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Abstract. The nonbacktracking matriz and its eigenvalues have many applications in network science and
graph mining, such as node and edge centrality, community detection, length spectrum theory,
graph distance, and epidemic and percolation thresholds. In network epidemiology, the reciprocal
of the largest eigenvalue of the nonbacktracking matrix is a good approximation for the epidemic
threshold of certain network dynamics. In this work, we develop techniques that identify which
nodes have the largest impact on this leading eigenvalue. We do so by studying the behavior of the
spectrum of the nonbacktracking matrix after a node is removed from the graph. From this analysis
we derive two new centrality measures: X-degree and X-nonbacktracking centrality. We perform
extensive experimentation with targeted immunization strategies derived from these two centrality
measures. Our spectral analysis and centrality measures can be broadly applied, and will be of
interest to both theorists and practitioners alike.
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1. Introduction. A nonbacktracking walk (NB-walk) in a graph is a sequence of pairwise
adjacent edges such that no edge is traversed twice in succession, i.e., the walk does not
contain backtracks. NB-walks are known to mix faster than standard random walks [3], while
nonbacktracking cycles (i.e., closed NB-walks) contain important topological information from
the so-called length spectrum of the graph [42]. The associated nonbacktracking matriz is the
unnormalized transition matrix of a random walker that does not trace backtracks, and it
has many applications in community detection [9, 27], influencer identification [33, 32|, graph
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distance [42, 31], centrality [30, 6], etc. The nonbacktracking framework has also been adapted
to directed [4], weighted [23], and multilayer [5] networks. In this paper, to avoid repetition we
use the prefix “NB” to mean nonbacktracking; for example, we refer to the nonbacktracking
matrix as the NB-matrix.

The eigenvalues of the NB-matrix (or NB-eigenvalues for short) are related to certain
kinds of network dynamics. Karrer, Newman, and Zdeborova [22] and Hamilton and Pryadko
[20] showed that the percolation threshold is approximated by the inverse of the largest NB-
eigenvalue A\;. This implies that the epidemic threshold of susceptible-infectious-recovered
(SIR) dynamics can also be approximated by A; [36, 34]. Shrestha, Scarpino, and Moore [40]
argued the same for susceptible-infectious-susceptible (SIS) dynamics, though Castellano and
Pastor-Satorras [10] highlight that this may only hold for networks with certain amounts of
degree heterogeneity. Whether one is talking about percolation or dynamics, A\; provides a
better approximation to the true threshold than the largest eigenvalue of the adjacency matrix
[40, 22].

Given the importance of the largest NB-eigenvalue, we ask the following: Which nodes
influence the largest NB-eigenvalue the most? In the cases of SIR and SIS dynamics, answering
this question will lead to targeted immunization strategies, as it is equivalent to asking which
are the nodes whose removal from the network causes the epidemic threshold to increase the
most. Operationally, we frame this question as follows. Consider a graph G with largest
NB-eigenvalue ;. Given a node ¢ in G, let Aj(c) be the largest NB-eigenvalue of the network
after removing c. Define A\ — \1(¢) as the eigendrop induced by c. Which node ¢ induces the
mazximum eigendrop?

In section 2 we present the necessary background theory. In section 3 we develop a spectral
perturbation theory of the NB-matrix. We use this theory in section 4 to introduce two new
centrality measures and argue why they are effective at identifying nodes with large eigen-
drops. In section 5 we review previous studies related to the present work. In section 6 we
provide experimental evidence for our claims. We conclude the paper in section 7.

2. Background. Let G be a simple, unweighted, undirected graph with node set V and
edge set E. We consider the set of directed edges E where each undirected edge (i,7) € F
gives rise to two directed edges i — j and j — i in E. A walk in G is a sequence of directed
edges i1 — j1, ..., ik — jg, where j, = 4,41 for each r = 1,...,k — 1. Here, k is the length
of the walk. A walk is closed if ji, = i;. A backtrack is a walk of length 2 of the form
i — 4,7 —i. A walk is an NB-walk, if no two consecutive edges in it form a backtrack. The
nonbacktracking matriz, or NB-matriz, B is the unnormalized transition matrix of a walker
that does not perform backtracks. B is indexed in the rows and columns by elements of E.
Let m = |E|; then B is of size 2m x 2m, and it is defined by

(2.1) Bieosiisg = 05k (1 = 0a) ,

where ¢ is the Kronecker delta. In words, By ;—; is 1iff j = k and ¢ — j,7 — [ is not a
backtrack. Notably, the powers of B count the number of NB-walks in G, i.e., (B") is
the number of NB-walks that start with ¢ — j and end with & — [ of length r + 1.

Among other applications, the NB-matrix has been used to define a notion of node central-
ity [30, 38]. Concretely, let A; be the largest eigenvalue of B, and let v be the corresponding

k—li—j
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unit right eigenvector. By the Perron—Frobenius theory, A1 is positive, real, and has multi-
plicity one, while v can be chosen to be nonnegative. If A = (a;;) is the adjacency matrix of
G, the NB-centrality of a node ¢ is defined as

(22) Vi == Zaijvjﬁi.
J

The NB-matrix is not symmetric. Therefore, its eigenvalues, other than the largest one,
can be complex numbers. Even so, it contains a subtle structure, sometimes called PT-
symmetry [9]. Indeed, let P be the matrix such that Px;_,; = x;_,; for any vector x indexed
by E. It is readily checked that (i) P? = I, and (ii) the product PB is symmetric.

