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Abstract—Autonomous Vehicle (AV) technologies are faced 
with several challenges under adverse weather conditions such 
as snow, fog, rain, sun glare, etc. Object detection under adverse 
weather conditions is one of the most critical issues facing 
autonomous driving. Several state-of-the-art Convolutional 
Neural Network (CNN) based object detection algorithms have 
been employed in autonomous vehicles and promising results 
have been established under favorable weather conditions. 
However, results from the literature show that the accuracy and 
performance of these CNN-based object detectors under 
adverse weather conditions tend to diminish rapidly. This 
problem continues to raise major concerns in the research and 
automotive community. In this paper, the foggy weather 
condition is our case study. The goal of this work is to investigate 
how defogging and restoring the quality of foggy images can 
improve the performance of CNN-based real-time object 
detectors. We employed a Cycle consistent Generative 
Adversarial Network (CycleGAN)-based image fog removal 
technique [1] to defog, improve the visibility and the quality of 
the foggy images. We train our YOLOv3 algorithm using the 
Karlsruhe Institute of Technology and Toyota Technological 
Institute (KITTI) dataset [2]. Using the trained YOLOv3 
network, we perform object detection on the original foggy 
images and restored images. We compare the performances of 
the object detector under no fog, moderate fog, and heavy fog 
conditions. Our results show that detection performance 
improved significantly under moderate fog and there was no 
significant improvement under heavy fog conditions. 

Keywords— self-driving cars, adverse weather, fog, object 
detection, convolutional neural network, yolov3 

I. INTRODUCTION  

 In 2018, according to the National Highway Traffic Safety 
Administration, over 36,000 people died from road accidents 
in the United States [3]. According to the World Health 
Organization, Global status report on road safety in 2018, 
about 1.35 million people die from road crashes annually [4]. 
A series of studies have indicated a growing need to provide 
cars with technologies that can mitigate driver error and 
negligence, and support drivers with physical and functional 
limitations [5].  

Several Advanced Driver Assistant Systems (ADAS) have 
been developed in recent years with varying levels of 
autonomy to assist drivers. ADAS consists of safety features 
designed to avert potential accidents by alerting the driver of 
impending risk or seizing control of the vehicle in an 
emergency. ADAS such as intersection assistant system, lane 
change assistance, object detection, collision warning, 
electronic brake assistant system, Lane departure warning, 
etc., have been tested and implemented in research and 
commercial vehicles.   

Today, most AV technologies appear to perform well 
under favorable weather but are faced with several challenges 
under adverse weather conditions. However, challenges 
regarding perception under unfavorable driving circumstances 
and/or inclement weathers remain. Such circumstances 
include the presence of snow, fog, haze, shadow, rainy road, 
extreme illumination into the camera. Many of the existing 
AV technologies and functionalities depend mainly on a group 
of sensors and/or camera systems.  Under adverse weather 
conditions, the functionalities of sensors and cameras can 
severely be degraded, resulting in poor performance. Human 
drivers can visualize the environment with the eye, detect, and 
identify objects. 

 Many of these AV technologies used for perception, 
planning, and control, etc., are mainly tested under favorable 
weather conditions while some are tested under adverse 
weather conditions. Adverse weather conditions do not only 
degrade the performance of sensors and cameras used for 
perception but can increase the risk of traffic crashes and 
fatalities. Perception plays a substantial role in the object 
detection capability of AVs. Object detection is an important 
safety factor for both humans and AVs when navigating the 
road. Currently, object detection under adverse weather 
conditions (such as snow, fog, rain, sun glare, haze, etc.) is one 
of the most critical issues facing autonomous driving. 

