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Abstract— We are motivated by the real challenges presented
in a human–robot system to develop new designs that are efficient
at data level and with performance guarantees, such as stability
and optimality at system level. Existing approximate/adaptive
dynamic programming (ADP) results that consider system per-
formance theoretically are not readily providing practically useful
learning control algorithms for this problem, and reinforcement
learning (RL) algorithms that address the issue of data efficiency
usually do not have performance guarantees for the controlled
system. This study fills these important voids by introducing
innovative features to the policy iteration algorithm. We intro-
duce flexible policy iteration (FPI), which can flexibly and organ-
ically integrate experience replay and supplemental values from
prior experience into the RL controller. We show system-level
performances, including convergence of the approximate value
function, (sub)optimality of the solution, and stability of the
system. We demonstrate the effectiveness of the FPI via realistic
simulations of the human–robot system. It is noted that the
problem we face in this study may be difficult to address by
design methods based on classical control theory as it is nearly
impossible to obtain a customized mathematical model of a
human–robot system either online or offline. The results we have
obtained also indicate the great potential of RL control to solving
realistic and challenging problems with high-dimensional control
inputs.

Index Terms— Adaptive optimal control, data- and
time-efficient learning, flexible policy iteration (FPI), human-in-
the-loop, reinforcement learning (RL), robotic knee.

I. INTRODUCTION

ROBOTIC knees are wearable robots that assist indi-
viduals with lower limb amputation to regain the

ability of walking [1], [2]. This type of robotic pros-
thesis relies on mimicking how biological joints generate
torques to enable the robotic knee motion for an amputee
user. The device is programmed to adjust the knee joint
impedance values according to the mechanical sensors in
the prosthesis. The intrinsic controllers embedded in the
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devices provide baseline automatic control of joint torques.
As human users differ from weight to size and are of dif-
ferent lifestyle needs, extrinsic control in the form of pro-
viding impedance parameter settings is required to customize
the device to meet individual user’s physical and lifestyle
needs.

A. Related Approaches

While such a new powered device signifies the future of
rehabilitation and it has brought excitement into the biome-
chanics fields, fitting the device to a human user automatically
remains a major challenge to unleash the full potential of
the robotic device. Few technologies are currently available.
The only functioning solution relies on multiple sessions of
manually tuning a small subset of the impedance parameters
one at a time, unable to account for the interacting effects
of the parameters during each tuning session. This highly
heuristic approach is time-consuming, costly, and not scalable
to reaching the full potential of this powerful robotic device.
Some research has gone into reducing the intensity of labor

for parameter tuning. One such idea directly reduces the num-
ber of configurable parameters [3], [4]. In return, significant
domain knowledge and tuning time are still required, and it
is not clear if such an approach will remain effective for
each unique individual of the amputee population. In [5],
an expert system was developed to hard code the prosthetists’
tuning decisions into configuring the control parameters. This
open-loop control approach is not expected to scale well
to more joints or to more tasks. Other approaches include
estimating the control impedance parameters with either a
musculoskeletal model [6] or measurements of biological
joint impedance [7], [8]. These methods have not been val-
idated and it is questionable if they are feasible as the
biomechanics and the joint activities of amputees are funda-
mentally different from those of the able-bodied population.
A recent continuous tracking approach was proposed based
on extremum seeking, also known as a convex optimiza-
tion solution, for seeking impedance parameters [9]. The
idea is applied as a concept to knee and ankle joints by
automatically tuning the proportion gain of a proportional
derivative (PD) controller. It is yet to see direct results of
leg motion performance either in simulation or by human
testing.
As those methods all have their fundamental limitations

in principled ways, new approaches of configuring the
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prosthesis control parameters are needed. Even though
controlling exoskeleton is not quite the same problem as
configuring prosthesis control parameters because of the fun-
damental and physiological differences between able-bodied
and amputee populations, it is still worth mentioning that
several optimization techniques have been proposed for the
former. Koller et al. [10] used a gradient descent method
to determine an optimal control onset time of an ankle
exoskeleton device. Their goal was to minimize the metabolic
effort from respiratory measurements and thus improve gait
efficiency. Zhang et al. [11] also studied ankle exoskeleton
toward minimizing the metabolic effort, where in the study,
they used an evolution strategy to optimize four control
parameters in the ankle device. Ding et al. [12] applied the
Bayesian optimization to place two control parameters of hip
extension assistance. While this idea and those discussed are
interesting for exoskeleton, they may not extend to robotic
prosthesis parameter-tuning problem as these algorithms have
only been demonstrated for less or equal to a 5-D control
parameter space. In addition to scalability, they have not shown
feasibility in addressing challenges, such as adapting to user’s
changing physical condition or change in use environments.
In addition, the metabolic cost objective used in control design
of exoskeletons for able-bodied individuals is unlikely useful
for amputees using a prosthetic device.

B. Problem Challenges

Several unique characteristics of the human–robot system
are responsible for the challenges we face when configuring
the robotic devices. First, fundamental principles and mecha-
nisms of how the human and prosthesis interact still are not
known. Therefore, it is not feasible to apply control design
approaches that rely on a mathematical description of the
human-prosthesis dynamics. Second, lower limb prosthesis
tuning is commonly implemented in a finite-state machine
impedance control (FS-IC) framework [13] because stud-
ies have suggested that humans actually control the joint
impedance of the leg when walking [14], [15]. The FS-IC
involves multiple configurable parameters or control inputs,
from 12 to 15 for knee prosthesis for level ground walking
[1], [2], [16], and the number of parameters grows rapidly for
an increased number of joints and locomotion modes up to
multiple dozens. Third, the impedance control (IC) design has
to ensure the safety and stability of the human user at all times.
In addition, because of a human user is in the loop during
the tuning process, it is highly desirable for the control design
approach to be data and time efficient to reduce the discomfort
caused by adjusting the control parameters. Addressing these
challenges simultaneously requires us to look beyond classical
control systems theory and control systems engineering as well
as the state-of-the-art robotics science and engineering that
have been successful at controlling mechanical robots.

C. Reinforcement Learning and Adaptive
Dynamic Programming

The reinforcement learning (RL)-based adaptive optimal
control is naturally appealing to solve the above-described

challenges. As is well known, deep RL, including several
policy search methods and deep Q-network (DQN), have
shown unprecedented successes in solving difficult, sequential
decision-making problems, such as those in robotics appli-
cations [17], Atari games [18], the game of Go [19], [20],
and energy-efficient data center [21]. Yet, a few challenges
remain if these results are to be extended to situations where
there is no abundance of data, the problems involve continuous
state and control variables, uncertainties as well as sensor and
actuator noise are inevitable, and system performances, such as
optimality and stability, have to be satisfied. RL-based adaptive
optimal control approaches, or approximate/adaptive dynamic
programming (ADP) [22], [23], are a promising alternative as
they have demonstrated their capability of learning from data
measurements in an online or offline manner in several realistic
application problems, including large-scale control problems,
such as power system stability enhancement [24]–[26] and
Apache helicopter control [27], [28]. Note, however, that those
problems do not face the data and time efficiency challenge.
At the heart of the ADP methods is the idea of providing

approximating solutions to the Bellman equation of optimal
control problems. In our previous work [29]–[31], we demon-
strated the feasibility of ADP, specifically direct heuristic
dynamic programming (dHDP) [32], for personalizing robotic
knee control, to address similar challenges we face here. The
dHDP is an online RL algorithm based on stochastic gradient
descent, which in its generic form, is not optimized for fast
learning [33]. It is also worth mentioning that the generic
dHDP without imposing further conditions [34] has not shown
its control law to be stable during learning. It is, therefore,
necessary to take these limitations into design considerations,
especially for the current application.

