maximum temperature, mini-
mum temperature, solar radiation, precipitation, and relative humidity.
The daily weather conditions at the selected location were plotted in
Supplementary Materials (Fig. S2). Based on the extracted Daymet
weather data, an individual weather file was created using the weather
converter utility of the CropSyst (version 4).

2.6. Management

There are several significant aspects of the decision-making process
in agricultural management, which include rotation, planting date,
fertilization, irrigation, harvesting, and tillage. Among these aspects,
rotation scenarios were determined for this study through the approach
described in Section 2.3. Harvesting was performed five days after crop
maturation. The detailed harvesting practices are predefined in the
CropSyst (version 4) according to National Resources Conservation
Service (NRCS) field operation. Specifically, the harvesting practices for
cotton, peanut, and maize could be directly found in CropSyst (version

4) database. For soybean, the harvesting practices for general cover crop
were applied. Irrigation was not applied in this study according to the
comparison between estimated effective precipitation and reference
crop evapotranspiration (Table S5, Supplementary Materials). CropSyst
(version 4) allows users to specify fertilizer type and applied nitrogen in
the forms of ammonium and nitrate. Since the real management de-
cisions are not accessible, we assumed uniform fertilizer type of urea,
which accounts for the largest global fertilizer usage (i.e., 57%) and
leads ammonium as the only nitrogen form (Heffer and Prud homme,
2016). Other critical management decisions, including planting, fertil-
ization schedule, and tillage, were determined based on practical rec-
ommendations (Kissel and Sonon, 2008; NASS, 2010; NRCS, 2017) and
summarized in the Supplementary Materials (Table S6). A unique
management file was built for each major crop as an input dataset for the
model.

2.7. Crop calibration

The primary crops’ phenological parameters were calibrated before
they were used in the simulation. The parameter calibration process was
based on the measured total biomass and leaf area index from four
published independent field studies, which were performed in the
nearby states (i.e., Florida, Georgia, and Mississippi) having a weather
pattern similar to the study area (Cherr et al., 2007; Ortiz et al., 2009;
Dzotsi et al., 2015; Zhang et al., 2016). For the parameter calibration,
model inputs related to soil characteristics and management decisions
were directly obtained from the field studies. While the corresponding
weather data were downloaded from the Daymet database according to
the location of each field study. In the calibration process of each crop,
weather, soil, and management input files were generated prior to the
crop yield simulation. The rotation was not considered in calibration
since all the selected field studies were focused on the growth of a single
crop within one year. The critical information of these field studies was
summarized in Supplementary Materials (Table S7).
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2.8. Statistical evaluation

The calibration process was evaluated by comparing the simulated
results with recorded total biomass and LAI. On the other hand, area-
weighted average yields were computed for each crop. And the
regional simulation performance was evaluated by comparing the
average yields with the annual crop yield records of Geneva County,
Alabama (USDA-NASS, 2003).

A
Piwe = Y Pij x> (€9)
Z T A

in which, P; g is the area-weighted average yield of crop i in each year,
P; j is the annual yield of crop i in polygon j, A; j is the planting area of
crop i in polygon j in each year.

Statistical parameters used in this study include Pearson’s correla-
tion coefficient (r), mean error (E), root mean square error (RMSE),
normalized RMSE (n-RMSE), modeling efficiency (EF), and an index of
agreement (d) (Confalonieri et al., 2009; Yang et al., 2014). Each
parameter was further described in the Supplementary Materials.

Table 1
Key phenological parameters used in the CropSyst (version 4) simulation.