It is important to note that atmospheric phenomena 
including haze, fog, and mist occur as a result of suspended 
particles (such as dust, sand, water droplets, ice crystals, etc.) 
in the atmosphere. Meteorological studies show that all these 
phenomena mostly differ in their particle material, size, shape, 
and concentration [6, 7], however, their physical impacts on 
imaging are comparable [8]. Fog occurs when water droplets 
are suspended in the air, while haze occurs when air pollutants 
such as dust are suspended in the air. However, both 
phenomena can obscure visibility and decrease the contrast of 
an image. The quality of the image been captured by the 
cameras can seriously be degraded by fog. Degraded image 
quality can diminish the performances of image processing 
and object detection algorithms. The goal of this work is to 
investigate how defogging and restoring the quality of foggy 
images can improve the performance of CNN-based real-time 
object detectors. We employed a Cycle consistent Generative 
Adversarial Network (CycleGAN)-based image fog removal 
technique [1] to defog, improve the visibility and the quality 
of the foggy images. We train our YOLOv3 algorithm using 
the Karlsruhe Institute of Technology and Toyota 
Technological Institute (KITTI) dataset. Using the trained 
YOLOv3 network, we perform object detection on the 
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original foggy images and restored images. We compare the 
performances of the object detector under no fog, moderate 
fog, and heavy fog conditions. Our results show that detection 
performance improved significantly under moderate fog and 
there was no significant improvement under heavy fog 
conditions. This paper is organized as follows. In section II, 
we present the background of the research. In section III, we 
present a CycleGAN-based image fog removal technique. In 
section IV, we present the YOLOv3 network. In section IV, 
we present our results and discussion. Also, we summarize 
this work and provided direction for future work. 

II. BACKGROUND 

A. Fog Imaging Model 

 Figure 1 illustrates the physical atmospheric scattering 
model under foggy weather. The physical atmospheric 
scattering model is made up of the attenuation factor,  
transmission model, and the airlight model. Under a foggy 
condition, the transmission model consists of atmospheric 
scattering that attenuates the light for imaging. As a result, the 
object textures and edge details of the target image can 
become degraded. Under foggy weather conditions, reflected 
light from the target object crosses attenuation and 
interference before it gets to the camera. Within the airtight 
model, the atmosphere scatters the light rays from the sun 
before been transmitted to the imaging camera. However, the 
transmitted lights, rather than been the scene light from the 
object in the image, consist of fog components that obscure 
the objects in the image. 

Koschmieder [9] proposed the haze image model 
expressed in equation (1): 

 𝐼ሺ𝑥ሻ ൌ 𝐽ሺ𝑥ሻ𝑡ሺ𝑥ሻ ൅ 𝐴ሾ1 െ 𝑡ሺ𝑥ሻሿ 

where 𝐼ሺ𝑥ሻ  represents the observed foggy image by the 
imaging equipment (camera), 𝐽ሺ𝑥ሻ  represents the scene 
radiance image also known as the clean image recovered, 𝑡ሺ𝑥ሻ 
represents the transmission map, 𝐴 is denoted as the airlight 
vector and it is homogeneous for every pixel in the image. 
𝐽ሺ𝑥ሻ𝑡ሺ𝑥ሻ  represents the attenuation factor, 𝐴 ሾ1 െ
𝑡ሺ𝑥ሻሿ represents the atmospheric components. 𝐴, 𝑡, and 𝐽 are 
the unknown parameters of a foggy single input image 𝐼. The 
atmospheric light 𝐴 and transmission 𝑡  can be estimated to 
obtain the restored image (recovered image) 𝐽 using equation 
(2).   

  𝐽መሺ𝑥ሻ ൌ ሺ𝐼መ ሺ𝑥ሻ െ 𝐴መሾ1 െ 𝑡̂ሺ𝑥ሻሿሻ/𝑡̂ሺ𝑥ሻ 

B. Effect of Fog on Autonomous Driving 

 Fog is an atmospheric phenomenon made up of water 
droplets and ice crystals that are suspended in the air. The 
presence of fog can create an unsafe driving condition when 
navigating the road. Fog can impede visibility to the human 
eye and seriously degrade the quality of the image been 
captured in a machine such as AVs. Degraded image quality 
can diminish the performances of image processing and object 
detection algorithms. Under light foggy conditions, visibility 
can be lower than 1000 meters [10] and under thick fog, 
visibility can reduce to 50 meters or less [11].  