D. Policy Iteration RL Control

AlphaGo Zero [20] is a policy iteration-based RL algorithm.
It started tabula rasa and achieved superhuman performance
after only a few days of training. This result is inspiring. Yet,
how to make a classic policy iteration algorithm applicable to
solving controls problem that requires data and time efficiency
as well as system stability and optimal performance remains a
challenge. ADP is a promising adaptive optimal control frame-
work to address general nonlinear control problems. However,
a few results are available to demonstrate successful applica-
tions to real controls problems while meeting the data and time
efficiency requirements. Some motivating and important theo-
retical works are as follows, but they do not directly involve
data-level design approaches to solving realistic and complex
problems. Gao and Jiang [35], Jiang and Jiang [36], and
Bian et al. [37] examined continuous-time systems of different
constraining nonlinearity forms (affine systems, for example)
under respective state and control conditions. For discrete-time
systems, Jiang et al. [38] dealt with a class of linear systems,
Al-Tamimi et al. [39] dealt with an affine nonlinear system
with learning convergence proof, and Mu et al. [40] dealt
with nonlinear systems with learning convergence proof and
optimality performance, However, system stability was not
provided in [39] and [40]. Stable iterative control policies
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of PI has been studied for discrete-time nonlinear systems of
different forms [41]–[44]. However, these results center on the
basic PI algorithm without any consideration of integrating
prior knowledge or without addressing the issue of data and
time efficiency. Clearly, we need a practical, data-level design
algorithm that is useful for applications while retaining impor-
tant, system-level performance properties, such as optimality
and stability.

E. Using Prior Information

Two design ideas to account for data and time efficiency are
intuitively useful – experience replay (ER) and value function
shaping. We innovatively develop both ideas and organi-
cally integrate them into our flexible policy iteration (FPI)
algorithms.
ER [45] is a practically effective approach to improving

sample efficiency for off-policy RL methods. In ER, past expe-
riences (samples) generated under different behavior policies
are stored in a memory buffer and selected repeatedly for eval-
uating the approximated value function. Even though ER has
been adopted and analyzed extensively, shown next, current
results do not simultaneously fulfill our design requirement
of data-level efficiency and performance guarantee simulta-
neously. Empirical studies have demonstrated the successes of
several ER algorithms. Selective experience replay (SER) [46],
prioritized experience replay (PER) [47], [48], and hindsight
experience replay (HER) [49] have shown their capability in
improving sample efficiency in deep RL. Specifically, SER
strategically selects which experiences will be stored so that
the distribution on the memory buffer can match the global
distribution in the training data set. In contrast, PER selects
which experiences to be replayed in the memory buffer, that is
to say, the important samples will be replayed more frequently.
For multigoal RL, HER reutilizes past failure experiences,
which may benefit another goal, so that the overall multigoal
performance can be improved. The ER idea has also been
considered in ADP in different capacities [50]–[56]. Beyond
the results in [45]–[49], the works in [50] and [51] also
empirically demonstrated that the simple ER idea, without
prioritization or other means of selecting samples, can be
implemented with Q-learning and actor–critic ADP algo-
rithms to improve sample efficiency. Some analytical studies
[52]–[56] about ER have carried out for specific systems and
under specific conditions, which are not sufficiently general
to be applied to our human–robot system. Specifically, ER,
or concurrent learning, was proposed to replace the persistence
of excitation (PE) condition for uncertain linear dynamical
systems [52], partially unknown constrained input systems
[53], known deterministic nonlinear systems [54], nonzero sum
games based on model identifiers of the game systems [55],
and decentralized event-triggered control of interconnected
systems in affine form with uncertain interconnections [56].
Apparently, existing results are not readily extended to address
the challenges just discussed in the above.
The idea of using prior experience to bootstrap learning is

intuitive as it intends to capture knowledge from a related
task to help save data and learning time. Research has shown
significant improvement in data and time efficiency by using

prior experience compared to learning from scratch [57]–[59].
At present, most approaches rely on identifying and applying
a good initial policy or initial value function to “guide”
learning in order to reduce the policy search space as a
means of reducing data complexity and saving learning time
[60]–[63]. A handful of results attempted formal treatment
of utilizing prior knowledge to boost learning, yet they are
only for special considerations. The work of [64] is an
early work that considered boosting the value function or
shaping the reward function. However, the focus was to
ensure policy invariance, not from a perspective of saving
data and training time. Mann et al. [65] provided a theoretical
sample complexity framework, yet it is unclear how the results
could directly impact the development of practically useful
algorithms. Abel et al. [58] proved a probably approximately
correct (PAC) guarantee for a scheme that uses an optimistic
value function initialization, and they only demonstrated their
approach using simple examples.

F. Contributions and Significance

From the above discussions, it is clear that practical,
data-level design algorithms with important, system-level per-
formance properties are still lacking. In this study, we intro-
duce FPI to address the challenges. The flexibility of our
proposed FPI is within the following three aspects. First,
the way it collects and uses data, i.e., data preparation
(Table I), to permit learning from samples generated from
either current behavior policies or different policies within an
ER framework. Second, the way it deals with prior knowledge
is flexible as it allows learning from prior knowledge in
the form of a supplemental value based on previous data
collection experiments. Third, the implementation of FPI is
flexible as the approximate value function can be obtained
by a conventional least-square solution or by a weighted
least-square solution with or without prioritized samples. With
such a flexible framework, a designer of an adaptive optimal
controller can customize his/her algorithmic approach to fit
specific applications needs.
In summary, we are motivated by the real challenges pre-

sented in a human–robot system to develop new designs that
are efficient at data level and with performance guarantees
at system level. Successful applications of policy iteration,
such as AlphaGo Zero, are inspiring but did not account for
either data efficiency or system stability. Existing ADP results
that consider system performance theoretically are not readily
providing practically useful learning control algorithms. This
study fills these important voids. Specifically, our contributions
are as follows.

1) First, based on the classic policy iteration framework,
we introduce several flexibilities at data level, each or
all of which can be customized to meet the design and
problem-solving needs. Our innovative development of
ER and supplemental values, and organic integration of
them into the policy evaluation, has provided practically
useful design tools.

2) Second, we not only introduce FPI as an iterative learn-
ing procedure, but we also provide qualitative analysis
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Fig. 1. (a) Block diagram of the human–robot system with an RL controlled robotic knee. The IC loop (top) generates torque T according to (2). The
FPI-based parameter update loop (FPI loop) adjusts IC parameters for each phase m after every gait cycle k. Four identical RL blocks (m = 1, 2, 3, 4) are
needed for the four IC control phases. (b) Illustration of the four phases of a gait cycle: the differences between the target and prosthesis knee profiles form
the states peak error and duration error of the four respective phases.

of FPI for its stabilizing control laws, convergence of
the value function, and achieving Bellman optimality
approximately.

3) Third, we provide extensive simulation studies to val-
idate what we intended for the FPI: to automatically
configure 12 impedance parameters as prosthesis control
inputs to enable continuous walking of amputee subjects.

It is noted that, what we have obtained in this study would
have been difficult or impossible for designs based on classic
control theory. Our results reported here represent the state of
the art in automatic configuration of powered prosthetic knee
devices. This result may potentially lead to practical use of
the FPI in clinics. In turn, this can significantly reduce health
care cost and improve the quality of life for the transfemoral
amputee population in the world.
The remaining of this article is organized as follows.

Section II describes the human-prosthesis system and for-
mulates the human-prosthesis tuning/configuration problem.
Section III presents the FPI framework for online control of
prosthetic knee. Section IV analyzes the converging properties
of FPI. Section V presents the experimental results of the
FPI-tuner under different configurations and a comprehensive
comparison to other existing RL methods. Discussions and
conclusion are presented in Section VI.

