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Abstract—Autonomous Vehicle (AV) technologies are faced
with several challenges under adverse weather conditions such
as snow, fog, rain, sun glare, etc. Object detection under adverse
weather conditions is one of the most critical issues facing
autonomous driving. Several state-of-the-art Convolutional
Neural Network (CNN) based object detection algorithms have
been employed in autonomous vehicles and promising results
have been established under favorable weather conditions.
However, results from the literature show that the accuracy and
performance of these CNN-based object detectors under
adverse weather conditions tend to diminish rapidly. This
problem continues to raise major concerns in the research and
automotive community. In this paper, the foggy weather
condition is our case study. The goal of this work is to investigate
how defogging and restoring the quality of foggy images can
improve the performance of CNN-based real-time object
detectors. We employed a Cycle consistent Generative
Adversarial Network (CycleGAN)-based image fog removal
technique [1] to defog, improve the visibility and the quality of
the foggy images. We train our YOLOV3 algorithm using the
Karlsruhe Institute of Technology and Toyota Technological
Institute (KITTI) dataset [2]. Using the trained YOLOvV3
network, we perform object detection on the original foggy
images and restored images. We compare the performances of
the object detector under no fog, moderate fog, and heavy fog
conditions. Our results show that detection performance
improved significantly under moderate fog and there was no
significant improvement under heavy fog conditions.

Keywords— self-driving cars, adverse weather, fog, object
detection, convolutional neural network, yolov3

L INTRODUCTION

In 2018, according to the National Highway Traffic Safety
Administration, over 36,000 people died from road accidents
in the United States [3]. According to the World Health
Organization, Global status report on road safety in 2018,
about 1.35 million people die from road crashes annually [4].
A series of studies have indicated a growing need to provide
cars with technologies that can mitigate driver error and
negligence, and support drivers with physical and functional
limitations [5].

Several Advanced Driver Assistant Systems (ADAS) have
been developed in recent years with varying levels of
autonomy to assist drivers. ADAS consists of safety features
designed to avert potential accidents by alerting the driver of
impending risk or seizing control of the vehicle in an
emergency. ADAS such as intersection assistant system, lane
change assistance, object detection, collision warning,
electronic brake assistant system, Lane departure warning,
etc., have been tested and implemented in research and
commercial vehicles.
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Today, most AV technologies appear to perform well
under favorable weather but are faced with several challenges
under adverse weather conditions. However, challenges
regarding perception under unfavorable driving circumstances
and/or inclement weathers remain. Such circumstances
include the presence of snow, fog, haze, shadow, rainy road,
extreme illumination into the camera. Many of the existing
AV technologies and functionalities depend mainly on a group
of sensors and/or camera systems. Under adverse weather
conditions, the functionalities of sensors and cameras can
severely be degraded, resulting in poor performance. Human
drivers can visualize the environment with the eye, detect, and
identify objects.

Many of these AV technologies used for perception,
planning, and control, etc., are mainly tested under favorable
weather conditions while some are tested under adverse
weather conditions. Adverse weather conditions do not only
degrade the performance of sensors and cameras used for
perception but can increase the risk of traffic crashes and
fatalities. Perception plays a substantial role in the object
detection capability of AVs. Object detection is an important
safety factor for both humans and AVs when navigating the
road. Currently, object detection under adverse weather
conditions (such as snow, fog, rain, sun glare, haze, etc.) is one
of the most critical issues facing autonomous driving.

