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ABSTRACT

The Sunyaev—Zel’dolvich (SZ) effect is expected to be instrumental in measuring velocities of distant clusters in near future
telescope surveys. We simplify the calculation of peculiar velocities of galaxy clusters using deep learning frameworks trained
on numerical simulations to avoid the independent estimation of the optical depth. Images of distorted photon backgrounds
are generated for idealized observations using one of the largest cosmological hydrodynamical simulations, the Magneticum
simulations. The model is tested to determine its ability of estimating peculiar velocities from future kinetic SZ observations
under different noise conditions. The deep learning algorithm displays robustness in estimating peculiar velocities from kinetic
SZ effect by an improvement in accuracy of about 17 per cent compared to the analytical approach.
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1 INTRODUCTION

The Sunyaev—Zel’dolvich (SZ) effect (Sunyaev & Zeldovich 1970,
1972, 1980) describes the process of cosmic microwave background
(CMB) distortion caused by the inverse Compton scattering of CMB
photons off by electrons in galaxy clusters. The SZ effect has two
contributions: thermal (tSZ) and kinetic SZ (kSZ) effect. The tSZ
effect is caused by the random motion of hot electrons in the intra-
cluster medium, while the kSZ effect is caused by the bulk motion of
galaxy clusters. Therefore, the kSZ effect can be used in estimating
peculiar velocities of galaxy clusters (e.g. Rephaeli & Lahav 1991;
Bhattacharya & Kosowsky 2008; Zhang et al. 2008; Kashlinsky
et al. 2009; Atrio-Barandela et al. 2012; Planck Collaboration XIII
2014; Sayers et al. 2016; Hurier 2017; Soergel et al. 2017; Planck
Collaboration LIII 2018; Kirillov & Savelova 2019). However, the
weak signal of the kSZ effect makes its detection very difficult.
Hand et al. (2012) first detected the kSZ effect from CMB maps
with the Atacama Cosmology Telescope (ACT) through pairwise
momentum estimator. Using similar methods, several groups have
detected the kSZ effect in both real and Fourier spaces (e.g. Soergel
et al. 2016; Planck Collaboration XXXVII 2016; Calafut, Bean &
Yu 2017; Li et al. 2018; Sugiyama, Okumura & Spergel 2018). In
addition, some studies detected the kSZ effect by cross-correlating
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kSZ temperature map with density, velocity field (e.g. Hill et al.
2016; Schaan et al. 2016; Nguyen et al. 2020) or other observables
such as the angular redshift fluctuations (Chaves-Montero et al.
2019; Hernandez-Monteagudo, Chaves-Montero & Angulo 2019).
The kSZ effect through measurements of the CMB temperature
dispersion was detected by Planck Collaboration LIII (2018). Fur-
thermore, Mittal, de Bernardis & Niemack (2018) discussed the
ability of measuring the kSZ effect for individual clusters in the
upcoming multifrequency surveys. With the improvements in the
kSZ measurement, the estimate of peculiar velocities using kSZ effect
for individual clusters may become possible.

The peculiar velocity field is a powerful tracer of density fluctua-
tions, which is generally studied through ensemble statistics such as
bulk flows, velocity correlation functions, and the pairwise velocity
statistics (e.g. Borgani et al. 2000; Watkins, Feldman & Hudson
2009; Kumar et al. 2015; Wang et al. 2018). The pairwise velocity
statistics is the mean value of the peculiar velocity difference of
galaxy pairs at separation r and is a widely used approach to study
the large-scale velocity field (e.g. Ferreira et al. 1999; Juszkiewicz
et al. 2000; Feldman et al. 2003; Zhang et al. 2008; Hand et al.
2012; Planck Collaboration XXX VII2016). Traditionally, estimating
peculiar velocities using the kSZ effect requires information about
optical depth, which describes the integration of electron densities.
However, the measurement of optical depth has errors and biases
that may affect the estimate of peculiar velocities. Lindner et al.
(2015) estimates an average uncertainty of the cluster optical depth
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around 31 per cent and Mittal et al. (2018) forecasts an average
uncertainty about 24 per cent in observations. In addition, using
emission-weighted temperature, which is not observable, rather than
density-weighted temperature in measurements may lead to a biased
optical depth estimation (Diaferio et al. 2005; Dolag & Sunyaev
2013). In simulations, the optical depth varies between models with
and without star formation and feedback (Flender et al. 2016; Flender,
Nagai & McDonald 2017). The weak kSZ signal and optical depth
errors make the kSZ peculiar velocity calculation imprecise and
difficult. Machine learning algorithms may provide a simpler and
more accurate method for estimating kSZ peculiar velocities.