Parameters (unit) Cotton Peanut Soybean Maize
Thermal time
Base temperature (°C) 6.0 (Rl) 6.0 (R) 5.0 (R) 8.0 (R)
Cutoff temperature (°C) 20.0 (R) 24.0 (R) 22.0 (R) 26.0 (R)
Transpiration
Canopy extinction coefficient for 0.5 (D?) 0.5 (D) 0.5 (D) 0.5 (D)
total solar radiation (—)
Evapotranspiration crop 1.0 (D) 0.8 (C3) 1.16 (R) 1.20 (R)
coefficient at full canopy (—)
Leaf water potential at the onset —1100 —700 —1000 —700
of stomatal closure (J/kg) (R) (D) (D) (D)
Wilting leaf water potential (J/ —1600 —1100 —1500 —1600
kg) ®) R) (D) (D)
Maximum water uptake (mm/ 12.0 (R) 10.0 (R) 12.0 (D) 14.0 (R)
day)
Attainable growth
Radiation use efficiency (g/MJ) 2.88 (R) 2.20 (R) 4.00 (R) 4.00 (R)
Above-ground biomass 4.00 (C) 7.50 (C) 6.30 (C) 12.50
transpiration coefficient (Pa) ©
Canopy development
Max expected leaf area index 10.0 (R) 6.0 (R) 10.0 (R) 5.0 (D)
(m?*/m?)
Specific leaf area at optimum 26.0 (C) 24.0 (R) 28.0 (C) 22.0 (D)
temperature (mz/kg)
Fraction of Max LAI at 0.15 (C) 0.87 (C) 0.63 (C) 0.15 (C)
physiological maturity (—)
Stem/leaf partition coefficient 2.30 (O) 2.75 (R) 3.00 (D) 5.50 (C)
)
Leaf area duration (°C-Days) 750 (C) 1600 900 (R) 800 (D)
©
Phenology
Emergence (°C-Days) 100 (D) 100 (D) 35 (Q) 40 (R)
End canopy growth (°C-Days) 996 (D) 1040 1040 (D) 690 (C)
D)
Begin flowering (°C-Days) 996 (D) 1000 1000 (D) 650 (C)
(D)
Physiological maturity (°C-Days) 1975 2270 1800 (C) 1190
© © R
Others
Max root depth (m) 1.50 (D) 1.50(MD) 1.70 (D) 1.50 (D)
Harvest Index (—) 0.50 (D) 0.40 (R) 0.50 (D) 0.58 (R)

Note: 1. R stands for reference; 2. D stands for default; 3. C stands for calibration.
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3. Results and discussion
3.1. Crop parameter calibration

Key phenological parameters (Table 1) were determined based on
the literature review about previous crop simulation research. The pa-
rameters were classified into five categories (i.e., thermal time accu-
mulation, transpiration, canopy development, phenology, and others)
and were determined based on three primary sources: (1) default values
provided by CropSyst (version 4), (2) reported values from previous
studies, and (3) adjusted values from the parameter calibration process
in this study. The calibration process was adapted from previous Crop-
Syst simulation studies (Donatelli et al., 1997; Sommer et al., 2008;
Todorovic et al., 2009). Specifically, calibration started with adjusting
the thermal time accumulation parameters (i.e., base and cutoff tem-
perature) and phenology parameters (i.e., thermal time to achieve
emergence, end of canopy growth, beginning of flowering, and matu-
rity) to guarantee a good match between the simulated and observed
phenological stages. Then, other parameters were refined iteratively so
that the simulated total biomass and LAI fit well with the observed data.
Among all the key phenological parameters, values from model default
settings and previously published studies were preferred in the cali-
bration process, while the rest parameters were manually adjusted in a
reliable range provided by the CropSyst (version 4).

Fig. 3 shows the parameter calibration for the selected four crops. For
all crops, n-RMSE is less than 15.3%, EF is larger than 0.77, and d is
larger than 0.81 (Table 2), indicating a good fitting with acceptable
errors (Yang et al., 2014). As displayed in Fig. 4, the simulated values of
LAI and total biomass are highly correlated with corresponding mea-
surements, with Pearson’s correlation coefficients of 0.979 and 0.980 for
LAI and total biomass, respectively. Overall, good agreement was ach-
ieved for the selected phenological parameters in the calibration,
although differences still existed between the predicted and measured
values. Particularly, the calibration of cotton parameters failed to cap-
ture the detailed trend of total biomass due to the lack of field mea-
surements (Fig. 3a). Moreover, maize simulation fails to capture the
total biomass increase in grain filling period, which may lead to un-
derestimation of yield (Fig. 3d). On the other hand, peanut and soybean
simulation have reliable performance. However, the standard deviation
of observed data was relatively large. The mean-based calibration may
lead to potential errors in later regional simulation. The calibrated
phenological parameters were fixed in the regional simulation of annual
crop yields.

3.2. CropSyst-GIS performance

The regional simulation of crop yield in the study area is presented in
Fig. 5. Simulated yields ranged from 588 to 1187 kg/ha, 2797 to 3676
kg/ha, 6347 to 6846 kg/ha, and 2446 to 3295 kg/ha for cotton, peanut,
maize, and soybean, respectively.