II. HUMAN–ROBOT SYSTEM

In this study, RL is applied to automatically adjust
impedance parameter settings within an FS-IC framework,
where a gait cycle is divided into four phases to represent dif-
ferent modes of stance and swing [1], [7], [16] [see Fig. 1(b)]:
stance flexion phase (STF, m = 1), stance extension phase
(STE, m = 2), swing flexion (SWF, m = 3), and swing exten-
sion (SWE, m = 4). Transitions between phases are triggered
by the ground reaction force (GRF), knee joint angle, and knee
joint angular velocity measured from the prosthesis. Variance
in a certain phase will affect the subsequent phases [66].

Fig. 1(a) shows an FS-IC-based human-prosthesis system and
how our proposed RL control is integrated into the system.
There are two control loops running at different frequencies.
The intrinsic, IC loop generates knee joint torque T at 300 Hz
following the IC law (2), given an IC parameter setting defined
in (1). For each of the gait phases m = 1, 2, 3, 4, there is a
respective FPI controller. In each gait cycle k for each phase
m, state xk is formed using peak knee angle Pk and gait phase
duration Dk measures, as shown in Fig. 1(b).

A. Intrinsic IC Loop

Refer to the top IC control loop of Fig. 1(a). During gait
cycle k, for each FS-IC control phase m (m = 1, 2, 3, 4),
robotic knee control requires three control parameters, namely
stiffness Km,k , damping coefficient Bm,k , and equilibrium
position (θe)m,k . In vector form, the control parameter settings
are represented as

Im,k = [
Km,k, Bm,k, (θe)m,k

]T ∈ R
3. (1)

The prosthetic knee motor generates a knee joint torque T ∈ R

from the knee joint angle θ and angular velocity ω according
to the following IC law:

Tk = Kk(θ − (θe)k) + Bkω. (2)

Without loss of generality, we drop the subscript m in the
rest of this article because all four impedance controllers and
their respective FPI blocks share the same structure, although
the RL controller for each phase has its own coefficients to
generate IC settings (1). The FPI controller then updates the
IC parameter settings (1) for the next gait cycle k + 1 as

Ik+1 = Ik + uk (3)

where uk ∈ R
3 is the control input generated from the FPI

block.
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B. Impedance Parameter Update Loop by FPI

Refer to the bottom control loop of Fig. 1(b). For each phase
m during gait cycle k, the mth FPI controllers is enabled to
update the IC parameters. After each gait cycle k, the peak
knee angle Pk ∈ R and phase duration Dk ∈ R are selected
by the feature selection module. Specifically, peak knee angle
Pk is the maximum or minimum knee angle in each phase, and
phase duration Dk is the time interval between two consecutive
peaks [see Fig. 1(b)]. A reference trajectory of the knee joint
that resembles a normal human walking pattern [1], [67] is
used in this study. Subsequently, we can also determine target
peak angle P ′

k ∈ R and phase duration D′
k ∈ R. For each RL

controller in a respective phase, its state variable xk is defined
using peak error �Pk ∈ R and duration error �Dk ∈ R as

xk = [�Pk,�Dk]T = [
Pk − P ′

k, Dk − D′
k

]
T (4)

and its control uk consists of increments to the IC parameters

uk = [�Kk,�Bk, (�θe)k]
T . (5)

III. FLEXIBLE POLICY ITERATION

Consider the human–robot, i.e., the amputee prosthesis,
system as a discrete-time nonlinear system with unknown
dynamics

xk+1 = F(xk, uk), k = 0, 1, 2, . . . (6)

where action uk of the form described in (5) is determined
according to policy h as

uk = h(xk). (7)

In (6), the domain of F(xk, uk) is denoted as D � {(x, u)|x ∈
X , u ∈ U}, where X and U are compact sets with dimensions
of Nx and Nu , respectively. In the human–robot system under
consideration, F represents the kinematics of the robotic knee,
which is affected by both the human wearer and also the
RL controller. Because of a human in-the-loop, an explicit
mathematical model as (6) is intractable or impossible to
obtain.

A. Policy Iteration Framework

To assist our development of the proposed FPI, we summa-
rize the notation and the basic framework of a standard policy
iteration algorithm for discrete-time systems next.
The RL control design objective is to derive an opti-

mal control law via learning from observed data along the
human–robot system dynamics. Consider a control policy
h(xk), we define the state-action Q-value function as

Q̌(xk, uk) = Ǔ (xk, uk) +
∞∑
j=1

Ǔ
(
xk+ j , h

(
xk+ j

))
(8)

where Ǔ(xk, uk) is the stage cost or instantaneous cost func-
tion. Note that the Q̌(xk, uk) value is a performance measure
when action uk is applied at state xk and the control policy h is
followed thereafter. The form of Q̌(xk, uk) in (8) implies that
we formulate the optimal control problem of robotic knee as a
discrete-time, infinite horizon and undiscounted optimization

problem. Our solution framework is data-driven, not model-
based.
Our design approach requires the following assumption.
Assumption 1: The system F(xk, uk) (6) is controllable.

The system state xk = 0 is an equilibrium state of system (6)
under the control uk = 0, i.e., F(0, 0) = 0. The feedback
control uk = h(xk) satisfies uk = h(xk) = 0 for xk = 0. The
stage cost function Ǔ(xk, uk) in xk and uk is positive definite.
Assumption 1 is satisfied in the robotic knee control prob-

lem due to our construction of the system states and RL control
(3) based on the biomechanics of human locomotion.
The Q-value function in (8) satisfies the following Bellman

equation:
Q̌(xk, uk) = Ǔ(xk, uk) + Q̌(xk+1, h(xk+1)). (9)

An optimal control is the one that stabilizes the system in
(6) while minimizing the value function (8) according to the
Bellman optimality. The optimal value function is, therefore,
of the form

Q∗(xk, uk) = Ǔ(xk, uk) + min
uk+1

Q∗(xk+1, uk+1) (10)

or

h∗(xk) = argmin
uk

Q∗(xk, uk) (11)

Q∗(xk, uk) = Ǔ(xk, uk) + Q∗(xk+1, h
∗(xk+1)

)
(12)

where h∗(xk) denotes the optimal control policy.
Consider an iterative value function Q̌(i)(xk, uk) and a con-

trol policy ȟ(i)(xk), and the policy iteration algorithm proceeds
by iterating the following two steps for i = 0, 1, 2, . . .
Policy Evaluation:

Q̌(i)(xk, uk) = Ǔ(xk, uk) + Q̌(i)
(
xk+1, ȟ

(i)(xk+1)
)
. (13)

The above policy evaluation step (13) is based on the Bellman
equation (9).
Policy Improvement:

ȟ(i+1)(xk) = argmin
uk

Q̌(i)(xk, uk). (14)

Motivated by the favorable properties of policy iteration in
Markov decision process (MDP) problems, such as monotoni-
cally decreasing value, and demonstrated feasibility in solving
realistic engineering problems [25], [26], we further develop
the policy evaluation step to achieve data efficiency, easy
implementation, and, importantly, effectively solving realistic
and complex problems.