3. NB-eigenvalues under node removal. We are interested in the behavior of the NB-
eigenvalues when we remove a node from G. Suppose the target node we want to remove is
c € V. Then partition the edges in E as those that are incident to ¢ and those that are not.
Sort the rows and columns of B accordingly so that it takes the block form

(3.1) B:<Z ?)

as shown in Figure 1. Here, B’ is the NB-matrix of the graph after node c is removed, while
F' is the NB-matrix of the star graph centered at c; if d is the degree of ¢, then F' is of size
2d x 2d. Further, D is indexed in the rows by directed edges not incident to ¢, and in the
columns by directed edges incident to ¢, and vice versa for E.

before removal after removal
Y N\ ~a \
N ' ( @\ & N , < a
\_/ N\ /]
9 1/
= S5 N
B’ D 2m — 2d

Figure 1. Top: Graph G with target node ¢ before and after removal. G has m edges and ¢ has degree d.
Dashed yellow edges are incident to ¢, all other edges in solid blue. Bottom: Corresponding NB-matrices.

3.1. The characteristic polynomial. The NB-eigenvalues are the roots of the character-
istic polynomial det (B — tI). Applying the theory of Schur complements gives

B —tI D

(82) det(B—th)=|" " T

— det (F — tI) det (B’ I~ D(F —t1)"" E) :

where the size of I is given by context. Equation (3.2) holds whenever (F' — tI) is invertible,
i.e., whenever ¢ is not an eigenvalue of F. To simplify (3.2), we use the following lemma.
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Lemma 3.1. Let d be the degree of target node c. With D,E,F as in (3.1), we have
DE =0 and F? = 0. Therefore, F is nilpotent, that is, all its eigenvalues are zero, and hence
det (F — tI) = t2*. Finally, we have (F —tI)™' = — (F +tI) /t> when t # 0.

Proof. Since D, E, F are submatrices of B, their element is given by (2.1). Hence, com-
puting DE and F? is straightforward, as long as care is placed in keeping track of the appro-
priate indices for the rows and columns of the involved matrices. Now, F2 = 0 implies that
all its eigenvalues are zero and that det (F — tI) = t>*?. Finally, one can manually check that

(F —tI) (F +tI) = —t2I. [
Now define X = DFE. One can manually check that
(3.3) Xkl imj = Qcklcj (1- 6kj) .
Per the previous lemma, (3.2) holds for ¢ # 0 and
DFE DE X
(3.4) det (B — tI) = t* det (B’ —tl+ =5+ t) = t% det <B’ —tI+ t2) :

Theorem 3.2. For a graph G and target node ¢, suppose the NB-matrixz of G is B and the
NB-matriz after removing ¢ is B', and let X be as in (3.4). If t is not an eigenvalue of B’,
then we have

det (B —tI) 2 1, 1
3.9 ——— - =t“%det (I + < (B —tI X ).
(3:5) det (B — tI) et\ I+ )
Proof. The proof is immediate from (3.4) by factoring out B’ — tI. [ |

If ¢ has degree 1, then X equals the zero matrix, and (3.5) simplifies showing that removing
¢ has no influence on the nonzero NB-eigenvalues. More generally, the nodes whose removal
does not influence the nonzero NB-eigenvalues are characterized as follows. Let the 2-core of
G be the graph that remains after iteratively removing nodes of degree 1. Let the 1-shell of
G be the graph induced by the nodes outside of the 2-core. Nodes in the 1-shell do not affect
the nonzero NB-eigenvalues. This fact is well known [15, 23, 26, 45], though we present here
a new proof.

Corollary 3.3. Removing a node c from the 1-shell doesn’t change the nonzero NB-eigenvalues.

Proof. If chas degree 1, (3.3) gives X = 0 and (3.5) becomes det (B — tI) = t>*det (B’ — tI),
which implies the assertion. In general, if ¢ is in the 1-shell, then it must have degree 1 after
iteratively removing some sequence of nodes each of which has degree 1 at the time of removal.
Each of these removals has no effect on the nonzero eigenvalues. Therefore, neither does the
removal of c. |

Remark 3.4. Intuitively, since F' is the NB-matrix of a star graph, which contains no NB-
walks of length 3 or more, then we immediately have F? = 0. Following Figure 1, F? counts
the number of NB-walks of length 3 whose edges are yellow-yellow-yellow, of which there are
none. Similarly, DE counts the NB-walks whose edges are blue-yellow-blue, which also do
not exist. Finally, X = DFFE counts the NB-walks of color blue-yellow-yellow-blue, which are
precisely those that are destroyed when removing c. It is then no surprise that the rest of our
analysis pivots fundamentally on the matrix X.
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3.2. The largest eigenvalue. We now study the eigendrop induced by removing c¢. The
larger this eigendrop, the more influential ¢ is in determining the epidemic threshold.

Theorem 3.5. With the same assumptions as in Theorem 3.2, let A1 be the largest eigen-
value of B, and let w be a vector such that in (3.4) we have

X

Suppose {v;} is a basis of right eigenvectors of B' and write w in this basis, W = Y. w;Vv;.
Let wy be the left eigenvector of B' corresponding to vi, and set a; = u? Xv;. Finally, let N
be the largest eigenvalue of B', so that the eigendrop induced by c is Ay — N} . Then, we have

1 W
3.7 A =N == — .
Proof. If v; corresponds to the eigenvalue X;, then (3.6) gives
X Xv;
(38) Zwl (B/ - )\1[ + )\%> V; = Zwl <>\{LVZ - )\1Vi + )\%l> =0.
i i
Let uy be the left eigenvector corresponding to vi normalized such that uiv; = 1. Recall

that u; is orthogonal to every right eigenvector corresponding to a different eigenvalue. Since
A} has multiplicity one, we have ul v; = 0 for each i # 1. Multiply by uj on the left to get

T .
(3.9) w1 (/\/1 — )\1) + Zwi b )§VZ =0.

Define ; = ul Xv; and rearrange to get (3.7). [ ]

Remark 3.6. We can interpret our arguments in terms of node addition rather than re-
moval. Suppose the original graph does not contain ¢, and therefore, its NB-matrix is B’'.
Then, the NB-matrix after adding node c is given by (3.1). All our arguments are valid in this
setting, and (3.7) then says that the new largest NB-eigenvalue is the solution to a third-degree
polynomial, the coefficients of which depend on the full eigendecomposition of B’.