As displayed in Fig. 6, the area-weighted average annual yields were
compared with the records from 2016 to 2018. Overall, the regional
simulation achieved a Pearson’s correlation coefficient of 0.99, indi-
cating an overall satisfactory match between simulation and observa-
tion. Furthermore, according to the 1:1 line (Fig. 6), the agreement
between the simulated and recorded annual yields was relatively high
for cotton, peanut, and soybean. However, the simulation under-
estimated maize yield in 2017 by 1425 kg/ha.

According to the calculated statistical parameters (Table 3), the
regional simulation successfully predicted the annual yields of soybean
with a small n-RMSE of only 2.2% and a high index of agreement of 0.93.
Besides, the corresponding modeling efficiency (0.86) was also close to
1, indicating the significant predictive power of soybean yield simula-
tion. For the simulation of peanut yield, the computed n-RMSE (7.0%)
and index of agreement (0.42) were both satisfactory. A negative
average error of —240 kg/ha suggested that the recorded peanut yields



R. Liet al Agricultural Systems 193 (2021) 103213
11000 6 16000 8
(a) (b)
14000
—~ 9000+ o
£ £ 12000 ]
en en
= 7000 210000 Lo
7} 17} §
12} 12} o
g £ 8000+ 14 E
le =00 .2 =
2 2 6000 35
S 30007 S 4000-] 1
= =
10004 2000 4
0 T T T T T T T
0 0 20 40 60 80 100 120 140
13000 18000
© (d) Nl
11000 15000 4
—_ —_
=) «
< <
gb 9000+ —~ 12000
N’ E N’
2 7000 &8
o b | o i
£ 2 E = 9000
M 5000 < M
—_— — — 6000
£ £
o 3000 =
3000
1000
= T T T T T 0 0 T T T T T T
0 10 20 30 40 50 60 70 0 20 40 60 80 100 120
Day after Planting o Measiivad Total Bisiiass Day after Planting
—— Simulated Total Biomass
=  Measured LAI
***** Simulated LAI
Fig. 3. Critical phenological parameter calibration for the four crops: (a) Cotton, (b) Peanut, (c) Maize, and (d) Soybean.
Table 2
Statistical evaluation for parameter calibration.
Crop Cotton Peanut Maize Soybean
Total Biomass LAIL Total Biomass LAIL Total Biomass LAIL Total Biomass LAIL
RMSE 978 0.31 539 0.30 944 0.13 1302 0.45
n-RMSE 15.3 11.1 8.3 9.9 15.0 8.1 12.3 12.5
EF 0.77 0.88 0.90 0.87 0.86 0.92 0.82 0.81
d 0.81 0.90 0.95 0.94 0.93 0.96 0.91 0.90

were generally higher than the corresponding predicted values. How-
ever, the modeling efficiency of peanut yield (—0.40) was less than 0. In
this case, due to the small relative standard deviation of the recorded
peanut yields (6.0%), the model was not sensitive enough to predict the
relatively stable annual yields of peanut in the study area (Moriasi et al.,
2007). For the yield simulation of cotton, although the index of agree-
ment was relatively high (0.59) and the modeling efficiency (0.23) was
greater than 0.0, the n-RMSE (14.2%) was higher than all the other
primary crops. The regional simulation accurately predicted the cotton
yields for the first two years and captured the decreasing trend of the
measured yields to a certain degree. However, the decrease in the
observed cotton yields was more significant than the prediction, which
led to a large difference between the simulation and observation in 2018
(i.e., 169 kg/ha). As to the maize, although the regional simulation
achieved a satisfactory index of agreement (0.41), it underestimated
annual yields of maize in the first two years, especially for 2017 with the
difference reaching 1425 kg/ha. The n-RMSE of maize yield simulation
was 10.5%, indicating an unsatisfactory match. Moreover, a negative
modeling efficiency (—0.11) suggested that the regional model is not
sensitive to the yield changes of maize.

3.3. Nitrogen deficiency

As displayed in Fig. 7, the accumulated nitrogen stress in the study
area was classified into five categories (i.e., trivial, low, medium, high,
and extremely high). In 2016, the summed Ng; was close to zero no
matter which crop was planted, with the greatest value of only 0.025 in
the study area. Since the nitrogen demand was mostly fulfilled, the yield
in each polygon reached its maximum with given weather, soil, and
management conditions, which also led to evenly distributed yields
(Fig. 5a). In the latter two years, nitrogen stress was dramatically piled
up in some regions. A general overlap was identified between polygons
with relatively high annual nitrogen stress (Fig. 7) and low annual crop
yields over the three years, especially in 2017 and 2018 when nitrogen
from soil organic matters and fertilizers could not satisfy the demand of
crop growth (Fig. 7b and c).