 Figure 2 represents the contrast between the grayscale of a 
sunny day and foggy day images. The color and feature 
information included in an image can substantially be revealed 
via grayscale. In object detection, feature information 
contained in the image can be used for label classification. 
From Figure 2, the grayscale of the sunny day image spreads 
from 0 to about 250. Nevertheless, the grayscale of the foggy 
day image is extremely concentrated 25 to about 110. Noise 
in form of spikes (approximately 40, 000-pixel counts) caused 
by the presence of fog is evident on foggy days. Thus, the 
presence of fog in an image can significantly change the 
feature information of an image and can negatively impact 
object detection. Also, in an environment without fog, 
frequency components are found to have a broad spectrum 
while frequency components are clustered at zero frequency 
in a foggy condition. Under fog, the smooth edges of an image 
are defined by low frequencies, and the sharp edges are 
formed by both high and low frequencies [12]. 

 Hence, the contrast of an image tends to diminish while 
pattern edge recognition of the image becomes extremely 
difficult under fog weather conditions [12, 13]. When 
compared to other adverse weather conditions, fog negatively 
impacts the detection capabilities of sensing devices most. 
Because the extinction and backscattering coefficients 
generated by fog (5 ൈ 10ିଷ   to 1.5 ൈ 10ିଶ) is greater than 
those of rain and snow (൏ 10ିଷ) [12, 14]. In a study conducted 
by Anik Das in [15], driving situations on foggy days were 

Fig. 1. An atmospheric scattering phenomenon of foggy imaging model 

   
(a)                                                       (b) 

 

 

(c) 

Fig. 2. The contrast between the gray scale of sunny day and foggy day 
images (a) sunny day image, (b) foggy day image, and (c) image 
showing the grayscale of both sunny day and fog day images. 
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compared to sunny days. The author observed that the 
likelihood of lane deviation from standard deviation under 
foggy conditions was greater than that of favorable conditions. 

C. Image Restoration Method Based on Single Images 

From literature image restoration method based on a single 
image can be divided into two main categories: (i) priori-based 
(ii) learning-based.  

Priori-based: Single image fog removal based on priori-
based methods is also known as the hand-crafted technique. 
Usually, the priori-based methods take advantage of the 
feature information obtained from the natural image to 
estimate the transmission map.  

Tan et al [16] proposed the automated defogging 
algorithm. The method presented in [16] made use of two 
fundamental remarks. First, the contrast property present in a 
clean image is often higher than that of a foggy image. Second, 
in minute local surfaces of the image, the airlight changes 
easily. In their work, Tan et al. converted the input image into 
white color utilizing the white balance operation. 
Furthermore, the authors developed the airlight model using 
the Markov random field. One can maximize the local contrast 
of the recovered image to determine the airlight. With no 
human interaction, the automated defogging algorithm is 
capable of improving the visibility of a foggy image 
automatically. Knowing the peak intensity of the input image 
can help to determine the atmospheric light A. Despite the 
automatic defogging capability of this method, it exhibits 
some limitations. One of the limitations is color distortion in 
recovered images because the method does not consider color 
restoration when enhancing images. Another shortcoming is 
the presence of the halo effect in recovered images. 

In [17], He et al. proposed the dark-channel prior (DCP) 
method to address the drawbacks mentioned in the methods 
discussed above. The dark-channel priori method has 
demonstrated a remarkable capability to restore outdoor 
images. In their work, He et al. examined a great number of 
clean outdoor images. The authors observed that oftentimes 
large portion of these clean outdoor images has a channel of 
pixels excluding those of the sky area and white area. The aim 
of the dark channel prior theory proposed in [17] was to 
determine the image restoration transmission map using the 
min operation in the local area. The recovered image (or 
restored image) contains block artifacts (also known as halo 
artifacts) as a result of the min filtering utilized in the local 
area of the dark channel image [18]. To address the problem 
of  halo artifacts in the recovered image, first, the authors 
chose the local area in the dark channel image containing the 
highest 0.1% clearest pixels. Second, the authors represented 
atmospheric light 𝐴 with the pixel which had the maximum 
intensity of the original foggy image. Thus, the recovered 
image 𝐽 was obtained in equation (3) below [17]: 

where 𝑡  is the transmission using soft matting and 𝑡଴ 
represents a modest constant value that helps to avoid zero 
denominators.  