3.2.1. An approximation. Unfortunately, (3.7) requires knowledge of all eigenvectors of
B’. However, in our experience, the vector w is extremely closely aligned to vy, and therefore,
the coefficients w;/w; < 1. In this case, all but one term on the right-hand side of (3.7) can
be neglected and we get

(3.10) AT (A = A)) =g 0.
Here, the larger aj, the larger the eigendrop A; — A}. Therefore, we focus on «; next.

Proposition 3.7. Let uy, vy be the left and right eigenvectors of B’ normalized such that
ul'vy = 1. Then we have

2
(3.11) o = ur{le = VF{Ple = (Z Gcﬂi) — Zaci (vi)2 ,
i i
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where vi is the NB-centrality of node i in the graph after removal (see (2.2)). We call oy the
X-nonbacktracking centrality, or X-NB centrality, of c.

Proof. The first equality comes from the fact that u; = Pvy, by Lemma A.1. We can find
PXy i = acacj (1 —&;;) using (3.3) and the fact that P?2 = I. The result then follows
from manually computing v{ PXv; and applying (2.2). [ |

The previous proposition establishes that the behavior of the (approximate) eigendrop in
(3.10) is governed by the X-NB centrality of ¢ in (3.11), which is a function only of the NB-
centralities of ¢’s neighbors. Importantly, these centralities are measured after c is removed.
We come back to this point in section 4. Notably, the principal eigenvector is normalized by
u{vl = V{Pvl = 1, i.e., it does not have unit length. Finally, note that Proposition 3.7
can be considered a generalization of equation D1 of [47], which treats the case of single edge
removal.

3.2.2. An upper bound. An alternative way of studying the eigendrop is by choosing
w such that wy; = 1, and bounding ¢ = ¢(c) = ), w;ja;, which drives the right-hand side
of (3.7). Suppose that R is the matrix whose columns are the eigenvectors {v;}, and let
L = R7! such that B’ = RAL, where A is the diagonal matrix of the eigenvalues {\;}. The
rows of L are left eigenvectors of B’, in particular, ul is the first row of L. Then we have
o = u{Xvi = (LXR)y;, and q is the dot product between the first row of LXR and w,

(3.12) q=ei LXRw =Tr (LXRwe]),
where e; = (1,0,...,0). Using the cyclic property of the trace, and that P2 = I, we have
(3.13) qg="Tr (LXRwe]) =Tr (XRwel L) = Tr (PXRwe] LP).

Applying the Cauchy-Schwarz inequality for the trace gives us ¢ < |PX|p }Rwe'lr LP‘ o
where |M|3 = Tr (MTM). Finally, since wel is a matrix with rank one, we have

(3.14) q < |PX|p (e LPRw).

As before, we have w; /w; < 1 and since we chose w; = 1, the term (erlrLPRw) is very close
to 1. Therefore, we obtain |PX|r as an (approximate) upper bound for g. Observe that since
PX is nonnegative, we have |PX|r = 1T PX1, where 1 = (1,1,...,1).

Proposition 3.8. In (3.7), let w be such that wi = 1, and define ¢ = Y, wic;. The quantity
1T PX1 is an approzimate upper bound for q, that is, ¢ < 1T PX1 (e'lrLPRW). Furthermore,
we have

2
(3.15) 17pPXx1 = <Z aci (di — 1)) =) aci (di — 1)%,

where d; is the degree of node i before removal. We call 1T PX1 the X-degree centrality of c.

Proof. The first claim was proved in the previous paragraphs. The second claim comes
from direct evaluation of 17 PX1 using PXy i = agac; (1 —015). [ |
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Remark 3.9. Our arguments assume the existence of a full basis of eigenvectors of the NB-
matrix. The proof of existence of such a basis evades us, though every single nonregular graph
we have observed admits such a basis. Similarly, the fact that the X-degree of ¢ bounds ¢ only
approximately also merits further theoretical consideration. However, these two theoretical
caveats notwithstanding, our experiments show that, in practice, the X-degree and X-NB
centrality of nodes are excellent predictors of the node’s eigendrop.

3.3. X-centrality. In section 3.2.1 we use the X-NB centrality, vi PXv;, while in sec-
tion 3.2.2 we use the X-degree centrality, 17 PX1, both for the purpose of studying the
eigendrop induced by c¢. The former is a function of the NB-centralities of the neighbors of ¢
(Proposition 3.7), while the latter is a function of their degrees (Proposition 3.8). Importantly,
both are computed using the same quadratic form PX, applied to two different centralities,
which are both measured after ¢ has been removed.

Fix a target node c; this fixes X and P. We can use the matrix PX to define new node-
level statistics as follows. Recall that if G has m (undirected) edges and ¢ has degree d, then
X and P are of size 2m — 2d. Given an arbitrary vector z of size 2m — 2d, we have

2

2
(316) ZTPXZ = Zacizz‘j*}i - Zaci sz%i
7 J ) J

One can evaluate the right-hand side of (3.16) for any vector z of size 2m, and use only the
2m — 2d entries that correspond to edges not incident to c. In other words, we do not need
to know X or P, but only who the neighbors of ¢ are. Since ¢ determines both X and P, the
same vector z can be evaluated using different target nodes. Therefore, the quantity in (3.16)
naturally corresponds to whichever target node was used to evaluate it, and can be thought
of as a node-level quantity derived from z and aggregated via the PX matrix.

Now define z* = >  Zj—i and let Var. (zl) be the variance of the z’ values corresponding
to neighbors of ¢. Then we have

(3.17) Var, (z) = Yoo ()" (Zi aCizi>2,

d d

which differs from (3.16) only in sign and a (nonlinear) normalization. Accordingly, z/ PXz
will have large values when z’ has little variability among the neighbors of c.

Using this framework we could define, for example, X -closeness centrality, X -betweenness
centrality, etc., though the utility of these other measures remains an open question.