B. Flexible Policy Iteration With Supplemental Value

We first consider a flexible use of prior information, which
we expect to improve learning efficiency in data and time.
Our approach entails a supplemental value V(xk), which can
be obtained from an FPI solution based on past experience
such as a robotic knee control experiment involving a similar
subject(s) previously. For i = 0, 1, 2, . . ., we define a new
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augmented cost-to-go Q(i)(xk, uk) based on a supplemental
value V(xk)

Q(i)(xk, uk) = Ǔ(xk, uk) +
∞∑
j=1

Ǔ
(
xk+ j , h

(i)
(
xk+ j

))

+
∞∑
j=0

αiV
(
xk+ j

)
. (15)

We need the following assumption.
Assumption 2: The supplemental coefficient αi satisfies 0 ≤

αi+1 < αi < 1, and limi→∞ αi = 0. V(xk) in (15) is finite
and positive definite in xk .
Note that the major difference between Q(i)(xk, uk) in (15)

and the original Q̌(i)(xk, uk) in (13) is an extra term∑∞
j=0 αiV(xk+ j ). In fact, (15) can be rewritten as

Q(i)(xk, uk) = Ǔ(xk, uk) + α0V(xk)

+
∞∑
j=1

[
Ǔ

(
xk+ j , h

(i)
(
xk+ j

))+αiV
(
xk+ j

)]
. (16)

We can see that the stage cost Ǔ(xk, uk) is supplemented
by V(xk). This augmented value Q(i)(xk, uk) is no longer
the same as Q̌(i)(xk, uk) in the regular formulation of pol-
icy iteration (13). With this additional supplemental value,
the learning agent receives guidance to shape the sequence
of stage costs Ǔ .
With such an augmented Q-value formulation in (16),

the policy evaluation step (13) and the policy improvement
step (14) become the following.
Policy Evaluation With Supplemental Value:

Q(i)(xk, uk) = U (i)(xk, uk) + Q(i)
(
xk+1, h(i)(xk+1)

)
,

i = 0, 1, 2, . . . (17)

where U (i)(xk, uk) = Ǔ(xk, uk) + αiV(xk).
Policy Improvement:

h(i+1)(xk) = argmin
uk

Q(i)(xk, uk), i = 0, 1, 2, . . . (18)

Remark 1: The term V represents a supplemental value
obtained from a previous experiment where V(xk) =
min
uk

Q f (xk, uk). In the above, Q f (xk, uk) is a converged value

function from applying a naive FPI without any supplemental
value V (Algorithm 1) or just PI. The supplemental value
V(xk) so formulated from a previous experiment of a similar
human subject can capture essential information represented
in the value V for state xk . When this information is used
in a new experiment, the Q(i)(xk, uk) value has previously
obtained information embedded into the current learning.
Note, however, that both experiments must use the same stage
cost and cost-to-go function constructs.
Similar to regular policy evaluation (13) and (14), we need

the following assumption for the initial control law h(0)(x) in
(17) and (18):
Assumption 3: The initial control law h(0)(x) is admissible.
Definition 1 (Admissible Control [41]): A control policy

h(x) is admissible with respect to the value function Q̌(x, u)
(15) if h(x) is continuous on X , h(0) = 0 and it stabilizes

system (6), and the corresponding value function Q̌(x, u) (15)
is finite for ∀x ∈ X .
An initially feasible set of IC parameters are available

from the prosthesis manufacturers and/or trained techni-
cians/experimenters who can customize the prosthesis for
individual patients. After all, manual tuning of the impedance
parameters is the current practice in clinics. In Theorem 3,
given an initially admissible control law h(0)(x), we will show
that the iterative control law h(i)(x) is also admissible for
i = 1, 2, . . .

Solving (17) and (18) to obtain closed-form optimal solu-
tions, Q∗(xk, uk) and h∗(xk) are difficult or nearly impossible.
A value function approximation (VFA) scheme replaces the
exact value function in (17) with a function approximator such
as neural networks. Such approximation-based approaches to
solving the Bellman equation, or RL approaches, usually
utilize an actor–critic structure where the critic evaluates the
performance of a control policy and the actor improves the
control policy based on the critic evaluation. Both the actor
and the critic work together iteratively and learning takes place
forward-in-time to approximately solve the Bellman equation.
Our next strategy to improve policy evaluation efficiency is

to innovatively utilize ER.

C. Flexible Sampling With ER

In policy evaluation (17), the value function Q(i) is to be
evaluated with multiple samples of sk = (xk, uk, xk+1). How
many samples to use and how to select the samples directly
impact policy evaluation. We propose the following options
to flexibly select the number of samples and/or prioritize the
samples in order to improve policy evaluation.
Let DS = {sk}N of size N be a memory buffer. When there

is no abundance of data, it would be natural to perform a policy
evaluation of (17) using not only newly available sample but
also all those samples already in the memory buffer DS, which
may include off-policy samples, on-policy samples, or both.
Next, samples in DS can be assigned with different priorities

so that the important samples are more likely to be reused.
In this work, the importance of sample sk is measured by
the temporal difference (TD) error from a transition [47],
which indicates how surprising or unexpected the transition is:
specifically, how far the value is from its next-step bootstrap
estimate.
Let δ

(i)
k be the TD error of sample sk in DS under policy

h(i). The rank ζ
(i)
k (ordinals from 1, which corresponds to the

largest TD error) of sample sk is obtained from sorting the
memory buffer DS according to |δ(i)

k | in a descending order.
Then, each sample sk is assigned a weight λ̄(i)

k as

λ̄
(i)
k = 1

ζ
(i)
k

, for ∀k (19)

and λ̄
(i)
k can be normalized to a value between 0 and 1 as

λ
(i)
k = λ̄

(i)
k∑
λ̄

(i)
k

, for ∀k. (20)

λ(i)
k can then provide a flexibility for weighing the samples

when solving the Bellman equation.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on July 21,2021 at 17:54:26 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GAO et al.: RL CONTROL OF ROBOTIC KNEE WITH HUMAN-IN-THE-LOOP 7

D. Approximate Policy Evaluation With Flexibility

To implement the policy evaluation step (17), a function
approximator Q̂(i)(xk, uk) is used for Q(i)(xk, uk). We use a
universal function approximator such that

Q̂(i)(xk, uk) = W (i)Tφ(xk, uk) =
L∑
j=1

w
(i)
j ϕ j (xk, uk) (21)

where W (i) ∈ R
L is a weight vector and φ(xk, uk) : RNx ×

R
Nu → R

L is a vector of the basis functions ϕ j(xk, uk), k =
1, . . . , L. The basis functions ϕ j(xk, uk) can be neural net-
works, polynomial functions, radial basis functions, and so on.
In our implementations (Section V), we employ polynomial
basis, and the associated universal approximation property can
be shown by the Stone–Weierstrass theorem.
The policy evaluation step (17) then becomes

Q̂(i)(xk, uk) = U (i)(xk, uk) + Q̂(i)
(
xk+1, h

(i)(xk+1)
)
. (22)

Substituting (21) into (22) we have

W (i)T
[
φ(xk, uk) − φ

(
xk+1, h

(i)(xk+1)
)] = U (i)(xk, uk). (23)

Equation (22) can be seen as an approximated policy evalua-
tion step in terms of a weight vector that is to be determined
from solving L linear equations. At iteration i , two column
vectors, X (i) ∈ R

N×L and Y (i) ∈ R
N , are formed by the term

φ(xk, uk) − φ(xk+1, h(i)(xk+1)) and U (i)(xk, uk), respectively,
in each row. In other words, (23) can be rewritten as

W (i)T X (i) = Y (i). (24)

The TD error δ
(i)
k can be computed as

δ
(i)
k = U (i)(xk, uk) + Q̂(i−1)

(
xk+1, h

(i)(xk+1)
)

− Q̂(i−1)(xk, uk), for i = 0, 1, 2, . . . (25)

Then, the weight λ
(i)
k of a sample can be obtained from

(20). For i = 0, assign weights λ
(0)
k = 1. When the policy

evaluation with function approximation (22) is carried out
with sample sk = (xk, uk, xk+1), it can be weighted by λ

(i)
k .

Hence, the weight vector W (i) can be computed from (24) as
a weighted least-squares solution using N weighted samples

W (i) =
(
X (i)T �(i)X (i)

)
†
(
X (i)T �(i)Y (i)

)T
(26)

where �(i)∈RN is a vector of λ
(i)
k and † is the Moore–Penrose

pseudoinverse. Once W (i) is obtained, the approximated value
function Q̂(i)(xk, uk) can be obtained using (21).