It is important to note that atmospheric phenomena
including haze, fog, and mist occur as a result of suspended
particles (such as dust, sand, water droplets, ice crystals, etc.)
in the atmosphere. Meteorological studies show that all these
phenomena mostly differ in their particle material, size, shape,
and concentration [6, 7], however, their physical impacts on
imaging are comparable [8]. Fog occurs when water droplets
are suspended in the air, while haze occurs when air pollutants
such as dust are suspended in the air. However, both
phenomena can obscure visibility and decrease the contrast of
an image. The quality of the image been captured by the
cameras can seriously be degraded by fog. Degraded image
quality can diminish the performances of image processing
and object detection algorithms. The goal of this work is to
investigate how defogging and restoring the quality of foggy
images can improve the performance of CNN-based real-time
object detectors. We employed a Cycle consistent Generative
Adversarial Network (CycleGAN)-based image fog removal
technique [1] to defog, improve the visibility and the quality
of the foggy images. We train our YOLOv3 algorithm using
the Karlsruhe Institute of Technology and Toyota
Technological Institute (KITTI) dataset. Using the trained
YOLOvV3 network, we perform object detection on the
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Fig. 1. An atmospheric scattering phenomenon of foggy imaging model

original foggy images and restored images. We compare the
performances of the object detector under no fog, moderate
fog, and heavy fog conditions. Our results show that detection
performance improved significantly under moderate fog and
there was no significant improvement under heavy fog
conditions. This paper is organized as follows. In section I,
we present the background of the research. In section III, we
present a CycleGAN-based image fog removal technique. In
section IV, we present the YOLOvV3 network. In section IV,
we present our results and discussion. Also, we summarize
this work and provided direction for future work.

II. BACKGROUND

A. Fog Imaging Model

Figure 1 illustrates the physical atmospheric scattering
model under foggy weather. The physical atmospheric
scattering model is made up of the attenuation factor,
transmission model, and the airlight model. Under a foggy
condition, the transmission model consists of atmospheric
scattering that attenuates the light for imaging. As a result, the
object textures and edge details of the target image can
become degraded. Under foggy weather conditions, reflected
light from the target object crosses attenuation and
interference before it gets to the camera. Within the airtight
model, the atmosphere scatters the light rays from the sun
before been transmitted to the imaging camera. However, the
transmitted lights, rather than been the scene light from the
object in the image, consist of fog components that obscure
the objects in the image.

Koschmieder [9] proposed the haze image model
expressed in equation (1):

I(x) = J()t(x) + A[1 = t(x)] (M

where I(x) represents the observed foggy image by the
imaging equipment (camera), J(x) represents the scene
radiance image also known as the clean image recovered, t(x)
represents the transmission map, 4 is denoted as the airlight
vector and it is homogeneous for every pixel in the image.
J()t(x) represents the attenuation factor, A[1-—
t(x)] represents the atmospheric components. 4, t, and ] are
the unknown parameters of a foggy single input image I. The
atmospheric light A and transmission ¢ can be estimated to
obtain the restored image (recovered image) J using equation
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Fig. 2. The contrast between the gray scale of sunny day and foggy day
images (a) sunny day image, (b) foggy day image, and (c) image
showing the grayscale of both sunny day and fog day images.

B. Effect of Fog on Autonomous Driving

Fog is an atmospheric phenomenon made up of water
droplets and ice crystals that are suspended in the air. The
presence of fog can create an unsafe driving condition when
navigating the road. Fog can impede visibility to the human
eye and seriously degrade the quality of the image been
captured in a machine such as AVs. Degraded image quality
can diminish the performances of image processing and object
detection algorithms. Under light foggy conditions, visibility
can be lower than 1000 meters [10] and under thick fog,
visibility can reduce to 50 meters or less [11].

Figure 2 represents the contrast between the grayscale of a
sunny day and foggy day images. The color and feature
information included in an image can substantially be revealed
via grayscale. In object detection, feature information
contained in the image can be used for label classification.
From Figure 2, the grayscale of the sunny day image spreads
from 0 to about 250. Nevertheless, the grayscale of the foggy
day image is extremely concentrated 25 to about 110. Noise
in form of spikes (approximately 40, 000-pixel counts) caused
by the presence of fog is evident on foggy days. Thus, the
presence of fog in an image can significantly change the
feature information of an image and can negatively impact
object detection. Also, in an environment without fog,
frequency components are found to have a broad spectrum
while frequency components are clustered at zero frequency
in a foggy condition. Under fog, the smooth edges of an image
are defined by low frequencies, and the sharp edges are
formed by both high and low frequencies [12].