Despite the outstanding performance of the dark channel 
prior, the theory is faced with a host of limitations. First, the 
dark channel prior can be inefficient when operating on 
images with large sky areas, large white areas, or dense fog 

and inhomogeneous fog [18]. Another shortcoming is the soft 
matting used for estimating the transmission. The soft matting 
process can be time-taking and it can be impracticable in real-
world applications. 

Learning-Based: Recently, several single image 
defogging algorithms based on learning-based methods have 
been proposed in the literature. Learning-based methods 
primarily employ CNN-based or Generative Adversarial 
Networks (GANs)-based algorithms to recover fog-free 
images. In [19], Tang et al. suggested a learning-based 
algorithm that improves the accuracy of estimating the 
transmission map and trained the proposed algorithm using 
random forest. In [20], Mai et al. discovered a substantially 
linear relationship between the RGB  color feature of hazy 
images and scene depth. Using back-propagation, the authors 
formed the inherent correlation between the color feature of 
the hazy image and the scene depth to restore the scene depth.  

In [21], Cai et al. suggested dehazenet that improves 
transmission and learn various characteristics of color in a 
foggy image (which include color fading, maximum contrast, 
dark primary color, etc.) using  CNN. Ren et al [22], proposed 
multi-scale convolutional neural networks (MSCNN) made 
up of two sub-networks namely coarse-scale and fine-scale for 
estimating transmission map. The purpose of the coarse-scale 
network is to determine the transmission map while the fine-
scale network optimizes the transmission locally. Li et al [23], 
proposed a dehazing learning-based method that redevelops 
the atmospheric scattering model to generates clean images 
from hazy images.   

Goodfellow et al. [24], suggested GANs to synthesize 
natural images by efficiently learning the probability 
distribution of the training datasets (images). In their work, 
Goodfellow et al. implemented the concept of two-player min-
max game optimization to simultaneously train both the 
generative and discriminative models 𝐺  and 𝐷 respectively. 
The authors believe that representing both models as 
multilayer perceptrons is the most simplified way to 
implement the adversarial modeling framework. GANs aims 
to train generative model 𝐺 to produce samples from training 
distribution of the dataset in a way that the synthesized 
samples are identical to real distribution by the discriminator 
𝐷.  

 To learn an efficient generator  𝐺 with the aim to fool the 
learned discriminator 𝐷, such that the discriminator 𝐷 is 
adequately efficient to identify fake images from real images, 
alternatively updating the models 𝐺  and 𝐷  is inevitable. 
Consider a real image 𝑥  and a random noise 𝑧, the goal of 
GAN is to learn a mapping function that produces output 
image 𝑦 using the using an adversarial loss expressed in 
equation (4) [24]: 

In contrast to Generative Stochastic Networks [25] which 
generate samples using a Markov chain, GANs employs 
standard gradient descent methods [24]. 
At the earlier stage, GANs was faced with several limitations. 
One of the major shortcomings of GANs is that they can 
become unstable during training. This unstable behavior can 

𝐽 ൌ  
𝐼ሺ𝑥ሻ െ 𝐴

max ሺ𝑡ሺ𝑥ሻ, 𝑡଴ሻ
൅ 𝐴 

𝐿ீ஺ே ൌ
𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

E௫∼௣ౚ౗౪౗ሺ௫ሻሾ log 𝐷ሺ𝑥ሻሿ 

൅E௭∼௣೥ሺ௭ሻ ቂ log ቀ1 െ𝐷൫𝐺ሺ𝑧ሻ൯ቁቃ 
(4) 
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cause artifacts in synthesized images. In [26], Radford et al 
suggested Deep Convolutional GANs that provide a set of 
constraints to solve the problem of instability. Another 
shortcoming of GANs is the lack of control on the kinds of 
data the generator produces especially under unconditioned 
generative models. To address this issue, Mirza et al. [27], 
included supplementary conditional variables that ensure 
efficient and stable learning of the generative model.  