Machine learning algorithms are designed without explicit pro-
gramming of the physical phenomena, instead perform complex
analyses in a data-driven manner. Some machine learning methods,
including Gaussian processes, decision trees, nearest-neighbour
algorithms, and support vector machines, have been used in astro-
physical contexts (see Baron 2019 for a recent overview). Deep
neural networks, a class of extremely flexible statistical models,
are a subset of machine learning algorithms. These typically have
a large number of trainable parameters that can be optimized
from abundant quantities of data, while the relevant features are
extracted automatically. Utilization of such deep learning methods
is rapidly increasing due to the availability of data, advancements
of computational architectures (such as the graphic processors,
tensor processors, and dedicated accelerators), and the development
of accessible software libraries (such as TensorFlow, Keras,
Torch, and JAX). Specifically, the convolutional neural networks
(CNNs), where features of images are extracted hierarchically
in various layers of the deep network, are powerful tools in
image-based regression, classification, compression, and generation
tasks.

However, the model interpretability and explainability of deep
learning methods remain to be areas of active research. The
overparametrized architecture of deep CNNs results in a diffi-
cult uncertainty quantification, and features important assessment
and understanding of failure modes. The dependence on hyper
parameter searches, optimal architectures, network initialization,
and optimization routines also contributes to the cryptic nature of
the results achieved from deep learning algorithms. Thus, deep
learning algorithms are often characterized as ‘black box” inference
techniques.

Despite these caveats, deep learning neural networks trained on
sufficient amount of data outperform the traditional classification
and regression techniques (shown in various comparison studies, for
instance Metcalf et al. 2019 in strong lensing detection problem).
Specifically in deep CNNs, the low-, mid-, and high-level image
features computed in the initial, middle, and final convolutional
layers, respectively, are used to correlate inputs and targets in a
highly efficient manner. This makes CNNs practical tools in image
processing tasks, including astronomical applications.

Learning the intrinsic characteristics of the data set may be
accomplished unsupervised where the training is unaccompanied
by correct responses, e.g. in generative models (Ravanbakhsh et al.
2016; Morningstar et al. 2018; He et al. 2019). Alternatively, a
supervised routine involves learning correct mapping during training.
Supervised techniques for object identification have been applied in
a broad variety of astrophysical problems including strong lensing
image classifications (Petrillo et al. 2017) and parameter estimations
(Hezaveh, Perreault Levasseur & Marshall 2017; Levasseur, Hezaveh
& Wechsler 2017; Morningstar et al. 2018), which have demonstrated
improvements to predictive precision and inference speed compared
to traditional inference techniques.
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Machine learning applications in cosmological analyses fre-
quently deal with simulated data instead of observational data. This is
in part due to the lack of large quantity of observational data. On the
other hand, the ability of calibrating the forward model parameters
is not robust enough to generate unbiased training data.

In this paper, we use simulation data to test the feasibility of
extracting peculiar velocities from kSZ effect by deep learning
architectures. In Section 2, we describe the relation between the
SZ effect and the peculiar velocity. In Section 3, we introduce the
simulation we used for generating training and validation data. In
Section 4, we display the CNN structure of the deep learning model.
In Section 5, we show predictions of our model and compare it with
the analytical method. In Section 6, we exam the model predictions
through the pairwise velocity statistics. In Section 7, we test the
feasibility of the model to observations under noise conditions. In
Section 8, we conclude this paper.

2 SUNYAEV-ZEL’DOVICH EFFECT

The relation between radial motions of galaxy clusters and the
observed radiation temperature was first introduced by Sunyaev
& Zeldovich (1980) with the equation (1), where v, indicates the
velocity of electron along the line of sight, v, is the line of sight
peculiar velocity of cluster, T = f o 1N, dl is the Thomson Scattering
optical depth, o1 is the Thomson Scattering cross-section, and N, is
the electron density.

AT, 1 T
Kz _ _Z /O’TNeUedl >~ ——. (D
TCMB c c

On the other hand, the tSZ effect (Sunyaev & Zeldovich 1970) is
usually expressed by the Compton y parameter:

% =yf(x). y= / fole N, @
CMB mec

where f(x) = xcoth(x/2) — 4 and x is the dimensionless frequency
given by x = hv/(kgTcmp)-

Since the kSZ signal is independent of the redshift and has a
strong suppression on the secondary CMB anisotropy, the kSZ effect
can be available up to the era of reionization. However, due to the
weakness of the signal and the error in optical depth measurement,
the peculiar velocity estimation from kSZ effect is very challenging
in real observations.

Alternatively, the potential of utilizing numerical simulations for
estimating peculiar velocity from the kSZ effect is being studied
extensively. For instance, Soergel et al. (2017) have shown promising
results with obtaining pairwise velocity statistics with kSZ effect by
applying map filtering to the signals and used tSZ effect to estimate
the average optical depth.

For both observations and simulations, the requirement of optical
depth estimation is inevitable when using the analytical method to
calculate the kSZ peculiar velocity. In addition, the estimation of
optical depth in simulations varies between models with and without
star formation and feedback. The measurement of optical depth for a
single cluster in observation is even more challenging. Therefore,
a method that can predict peculiar velocities from kSZ effect
without complicated estimation of the optical depth would reduce
the difficulty in calculating kSZ peculiar velocities significantly.
Deep learning algorithm provides a possible approach to achieve
it. A training data set from a numerical simulation with a realistic
SZ map-making pipeline may empower the deep learning model to
simplify the computation in the estimation of peculiar velocities by
avoiding the map filtering and optical depth estimation.
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Table 1. Specifications of the training data along with the cosmological
parameters of the Magneticum simulation Box0.