4. Node immunization. Targeted immunization works as follows. Given a graph G and
an integer p, we want to remove from G the p nodes that increase the epidemic threshold the
most (equivalently, decrease the largest NB-eigenvalue the most). Common strategies involve
three steps: (i) the nodes are sorted by decreasing values of a certain statistic, for example
degree; (ii) the node with the highest value of this statistic is removed from the graph; and
(iii) the statistic has to be recomputed after each time a node is removed. Repeat these steps
p times. In this context, our framework presents two major obstacles:
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(a) Both the X-NB and X-degree centralities of a node must be computed after the node
has been removed. So, to execute step (i) above, we need to temporarily remove each

node in turn before we decide which one to ultimately remove.

step is an efficient procedure.

(b) For step (iii), we must guarantee that recomputing the statistic of every node at each

4.1. Using X-NB centrality. Algorithm 1 naively follows the steps above to implement
an immunization strategy based on X-NB centrality. We are tempted to think this strategy
is the “right” one, as it approximates the true effect of a node’s removal in the epidemic
threshold. However, we must address the obstacles mentioned above.

I T N N N

e
= o

Input: graph G, integer p
Output: removed, an ordered list of nodes to immunize

removed < ()
XNBJ[i] - 0 for each node i
while length(removed) < p do
foreach node c in G do
H < RemoveNode (G, c)
vy < principal eigenvector of AuxNBMatrix(H)
XNBJc] < XNBCentrality(vy, c)
node < arg max; XNBi]
G + RemoveNode (G, node)
removed.append(node)
return removed

Algorithm 1: Naive X-NB immunization strategy.

© 0 N o A W=

-
o

Input: graph G, integer p
Output: removed, an ordered list of nodes to immunize

removed < ()
XNB]i] < 0 for each node i
while length(removed) < p do
v  principal eigenvector of AuxNBMatrix (G)
foreach node c in G do
| XNBJc] < XNBCentrality (vg, )
node < arg max; XNBJi|
G <+ RemoveNode (G, node)
removed.append(node)

return removed

Algorithm 2: Approximate X-NB immunization strategy.

To overcome obstacle (a), we propose approximating (3.11) by using the NB-centralities
in the original graph before removing any node even temporarily. Algorithm 2 takes this
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approximation into account. The error incurred by this approximation is dampened by the
fact that what we are ultimately interested in is the ranking of the nodes rather than the actual
values of their centralities. For obstacle (b), one could use a strategy similar to [11], where
the authors devise an algorithm to approximate the impact on a node’s eigenvector centrality
after the removal of a node without having to recompute the values again. However, doing so
for X-NB centrality remains an open question.

Complexity analysis. We assume that G is given in adjacency list format. In Algorithm 1,
lines 2 and 8 take n operations each. Line 5 creates a copy H of the adjacency list and
removes the target node ¢ from it (but leaves G intact). Line 6 uses Lemma A.2 to compute
the NB-centralities without computing the NB-matrix itself. Instead, it uses the auxiliary
NB-matrix from (A.1), which takes O(m) time, and it takes O (m) to compute its principal
eigenvector (using, e.g., the Lanczos algorithm with a number of iterations that does not
depend on the parameters). Line 7 takes n time. The remaining lines take constant time.
Accounting for loops, Algorithm 1 takes a total of O (n+p(n(m +n) +n)) = O (pn (m + n)).
In Algorithm 2, the NB-centralities are computed outside of the inner loop, which gives a
complexity of O (p(m +n)), or O (m + n) for constant p.

4.2. Using X-degree. X-degree can be easily computed without temporarily removing
any nodes; see (3.15). Indeed, all we need to know about the graph after removal is the
degree of each node. Hence, obstacle (a) is easily overcome in this case. Further, after each
step we need not recompute the X-degree of all nodes, but only of those nodes two steps
away from the target node. Indeed, removing ¢ changes the degree of its neighbors, which
in turn changes the X-degree of its neighbors’ neighbors. So obstacle (b) is also overcome.
Algorithm 3 implements this strategy. Importantly, it does not involve the computation of
any matrices or their eigenvectors.

Complexity analysis. Lines 1,6,10, and 11 of Algorithm 3 take constant time, while line
2 takes O(m). When using a standard map (or dictionary) to store the X-degree values, line
4 takes O(n) operations, and line 9 takes O(1). Now suppose that the nodes removed by
Algorithm 3 are, in order, 41,...,7,. At iteration j, the loop in line 5 takes d;; operations,
and the double loop in lines 7 and 8 takes as many iterations as the number of nodes two
steps away from i;, say D;,. This yields a total of O(m + pn + Z?Zl di; + Z?:l DZ-J.). We
can also implement Algorithm 3 using an indexed priority queue (IPQ) to store the X-degree
values instead of a map; see Appendix B. In this case the worst-case scenario complexity is
O(m +plog n—l—Z?:l d;;+logn Z§:1 Dij). In Appendix B we refine this analysis for networks
with homogeneous or heterogeneous degree distributions, and show that neither the map nor
the IPQ version is better than the other in all cases.

Importantly, the average runtime of both versions is, in fact, close to linear, with the IPQ
version being the faster. Figure 2 shows the average runtime of both versions on random
power-law configuration model graphs with varying degree exponent 7 and constant p (see
Appendix B for details). The reason the average runtime is considerably faster than the
worst-case scenario is because graphs typically have very few large hubs. That is, roughly
speaking, there are O(1) many nodes that take O(n) time to process, while there are O(n)
many nodes that take O(1) time to process. This effect is intensified the closer v is to 2, which
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Figure 2. Average runtime of Algorithm 3 on random power-law graphs with degree exponent ~y.

counterbalances the exponent % in the worst-case scenario.