Note that, in (24) to (26), we use N samples to estimate the
weight vector W (i) ∈ R

L . For Q̂(i) to be convergent, we need
the following PE-like condition.
Condition 1: The vector X (i) formed by N samples in DS

contains as many linear independent elements as the unknown
parameters in the weight vector W (i), i.e., rank(X (i)) = L.
Remark 2: The number of samples N in the memory buffer

can be fixed or adaptive with N > L satisfied necessarily.
Unlike PE, Condition 1 can be checked in real time easily.
Adding a small Guassian noise (for example, 1% of initial
impedance value) to the impedance values uk = h(i)(xk)
suffices for meeting Condition 1.

Algorithm 1 FPI
Initialization by
Random initial state x0 ∈ X , initial batch size Nb (if in batch
mode), memory buffer DS = ∅, initially admissible control
policy h(0). Let the approximated policy ĥ(0) = h(0).
Data Preparation for Iteration i
1a: (Batch Data Collection) Collect Nb samples
{(xk, uk, xk+1)}Nb from system (6) following policy ĥ(i)

from gait cycle k, N ← Nb (Setting 2(A) in Table I).
1b: (Incremental Data Collection) Collect a sample
(xk, uk, xk+1) from system (6) following policy ĥ(i), and
add it to DS, N ← N + 1 (Setting 2(B) in Table I).
2: (Set Batch Size) Either use a fixed or adaptive Nb (Setting
1 in Table I) if under batch mode (Setting 2(A) in Table I).
3: (Set Other Parameters) Determine λ

(i)
k (Setting 3 in Table I)

and αi (Setting 4 in Table I).
Policy Evaluation/Update for Iteration i
4: (Policy Evaluation) Evaluate policy ĥ(i) by solving (22) for
Q̂(i) using (26), for example, and by using all samples in DS.
5: (Policy Update) Update policy ĥ(i+1) by (28) and (29).

TABLE I

DATA PREPARATION AND PARAMETER SETTINGS IN ALGORITHM 1

E. Policy Improvement in FPI

After the approximated value function Q̂(i)(xk, uk) is
obtained, the next policy h(i+1)(xk) from (18) is

h(i+1)(xk) = argmin
uk

Q̂(i)(xk, uk). (27)

We employ another linear-in-parameter universal function
approximator ĥ(i+1)(xk) for h(i+1)(xk)

ĥ(i+1)(xk) = (K(i+1))T σ(xk) (28)

where K(i+1) is a weight vector and σ(xk) is a basis function
vector. The weight vector K(i+1) is updated iteratively using
the gradient of the approximate value function Q̂(i)(xk, uk)

K(i+1)
j+1 = K(i+1)

j − l
∂ Q̂(i)

(
xk,

(
K(i+1)

j

)T
σ(xk)

)
∂K(i+1)

j

(29)

where l is the learning rate (0 < l < 1) and j is the iteration
step within a policy iteration step.

F. Implementation of FPI

Algorithm 1 and Table I together describe our proposed FPI
algorithm. The terminating condition in Algorithm 1 can be,
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Fig. 2. Stage cost in peak error and duration error as in (52). (a) Phase 1.
(b) Phase 2. (c) Phase 3. (d) Phase 4.

for example, policy iteration index i = imax where imax is some
positive number or |Q̂(i)(xk, uk) − Q̂(i−1)(xk, uk)| < ε where
ε is a small positive number. Note that there are four settings
in Algorithm 1 (see Table I). FPI can run in batch mode or
incremental mode (Setting 2). In the batch mode, only samples
(of length Nb) generated under the same policy are used in
policy evaluation, and thus, no sample reuse is allowed in this
mode. In the incremental mode, previous samples of length
N in the DS that are generated under different policies, plus
a newly acquired sample, can be reused to evaluate a new
policy. In the batch mode, an extra parameter batch size Nb

needs to be set (Setting 1 in Table I), while such parameter
is not required under incremental mode. In addition, Setting 3
describes how the priorities λ

(i)
k of the samples are assigned

and Setting 4 describes how the supplemental value is used at
iteration i through the parameter of αi .

Note that in the batch mode, FPI can choose the number
of samples for policy evaluation adaptively. FPI starts with a
small Nb. A newly generated policy is tested with one or more
gait cycles to determine if the policy can lower the stage cost.
If not, a larger set of samples (e.g., Nb ← Nb + 5) is used.

This adaptive approach is based on our observations as
follows. Given a continuous state and control problem such
as the control of a robotic knee, we constructed a quadratic
stage cost (xk, uk) in (52), which is common in control
system design. As a decreasing stage cost can be viewed as
necessary toward an improved value during each iteration,
it thus becomes a natural choice for such a selection criterion.
For example, Fig. 2 shows the stage cost for the uniformly
sampled IC parameter space in our human–robot application,
where the color of each sample point represents a stage
cost. Fig. 3 was generated under the setting of (A)(A)(A)(A)
in Table I and Nb = 20. Fig. 3 shows the trajectories of the IC
parameters tuned by FPI starting from some random initial IC
parameters. Apparently, the points with minimum stage cost
in Fig. 2 coincide with the converging planes found by FPI
in Fig. 3.

IV. QUALITATIVE PROPERTIES OF FPI

Policy iteration-based RL has been shown possessing sev-
eral important properties, such as convergence of policy

Fig. 3. Illustration of the converging process of the IC parameters during FPI
tuning: from randomly initialized IC parameters (four trials for illustration
here, shown in blue squares) to the final parameters (shown in red dots),
which are fitted with a regression response surface. (a) Phase 1. (b) Phase 2.
(c) Phase 3. (d) Phase 4.

iteration, approximately reaching Bellman optimality, and
stabilizing control [40]–[44]. We now address the question
of whether these properties still hold under our proposed
FPI framework, especially when our formulation includes a
supplemental value.
Lemma 1: Let i = 0, 1, . . . be the iteration number and

Q(i)(xk, uk) and h(i)(xk) be updated by (17) and (18). Under
Assumption 1, the stage cost U (i)(xk, uk) and iterative value
function Q(i)(xk, uk) in (17) are positive definite for xk and uk .

Proof: For i = 0, according to Assumption 1, we have
h(0)(xk) = 0 as xk = 0. As Ǔ(xk, uk) is positive definite for xk
and uk , we have that

∑∞
j=0 Ǔ(xk+ j , h(0)(xk+ j )) = 0 as xk = 0,

and
∑∞

j=0 Ǔ(xk+ j , h(0)(xk+ j )) > 0 for any xk �= 0. Hence,∑∞
j=0 Ǔ(xk+ j , h(0)(xk+ j )) is a positive definite function for xk .

Since V(xk) is also positive definite for xk , it is easy to get
U (i)(xk, uk) is positive definite for xk and uk . According to
(15), if xk = uk = 0, Q(0)(xk, uk) = 0; if |xk | + |uk | �= 0,
Q(0)(xk, uk) > 0, which proves that Q(0)(xk, uk) is positive
definite for xk and uk . Based on this idea, we can prove that the
iterative function Q(i)(xk, uk), i = 0, 1, . . . is positive definite
for xk and uk .
Theorem 1: Let Assumptions 1–3 hold. Let Q(i)(xk, uk)

and h(i) be updated by (17) and (18). Then, for i = 0, 1, 2, . . . ,
h(i) stabilizes the system (6).

Proof: Consider the case when xk �= 0, and we have
U (i)(xk, h(i)(xk)) > 0 and αi (xk+1) ≥ 0. From (17) and
i = 0, 1, . . .