Matter density, Q2 0.272
Cosmological constant density, €24 0.728
Baryon density, €2, 0.046
Hubble parameter, & (100km s~ Mpc™!) 0.704
Amplitude of matter density fluctuations, o'g 0.809
Primordial scalar spectral index, ng 0.963
Box size (h~! Mpc) 2688
Number of particles 2 x 45363
Mass of dark matter particles, mgm (109 h! Mg) 13
Mass of gas particles, mgas (107! Mp) 2.6
Softening of particles, f;, (h~"kpc) 10
Softening of stars, f; (A~ kpc) 5
Redshift range for clusters in slice 1 [1.04, 1.32]
Redshift range for clusters in slice 2 [1.32, 1.59]
Redshift range for clusters in slice 3 [1.59, 1.84]
Redshift range for clusters in slice 4 [1.84,2.15]
Mass of galaxy clusters [1,70] x 1013 Mo
Average mass of galaxy clusters 10" Mg
Number of kSZ maps of each slice 10000
Number of tSZ maps of each slice 10000
Size of maps 2Ryir

3 SIMULATION AND TRAINING DATA

Deep neural networks typically utilize a large amount of training
data in order to capture the complexities in the data and optimize
the model. Therefore, cosmological simulations that can provide a
large number of galaxy cluster samples are necessary. In addition,
the simulation data must resemble idealized observations from
telescopes, which leads to a light-cone pipeline to generate kSZ
and tSZ images.

In this paper, we use the Magneticum simulations' to generate
kSZ and tSZ cluster images. The Magneticum simulations are
a set of cosmological hydrodynamical simulations with a large
range of scales and resolutions. The Magneticum simulations are
generated by an extended version of the N-body/SPH GADGET3 code
(Springel, Yoshida & White 2001; Springel 2005; Beck et al. 2016)
with WMAP7 (Larson et al. 2011) cosmological parameters from
Komatsu et al. (2011). The dark matter only simulation includes
dark matter and dark energy that provide gravity information, while
the hydrodynamical simulation uses the hydrodynamic equations to
include the baryonic component, which can be described as an ideal
fluid. In addition, these simulations follow a wide range of physical
processes (for details, see Hirschmann et al. 2014; Teklu et al. 2015),
which are important for galaxy formation and the evolution of the
intra-galactic and intra-cluster medium (see Biffi, Dolag & Bohringer
2013; Dolag, Komatsu & Sunyaev 2016; Gupta et al. 2017, and
accompanying results). With the baryonic particles and temperature
information, the SZ signal can be detected by tracking back along
the line of sight.

In this paper, we use the largest box, Box0 (see also Bocquet et al.
2016; Soergel et al. 2017; Ragagnin et al. 2019), in the Magneticum
simulations. Table 1 shows the cosmological parameters of the sim-
ulation box and the parameters of our datasets. We take four redshift
slices from the simulation that cover redshift in a range of [1.04,
2.15]. From those four redshift slices, we generated 40 000 kSZ and
40000 tSZ images (10 000 images from each redshift slice) through
SMAC (Dolag et al. 2005), which is a map making utility for idealized

Thttp://www.magneticum.org
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observations. The size of a kSZ/tSZ cluster image is set to be twice its
Virial radius, which is the radius within where the system obeys the
Virial theorem. To reduce the calculation expense, we use the redshift
of each slice instead of the redshift of each cluster in calculating the
Virial radius, which means the size of the cluster images is not
perfectly normalized to the Virial radius. According to our test, the
difference is small and its effect on the final results is negligible.

Fig. 1 shows the kSZ and tSZ examples of four clusters generated
from the Magneticum simulations. We train the neural network
with 80 per cent of the images, which are similarly as the examples
shown in figure, and use the rest 20 per cent of them as validation
data for testing.

4 THE DEEP LEARNING MODEL

A custom-designed deep learning algorithm is implemented here to
predict the peculiar velocity from kSZ effect. CNNs are an obvious
choice for such image-based regression analyses due to the following
reasons: first, the amount of generated data (40 000 kSZ images) can
be efficiently utilized in deep learning neural networks that consist of
a large number of trainable model parameters called weights. It can
be seen that with respect to the scaling of accuracy with the size of
the data set, deep learning neural networks outperform most existing
machine learning models. Secondly, despite having characteristic
features in the SZ signal (as seen in Fig. 1), the feature-mapping to
peculiar velocities is not straightforward due to the optical depth.
This makes feature-agnostic training algorithms like CNNs more
desirable than feature-specified learning methods for modelling SZ
images. The CNNs can extract high- and low-level features from a
series of convolutional filters, which are used to train the peculiar
velocity prediction.

Numerous deep learning neural network architectures are currently
in literature and under active research. However, we do not wish to
compare different CNN variants in this work, nor claim to achieve
the best possible accuracy in estimating peculiar velocities. our goal
in this paper is to demonstrate the feasibility of using deep learning
neural networks to estimate peculiar velocities using the direct input
of kSZ images and highlight the advantage of such simulation-based
training approaches over the analytical calculation techniques on the
kSZ peculiar velocity estimation.