Input: graph G, integer p
Output: removed, an ordered list of nodes to immunize

1 removed < 0

2 XDeg|i] < XDegree (G, i) for each node i

3 while length(removed) < p do

4 node < max; XDeg]i]

foreach i in G.neighbors[node| do

| G.neighborsi].remove(node)

foreach i in G.neighbors[node] do

foreach j in G.neighbors[i] do
‘ XDeg][j] < XDegree (G, j)
10 | G.neighbors[node] « 0
11 removed.append(node)

© W N o !

12 return removed

Algorithm 3: X-degree immunization strategy.

5. Related work.

Perturbation of NB-matrix. Zhang [47] briefly treats the case of eigenvalue perturbation
of a matrix derived from the NB-matrix in the case of edge removal, while Coste and Zhu
[12] analyze the perturbation of quadratic eigenvalue problems, with applications to the NB-
eigenvalues of the stochastic block model. Our theory is more general since it studies node
removal (as opposed to single edge removal), and it applies to any arbitrary graph.

NB centrality. Many notions of centrality based on the NB-matrix exist, for example NB-
PageRank [6], NB-centrality [30, 38], and Collective Influence [32, 33]. The latter two have
been proposed as solutions to the problem of “influencer identification.” This problem aims
to find nodes that determine the course of spreading dynamics, and is thus more general than
our objective of increasing the epidemic threshold. Collective Influence in particular is similar
to X-degree; see Appendix C.1. Also in this context, Kitsak et al. [24] propose using the k-
core index, and Poux-Médard, Pastor-Satorras, and Castellano [37] highlight the importance
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of node degree. We compare our algorithms to all of these baselines in section 6. Finally,
Everett and Borgatti [16] study the influence of a node’s removal in other nodes’ centrality,
which is reminiscent of our X-centrality framework.

Targeted immunization. Pastor-Satorras et al. [36] review the generalities of spreading dy-
namics on networks, including immunization strategies. Chen et al. [11] propose NetShield,
an algorithm for immunization focusing on decreasing the largest eigenvalue of the adjacency
matrix. We prefer to focus on decreasing the largest NB-eigenvalue instead since it provides a
tighter bound to the true epidemic threshold in most cases [22, 20, 40]. Lin, Chen, and Zhang,
[29] study the percolation threshold in terms of so-called high-order NB-matrices. Percolation
thresholds are tightly related to epidemic thresholds of SIR dynamics [36, 34].

6. Experiments.

6.1. Approximating the eigenvalue. How close is the approzimation in (3.10)? We first
compute the largest NB-eigenvalue A; of a graph G. Then we fix a target node ¢ and remove
it from G and compute the new eigenvalue .. (For ease of notation, in this section we use A,
instead of |, and « instead of ay.) Finally, we use (3.10) to compute two approximations,
/)\\c = A1 — a/)} and XC = A1 — @/)}, where a is the true X-NB centrality of ¢, and & is
the approximate X-NB centrality used in Algorithm 2, i.e., it is computed using the NB-
centralities before removing c¢. We now compare the approximations A. and A, to the true
value of \. for randomly selected nodes of synthetic graphs. We use different synthetic random
graph models: Watts—Strogatz (WS) [44], Stochastic Block Model (SBM) [17, 21], Barabési—
Albert (BA) [1], and Block Two-Level Erdés-Rényi (BTER) [39]. See section C.2 for details
on the data sets, and section C.3 for the experimental setup.

Figure 3a shows that our approximation is extremely close for all graphs tested, though
it tends to underestimate the eigendrop in WS graphs. Figure 3¢ shows the average relative
error versus degree. Our approximation worsens as degree increases, though it is quite small
for most degrees. In the worst case, the relative error is less than 10, or 0.01%. Figure 3b
shows the eigendrop computed using the approximate version of X-NB. This approximation is
systematically overestimating the true eigendrop. Figure 3d shows that this systematic error
is of the order of 10% in the worst case, though it is negligible for small degrees. Overall,
Figure 3 confirms the accuracy of our approximations, and it points to the fact that the terms
neglected in (3.10) will become larger as degree increases.

6.2. Predicting the eigendrop. How well can X-NB centrality and X-degree predict a
node’s eigendrop? Unlike in subsection 6.1, here we do not approximate the eigendrop, but
only seek to predict its size. See section C.4 for experimental setup, and section C.2 for details
on data sets.

In Figure 4a we measure how correlated the true value of X-NB, denoted by «, is to the
true eigendrop. For SBM, BA, and BTER graphs, the magnitude of « lines up extremely
closely with the value of the eigendrop, showing a correlation coefficient of » = 1.00. In
all cases, « is better correlated to the eigendrop than degree (as shown by the correlation
coefficients rgeg). In WS we see considerably more variance than in other ensembles though
« is still an excellent predictor of the eigendrop at » = 0.98. This picture repeats itself when
using the approximate value of X-NB, a (Figure 4b), and X-degree (Figure 4c). & seems to
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Figure 3. Left: True eigendrop (horizontal azis) versus approzimate eigendrop (vertical azis) using (a)
true and (b) approzimate values of X-NB. Dashed line is y = x. Each marker represents one node. Right:
Relative error when predicting Ac, as a function of degree, using (c) true and (d) approzimate values of X -NB.
Degrees expressed as a fraction of the mazimum degree among graphs are in the same ensemble. FEach marker
is the average within log-binned values of degree; error bars too small to show at this scale. WS graphs (blue
circles) have no nodes whose degree is less than 30% of the maximum.

slightly underestimate the eigendrop, while X-degree has noticeably more variance than the
other two statistics, especially in WS. All three statistics are better correlated to the eigendrop
than degree in all graph ensembles. We highlight that even when a few of the panels in Figure 4
are not precisely linear, they all show that the eigendrop is an increasing function of all of «,
a, and X-degree. Note that for X-NB and X-degree to be effective immunization strategies,
all we need is that they be positively correlated to the true eigendrop, which is shown by the
results of Figure 4. Further, using « has very little advantage over «, and therefore, we are
justified in using Algorithm 2 instead Algorithm 1 for computational reasons.