In [28],  Isola et al proposed a method that employed 
conditional adversarial networks to enhance image-to-image 
translation. Karacan et al. [29] proposed a deep GAN method 
to synthesize natural outdoor images under varying 
conditions.  

With a large amount of training data, learning-based 
techniques can learn to map a foggy image to a fog-free image. 
The learning-based techniques largely rely on fog to fog-free 
paired image datasets to train their networks. This implies that 
for every foggy image there is a corresponding fog-free image 
(ground truth image) of the same scene. In reality, because of 
varying contrast and light intensity throughout the day, there 
is a limited amount of fog-free images that can correspond to 
a foggy image of the same scene. 

More recently, learning-based solutions that can operate 
under unpaired image supervision and are independent of 
ground truth images have been developed [1, 30, 31]. Zhu et 
al proposed a Cycle-consistency GAN (CycleGAN)-based 
method [31] which used unpaired image-to-image translation 
to recover a clean image. CycleGAN uses “two-cycle 
consistency losses that capture the intuition that if we translate 
from one domain to the other and back again we should arrive 
at where we started” [31].Consider individual image 𝑥 from 

domain 𝑋 , the image translation cycle should be able to 
recover the original image 𝑥 , this refers to as the forward 

cycle-consistency loss. The forward cycle-consistency loss is 
such that 𝑥 →  𝐺ሺ𝑥ሻ  →  𝐹ሺ𝐺ሺ𝑥ሻሻ  ൎ  𝑥 [31]. The same 
concept applies to individual images 𝑦 from domain 𝑌, this is 
refer to as backward cycle-consistency loss. The backward 
cycle-consistency loss is such that 𝑦 →  𝐹ሺ𝑦ሻ  →
 𝐺ሺ𝐹ሺ𝑦ሻሻ  ൎ  𝑦. The cycle consistency loss is expressed as 
follows in equation (5) [31]. 

Engin et al [32] employed cycle-consistency and VGG 
perceptual losses to recover fog-free images. A noteworthy 
benefit of using CycleGAN is that it does not require paired 
fog-to-fog-free images to train the defog algorithm. 
Nevertheless, because of one stage mapping strategy, 
CycleGAN-based methods are susceptible to color distortion, 
low contrast, and loss of texture information after the removal 
of fog from a foggy image. 

D. CNN-Based Object Detectors 

The state-of-the-art CNN-based models used for object 
detection can be classified into (i) two-stage detectors and, (ii) 
one-stage detectors [33]. The two-stage detection algorithms 
perform objection detection in two stages. First, the Region 
Proposal Network (RPN) is employed to suggest object 
bounding boxes for the candidate targets. Second, the Region 
of Interest Pooling operation (RoI Pool) is employed for 
feature extraction to predict and identify the location and class 
of the targeted objects [34]. The two-stage object detectors 
include Region-Convolutional Neural Network (R-CNN) 
[35], Fast R-CNN [36], Faster R-CNN [37], Mask R-CNN 
[38], region-based fully convolutional network (R-FCN) [39], 
feature pyramid networks (FPN) [40], etc. Girshick et al [36] 
made significant contributions in the field of object detection 
and classification. The authors were the first to successfully 
employ deep learning in object detection tasks.  

However, in one stage object detectors, the RPN is not 
required to generate proposed boxes for targets. Instead, the 
one-stage object detectors immediately predict the location 
and class of the targets from the input image. The one-stage 
object detectors are end-to-end algorithms and they include 
Single Shot Detection (SSD) [41], YOLO (You Only Look 
Once) [42], YOLOv2 (YOLO 9000) [43], YOLOv3 [44], and 
deeply supervised object detectors (DSOD) [45], etc. Redmon 
et al [42-44] proposed YOLO which can extract features from 
an input image and immediately predict bounding boxes and 
the class of the target. One-stage object detectors have a faster 
speed of object detection than the two-stage object detectors 
and can be implemented in real-time. 