Fig. 2 shows our CNN architecture with only the kSZ image as
input data. It follows a conventional deep neural network architecture
like the CIFAR-10 (LeCun, Bengio & Hinton 2015), with layers
stacked sequentially. The kSZ image, the input data, will be addressed
through several layer blocks (including convolutional, pooling, and
dropout layers) and multiple dense layers to get the peculiar velocity
as the output. Short descriptions of each layers are as follows: (1)
Convolutional layers consist of numbers of image kernels that extract
morphological features of the image. While the high-level features
are extracted at the initial convolutional layers, more abstract features
are obtained later. (2) The pooling layer operates on each map
independently, and progressively reduces the spatial size of the map
to reduce the amount of computations in the network. (3) Dropout
layers re-initialize a sub-set of neurons of the network at every epoch
of the training, which reduces the chances of overtraining. (4) The
flatten later converts the 2D matrix to a single 1D vector. (5) Dense
layers use fully connected neurons’ to map this 1D vector to the
peculiar velocity corresponding to the input image.

2For given inputs x, the output y of each neuron is expressed in terms
of its non-linear activation function ¢, weights W, and biases b as y =
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Figure 1. kSZ (upper panels) and tSZ images (lower panels) of four clusters. Sksz and Sisz indicate the kSZ and tSZ signals re-scaled to increase the image
contrast. For the kSZ signals in the upper panels, the colour corresponding to the kSZ effect is presented via Sksz = sinh™ ! (ATxsz/Temp % 109). For the lower
panels, the tSZ signal is a function of the Compton y parameter, S5z = logjo(y x 10°). The width of each image equals to four times of the cluster Virial radius.
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Figure 2. Schematic CNN architecture for regression including the kSZ
effect only. The real architecture used in this analyses is multiple blocks of
convolutional, pooling, and dropout layers repeated before feeding the dense
layers.

Overall, the repeated convolutional layer blocks extract abstract-
featured maps from the images, which are then used as inputs in
the dense layers towards the end of the network. As opposed to
image classifications, this regression pipeline has a linear activation
to get point estimation of the peculiar velocity. The loss function
is defined by the mean square error value L = (v — vp)z, where
v is the known peculiar velocity from the simulation, taken as true
values (true velocity) for the training, and v, is the predicted peculiar
velocity from the deep learning model. By providing enough correct
data to learn from, the model can be trained to project the input kSZ
image to the output peculiar velocity.

The model of including both kSZ and tSZ images has similar
architecture with an independent repeating convolutional structure,
shown in Fig. 3. The only difference in the combined kSZ and tSZ
image analysis is that the kSZ and tSZ are computed in separate
branches. After the flatten layer, the outputs from those two branches

¢(Wx + b). The trainable parameters (W, b) of the model are optimized
during the learning phase.
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Figure 3. Same as Fig. 2 but for the both kSZ and tSZ effects. Two separate
CNN branches process the images with input kSZ and tSZ signals, and the
outputs from both the branches are then combined.

are concatenated to a 1D vector, which is then fed into dense layers
for predicting the peculiar velocity.

4.1 Uncertainty quantification

One of the shortcomings of a traditional regression analysis with
CNNss is that it lacks proper treatment for the uncertainty quantifi-
cation. This stems from the vast number of trainable parameters in
the CNNs, such as the ones shown in Figs 2 and 3. A complete
understanding of the posterior (in our case, the probability distribu-
tion of target peculiar velocities for given input SZ images) becomes
intractable due to the large number of statistical model parameters.
Bayesian neural network frameworks using Monte Carlo (MC) or
variational inference techniques have been explored for solving
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such inference problems, but many of these methods are challeng-
ing due to computational expenses, lack of convergence or clear
diagnostics.

Alternatively, the MC dropout method (see Gal & Ghahramani
2015, for a detailed review) offers a middle ground for approximating
the prediction uncertainty within reasonable computational overload.
This is done by the utilization of existing trained deep learning
models with dropout layers in prediction of the error bars around
the mean estimates.

A dropout layer, as explained previously, is generally used in
CNNs to avoid overfitting in the training phase. However, they can
also be used in the testing phase as an approximate sampling scheme
for model parameters. It was also shown by Gal & Ghahramani
(2015) that the MC dropout is a Bayesian approximation of neural
networks to Gaussian processes, where the error modelling is
formally defined.

The implementation of MC dropout is as follows: We consider
an ensemble of neural networks (with ensemble size Nyy) of the
same architecture, but only different from each other by a fraction
(prescribed by the dropout rate d) of trained neurons that are re-
initialized to a random value (or ‘dropped-out’). Using the base
architectures shown in Figs 2 and 3 with dropout rate d, we obtain this
ensemble of N, networks. Each of these networks in the ensemble
provide a different point-prediction of the peculiar velocity.