6.3. Immunization with X-NB and X-degree. How effective are X-NB centrality and
X -degree at immunization? We remove 1%, 2%, and 3% of nodes using different strategies and
evaluate the resulting eigenvalue. We use the immunization strategies node degree (degree),
k-core index (core), highest degree within the 2-core (coreHD), NetShield (NS), Collective
Influence (CI), NB-centrality (NB), X-degree (Xdeg), and approximate X-NB (XNB). For com-
putational reasons, we do not use the true value of X-NB; for more details on baselines, see
section C.1. In all data sets, core had the least performance and is therefore not shown in
our results. We hypothesize this is because many nodes can have the same k-core index at
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Figure 4. Predicting the eigendrop using (a) true value of X-NB, (b) approzimate value of X-NB, and
(¢) X-degree. Markers are colored by degree, expressed as a fraction of the largest degree in the same ensem-
ble. Each panel shows the correlation coefficient between the corresponding statistic and the eigendrop (r), and
the correlation between degree and the eigendrop (raeq). Dashed lines are linear regression lines. Our pro-
posed node-level statistics accurately track eigendrops in random graph models such as BA, SBM, and BTER.
X -degree underestimates the eigendrop in WS graphs.

Table 1
Average percentage eigendrop (larger is better) on synthetic graphs after removing 1%, 2%, and 3% of
nodes. Strategies are (column) grouped in performance tiers. NB and XNB have the best performances.

coreHD NS CI Xdeg NB XNB

1% 62.76 61.44 6288 62.90 6292 6291

BA 2% 68.84 66.94 | 68.97 68.99 | 69.01 69.01
3% 72.42 70.09 | 72,56 72.57 | 72.59 72.59

1% 6.28 6.40 6.41 6.45 6.46 6.46
BTER 2% 10.61 10.72 | 10.80 10.85 | 10.86 10.86
3% 14.31 14.40 | 14.55 14.61 | 14.63 14.63

1% 3.31 3.41 3.40 3.43 3.44 3.44

SBM 2% 6.00 6.16 6.19 6.23 6.25 6.25
3% 8.52 8.66 8.76 8.80 8.82 8.82

1% 1.41 1.17 1.50 1.52 1.63 1.63

WS 2% 2.52 2.09 2.97 2.98 3.11 3.11
3% 3.66 2.94 4.41 4.41 4.57 4.58

the same time, so core cannot identify which is the best one among all of them. In all data
sets, coreHD and degree had very similar performance. Therefore, we only show coreHD in
our results. We hypothesize this is because coreHD only differs from degree when the graph
has many nodes outside the 2-core, or when removing a single node reduces the size of the
2-core considerably, which is not the case in our data sets.

Table 1 shows the percentage reduction of the eigenvalue after immunization, averaged over
repetitions on synthetic graphs. We can arrange immunization strategies in tiers according
to increasing performance: strategies within a tier have comparable performance across data
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Table 2
Average percentage eigendrop on real networks (larger is better) when removing p = 1,10, or 100 nodes. A
performance of 0.00 means the eigendrop is less than 1072, Details about these data sets are in Table 3.

p=1 p=10 p =100
coreHD CI Xdeg coreHD CI Xdeg coreHD CI Xdeg

As-1 0.74 0.74 2.35 10.13 13.51 15.43 74.71 78.26  75.92

AS-2 2.02 2.02 4.00 | 26.13 2236  28.17 | 90.09 89.61 87.02

Social-Slashdot 0.95 1.02 1.02 4.63 6.06 6.94 24.14 28.11  30.30
Social-Twitter 2.18 2.18 1.98 13.21 13.97 13.68 41.13 42.88  43.39
Transport-California 0.00 0.00 0.65 2.65 0.65 2.65 5.09 5.09 7.80
Transport-Sydney 0.00 0.00 0.00 0.00 0.00 6.50 7.71 7.37 9.49
Web-NotreDame 9.34 9.34 9.34 12.10 13.79 13.79 14.37 14.37  19.22

sets. The third tier is made up of NS and coreHD. They perform similarly because NS targets
the largest eigenvalue of the adjacency matrix, which is largely dominated by node degree.
Strategies in this tier perform substantially better than core (not shown), and are very close
to the strategies in the next two tiers, i.e., coreHD is a very strong baseline in this task.
The second tier is comprised of CI and Xdeg, with Xdeg having a slight advantage over CI.
Finally, the best performance was achieved by NB and XNB. Their performances were almost
indistinguishable in most data sets, though they have a small margin over CI and Xdeg.

Strategies in the best two tiers, i.e., CI, Xdeg, NB, and XNB, all showed standard deviations
of similar magnitude across all data sets (not shown), and the ordering in increasing perfor-
mance CI < Xdeg < NB = XNB is statistically significant at p < 107'0 (see Appendix C.5).
Further, the best two (NB and XNB) use the principal NB-eigenvector, whereas CI and Xdeg
depend only on node degree, and are therefore much more computationally efficient.

Table 2 shows the results on real data sets, where we have run only degree, CI, and
Xdeg for computational reasons. We use social networks [14, 28], transportation networks,
[35, 43, 28], Autonomous Systems (AS) of the Internet networks [46, 22], and web crawl
networks [2]. See section C.2 for data set descriptions. We remove from each network 1, 10,
and 100 nodes at a time. Again, degree is a very strong baseline, but it is never better than
both CI and Xdeg at the same time. All three strategies are able to drastically immunize the
autonomous systems networks AS-1 and AS-2 at 100 nodes removed, probably owing to the
fact that their degree distribution is extremely heterogeneous and thus the nodes with largest
degree have a large eigendrop. In all other networks, X-degree achieves the best performance.
An interesting case is that of Transport-Sydney. The node identified by all three strategies
has an eigendrop of exactly 0.0. Following Corollary 3.3, this means that the chosen node
lies outside of the 2-core of the graph and thus has no impact on nonzero NB-eigenvalues.
After 10 nodes are removed, both degree and CI continue to achieve zero eigendrop, while
Xdeg already identifies the correct nodes and achieves 6.50% decrease. Even at 100 nodes
removed, degree cannot identify nodes that generate an eigendrop. A similar case occurs
on Transport-California, where the first node identified by degree and CI generates no
eigendrop, while Xdeg is able to correctly identify influential nodes.