Furthermore, we observed that the accumulated nitrogen stress was
closely related to the crop species and soil type. From the aspect of crop
species, the nitrogen deficiency often occurred in areas planted with
crops having high nitrogen demand, such as cotton. Previous studies
have indicated that cotton typically require more than 78 kg N/ha of
nitrogen in growing season (Boquet et al., 2004; Kissel and Sonon,
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2008). In 2017, there were 87 out of 904 polygons in the study area with
at least a medium level of nitrogen deficiency. Among them, polygons
planted with cotton, peanut, and soybean accounted for 62.1%, 32.2%,
and 5.7%, respectively. In 2018, the number of the same type of poly-
gons increased to 473 with 84.4% of them planted with cotton.
Numerous studies have verified that cotton requires a large amount of
nitrogen, which plays an essential role in fueling the growth of cotton
(Bondada and Oosterhuis, 2001; Dong et al., 2012). As to peanut and
soybean, although they can fix nitrogen from the atmosphere, they may
also need fertilization when nitrogen from symbiosis cannot satisfy their
needs of crop growth and canopy development (Ball et al., 1983; Zhang
et al., 2017).

On the other hand, nitrogen deficiency normally happened in regions
with relatively low soil fertility. With the lowest organic matter content
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Fig. 6. Comparison between the simulated and recorded annual yields of the
four primary crops in the study area.
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Fig. 5. Regionally simulated yields of the four primary crops in the study area
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Table 3

Statistical evaluation for the yield simulation of the four crops.
Crop Recorded yields (kg/ha) Simulated yields (kg/ha) E' (kg/ha) RMSE? (kg/ha) n-RMSE® (%) EF* (-) & (-)

2016 2017 2018 2016 2017 2018

Cotton 1102 824 683 1187 927 851 119 124 14.2 0.23 0.59
Peanut 3787 3807 3411 3416 3628 3242 —240 257 7.0 —0.40 0.42
Maize 8702 8742 7330 8334 7317 7604 —506 864 10.5 —0.11 0.41
Soybean 2273 3255 2757 2246 3238 2856 18 60 2.2 0.86 0.93

Note: 1. E stands for mean error; 2. RMSE stands for root mean square error; 3. n-RMSE stands for normalized root mean square error; 4. EF stands for modeling

efficiency; 5. d stands for index of agreement.

Nitrogen Stress

Trivial (0 <Accumulated Ng; < 0.25)
Low (0.25 <Accumulated Ng; < 2.5)
Medium (2.5 <Accumulated Ng; < 10)
High (10 <Accumulated Ng; < 20)
Extremely High (20 <Accumulated Ng;)

EREOT

Fig. 7. Annually summed nitrogen stress indices (Ngp) of each polygon in the study area from 2016 to 2018.

(0.25%) among all dominant soil types in this study (Table 1), the
Orangeburg sandy loam (i.e., OrA, OrB, and OrC) was found in a ma-
jority of the nitrogen-deficient polygons. These soil types accounted for
76.3% of polygons with at least a medium level of nitrogen deficiency in
2018. Specifically, OrA contributed to the 77.1% of the polygons with
extremely high nitrogen deficiency. Moreover, we compared the total
nitrogen budgets between the most nitrogen deficient OrA scenarios and
the scenarios with the same rotation but different soil types (Table S8).
For each rotation, OrA related scenarios had less nitrogen mineralization
and more nitrogen leaching, which are the potential causes for the ni-
trogen deficiency. Low organic matter content would lead to less release
of organically bonded nitrogen. While OrA also has a relatively high
percentage of sand in texture (80.5%) and is consequently hard to hold
water and nutrient content for crop growth (Hamdi et al., 2019).