When a validation image [ is forward propagated through each
network in the ensemble, they provide individual predictions vl’;(ﬂ),
where i = 0, 1, ..., Ny. These individual predictions v]’;(I]) are
different from each other due to the fact that a different fraction
of their network parameters are dropped-out. The mean of all the

individual predictions is calculated as (v,) = ﬁ SNt vi() and

the variance as 0 = ﬁ Z;V:“};[v}’;(ﬂ) — (vp) 1%, respectively. These
aggregate mean and variance will be considered as the uncertainty
quantified prediction from the ensemble. The theoretical details of
this approach are summarized in Appendix B.

Hence, the MC dropout is a simple prediction uncertainty quan-
tification tool without any additional expensive computation tasks
while training, unlike the Bayesian neural networks that explicitly
define distributions in predictions (Kendall & Gal 2017). In addition
to providing uncertainty estimations, such ensemble methods can
also monitor failure modes, i.e. the choice of network architecture
and training schemes can be compared in terms of robustness of the
results.

For our implementation of both kSZ and combined kSZ and tSZ,
we utilize an ensemble of Ny, = 100 networks for our predictions.
We also use a large dropout rate d = 0.5 to test models for both
the consistency and the robustness of our final predictions. For the
same N, we have observed a small decrease in the prediction
uncertainty with reducing the dropout rate, but the mean does not
vary significantly. Various combinations of dropout rate distribution
(such as applying dropouts to different fully connected layers) have
been checked to ensure that they do not affect the uncertainty
estimates.

5 TRAINING

We build two models respective to the two CNN architectures in
Section 4: Model I, kSZ only model shown in Fig. 2; Model 11,
the combined kSZ and tSZ model shown in Fig. 3. We check the
universality of the models by training the models both with data
from single redshift slices and with data of multiple redshift slices
(all four of the redshift slices at once).
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Figure4. The results of Model I trained by kSZ images in each redshift slice.
The x- and y-axes show the true (v) and predicted (vp) peculiar velocities,
respectively. The red solid line shows the 1:1 ideal relation between the true
and predicted velocities, while the black dotted line shows the uncertainty
weighted linear fitting of the scatter. The error bars show the uncertainty of
the predicted velocity using the MC dropout method.

For Model I, we first train the model with kSZ images of
each redshift slice, which means we train the model four times
independently, each time using 80 per cent of the 10 000 kSZ images
of a single redshift slice; secondly, we train the model with the data
of multiple redshift slices, using 80 per cent of the entire set of 40 000
kSZ images as the training set.

Fig. 4 shows the prediction results of Model I trained by kSZ
images of single redshift slices. In the figure, the fitting line (black
dotted line) is weighted by the uncertainty (1/0,), which represents
the predictions accompanied by their error bars. The uncertainty
weighted fitting result (black dotted line) agrees with the ideal
expectation well, which is also represented by the fitting slope (k
value). Although trained by data from different redshift slices, the
prediction results of those four training sets have very similar fitting
slopes, which means the model for predicting peculiar velocity from
kSZ images is fairly stable with different redshifts. This is consistent
with equation (1) that the kSZ effect is independent of the redshift.
In addition, the similarity of contours (tested but not shown in the
figure) of the scatters of different redshift slices proves redshift
independence.

Fig. 5 shows the results of the Model I trained by the kSZ images
from multiple redshift slices, which covers a larger redshift region.
Comparing with Fig. 4, Fig. 5 has larger scatters due to more
validation data. However, the fitting slope is similar to the one in
Fig. 4. Though the model trained by the full data (from all four
redshift slices) may have larger errors, it covers a larger region which
makes the model more universal and flexible for applications.

In both Figs 4 and 5, the predictions (vp) using kSZ images
show good agreements with the true velocities (v). However, the
differences between the predictions and expectations result in scatter.
Since Model I does not include information about optical depth,
we add tSZ information into the training to explore a possible
improvement (Model II). However, the results of Model II show
no significant difference from the results of Model I, which might
be due to the particular values of the optical depth of our simulated
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Figure 5. The results of the Model I trained by kSZ images of multiple
redshift slices. The x- and y-axes show the true (v) and predicted (vp)
peculiar velocities, respectively. The red solid line shows the 1:1 ideal relation
between the true and predicted velocities, and the black dotted line shows
the uncertainty weighted linear fitting of the scatters. The error bars show
the uncertainties of the predicted velocity using the MC dropout method.
The bottom panel shows the difference between predictions and expectations
(vp—v).

images. The distribution of the optical depth in each redshift slice is
a highly concentrated Gaussian distribution. For instance, the mean
value and the standard deviation of the redshift slice 4 are 0.002 and
0.0003, respectively. This narrow range of the optical depth does
not cause large enough variations in the kSZ velocity estimation.
Therefore, Model II includes optical depth information, but it does
not show significant improvement to the velocity estimation. The
result of Model II is presented in Appendix A.

5.1 Error analysis

In this section, we quantify the uncertainty in order to test the
performance of our models. Since the difference between the results
of Model I and Model II is negligible, we only present the error
analysis for Model I in this section. In the Fig. 5, the MC dropout
uncertainties (error bars of predictions) increases with the magnitude
of the predicted velocity, and the average relative MC dropout
uncertainty (o ,/v},) is about 25 per cent.