We conclude that in cases where efficiency is of the essence, Xdeg is the best overall
immunization strategy, as it has a slight advantage over CI and its performance is close to
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optimal. If effectiveness is more important than efficiency, either XNB or NB should be used.

7. Conclusion. We developed a theory of spectral analysis for the NB-matrix by studying
what happens to its largest eigenvalue when one node is removed from the network. Our
theory is independent of the structure of the graph, i.e., we make no assumptions of locally
tree-like structure or density or length of cycles, as is usual in other studies. We find two
new node-level statistics, or centrality measures, X-NB centrality and X-degree, which are
excellent predictors of a node’s influence on the largest NB-eigenvalue. Finally, we focused on
the application of targeted immunization, for which we propose two new algorithms that are
shown to be more effective than others on a variety of real and synthetic graphs. Code for
these algorithms may be found at https://github.com/leotrs/inbox. Many other applications
exist. Further studying the behavior of NB-eigenvalues under small perturbations of the graph
using the framework presented here has potential to affect those applications.

Our techniques open many possibilities for further research. For instance, the left-hand
side of (3.5) is reminiscent of certain quantities used in the theory of eigenvalue interlacing
[18], while the matrix (B’ — tI) " on the right-hand side is known as the resolvent of B', which
has many applications in random matrix theory [41]. On a different note, Cvetkovic, Doob,
and Sachs [13] highlight that most matrices associated to graphs are linear combinations of I,
A, and D, whereas the NB-matrix is associated with a guadratic combination of I, A, and D,
via the celebrated Thara—Bass formula [8, 26] (see also (A.1) in Appendix A). In the future,
we will explore which other matrices associated with graphs can be studied via quadratic, or
higher order, combinations of I, A, and D.

Appendix A. Technical lemmas. Let B be the NB-matrix of a graph GG, P be as defined
in section 2, and A, v be the Perron eigenvalue and corresponding unit right eigenvector of B.
Lemma A.1. Pv is a left eigenvector of B corresponding to .

Proof. Since PB is symmetric and P? = I, we have B = PBTP. Now Bv = \v implies
BT Pv = APv, which completes the proof. |

Now let D = diag(A1) be the diagonal degree matrix, and let v4,, be the left principal
eigenvector of

(A.1) Bm—<_01 D;I>.

It is known that v, = (f, —Af), where f is of size n, and it is parallel to the vector of
NB-centralities, i.e., f' oc v¢ [30], where v* is defined in (2.2). Note it is more efficient to use
Bau: than B when computing the NB-centrality, since the former is a 2n x 2n matrix with
O(n(k)) nonzero entries, while the latter is a 2m x 2m matrix with O(n(k?)) nonzero entries
[42]. (Here, (k") is the rth moment of the degree distribution of the graph.)

Lemma A.2. Suppose v is such that v Pv = 1. Let Vauz = (F, —\f) be the left unit eigen-

vector of Bayz corresponding to A, and let v .= (Vl, . ,V") be the vector of NB-centralities.
Then, we have ||¥|| = p||f||, where
A(AZ—1)
A2 Y (A A7
(4.2) F=\V1—TDf
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Proof. First, from v’ Pv =1 we get v PBv = A\vl Pv = ), and we can expand v! PBv
to find ||v[* — ||v]|* = A. Second, since (f, —Af) has unit length, we have [|f[|? =1/ (A% +1).
Therefore,

(A.3) = (N +1) (A +[v)?).
Now, Bv = Av implies v,_,;+Av,_,; = v for any i, j. Plug this identity in ||v||? = Zm aijv?ﬁ\j
to find

(A.4) IVIZ (A2 +1) +20 =3 (v))* degi = v/ Dv = 7 DF.

Using (A.3) and (A.4) together finishes the proof. [ |

Remark A.3. Both ¥ and f determine the same node centrality ranking, though the latter
is easier to compute. However, the normalization v Pv = 1 is fundamental in our theory,
which makes v the correct choice. Lemma A.2 allows us to compute v only with the knowledge
of f, A\, and D, which is much more efficient than computing v and Vv directly.

Appendix B. Complexity analysis of Algorithm 3. In section 4.2 we used a standard
map (i.e., hash table or dictionary) to store the X-degree values in line 2 of Algorithm 3.
Alternatively, we can use an indexed priority queue (IPQ). An IPQ is a data structure that
behaves like a priority queue except that, additionally, elements in the IPQ can be updated
efficiently. The underlying data structure is a max-heap. An IPQ can find the maximum
element in the heap, as well as update any element, in logarithmic time.

In this case, line 2 of Algorithm 3 takes m operations to compute the X-degree values
plus n operations to heapify the IPQ. Further, lines 4 and 9 take O (logn) time, which yields
a time complexity of

P P
(B.1) @) m+n+plogn+2dij+logn2Dij
j=1 j=1

B.1. Homogeneous degree distribution. In networks with a homogeneous degree distri-
bution (e.g., Poisson) we can estimate d;, ~ (k) and D;; ~ (k)*, where (k) is the average
degree. This yields O (m +n+ p(k)?log n) total complexity for the IPQ version, while the
map version gives O (m + pn + p(k)?). If p = O(n) and (k) = O(1), the IPQ version scales
better in the worst-case scenario.