Hence, the contrast of an image tends to diminish while
pattern edge recognition of the image becomes extremely
difficult under fog weather conditions [12, 13]. When
compared to other adverse weather conditions, fog negatively
impacts the detection capabilities of sensing devices most.
Because the extinction and backscattering coefficients
generated by fog (5% 1073 to 1.5 X 1072) is greater than
those of rain and snow (< 1073) [12, 14]. In a study conducted
by Anik Das in [15], driving situations on foggy days were
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compared to sunny days. The author observed that the
likelihood of lane deviation from standard deviation under
foggy conditions was greater than that of favorable conditions.

C. Image Restoration Method Based on Single Images

From literature image restoration method based on a single
image can be divided into two main categories: (i) priori-based
(ii) learning-based.

Priori-based: Single image fog removal based on priori-
based methods is also known as the hand-crafted technique.
Usually, the priori-based methods take advantage of the
feature information obtained from the natural image to
estimate the transmission map.

Tan et al [16] proposed the automated defogging
algorithm. The method presented in [16] made use of two
fundamental remarks. First, the contrast property present in a
clean image is often higher than that of a foggy image. Second,
in minute local surfaces of the image, the airlight changes
easily. In their work, Tan et al. converted the input image into
white color utilizing the white balance operation.
Furthermore, the authors developed the airlight model using
the Markov random field. One can maximize the local contrast
of the recovered image to determine the airlight. With no
human interaction, the automated defogging algorithm is
capable of improving the visibility of a foggy image
automatically. Knowing the peak intensity of the input image
can help to determine the atmospheric light A. Despite the
automatic defogging capability of this method, it exhibits
some limitations. One of the limitations is color distortion in
recovered images because the method does not consider color
restoration when enhancing images. Another shortcoming is
the presence of the halo effect in recovered images.

In [17], He et al. proposed the dark-channel prior (DCP)
method to address the drawbacks mentioned in the methods
discussed above. The dark-channel priori method has
demonstrated a remarkable capability to restore outdoor
images. In their work, He et al. examined a great number of
clean outdoor images. The authors observed that oftentimes
large portion of these clean outdoor images has a channel of
pixels excluding those of the sky area and white area. The aim
of the dark channel prior theory proposed in [17] was to
determine the image restoration transmission map using the
min operation in the local area. The recovered image (or
restored image) contains block artifacts (also known as halo
artifacts) as a result of the min filtering utilized in the local
area of the dark channel image [18]. To address the problem
of halo artifacts in the recovered image, first, the authors
chose the local area in the dark channel image containing the
highest 0.1% clearest pixels. Second, the authors represented
atmospheric light A with the pixel which had the maximum
intensity of the original foggy image. Thus, the recovered
image / was obtained in equation (3) below [17]:

where t is the transmission using soft matting and t,
represents a modest constant value that helps to avoid zero
denominators.

I -A p
/= max (t(x),ty) + (3)

Despite the outstanding performance of the dark channel
prior, the theory is faced with a host of limitations. First, the
dark channel prior can be inefficient when operating on
images with large sky areas, large white areas, or dense fog

and inhomogeneous fog [18]. Another shortcoming is the soft
matting used for estimating the transmission. The soft matting
process can be time-taking and it can be impracticable in real-
world applications.

Learning-Based: Recently, several single image
defogging algorithms based on learning-based methods have
been proposed in the literature. Learning-based methods
primarily employ CNN-based or Generative Adversarial
Networks (GANs)-based algorithms to recover fog-free
images. In [19], Tang et al. suggested a learning-based
algorithm that improves the accuracy of estimating the
transmission map and trained the proposed algorithm using
random forest. In [20], Mai et al. discovered a substantially
linear relationship between the RGB color feature of hazy
images and scene depth. Using back-propagation, the authors
formed the inherent correlation between the color feature of
the hazy image and the scene depth to restore the scene depth.