Q(i)
(
xk, h

(i)(xk)
) − Q(i)

(
xk+1, h

(i)(xk+1)
)

= U (i)
(
xk, h(i)(xk)

)
> 0. (30)

Next, consider the case when xk = 0, according to
Assumption 1, we can get h(i)(xk) = 0, and thus,
U (i)(xk, h(i)(xk)) = 0, which imply Q(i)(xk, h(i)(xk)) −
Q(i)(xk+1, h(i)(xk+1)) = 0. According to Lemma 1 and
Assumption 1, the function Q(i)(xk, h(i)(xk)) is positive
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definite for xk . Then, Q(i)(xk, h(i)(xk)) is a Lyapunov function.
Thus, h(i) stabilizes the system (6).
Remark 3: Theorem 1 shows that the Lyapunov stability

can be guaranteed under iterative policy h(i)(xk) under the
augmented value formulation of (15). In addition, embedded
safety constraints on the knee joint angles and angular veloc-
ities [31] ensure that the states and the controls are within the
domain D of the system dynamics F(xk, uk) in (6). Human
subjects are therefore guaranteed to be practically stable.
Theorem 2: Let Assumptions 1–3 hold. Let the value func-

tion Q(i)(xk, uk) and the control policy h(i)(xk) be obtained
from (17) and (18), respectively. Then, Q(i+1)(xk, uk) ≤
Q(i)(xk, uk) holds for i = 0, 1, 2, . . . and ∀(xk, uk) ∈ D.

Proof: For convenience, we will use the following
short hand notations in the derivations, e.g., U (i)(xk, h(i)) for
U (i)(xk, h(i)(xk)). According to (15), we can define V (xk) as

V (i)(xk) = Q(i)
(
xk, h

(i)
) =

∞∑
j=k

U (i)
(
x j , h

(i)
)
. (31)

Based on (18), we have

Q(i)
(
xk, h

(i+1)
) = min

uk
Q(i)(xk, uk)

≤ Q(i)
(
xk, h

(i)
)
. (32)

Based on (17), we have

V (i)(xk) = Q(i)
(
xk, h

(i)
)

≥ Q(i)
(
xk, h

(i+1)
)

= U (i)
(
xk, h

(i+1)
) + V (i)(xk+1). (33)

Hence

V (i)(xk) − V (i)(xk+1) ≥ U (i)(xk, h
(i+1))

V (i)(xk+1) − V (i)(xk+2) ≥ U (i)(xk+1, h
(i+1))

...

V (i)(xk+L ) − V (i)(xk+L+1) ≥ U (i)(xk+L , h(i+1)). (34)

Summing up the left- and right-hand sides of (34), respec-
tively,

V (i)(xk) − V (i)(xk+L+1)

≥
k+L∑
j=k

U (i)
(
x j , h

(i+1))
≥ V (i+1)(xk) (35)

when L → ∞. Since V (i)(xk+L+1) ≥ 0, (35) yields

V (i)(xk) ≥ V (i+1)(xk). (36)

According to (17) and (36) we can obtain

Q(i+1)(xk, uk) = U (i)(xk, uk) + V (i+1)(xk+1)

≤ U (i)(xk, uk) + V (i)(xk+1)

= Q(i)(xk, uk). (37)

Theorem 3: Let Assumptions 1–3 hold. Let Q(i)(xk, uk)
and h(i) be updated by (17) and (18), respectively. Then, for
i = 0, 1, 2, . . . , h(i) is an admissible control policy.

Proof: From (15) and Theorem 2, we have

Q(0)(xk, uk) ≥ Q(1)(xk, uk)

= U (1)(xk, uk)+
∞∑
j=1

U (1)
(
xk+ j , h

(1)
(
xk+ j

))
. (38)

As Q(0)(xk, uk) is finite given that h(0) is admissible for
xk and uk , we have that Q(1)(xk, uk) is also finite for xk
and uk , and thus,

∑∞
j=1U

(1)(xk+ j , h(1)(xk+ j )) < ∞. Given
Assumption 1 and Theorem 1, we can conclude that h(1) is
admissible. By mathematical induction, we can prove that h(i)

is admissible for i = 0, 1, 2, . . .
Theorem 4: Let Assumptions 1–3 hold. Let the iterative

value function Q(i)(xk, uk) and the control policy h(i)(xk) be
obtained from (17) and (18), respectively, and the optimal
value function Q∗(xk, uk) and the optimal policy be defined in
(10) and (11), respectively. Then, Q(i)(xk, uk) → Q∗(xk, uk)
and h(i)(xk) → h∗(xk) as i → ∞, ∀(xk, uk) ∈ D.

Proof: By definition, Q∗(xk, uk) ≤ Q(i)(xk, uk) holds
for any i , and from Theorem 2, {Q(i)(xk, uk)} is a non-
increasing sequence that is bounded by Q∗(xk, uk). Hence,
{Q(i)(xk, uk)} must have a limit as i → ∞. Denote this
limit as Q(∞)(xk, uk) � limi→∞ Q(i)(xk, uk) and h(∞)(xk) �
limi→∞ h(i)(xk). Note that limi→∞ U (∞)(xk, uk) = Ǔ(xk, uk),
and take the limits in (17) and (18) as i → ∞

Q(∞)(xk, uk) = Ǔ(xk, uk) + Q(∞)
(
xk+1, h

(∞)(xk)
)

(39)

h(∞)(xk) = argmin
uk

Q(∞)(xk, uk). (40)

The Bellman optimality equation for V (xk) is

V ∗(xk) = min
h(.)

[
Ǔ(xk, h(xk)) + V ∗(xk+1)

]
. (41)

When i → ∞, uk = h(∞)(xk), so from (39) and (40), we can
get

V (∞)(xk) = Q(∞)
(
xk, h

(∞)(xk)
)

= min
uk

[
Ǔ (xk, uk) + Q(∞)

(
xk+1, h

(∞)(xk)
)]

= min
uk

[
Ǔ (xk, uk) + V (∞)(xk+1)

]
. (42)

Equation (42) satisfies the Bellman optimality equation (41),
and thus, V (∞)(xk) = V ∗(xk). From (39), we can obtain

Q(∞)(xk, uk) = Ǔ (xk, uk) + V (∞)(xk+1)

= Ǔ (xk, uk) + V ∗(xk+1)

= Q∗(xk, uk). (43)

Therefore, h(∞)(xk) = h∗(xk) can be obtained from (40).
Next, we consider the case of different types of errors

that may affect the Q-function, such as VFA errors, policy
approximation errors, and errors from using N samples to
evaluate the i th policy during policy iteration. We show an
error bound analysis of FPI while considering approximation
errors.
We need the following assumption to proceed.
Assumption 4: There exists a finite positive constant γ that

makes the condition min
uk+1

Q∗(xk+1, uk+1) ≤ γ Ǔ(xk, uk) hold

uniformly on X .
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For most nonlinear systems, it is easy to find a sufficiently
large number γ to satisfy this assumption as Q∗(· ) and U(· )
are finite.
Define a value function Q̄(i) as

Q̄(i)(xk, uk) = Ǔ(xk, uk) + Q̂(i−1)(xk+1, h
(i)(xk+1)

)
for i = 1, 2, . . . and Q̄(0) = Q(0). Given the existence of
universal approximators, the total approximation error can be
considered finite during a single iteration, and therefore

ξQ(i) ≤ Q̂(i) ≤ ηQ̄(i) (44)

holds uniformly for i as well as xk and uk , where 0 < ξ ≤ 1
and η ≥ 1 are constants, Q̂(i)(xk, uk) is defined by (22), and
Q(i) is defined by (15).
Theorem 5: Let Assumptions 1–4 hold. Let Q̂(i)(xk, uk) be

defined by (22) and Q(i) be defined by (15). Given 1 ≤ β < ∞
that makes Q∗ ≤ Q(0) ≤ βQ∗ hold uniformly for xk and uk .
Let the approximate Q-function Q̂(i) satisfy the iterative error
condition (44). If the following condition is satisfied:

η <
γ + 1

γ
(45)

then the iterative approximate Q-function Q̂(i) is bounded by

ξQ∗ ≤ Q̂(i)

≤
[
ηβ

(
ηγ

1 + γ

)i

+
(
1 −

(
ηγ

1 + γ

)i
)

η

1 + γ − ηγ

]
Q∗.