However, the value of the relative MC dropout uncertainty is
highly affected by its denominator, the predicted velocity v,. Though
the dropout uncertainty of low v, is smaller than the dropout
uncertainty of high v, the smaller denominator will increase the
relative uncertainty of low v,. Therefore errors of low-velocity
clusters might bias the estimate of the average dropout uncertainty.
We set different velocity limits (vjimi¢) to eliminate the effect from the
low velocity, which is shown by the red line in Fig. 6. Eliminating
velocities lower than 20 km s~! reduces the average uncertainty
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Figure 6. The average MC dropout uncertainty and the average scatter in
percentage of Model I trained by data from multiple redshift slices with
different velocity limits. The x-axis is the velocity limits, for example, the
label 20 in x-axis means eliminating all the predicted velocities lower than
20kms~! (lvp| < 20). The y-axis shows the average MC dropout uncertainty
oy/vp and the average relative scatter |$\ in percentage. The red line
indicates the average uncertainty in percentage and the blue line shows the
average scatter in percentage.

significantly to about 12 per cent. With larger velocity limits, the
average uncertainty converges to about 8 per cent.

In addition, the scatter, which is the difference between the true
velocity v and the predicted velocity vy, is another factor that affects
the accuracy of the prediction. While the dropout uncertainty is a
measure of precision (statistical uncertainty), scatter is a measure
of accuracy (systematic uncertainty). In the bottom panel of Fig. 5
(the residual plot), the absolute differences (the scatters) between
predictions and expectations are mostly smaller than 200 km s~
We also see an increasing trend of scatters with the magnitude
of the velocity, but it is not a very strong dependence. Using the
same method, we calculate the average relative scatter (difference
of predictions and expectations over expectations) with different
velocity limits, which is shown by the blue line in Fig. 6. After
eliminating the velocities lower than 20 km s~!, the average scatter
becomes about 38 per cent. With larger velocity limits, the average
scatter converges to about 20 per cent.

5.2 Comparison with analytical calculations of peculiar velocity

The analytic calculation for estimating peculiar velocities from the
kSZ effect requires information of optical depth of each individual
clusters (equation 1). The optical depth of individual clusters in this
paper is calculated through equation:

S [ orNedldr
Tclusler = T? (3)
where I = —100h~'Mpc, I, = +100h~! Mpc, and Ry; is the

Virial radius of clusters. Therefore, the optical depth of individual
clusters is calculated by the averaging electron density within the
Virial radius. The integral distance d/ for the optical depth is 200
h~' Mpc, which is large enough to get a converged optical depth
value. The kSZ value used in the analytical method is calculated
by averaging the kSZ signals of each cluster within its Virial
radius.

Fig. 7 shows the results of Model I and the analytical method
(v.) for each redshift slice. From the figure, we could conclude that
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Figure 7. The results of Model I (blue), the analytical method (red), and true velocities from the simulation (black). The four left-hand panels show the result
of 2000 testing clusters in each redshift slice. The right-hand panels show the amplification of the selected areas.
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Figure 8. Linear fittings of results of Model I and the analytical method.
The x- and y-axes show the true (v) and predicted (vp) peculiar velocities,
respectively. The red solid line shows the 1:1 ideal relation between the true
and predicted velocities, the navy dashed line shows the linear fitting of Model
I predictions, and the green dash—dotted line shows the fitting of the analytical
result.

both the predictions using the deep learning neural network and the
analytical method show strong correlations with the true peculiar
velocity from the simulation. However, predictions of the analytical
method have smaller magnitude than predictions of the deep learning
neural network. The bias caused by the smaller magnitude becomes
more obvious in Fig. 8. The fitting slope of the analytical method
is around 0.47, which indicates a significant bias from expectations.
Since predictions of the analytical method have no uncertainty, the
fitting lines in Fig. 8 are not weighted by uncertainties. We found
the performance of the analytical method improves when the integral
distance d/ is reduced, due to the fact that a longer line of sight path
leads to more noise in the optical depth calculation. However, the
deep learning result is still better than the analytical result even for 4
h~! Mpc integral distance.

For the analytical method, the choice of the averaging area of the
cluster is heuristic; therefore, the calculations of kSZ signals and
optical depth are affected by the averaging radius or aperture. We
set the averaging radius of the calculation to be the Virial radius
of each cluster. However, this choice of averaging radius may miss

some features of kSZ signals outside that radius. The deep learning
algorithm, instead, provides a better approach for dealing with the
image that it can extract more details about the cluster pattern from
kSZ images with CNNs. Therefore, it provides less biased velocity
predictions. In addition, the result of analytical method becomes
worse with larger line of sight path due to the noise in the optical
depth, while its effect on deep learning is negligible. These facts
make the deep learning algorithm a more powerful tool for estimating
peculiar velocities in observations.

6 PAIRWISE VELOCITY

Though our model trained by simulation data provides predictions
with average uncertainties around 12 per cent, the average scatter
from expectations is not ideal (38 per cent). In addition, the uncer-
tainty using observational kSZ signals can be worse due to difficulties
in detections. Therefore, ensemble statistics of peculiar velocities,
rather than analysis of individual velocities, may be required. In this
section, we apply pairwise velocity statistics to our predicted peculiar
velocities.