Several studies [12, 46-48] have analyzed the impact of 
adverse weather conditions on state-of-the-art CNN-based 
object detection algorithms. Results from these studies have 
shown that the performance of the object detectors can 
diminish rapidly under adverse weather conditions. For 
instance, Liu et al [46] conducted a study that analyzed how 
perception in foggy conditions impacts the detection recall. 
The authors presented a visual imaging model to help 
understand the influence of fog on perception and 
implemented the Faster R-CNN. Experimental results in [46] 
show that detection recall of 91.55% (sunny), 85.21% (light 
fog), 72.54%~64.79% (moderate fog), and less than 57.75% 
(heavy fog). Nonetheless, the performance of object detection 
algorithms under moderate and heavy fog conditions still 
needs improvement. 

𝐿௖௬௖ሺ𝐺,𝐹ሻ ൌ E௫∼௣ౚ౗౪౗ሺ௫ሻሾ‖ 𝐹ሺ𝐺ሺ𝑥ሻ െ 𝑥ሻ‖ଵሿ 

൅E௬∼௣೏ೌ೟ೌሺ௬ሻሾ‖ 𝐺ሺ𝐹ሺ𝑦ሻ െ 𝑦ሻ‖ଵሿ 
(5) 

 

 

(a) 

 

(b) 

Fig. 3. The architecture of cycledefog2refog: (a) Defog architecture, 
Refog architecture [1]. 
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III. ENHANCED CYCLE CONSISTENT ADVERSARIAL 

NETWORKS (CYCLE-DEFOG2REFOG NETWORK) 

In this section, we have adopted one of the most recently 
proposed CycleGAN based methods proposed by Liu et al [1] 
to recover clean images from foggy images. Liu et al proposed 
an end-to-end single image fog called Cycle-Defog2Refog 
network removal technique using enhanced cycle consistent 
adversarial networks. Instead of the one-stage mapping 
strategy used in traditional cycleGAN, Liu et al proposed the 
use of a two-stage mapping strategy. The architectures of the 
Cycle-Defog2Refog network are made up of two parts, the 
defog and refog architectures illustrated in Figures 3(a) and 
3(b) respectively. 

 From Figure 3(a) 𝑋 denotes the input foggy image, Defog-
Net generator is denoted by 𝐺, and 𝐺ሺ𝑋ሻ is the recovered fog-
free image. The Enhancer-Defog-Net(E-D-Net) generator 
which enhances the recovered fog-free is denoted by 𝐸ௗ. The 
adversarial discriminator 𝐷௙௢௚௙௥௘௘  is employed to 
differentiate between the actual fog-free image and the 
recovered image after defogging. The defog architecture 
employs both the refog-net ሺ𝑅ሻ  and an enhancer-defog-net 
ሺ𝐸ௗሻ with the aim to restrict the defogging mapping function 
with two consistency fog loss functions and an adversarial 
discriminator 𝐷௙௢௚௙௥௘௘ [1]. 

From Figure 3(b), the clear image is represented by 𝑌 , 
Refog-Net generator is represented by 𝑅, and the synthetic 
foggy image is represented by 𝑅ሺ𝑌ሻ. The 𝐸௥ which enhances 
the synthetic image is represents the generator Enhancer-
Refog-Net(E-R-Net). The adversarial discriminator 𝐷௙௢௚  is 
employed to categorize the actual foggy image and the 
synthesized foggy image. The defog architecture employs 
both the defog-net ሺ𝐺ሻ and an enhancer-refog-netሺ𝐸௥ሻ with 
the aim to control the refogging mapping function with two 
consistency fog-free loss functions and an adversarial 
discriminator 𝐷௙௢௚ [1]. 