(46)

Moreover, as i → ∞, the approximate Q-function sequence
{Q̂(i)} approaches Q∗ bounded by

ξQ∗ ≤ Q̂(∞) ≤ η

1 + γ − ηγ
Q∗. (47)

Proof: The left-hand side of (46) can be easily obtained
according to (44) and Theorem 3.
The right-hand side of (46) is proved by mathematical

induction as follows.
First, for i = 0, Q̂(0) ≤ ηQ̄(0) = ηQ(0) ≤ ηβQ∗ holds

according to (44) and the conditions in Theorem 5. Thus, (46)
holds for i = 0.
Assuming that (46) holds for i ≥ 0, then for i +1, we have

Q̄(i+1)(xk, uk) = U (i)(xk, uk) + Q̂(i)
(
xk+1, h

(i+1)(xk+1)
)

= U (i)(xk, uk) + min
uk+1

Q̂(i)(xk+1, uk+1)

≤ U (i)(xk, uk) + min
uk+1

Pi Q
∗(xk+1, uk+1) (48)

where

Pi = ηβ

(
ηγ

1 + γ

)i

+
(
1 −

(
ηγ

1 + γ

)i
)

η

1 + γ − ηγ
. (49)

According to Assumption 4, (48) yields

Q̄(i+1)(xk, uk)

≤
(
1 + γ

Pi − 1

γ + 1

)
U (i)(xk, uk)

+
(
Pi − Pi − 1

γ + 1

)
min
uk+1

Q∗(xk+1, uk+1)

= 1

η

[
ηβ

(
ηγ

1 + γ

)i+1

+
(
1 −

(
ηγ

1 + γ

)i+1
)

η

1 + γ − ηγ

]

×
[
U (i)(xk, uk) + min

uk+1

Q∗(xk+1, uk+1)

]

= 1

η

[
ηβ

(
ηγ

1 + γ

)i+1

+
(
1 −

(
ηγ

1 + γ

)i+1
)

η

1 + γ − ηγ

]

× Q∗(xk, uk). (50)

On the other hand, according to (44), there is Q̂(i+1) ≤
ηQ̄(i+1). Thus, (46) holds for i+1. By mathematical induction,
the proof for (46) is completed.
Considering (44) and (46), we can easily obtain

Q̂(∞) ≤ η

1 + γ − ηγ
Q∗ (51)

as i → ∞. Thus, (47) holds.
Remark 4: Condition (45) ensures that the upper bound

in (47) is finite and positive. When ξ = 1 and η = 1,
there is Q∗ ≤ Q̂(∞) ≤ Q∗ according to Theorem 5. Hence,
Q̂(∞) = Q∗. This means that when ξ = 1 and η = 1,
the sequence of Q̂(i) converges to Q∗ as i → ∞.

V. ROBOTIC KNEE IC BY FPI

We are now in a position to apply FPI to solving the robotic
knee IC parameter-tuning problem that originally motivated
our development of the FPI (refer to Fig. 1). At the start of a
gait cycle, an initially feasible set of impedance parameters as
those in (1) are applied to FS-IC [top of Fig. 1(a), the IC loop]
so that OpenSim can provide a simulated knee angle dynamic
trajectory of a complete gait cycle including four gait phases
[see Fig. 1(b)]. States as in (4) are then obtained for each of
the four phases. The actor and critic networks are initialized
with random weights, which are updated iteratively by (17)
and (18) according to Algorithm 1, while data preparation and
FPI parameter settings are specified by the designer according
to Table I. Control policy from each iteration is used to update
the impedance parameter setting as in (3) and (5), which in
turn result in control torques (2) that interact with the FS-IC.
The next gait cycle repeats the same stimulation process. Note
that the four RL controllers are of the same structure (i.e., there
are four independent FPI blocks in Fig. 1, but the initial state
of phase i + 1 is the end state of phase i, i = 1, 2, 3).
We used OpenSim (https://simtk.org/) to simulate the

dynamics of the human-prosthesis system. OpenSim is a
widely accepted simulator of human movements. To simulate
walking patterns of a unilateral above-knee amputee, the right
knee was treated as a prosthetic knee and controlled by FS-IC,
while the other joints in the model (left hip, right hip, and left
knee) were set to follow the prescribed motions.
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The OpenSim walking model is deterministic, and various
noise patterns (including real noise from human measure-
ments) were added into the simulations to realistically reflect
a human–robot system. In Section V-C, noise was either
generated by a random number generator (the sensor noise and
actuator noise cases in Table III) or by gait-to-gait variances
captured from two amputee subjects walking with prosthesis
(case TF1 and TF2 in Table III). For the latter case, data
were collected from another study [68] where the experiments
were approved by the Institutional Review Board at The
University of North Carolina at Chapel Hill. To apply real
gait-to-gait variance in simulation, a total of 120 gait cycles
of the intact knee joint movement trajectories were used to
compute deviations from the average joint motions and then
applied to the prescribed joint motions in the OpenSim model
accordingly.

A. Algorithm and Experiment Settings

We summarize the parameters of the FPI in OpenSim
simulations as follows. Algorithm 1 was applied to phases
m = 1, 2, 3, 4 sequentially. The stage cost Ǔ(xk, uk) is a
quadratic form of state xk and action uk

Ǔ(xk, uk) = xTk Rxxk + uT
k Ruuk (52)

where Rx ∈ R
2 and Ru ∈ R

3 were positive definite matrices.
Specifically, Rx = diag(1, 1) and Ru = diag(0.1, 0.2, 0.1)
were used in our implementation. In the experimental
results, we chose a quadratic stage cost (52), which
meets the requirement of Assumption 1. However, note
that our results in previous sections apply to more
general forms of stage cost functions. The minimum
memory buffer size Nb was 20. During training, a small
Gaussian noise (1% of the initial impedance) was added
to the action output uk = h(i)(xk) to create samples
to solve (17). The basis functions are φ(xk, uk) =
[x(1)2k, x(1)kx(2)k, x(1)ku(1)k, x(1)ku(2)k, x(1)ku(3)k, x(2)2k ,
x(2)ku(1)k, x(2)ku(2)k, x(2)ku(3)k, u(1)2k, u(2)2k, u(3)2k,
x(1)2kx(2)k, x(1)2ku(1)k, x(1)2ku(2)k]T , where x(1)k denotes
the first element of xk , and so on.

We define an experimental trial as follows. A trial started
from gait cycle k = 0 until a success or failure status was
reached. At the beginning of each trial, the FS-IC was assigned
with random initial IC parameter I0 as in (1). The adaptive
optimal control objective for FPI is to make state xk approach
zero, i.e., the peak error �Pk and duration error �Dk for all
four phases approach zero. We define upper bounds Pu and
Du and lower bounds Pl and Dl , and their values are identical
to those in [30, Table I]. Specifically, upper bounds Pu and Du

are safety bounds for the robotic knee, i.e., |�Pk | ≤ Pu and
|�Dk | ≤ Du must hold during tuning. Lower bounds Pl and
Dl were used to determine whether a trial was successful:
the current trial is successful if |�Pk | < Pl and |�Dk | <
Dl hold for ten consecutive gait cycles before reaching the
limit of 500 gait cycles; otherwise, it is failed. The maximum
memory buffer size N in Algorithm 1 was 100. The results
in Sections V-B and V-C are based on 30 simulation trials.
The success rate was the percentage of successful trials out
of 30 trials.