In [21], Cai et al. suggested dehazenet that improves
transmission and learn various characteristics of color in a
foggy image (which include color fading, maximum contrast,
dark primary color, etc.) using CNN. Ren et al [22], proposed
multi-scale convolutional neural networks (MSCNN) made
up of two sub-networks namely coarse-scale and fine-scale for
estimating transmission map. The purpose of the coarse-scale
network is to determine the transmission map while the fine-
scale network optimizes the transmission locally. Li et al [23],
proposed a dehazing learning-based method that redevelops
the atmospheric scattering model to generates clean images
from hazy images.

Goodfellow et al. [24], suggested GANs to synthesize
natural images by efficiently learning the probability
distribution of the training datasets (images). In their work,
Goodfellow et al. implemented the concept of two-player min-
max game optimization to simultaneously train both the
generative and discriminative models G and D respectively.
The authors believe that representing both models as
multilayer perceptrons is the most simplified way to
implement the adversarial modeling framework. GANs aims
to train generative model G to produce samples from training
distribution of the dataset in a way that the synthesized
samples are identical to real distribution by the discriminator
D.

To learn an efficient generator G with the aim to fool the
learned discriminator D, such that the discriminator D is
adequately efficient to identify fake images from real images,
alternatively updating the models G and D is inevitable.
Consider a real image x and a random noise z, the goal of
GAN is to learn a mapping function that produces output
image y using the using an adversarial loss expressed in
equation (4) [24]:

min max

Expyaa[ 108 D(X)]
G D X~Pdata(X. (4)

+E;p ) [1og (1 - D(G(z)))]

Loan =

In contrast to Generative Stochastic Networks [25] which
generate samples using a Markov chain, GANs employs
standard gradient descent methods [24].

At the earlier stage, GANs was faced with several limitations.
One of the major shortcomings of GANs is that they can
become unstable during training. This unstable behavior can
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Fig. 3. The architecture of cycledefog2refog: (a) Defog architecture,
Refog architecture [1].

cause artifacts in synthesized images. In [26], Radford et al
suggested Deep Convolutional GANs that provide a set of
constraints to solve the problem of instability. Another
shortcoming of GANSs is the lack of control on the kinds of
data the generator produces especially under unconditioned
generative models. To address this issue, Mirza et al. [27],
included supplementary conditional variables that ensure
efficient and stable learning of the generative model.

In [28], Isola et al proposed a method that employed
conditional adversarial networks to enhance image-to-image
translation. Karacan et al. [29] proposed a deep GAN method
to synthesize natural outdoor images under varying
conditions.

With a large amount of training data, learning-based
techniques can learn to map a foggy image to a fog-free image.
The learning-based techniques largely rely on fog to fog-free
paired image datasets to train their networks. This implies that
for every foggy image there is a corresponding fog-free image
(ground truth image) of the same scene. In reality, because of
varying contrast and light intensity throughout the day, there
is a limited amount of fog-free images that can correspond to
a foggy image of the same scene.

More recently, learning-based solutions that can operate
under unpaired image supervision and are independent of
ground truth images have been developed [1, 30, 31]. Zhu et
al proposed a Cycle-consistency GAN (CycleGAN)-based
method [31] which used unpaired image-to-image translation
to recover a clean image. CycleGAN uses “two-cycle
consistency losses that capture the intuition that if we translate
from one domain to the other and back again we should arrive
at where we started” [31].Consider individual image x from

LcyC(G' F) = Ex“Pdata(x)[" F(G(X) - x)”l]

(%)
+Ey < pagaran Il GE) = 1]

domain X, the image translation cycle should be able to
recover the original image x, this refers to as the forward

cycle-consistency loss. The forward cycle-consistency loss is
such that x = G(x) = F(G(x)) = x [31]. The same
concept applies to individual images y from domain Y, this is
refer to as backward cycle-consistency loss. The backward
cycle-consistency loss is such that y - F(y) —
G(F(y)) = y. The cycle consistency loss is expressed as
follows in equation (5) [31].