B.2. Heterogeneous degree distribution. In networks whose degree distribution is well
approximated by a power law, the probability of finding a node of degree d scales as d~7 for
some vy > 0. In this case, the first few nodes removed by Algorithm 3 will usually have large
degree, comparable to the largest degree in the network, d;; = O (dmax) for each j. Further,
in the worst-case scenario, each of their neighbors will also have a degree comparable to dmax

and thus D;; = O (d2,,,) for each j. Using diax = O(nﬁ) [7] yields O(m + pn +pn%) for

2
the map version and O(m + pn-1 log n) for the IPQ version. In the typical case 2 < v < 3,
2

the exponent P varies between 1 and 2.
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Table 3
Real-world data sets. n: number of nodes, m: number of edges, \1: largest NB-eigenvalue, dmax: largest
degree. AS stands for autonomous systems.

Nodes Edges n m A1 Amax

AS-1 [46] AS digital communication 34,761 107,720  151.442 2,760

AS-2 [22] AS digital communication 22,963 48,436 64.678 2,390

Social-Slashdot [28] users friendships 77,360 469,180 128.550 2,539
Social-Twitter [14] users friendships 456,290 12,508,221 636.147 51,386
Transport-California [43] | intersections roads 1,957,027 2,760,388 3.321 12
Transport-Sydney [43] | intersections roads 32,956 38,787 2.266 10
Web-NotreDame [2] websites hyperlinks 325,729 1,090,108 175.657 10,721

B.3. Average runtime. We have provided the analysis of worst-case scenario runtime.
However, the average runtime of both the IPQ and map versions is close to linear, as shown
in Figure 2. This figure was generated by first sampling a degree sequence from a power-law
density pg < d77, and then generating a graph at random using the configuration model. Self-
loops and multiedges were removed and only the largest component was kept. Each marker
is the average of 30 repetitions. We used p = 100.

Appendix C. Experimental setup.

C.1. Base lines.

Degree. The degree of a node i, denoted d; is the number of neighbors it has in the graph.
Nodes of degree 1 have zero CI, X-degree, NB-centrality, and X-NB centrality.

k-core index. The k-core index of a node is defined as follows. First, iteratively remove all
nodes of degree 1 until there are none. All nodes removed in this step are assigned a value of
k-core index of 1. Then, iteratively remove all nodes of degree 2; all nodes removed at this
step have k-core 2. Repeat this process until there are no more nodes in the graph. Notably,
following Corollary 3.3, all nodes with k-core value of 1 have zero NB-centrality.

NB-centrality. The NB-centrality of a node is defined in (2.2). It was proposed in [38] as
an indicator of influential spreaders on locally tree-like networks for the SIR model.

NetShield. NetShield is an efficient algorithm that identifies a subset of nodes with the
highest “shield-value,” which is defined as the impact a node, or set of nodes, has on the
largest eigenvalue of the adjacency matrix [11].

Collective Influence. The Cl of i is CI; = (d; — 1) 3_; a;j (d; — 1), though this definition
can be generalized to include nodes in arbitrarily large neighborhoods around ¢ [32]. Note that
this is quite similar in nature to X-degree in (3.15). We think of X-degree as a second-order
aggregation of the values (d; — 1) of the neighbors of i, while CI is a first-order aggregation.
We believe this similarity is by no means an accident, and will be the subject of future studies.
Further, one can apply Algorithm 3 to perform targeted immunization based on CI instead
of X-degree, and hence they have the same running time complexity (see section 4.2 and
Appendix B). Morone et al. [33] claim that the CI algorithm runs in O (nlogn) time, though
we were not able to reproduce this result. In any case, any efficient algorithm that computes
CI can be used to compute X-degree as well.
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coreHD. In [45], the authors present the algorithm coreHD for dismantling a network in
many disconnected components. coreHD iteratively removes from the network the node with
highest degree inside the 2-core of the network. Edges that lie outside of the 2-core or that
connect the 2-core with its complement are ignored.

C.2. Data sets. All synthetic graphs have n = 10° nodes, and parameters were chosen so
that the average degree was approximately 12. SBM graphs were generated with two blocks,
or communities, so that the average within-block degree is 9 and the between-block degree is
3. WS graphs were generated with rewiring probability 0.1. BTER graphs were generated
with target average local clustering coefficient of 0.98, and target global clustering coefficient
of 0.4. BTER graphs were generated with the authors’ implementation [25]; all other graphs
were generated using NetworkX [19] version 2.3. After generation, we extracted the largest
connected component of each graph and converted all multiedges to single edges and deleted
self-loops. One hundred graphs were generated from each ensemble. Table 3 describes the
real data sets used. Directed networks were converted to undirected, and only the largest
connected component of each data set was used.

C.3. Approximating the largest eigenvalue. Since nodes of large degree are bound to
induce a larger eigendrop than those of small degree, we chose target nodes at random by
sampling 1% of nodes from each graph, proportionally to their degree. This was achieved
by sampling one edge at random, with replacement, and then choosing one of its endpoints
randomly. This yields a probability of sampling node i equal to d;/2m.

C.4. Predicting the eigendrop. Nodes were sampled in the same way as in C.3. Figure 4
shows correlation coefficients, defined as the covariance divided by the product of the standard
deviations of the two variables. We computed the correlation between the eigendrop and each
of the statistics: «, a, X-degree, and degree. No three-way correlation was computed.

C.5. Immunization with X-NB and X-degree. To confirm the ordering in increasing
performance CI < Xdeg < NB = XNB, we used a one-sided Wilcoxon signed-rank test, which
is a nonparametric version of the paired T-test. In a paired sample setting, this test tests
the null hypothesis that the median of the differences between the two samples is positive,
against the alternative that it is negative. Therefore, a small p-value means that there is
little probability that the first sample’s median is smaller than the second’s. For each graph
ensemble and each percentage of removed nodes (1%, 2%, 3%), the ranking CI < Xdeg <
NB was confirmed with p < 107! in all cases. Further, we have NB < XNB in WS networks
(p < 1071%) and BTER networks (p < 0.05), and NB > XNB in BA networks (p < 107!%) and
SBM networks (p < 0.05). We summarize these results by writing CI < Xdeg < NB =~ XNB.

Acknowledgment. The first author thanks Gabor Lippner for many invaluable discus-
sions.
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