To further verify the impact of nitrogen deficiency, the simulated
annual yields of four primary crops in each polygon were plotted against
the corresponding annually accumulated Ng; from 2016 to 2018 (Fig. 8).
The annual yields of cotton and peanut clearly decreased with increasing
nitrogen stress. However, in a few polygons without remarkable accu-
mulated Ng;, the simulated yields of these two crops were also relatively
low. In those polygons, the daily Ng; was large over a short period at the
beginning stage of crop growth. This observation is consistent with the
results of previous field studies, which have indicated that the shortage
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Fig. 8. Influence of accumulated nitrogen stress on the yields of the pri-
mary crops.
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of nitrogen nutrient at the early growth stage would affect the canopy
development, nutrient content, and final yields of crops (Ball et al.,
1983; Naegle et al., 2005; Stamatiadis et al., 2006; Schliiter et al., 2012).
For soybean, no clear trend could be identified between nitrogen stress
and annual yields. As to maize, its annually accumulated Ng; was less
than 0.03 in each polygon, which demonstrated that the applied nitro-
gen amount (i.e., 135 kg N/ha in total) was enough to support the
predicted annual yields during the three years.

3.4. Yield improvement

To improve yields in identified low yield polygons, the nitrogen
demand for crop growth needs to be better satisfied. Therefore, four
types of management strategies to alleviate the nitrogen deficiency were
tested at field scale. Although cotton and peanuts are the two most
significant crops in the study area, the tests were focused on cotton yield
improvement, since peanut yields were higher than the 90%, 86%, and
74% of the maximum recorded values (i.e., 3807 kg/ha) in 2016, 2017,
and 2018 respectively, and were not considered as low yields. To better
estimate and compare the impacts of these managements, they were
only applied for the polygons having the low cotton yields in 2018 when
the planted area and nitrogen deficiency of cotton both reached their
highest levels.

In the first type of management, the second nitrogen fertilizer (56 kg
N/ha) was applied as sidedress at different phenological stages,
including germination, first square, active growth, first bloom, and grain
filling, to determine the optimal timing (Fig. 9a). In the original simu-
lation process, this sidedress was applied at the stage of active growth.
The highest average yield with an increase of 4.7% was obtained when
the sidedress was applied at the germination stage. When the sidedress
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was applied at the first square, active growth, or first blooming, the
average and median of simulated yields generally declined as crops
grew, though their highest yields were comparable to each other. A
sharp decrease in simulated cotton yield was observed when the side-
dress was applied at the grain filling. The site simulation result indicated
that applying the sidedress at the germination stage could slightly
improve the yields of cotton in the study area. On the contrary, a late
sidedress application could lead to high nitrogen deficit at the early
stage of cotton growth, which might hinder the full development of
canopy, decrease the concentration of leaf chlorophyll, and therefore
lower the annual yield (Radin and Boyer, 1982; Fridgen and Varco,
2004; Stamatiadis et al., 2006).

In the second type of management, the total amount of nitrogen
fertilizer was gradually raised from 84 kg N/ha to 152 kg N/ha with one-
third applied at the planting stage and the rest applied as sidedress at the
stage of active growth (Fig. 9b). Among them, the fertilization of 84 kg
N/ha was the same as the original simulation process. As more nitrogen
fertilizer was applied, the simulated cotton yields increased with a
shrinking interquartile range, indicating a reduction in nitrogen stress.
When 152 kg N/ha of nitrogen fertilizer was applied, no nitrogen defi-
ciency was found in the selected polygons, and the maximum cotton
yield (1059 kg/ha) was reached under given conditions. Although the
addition of total nitrogen fertilizer improved the average cotton yield by
74.4%, it could dramatically increase the emission of greenhouse gas (i.
e., NoO) (Huang et al., 2014; Ruan et al., 2016). Meanwhile, excessive
nitrogen fertilizing might delay cotton maturity, cause rank growth,
intensify insect infestations, increase the risk of boll rot, and reduce lint
quality (Boquet and Breitenbeck, 2000).

In the third type of management, different combinations of nitrogen
fertilizer types (i.e., ammonium and nitrate) were applied with the

1100

(a)

[=3

[=3

(=]
L

900+
800+

700

= = 3 O

600

500+

Cotton Production (kg/ha)

]

(b)

] ——

I ™

400
1100

Stazlge 1 Staéez Stalge 3 Stag';eél Staée =)

84 kg/ha 101 kg/ha 118 kg/ha 135 kg/ha 152 kg/ha

(©)

1000
900 -

700 A
600 -

E@@

Cotton Production (kg/ha)

500+

400

= -

(d)

/)