Engin et al [32] employed cycle-consistency and VGG
perceptual losses to recover fog-free images. A noteworthy
benefit of using CycleGAN is that it does not require paired
fog-to-fog-free images to train the defog algorithm.
Nevertheless, because of one stage mapping strategy,
CycleGAN-based methods are susceptible to color distortion,
low contrast, and loss of texture information after the removal
of fog from a foggy image.

D. CNN-Based Object Detectors

The state-of-the-art CNN-based models used for object
detection can be classified into (i) two-stage detectors and, (ii)
one-stage detectors [33]. The two-stage detection algorithms
perform objection detection in two stages. First, the Region
Proposal Network (RPN) is employed to suggest object
bounding boxes for the candidate targets. Second, the Region
of Interest Pooling operation (Rol Pool) is employed for
feature extraction to predict and identify the location and class
of the targeted objects [34]. The two-stage object detectors
include Region-Convolutional Neural Network (R-CNN)
[35], Fast R-CNN [36], Faster R-CNN [37], Mask R-CNN
[38], region-based fully convolutional network (R-FCN) [39],
feature pyramid networks (FPN) [40], etc. Girshick et al [36]
made significant contributions in the field of object detection
and classification. The authors were the first to successfully
employ deep learning in object detection tasks.

However, in one stage object detectors, the RPN is not
required to generate proposed boxes for targets. Instead, the
one-stage object detectors immediately predict the location
and class of the targets from the input image. The one-stage
object detectors are end-to-end algorithms and they include
Single Shot Detection (SSD) [41], YOLO (You Only Look
Once) [42], YOLOV2 (YOLO 9000) [43], YOLOV3 [44], and
deeply supervised object detectors (DSOD) [45], etc. Redmon
et al [42-44] proposed YOLO which can extract features from
an input image and immediately predict bounding boxes and
the class of the target. One-stage object detectors have a faster
speed of object detection than the two-stage object detectors
and can be implemented in real-time.

Several studies [12, 46-48] have analyzed the impact of
adverse weather conditions on state-of-the-art CNN-based
object detection algorithms. Results from these studies have
shown that the performance of the object detectors can
diminish rapidly under adverse weather conditions. For
instance, Liu et al [46] conducted a study that analyzed how
perception in foggy conditions impacts the detection recall.
The authors presented a visual imaging model to help
understand the influence of fog on perception and
implemented the Faster R-CNN. Experimental results in [46]
show that detection recall of 91.55% (sunny), 85.21% (light
fog), 72.54%~64.79% (moderate fog), and less than 57.75%
(heavy fog). Nonetheless, the performance of object detection
algorithms under moderate and heavy fog conditions still
needs improvement.
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Fig. 4. YOLOV3 network architecture

III. ENHANCED CYCLE CONSISTENT ADVERSARIAL
NETWORKS (CYCLE-DEFOG2REFOG NETWORK)

In this section, we have adopted one of the most recently
proposed CycleGAN based methods proposed by Liu et al [1]
to recover clean images from foggy images. Liu et al proposed
an end-to-end single image fog called Cycle-Defog2Refog
network removal technique using enhanced cycle consistent
adversarial networks. Instead of the one-stage mapping
strategy used in traditional cycleGAN, Liu et al proposed the
use of a two-stage mapping strategy. The architectures of the
Cycle-Defog2Refog network are made up of two parts, the
defog and refog architectures illustrated in Figures 3(a) and
3(b) respectively.

From Figure 3(a) X denotes the input foggy image, Defog-
Net generator is denoted by G, and G (X) is the recovered fog-
free image. The Enhancer-Defog-Net(E-D-Net) generator
which enhances the recovered fog-free is denoted by E;. The
adversarial ~ discriminator  Dfog4free IS employed to
differentiate between the actual fog-free image and the
recovered image after defogging. The defog architecture
employs both the refog-net (R) and an enhancer-defog-net
(E;) with the aim to restrict the defogging mapping function
with two consistency fog loss functions and an adversarial
discriminator Dyogfree [1].