Fig. 9 shows the pairwise velocity statistics of Model I trained
by the data from multiple redshift slices. In the pairwise velocity
calculation, we use all of the predicted velocities without any velocity
limits. Although the uncertainty and scatter without velocity limits
are larger, the pairwise velocity of predictions agree with the result
of the true velocities with small uncertainties (error bars). The
uncertainties of the pairwise velocities are calculated in two different
ways: (1) subsampling method and (2) perturbation method that
is perturbing the velocity catalogue 100 times by the MC dropout
uncertainty and calculating the statistical error through the standard
deviation of the 100 perturbed catalogues. In the figure, the error bars
of the perturbation method are so small, that they are invisible.

7 ADAPTATION TO OBSERVATIONS

To test the feasibility of our model as applied to observations,
we mimic observational kSZ signals by perturbing the simulated
kSZ images with noise. We employ three types of noise in the
perturbations: (1) Gaussian blur noise, (2) white noise, and (3)
residual tSZ signals.

Fig. 10 shows the example images using different noise schemes.
For (1) the Gaussian blur noise, we set the smoothing width as
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Figure 9. The pairwise velocity estimates of the true and predicted velocities
from Model I without velocity limits. The black dashed line shows the result
of the true velocities, the blue solid line indicates the result of the predicted
velocities with error bars calculated by subsampling method, and the red
dotted line indicates the result of predicted velocities with error bars calculated
by perturbation method.
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Figure 10. kSZ images with different noise schemes. Sxsz indicates the
re-scaled kSZ signal to increase the image contrast. The unit of Sysz is
sinh~! (ATisz/Temp x 109).

40 per cent of the cluster Virial radius; thus, its width varies between
observations. Here, we do not use any observation setting as a
reference for the Gaussian blur width, since we are only testing
the effect of its noise on the model with simulation data. For (2) the
white noise scheme, we use Gaussian noise with standard deviation
equal to the average value of the original kSZ signal, which means
the signal-to-noise ratio equals one. Again, this ratio is only used
for testing. For (3) the residual tSZ signal, which is a source of
error in kSZ detections. We added 10 per cent tSZ signals (from the
simulation) to the kSZ image to mimic the possible noise caused by
the remnant tSZ signals in kSZ observations.

We test our model with these noise schemes and present the results
in Fig. 11. One should notice that we implement two methods in the
test: (1) the model is trained without noise but tested with the noisy
images (blue scatters and navy dotted lines); (2) the model is both
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Figure 11. Predictions with different noise schemes. The x- and y-axes show
the true (v) and predicted (vp,) peculiar velocities, respectively. The models
are trained by data of multiple redshift slices with (green) and without (blue)
noise and tested by the noisy kSZ images. The red line shows the 1:1 ideal
relation between the true velocity and the predicted velocity. The blue scatters
and navy dotted lines show the results and uncertainty weighted fitting of
models trained by kSZ images without noise and tested by the kSZ images
with noise. The green scatters and dark green dashed line show the results
and uncertainty weighted fitting of models trained and tested by noisy kSZ
images.

trained and tested by the noisy images (green scatters and dark green
dashed lines).

For method (1), our model shows great compatibility with the
white noise. However, the prediction of adding residual tSZ noise
shows biased results. We found that the bias caused by tSZ can be
regarded as a constant shift from the ideal expectation. The larger the
residual tSZ signal is, the larger the shift is. Therefore, the problem
caused by the residual tSZ signal might be solved by making a simple
correction. In contrast, the bias caused by the Gaussian blur drives
the prediction magnitude smaller.

For method (2), the prediction of white noise shows no significant
difference from method (1), while biases caused by the Gaussian
blur and residual tSZ noise are improved significantly by training the
model with noisy images. The improvement shows the capability of
our model of dealing with noisy kSZ signals.

Due to the difficulties in kSZ and optical depth measurements, ob-
servational detections of kSZ for individual clusters is very rare, and
the peculiar velocity estimated from kSZ observations is not accurate
enough (Sayers et al. 2019) to train a deep learning model. Therefore,
the only possibility for applying a deep learning neural network
model to estimating peculiar velocities from kSZ observations is to
train the model with perturbed simulation data. In this paper, we only
tested three possible sources of uncertainties (Gaussian blur, white
noise, and non-cleaned tSZ signal) in observations, and the noise
intensities were set only for testing. A real kSZ observation may
include different kinds of noise, such as noise from CMB anisotropies
(Aghanim, Gorski & Puget 2001) and dusty star formation galaxies.
According to Mittal et al. (2018), the noise from CMB anisotropies
and residual tSZ would not be the dominant sources of uncertainty
for the Cerro Chajnantor Atacama Telescope (CCAT). Instead, the
kSZ detection will be significantly affected by the image resolution
and emission from dusty star formation galaxies. Therefore, to apply
the deep learning algorithm to a specific observation (such as CCAT-
prime), the simulated training data set would have to include noise
that represents the corresponding observational conditions, which
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will be studied in future work. Considering the advantages of deep
learning neural networks over the analytical method (Section 5.2),
estimating peculiar velocities from kSZ effect with deep learning
algorithms is very promising. With upcoming kSZ detections, a suit-
able machine learning model for observational kSZ is foreseeable.