IV. YOLO V3 ALGORITHM 

YOLOv3 [44] network shown in Figure 4 is an enhanced 
version of YOLOv2 with multi-label classification 
capabilities. The multi-label classification capabilities enable 

YOLOv3 to accommodate more complex datasets with 
numerous overlapping targets [34]. YOLO splits the input 
image into multiple grids and employs three separate scale 
feature maps for predicting the bounding box of targets. The 
input dimensions are 16×16, 32×32, and 64×64. The purpose 
of the grid cell is to detect objects captured in its center, predict 
the bounding boxes, their confidence score, and the target 
class.   

To perform object detection at 3 different scales, YOLOv3 
employs 1 x 1 detection kernels and are implemented on 
feature maps of three different sizes placed at three different 
positions within the network. Output tensors from those 
detection layers have the same widths and heights as their 
inputs, but depth, which is the detection kernel is defined as 
1×1×(𝐵×(5+𝐶)). Where B = number of bounding boxes; “5” 
is for the 4 bounding box coordinates and one object 
confidence, and C = the number of classes. Unlike YOLOv2 
that uses Darknet-19 for feature extraction, in YOLOv3, a 
deeper and robust network called darknet-53 is used for 
feature extraction. 

V. RESULT AND DISCUSSION 

A. Single Image Defogging Using Cycle-Defog2Refog 
Network 

 We resized the training images to 512 × 512. Similarly, the 
testing images were resized to 512×512 for defogging. 
Nonetheless, for performance evaluation, we resized the 
defogged image back to its original size. The generator and 
discriminator were trained using ADAM optimizer (learning 
rate ൌ  2 ൈ  10ିସ , batch size ൌ  1). We trained the cycle-
defog2refog using TensorFlow on an NVidia GeForce RTX 
2070 with Max-Q Design graphic processing unit. 

 In this experiment, we trained the cycle-defog2refog 
algorithm using the RESIDE dataset (which includes ITS and 
SOTS datasets) [49]. The ITS dataset consists of 100,000 
synthetic indoor foggy images. The SOTS dataset includes 
500 indoor foggy and outdoor foggy images each, their clear 
image ground truth. After training the cycle-defog2refog 
network, we implement the defogging network on the driving 
dataset. We feed the BDD100k deepdrive dataset into the  
network. It is important to note that the aim of defogging the 

 
Fig. 4. YOLOv3 network architecture 
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foggy images is to investigate whether defogging significantly 

improves the performance of object detection algorithms in 
foggy conditions. 

 To measure the quality of the generated images we 
employed two evaluation standards. (i) Peak Signal-to-Noise 
Ratio (PSNR), (ii) Structural Similarity Index (SSIM). PSNR 
helps to the measure quality between the original image and 
the resulting image. A higher PSNR value implies a lower 
reconstruction error and an efficient reconstruction algorithm 
[1]. The measure of similarity between two different images. 
SSIM approximates perceptual image degradation using 
structural information change in the content of images [50].   

 Figure 5 illustrates defogged results for BDD100K 
moderate fog image data. The first three methods suffer some 
trace of artifacts and color distortion, low contrast. Both Zhu’s 
and Engin’s methods have a similar result with less trace of 
color detection than those of He’s. Liu’s method outperformed 
and generated clearer images than the other 3 methods. Liu’s 
method has the highest SSIM and PSNR values of 0.9184 and 
23.0672 respectively as shown in Table I.  

Figure 6 illustrate defogged results for BDD100K heavy fog 
image. None of the four techniques were able to remove the 
heavy fog effectively. He’s method has the least performance 
with halo-artifacts in the result. Although Liu’s method has 
the highest performance among the four methods, yet the 
generated images were not as clear as expected. The SSIM and 
PSNR result (0.6104 and 15.0917 respectively) for Liu’s 
method in Table II. Because the atmospheric degradation 
model in Liu’s method inaccurately describes the fog map. 
This implies that a better atmospheric degradation model is 
required to effectively remove the fog on heavy fog images. 