From Figure 3(b), the clear image is represented by Y,
Refog-Net generator is represented by R, and the synthetic
foggy image is represented by R(Y). The E, which enhances
the synthetic image is represents the generator Enhancer-
Refog-Net(E-R-Net). The adversarial discriminator Dy, is
employed to categorize the actual foggy image and the
synthesized foggy image. The defog architecture employs
both the defog-net (G) and an enhancer-refog-net(E,) with
the aim to control the refogging mapping function with two
consistency fog-free loss functions and an adversarial
discriminator Dy, [1].

IV. YOLO V3 ALGORITHM

YOLOV3 [44] network shown in Figure 4 is an enhanced
version of YOLOv2 with multi-label classification
capabilities. The multi-label classification capabilities enable

Detection layer

layer 93
layer 105

layer 94

Detection layer
Scale 2

layer 105’
32x32x18

Detection layer
Scale 3
64x64x18

YOLOV3 to accommodate more complex datasets with
numerous overlapping targets [34]. YOLO splits the input
image into multiple grids and employs three separate scale
feature maps for predicting the bounding box of targets. The
input dimensions are 16x16, 32x32, and 64x64. The purpose
of'the grid cell is to detect objects captured in its center, predict
the bounding boxes, their confidence score, and the target
class.

To perform object detection at 3 different scales, YOLOv3
employs 1 x 1 detection kernels and are implemented on
feature maps of three different sizes placed at three different
positions within the network. Output tensors from those
detection layers have the same widths and heights as their
inputs, but depth, which is the detection kernel is defined as
1x1x(B%(5+C)). Where B = number of bounding boxes; “5”
is for the 4 bounding box coordinates and one object
confidence, and C = the number of classes. Unlike YOLOvV2
that uses Darknet-19 for feature extraction, in YOLOV3, a
deeper and robust network called darknet-53 is used for
feature extraction.

V. RESULT AND DISCUSSION

A. Single Image Defogging Using Cycle-Defog2Refog

Network

We resized the training images to 512 x 512. Similarly, the
testing images were resized to 512x512 for defogging.
Nonetheless, for performance evaluation, we resized the
defogged image back to its original size. The generator and
discriminator were trained using ADAM optimizer (learning
rate = 2 X 107*, batch size = 1). We trained the cycle-
defog2refog using TensorFlow on an NVidia GeForce RTX
2070 with Max-Q Design graphic processing unit.

In this experiment, we trained the cycle-defog2refog
algorithm using the RESIDE dataset (which includes ITS and
SOTS datasets) [49]. The ITS dataset consists of 100,000
synthetic indoor foggy images. The SOTS dataset includes
500 indoor foggy and outdoor foggy images each, their clear
image ground truth. After training the cycle-defog2refog
network, we implement the defogging network on the driving
dataset. We feed the BDD100k deepdrive dataset into the
network. It is important to note that the aim of defogging the
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foggy images is to investigate whether defogging significantly
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Fig. 5. Qualitative comparison of several methods on BDD100K data
(moderate fog)

improves the performance of object detection algorithms in
foggy conditions.

To measure the quality of the generated images we
employed two evaluation standards. (i) Peak Signal-to-Noise
Ratio (PSNR), (ii) Structural Similarity Index (SSIM). PSNR
helps to the measure quality between the original image and
the resulting image. A higher PSNR value implies a lower
reconstruction error and an efficient reconstruction algorithm
[1]. The measure of similarity between two different images.
SSIM approximates perceptual image degradation using
structural information change in the content of images [50].

Figure 5 illustrates defogged results for BDDI100K
moderate fog image data. The first three methods suffer some
trace of artifacts and color distortion, low contrast. Both Zhu’s
and Engin’s methods have a similar result with less trace of
color detection than those of He’s. Liu’s method outperformed
and generated clearer images than the other 3 methods. Liu’s
method has the highest SSIM and PSNR values of 0.9184 and
23.0672 respectively as shown in Table I.