0%  25%  50%  75%  100%

025% 05% 1.0%  2.0%  3.0%

[ ]25%~75%

I Range within 1.5IQR

— Median Line
= Mean
x  QOutliers
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percentage of NO3-N increasing from 0 to 100% (Fig. 9¢). In the original
simulation process, no fertilizer was applied in the form of nitrate. When
the proportion of nitrate fertilizer was over 50%, the cotton yields were
improved by increasing crop nitrogen uptake. Compared with the
original simulation result, the average cotton yield was raised by 19.7%
when nitrate was the only form of fertilizer. The improvement of
simulated yields diminished after the percentage of nitrate fertilizer
reached 75%, which could be an optimal strategy for nitrogen fertil-
ization in the study area. When nitrate accounted for 25% of the applied
fertilizers, the average cotton yield was 3.5% lower than the original
simulation result. Even if the application of nitrate did not guarantee
higher cotton yields, other advantages might be achieved through
applying nitrate fertilizer, such as no volatile loss, improved uptake of
cations (i.e., potassium, calcium, and magnesium), and reduced soil
acidification (Haynes and Goh, 1978; Bouman et al., 1995; Sommer
et al., 2004).

In the last type of management, the soil organic matter content was
adjusted between the lowest (0.25%) and the highest recorded values
(5.0%) in the studied area (Table S3). Specifically, this management
strategy could be achieved by the application of soil amendment with
high organic content such as biosolids (Cheng et al., 2007). As the soil
organic matter content rose, more nitrogen was available from organic
matter decomposition, which promoted the simulated cotton yields
(Fig. 9d). Once the soil organic matter content reached 3.0%, the cotton
yields no longer increased and all converged to the maximum value
(1059 kg/ha) under given conditions. The trend of cotton yields under
this type of management was similar to the result of the second type
management since both managements led to more available nitrogen.
However, the total soil ammonium (i.e., applied ammonium fertilizer
and ammonium decomposed from soil organic matters) was 1.5 times
higher under the fourth type of management, which would lead to a
higher NoO emission during the nitrification process (Sanchez-Garcia
et al., 2014).

The above four types of management strategies successfully
increased the average simulated cotton yield by as high as 74.4% in the
selected polygons in 2018. Each type of management had its advantages
and drawback. Among them, increasing the nitrogen fertilizer amount
and the soil organic matter content achieved the most significant
improvement. However, these two types of management would both
potentially emit more greenhouse gas (i.e., NoO). Changing application
timing of sidedress only had a trivial impact on improving cotton yields.
Furthermore, a late sidedress would even cause the failure of grain
filling. Switching the fertilizer type from ammonium to nitrate improved
the average cotton yield by 19.7%. This management tends to reduce
N2O emission since the most important source of the nitrification pro-
cess, ammonium, was replaced by nitrate and the denitrification process
was usually limited under aerobic conditions. Overall, a combination of
the tested management strategies should be applied to sustainably
improve crop yields without having negative impacts on the
environment.

3.5. Implication

Compared with previous GIS-based crop simulation, the developed
framework applied more realistic crop rotations. The rotation input was
very close to the real scenarios since it was directly derived from
recorded agricultural land uses in each year (USDA, 2019). Taking this
advantage, the simulation would contribute to a more reliable predic-
tion and subsequently better bridge the gap between local cropping
system models and the regional estimation of crop yields. On the other
hand, the major limitations of the simulation came from excluding
cultivar variance in the study area and pests/diseases events. The
cultivar variance could be added in the simulation as another input layer
if related data was available. However, the simulation may not be able to
handle the pests/diseases events since the selected crop model is not
equipped with related function.
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4. Conclusion

By coupling a field-scale cropping system model (i.e., CropSyst,
version 4) with a GIS platform (i.e., QGIS, version 3.6.3), a GIS-based
framework was established in this study to simulate the primary crop
yields in a cropland-concentrated USGS sub-watershed in the Geneva
County, Alabama from 2016 to 2018. With well-prepared input data,
crop yields were accurately predicted for dominant crops at a regional
level with an overall Pearson’s correlation coefficient of 0.99. The low
yields polygons were identified according to the visualization of
regional simulation results. Based on total nitrogen budget analysis, we
found that low organic matter content and high sand percentage in
texture are two potential causes for the nitrogen deficiency. And the
annual cotton yield was severely impacted in 2018. Specifically, 84
cotton polygons were found having a yield in the lowest level. To
address the low yields, we simulate the performance of four manage-
ment strategies, which were able to increase the cotton yield by as high
as 74.4%. Because of the potential negative impact (i.e., more N2O
emission), a combination of the tested management strategies should be
taken to promote crop yields sustainably. This study demonstrated the
ability of a GIS-based framework to simulate crop yields at a regional
level.
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