8 CONCLUSION

The analytical method of estimating peculiar velocities from the kSZ
effect requires several steps, such as map filtering and optical depth
calculation. In addition, the error in optical depth estimates makes it
difficult to predict the peculiar velocity accurately.

In this paper, we test the feasibility of using deep learning neural
networks to simplify the estimation of peculiar velocities from the
kSZ effect. By comparing results of different redshift slices, using
simulation data, we find that our deep learning model is redshift
independent, which is consistent with theory.

Considering the relation between the tSZ effect and the optical
depth, we build models that are trained by kSZ images (Model I)
and kSZ +tSZ images (Model II). Those two models have similar
predictions and uncertainties. We find that the average uncertainty
of Model I is about 12 per cent and the average scatter is about
38 per cent. Although the average scatter is not ideal, the pairwise
velocity of the predictions indicates that our model can provide
reliable kSZ peculiar velocities for cosmological studies.

The similar results of Model I and Model II are caused by the
small variation of the optical depth value. According to the current
data and results, Model I provides more precise results than the
analytical method with small optical depth variation. However, the
Magneticum simulation is the only hydrodynamical simulation that
is large enough to provide enough data for the deep learning training.
Therefore, we are unable to show the improvement of Model II on
the kSZ-velocity estimation with current data. While we believe that
Model I should be able to deal with larger optical depth variations,
we leave this for future studies.

We tested the feasibility of our model on observations by perturb-
ing the kSZ signals with three different noise schemes: Gaussian
blur, white noise, and residual tSZ noise. When using simulation
training data and noisy validation data, the prediction with white
noise shows few biases, while the biases caused by the Gaussian
blur and residual tSZ noise are more significant. However, these
biases can be improved by using noisy data for both training and
testing. Our results clearly show that deep learning neural network
can be used to estimate peculiar velocities from the kSZ effect with
both simulations and observations. A possible way for applying deep
learning neural network to observations is to train the model with
simulated training data sets that include noise types particular to the
observations being analysed. However, developing suitable models
for observations will require more kSZ detection of individual galaxy
clusters in the future.

In conclusion, using deep learning neural networks to estimate
peculiar velocities from the kSZ effect is both feasible and promis-
ing. This method could simplify the analytical calculation of kSZ
peculiar velocities significantly using only SZ input, which avoids
the estimation of optical depth as well as map filtering.
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APPENDIX A: COMBINED kSZ AND tSZ MODEL

By adding the tSZ signal into deep learning neural network, we
test the peculiar velocity predicted by the Model II. The prediction
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Figure Al. Same as Fig. 5 but for Model II trained by both kSZ and tSZ
images.

results of Model II trained by both kSZ and tSZ images of single and
multiple redshift slices show negligible differences from the results
of Model I. Fig. Al shows the results of Model II using data of
multiple redshift slices. Similar to Model I, the results of Model II
are redshift independent. However, the prediction is not improved
by adding tSZ information into the model. The similar performances
between Model I and Model II shows that deep learning neural
network could estimate the peculiar velocity accurately with only
kSZ input, while simplifying the calculation significantly.

APPENDIX B: MONTE CARLO DROPOUT
UNCERTAINTY

For inputs x and target y, a probabilistic neural network trained on
data D = (Xain, Yuain) predicts a probability distribution function
p(y|x, D). In order to learn this predictive distribution, sampling
over all the model parameters W, i.e. all the weights and the biases,
are required. Using Bayes’ theorem, the predictive distribution of
the network shown in equation (B1) can be written in terms of the
likelihood of the model p(y|x, W).

pylx, D) = /p(ylx, W)p(W|D)dW. (B1)

Here, p(W|D) is the distribution over all the network parame-
ters. Due to large number of network parameters in deep neural
network, the exact parametric posterior distribution p(W|D) is
usually intractable. Instead of the determining this, the MC dropout
technique Gal & Ghahramani (2016) relies on drawing different
configurations of network parameters W; from an approximate
parametric distribution W; ~ g(W|D), as shown in equation (B2).
Each dropout configuration is attained by randomly switching off
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neurons in a trained neural network.

Niot

(ylx. Wo).
N ;” Y

P(ylx,D)%/P(ylx,W)fJ(WlD)dW%

(B2)

Hence, different dropout configurations yield different predictive
distributions. Each dropout configuration yields a different output
by randomly switching neurons off and on with each forward
propagation. The mean and variance of the outputs of the ensemble
of the resulting neural networks can be computed as well. Hence,
the MC dropout technique mitigates the problem of representing
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uncertainty in deep learning without sacrificing either computational
complexity or test accuracy. On the other hand, it has to be noted that
the MC dropout technique only provides the epistemic uncertainty
in the neural networks (Levasseur et al. 2017), but the emerging
distribution does not correspond to the full posteriors from the
model. Recent progress by Wagner-Carena et al. (2021) and others
explore the problem of using MC dropouts to get full Bayesian
posteriors.
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