Figure 6 illustrate defogged results for BDD100K heavy fog
image. None of the four techniques were able to remove the
heavy fog effectively. He’s method has the least performance
with halo-artifacts in the result. Although Liu’s method has
the highest performance among the four methods, yet the
generated images were not as clear as expected. The SSIM and
PSNR result (0.6104 and 15.0917 respectively) for Liu’s
method in Table II. Because the atmospheric degradation
model in Liu’s method inaccurately describes the fog map.
This implies that a better atmospheric degradation model is
required to effectively remove the fog on heavy fog images.

B. Object Detection Results Using YOLOv3

To train the YOLOv3, we use the KITTI dataset with 11040
train images, and 1380 validation images. We initialized the
weight used in the network to COCO dataset [S1].

TABLE 1. AVERAGE PSNR AND SSIM OF DEFOGGED RESULT ON
BDD100K DATA (MEDIUM FOG)

Metric He [17] Zhu [31] Engin [32] Liu [1]
SSIM 0.2971 0.7615 0.8052 0.9184
PSNR 10.2647 18.5241 20.6183 23.0672

TABLEII. AVERAGE PSNR AND SSIM OF DEFOGGED RESULT ON
BDD100K DATA (HEAVY FOG)

Metric He [17] Zhu [31] Engin [32] Liu [1]
SSIM 0.1973 0.3725 0.3806 0.6104
PSNR 8.5218 11.3645 12.6581 15.0917

TABLE III. DETECTION PERFORMANCE OF YOLOV3 oN BDD100K
DATASET.
Original Images Defogged Images
Weather Recall Precision Recall Precision
No Fog 97.12% 98.84% - -
Moderate Fog | 71.25% 71.67% 75.43% 76.31%
Heavy Fog 59.61% 60.98% 62.02 % 62.74%
Inputs
He
Zhu
Engin

Liu
Adopted
Method

Fig. 6. Qualitative comparison of several methods on BDD100K data
(heavy fog)

With Python programming, we trained the YOLOvV3 network
using Pytorch framework on a computer with the following:
Graphics card - Nvidia GeForce RTX 2070 with Max-Q
Design; RAM - 16 gigabytes of memory; CPU - Intel Core 17-
8570H 2.2 GHz 6 cores. Figure 7 illustrates the average loss
curve of the trained network such that the training stops when
there is no change decreasing trend.

We employed Recall and Precision to evaluate the
performance of the object detection network on no fog,
medium fog, and heavy fog conditions. Recall which is also
referred to as sensitivity denotes the ratio of relevant instances
that have been retrieved to the overall amount of relevant
instances. Precision is categorized as positive predictive
values (PPV) [47]. It denotes the proportion of positive results
that are true positive. Figure 8 illustrates the detection results
on real-world (BDD100K) data which include no fog images,
and the defogged images (moderate and heavy fog). In Table
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111, we present detection recall and precision on the original
images and defogged images (BDD100K data set). Under no
fog images, the detection algorithm performed well with a
detection recall of 97.12% and detection precision of 98.84%.
However, detection recall and precision on moderate fog
images improved by 5% after they were defogged. For heavy
fog image, defogging the heavy fog images had a negligible
improvement on the detection performance.

VI. CONCLUSION

Here, we have presented a brief review on how defogging
and restoring the quality of foggy images can improve the
performance of CNN-based real-time object detectors. The
restoration of medium fog images using learning-based
method significantly outperformed priori-based methods. As
a result, we achieved a significant increase in detection recall
and precision of the YOLOV3 object detector.

However, we observed that both the priori and learning
based defogging algorithms including Liu’s (recently
proposed) struggled to restore heavy fog images. This is
because the atmospheric degradation model in inaccurately
described the fog map. Therefore, the recovered images
contain halo-artifacts, color distortion, low contrast, and were
not clear. This contributed to the low performance of the
object detection algorithm on the heavy fog data.

This implies that a defogging algorithm with a better
atmospheric degradation model is required to effectively
restore heavy fog images and thus improve detection
capabilities of object detectors under heavy fog condition.
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