B. Object Detection Results Using YOLOv3 

To train the YOLOv3, we use the KITTI dataset with 11040 
train images, and 1380 validation images. We initialized the 
weight used in the network to COCO dataset [51].  

 

 

 

TABLE I.   AVERAGE PSNR AND SSIM OF DEFOGGED RESULT ON 
BDD100K DATA (MEDIUM FOG) 

TABLE II.  AVERAGE PSNR AND SSIM OF DEFOGGED RESULT ON 
BDD100K DATA (HEAVY FOG) 

 

TABLE III.  DETECTION PERFORMANCE OF YOLOV3 ON BDD100K 
DATASET. 

 

 

With Python programming, we trained the YOLOv3 network 
using Pytorch framework on a computer with the following: 
Graphics card - Nvidia GeForce RTX 2070 with Max-Q 
Design; RAM - 16 gigabytes of memory; CPU - Intel Core 17-
8570H 2.2 GHz 6 cores. Figure 7 illustrates the average loss 
curve of the trained network such that the training stops when 
there is no change decreasing trend.  

We employed Recall and Precision to evaluate the 
performance of the object detection network on no fog, 
medium fog, and heavy fog conditions. Recall which is also 
referred to as sensitivity denotes the ratio of relevant instances 
that have been retrieved to the overall amount of relevant 
instances. Precision is categorized as positive predictive 
values (PPV) [47]. It denotes the proportion of positive results 
that are true positive. Figure 8 illustrates the detection results 
on real-world (BDD100K) data which include no fog images, 
and the defogged images (moderate and heavy fog). In Table 

Metric He [17] Zhu [31] Engin [32] Liu [1] 
𝑆𝑆𝐼𝑀 0.2971 0.7615 0.8052 0.9184 
𝑃𝑆𝑁𝑅 10.2647 18.5241 20.6183 23.0672 

Metric He [17] Zhu [31] Engin [32] Liu [1] 
𝑆𝑆𝐼𝑀 0.1973 0.3725 0.3806 0.6104 
𝑃𝑆𝑁𝑅 8.5218 11.3645 12.6581 15.0917 

Weather 
Original Images Defogged Images 

Recall Precision Recall Precision 
No Fog 97.12% 98.84% - - 
Moderate Fog 71.25% 71.67% 75.43% 76.31% 
Heavy Fog 59.61% 60.98% 62.02 % 62.74% 

Fig. 5. Qualitative comparison of several methods on BDD100K data 
(moderate fog) 

Fig. 6. Qualitative comparison of several methods on BDD100K data 
(heavy fog) 

SoutheastCon 2021

Authorized licensed use limited to: Florida A& M University. Downloaded on June 28,2021 at 18:58:53 UTC from IEEE Xplore.  Restrictions apply. 



III, we present detection recall and precision on the original 
images and defogged images (BDD100K data set). Under no 
fog images, the detection algorithm performed well with a 
detection recall of 97.12% and detection precision of 98.84%. 
However, detection recall and precision on moderate fog 
images improved by 5% after they were defogged. For heavy 
fog image, defogging the heavy fog images had a negligible 
improvement on the detection performance.  

VI. CONCLUSION 

Here, we have presented a brief review on how defogging 
and restoring the quality of foggy images can improve the 
performance of CNN-based real-time object detectors. The 
restoration of medium fog images using learning-based 
method significantly outperformed priori-based methods. As 
a result, we achieved a significant increase in detection recall 
and precision of the YOLOv3 object detector.  

However, we observed that both the priori and learning 
based defogging algorithms including Liu’s (recently 
proposed) struggled to restore heavy fog images. This is 
because the atmospheric degradation model in inaccurately 
described the fog map. Therefore, the recovered images 
contain halo-artifacts, color distortion, low contrast, and were 
not clear. This contributed to the low performance of the 
object detection algorithm on the heavy fog data.  

This implies that a defogging algorithm with a better 
atmospheric degradation model is required to effectively 
restore heavy fog images and thus improve detection 
capabilities of object detectors under heavy fog condition. 
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