TABLE II

FPI TUNER PERFORMANCE UNDER BATCH MODE

We used two performance metrics in the experiments: the
learning success rate as defined in Section V-A and tuning
time measured by the number of gait cycles (samples) needed
for a trial to meet success criteria. Tuning time also reflects
on data efficiency.
In summary, we conducted 30 testing trials following the

procedure below for each configuration of FPI to evaluate its
learning performance, as reported in Tables II–IV.

B. FPI Batch Mode Evaluation

We first evaluated the performance of FPI under its simplest
form, the batch mode where the entire batch (Nb samples)
was generated under the policy to be evaluated (Setting 2(A)
in Table I), and neither PER nor supplemental value was
considered. Table II summarizes the performance of FPI in
batch mode with different batch sizes. In our experiments,
we observed that both the success rate and tuning time rose
as more samples (i.e., larger batch size Nb) are used for
policy evaluation. Table II also shows that, under Setting 2(A),
adaptive batch mode improves both success rates and tuning
time over fixed batch mode.

C. Comparisons With Other Methods

We now conduct a comparison study between FPI and three
other popular RL algorithms. These RL algorithms include
generalized policy iteration (GPI) [69], neural fitted Q with
continuous action (NFQCA) [70], and our previous dHDP
implementation [30]. GPI is an iterative RL algorithm that
contains policy iteration and value iteration as special cases.
To be specific, when the max value update index Ni = 0,
it reduces to value iteration; when Ni → ∞, it becomes policy
iteration. NFQCA and dHDP are two configurations similar
in the sense that both have features resemble SARSA and TD
learning. According to [70], NFQCA can be seen as the batch
version of dHDP.
To make a fair comparison between FPI and the other three

RL algorithms, we made FPI run under batch mode with
neither PER nor supplemental value involved. Specifically,
the results in Table III were based on an adaptive batch size
Nb between 20 and 40 (i.e., Settings (B)(A)(A)(A) in Table I),
and the results in Fig. 4 used a fixed Nb of either 20 or 40
(i.e., Settings (A)(A)(A)(A) in Table I).
Before the comparison study, we first validated our imple-

mentations of GPI, NFQCA, and dHDP using examples
from [30], [69], and [70], respectively. We were able to
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TABLE III

PERFORMANCE COMPARISONS OF PROSTHESIS CONTROL

Fig. 4. Comparison of the RMSEs between controlled knee profiles and
target profiles using FPI, GPI, and NFQCA under the same stage cost (52).

reproduce the reported results in the respective papers. For
GPI, N and Ni were set equal to p and Ni as described
in [69], respectively. GPI’s critic network (CNN) and the
action network (ANN) were chosen as three-layer backprop-
agation networks with the structures of 2–8–1 and 2–8–3,
respectively. For NFQCA, N was equivalent to the pattern
set size #D in [70]. For both NFQCA and dHDP, CNN and
ANN were chosen as 5–8–1 and 2–8-3, respectively. Notice
that the number of neurons at the input layers is different
because NFQCA and dHDP approximate the state-action value
function Q(xk, uk), while GPI approximates V (xk). To sum-
marize, an effort was made to make a fair comparison. For
example, FPI’s batch sample size Nb was equivalent to GPI’s
and NFQCA’s N , and thus, the maximum Nb (FPI), N (GPI),
and N (NFQCA) were all set to 40 gait cycles in Table III.
Table III shows a systematic comparison of the four algo-

rithms under various noise conditions. Artificially generated
noise and noise based on variations of human subject move-
ment profiles were used in the comparisons. To be specific,
sensor noise and actuator noise are uniform noises that are
added to the states xk and actions uk , respectively. In the
last two rows, human variances collected from two amputee
subjects TF1 and TF2 were introduced to the simulations,
which would affect the states xk . Under all noise conditions,
FPI outperformed the other three existing algorithms in terms
of both success rate and tuning time.
Fig. 4 compares the root-mean-square errors (RMSEs)

between the target knee angle profile and the actual knee angle

TABLE IV

FPI TUNER PERFORMANCE UNDER INCREMENTAL MODE

profile using FPI, GPI, and NFQCA. Note that when we used a
suggested parameter setting of (N = 40, Ni = 5) in GPI [69],
the RMSE increased after a few iterations. Also, note from
Fig. 4 that, GPI may achieve a similar performance as the
FPI, but it required a much larger sample size of N = 200
than FPI.

D. FPI Incremental Mode Evaluation

We now evaluate FPI under incremental mode to further
study FPI’s data and time efficiency. Both PER and learning
from supplemental value, two of the innovative features of
FPI, can be employed in this mode.
To obtain supplemental value V in (15) for the last row

result in Table IV, we trained an FPI agent for just one trial
in OpenSim under the same settings as those in the first row of
Table II (Settings (A)(A)(A)(A) in Table I and Nb = 20). Then,
supplemental value V is obtained from (xk) = min

uk
Q f (xk, uk),

where Q f (xk, uk) the final approximate value function after
Algorithm 1 is terminated.
Table IV summarizes the performance of FPI in the incre-

mental mode under three different configurations. ER or
PER reutilized past samples from the current trial for policy
iteration (Settings 2(B) in Table I). The first configuration
is the ER case without sample prioritization, i.e., λ(i)

k = 1
for all k. The second configurations prioritized the samples
before performing the policy evaluation. In both the first and
the second configurations (the first two rows in Table IV),
no supplemental value was used, i.e., V(xk) = 0 for all xk .
The third configuration (the third row in Table IV) utilized
both prioritized samples and supplemental value. The supple-
mental value V(xk) was obtained from training FPI with a
previous trial. In Table IV, the success rate increases from
83% to 90% as the algorithm gets more complex with PER
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Fig. 5. Before-and-after FPI tuning of knee profiles of 15 randomly selected
trials. Top half: FPI enabled initial knee profiles (blue) approach the target
knee profile (red), with FPI enabled, final knee profiles shown in yellow.
Bottom half: blue bars are the RMSEs between the initial knee angle profiles
and the target knee profile, and the yellow bars are the RMSEs between the
FPI tuned knee profiles and the target profile.

and supplemental value. The results also suggest that the
introduction of sample prioritization and supplemental value
improves the data efficiency. Note that if the maximum number
of gait cycles was extended from 500 to 1000, then the success
rate of all simulation results in Table IV will be 100%.
A statistical summary of 30 randomly initialized trials based

on the condition in row 1 of Table IV is shown in Fig. 5
(bottom half panel). As shown, after tuning, the proposed FPI
algorithm successfully reduced gait peak and duration errors.

VI. CONCLUSION

We have proposed a new FPI algorithm aimed at providing
data- and time-efficient, high-dimensional control inputs to
configure a robotic knee with human-in-the-loop. The FPI
incorporates previous samples and supplemental values during
learning using prioritized ER and an augmented policy evalu-
ation. Our results not only show qualitative properties of FPI
as a stabilizing controller and that it approaches approximate
(sub)optimal solution, but also include extensive simulation
evaluations of control performance of FPI under different
implementation conditions. We also compared FPI with other
comparable algorithms, such as dHDP, NFQCA, and GPI,
which further demonstrates the efficacy of FPI as a data- and
time-efficient learning controller. The FPI under batch mode
became more efficient when utilizing (prioritized) ER and
previous knowledge. Even though our application does not
render itself as a big data problem, however, our results show
that FPI has the capability of efficiently working with a tight
data budget. Specifically, FPI is capable of successfully tuning
the control parameters within 100’s gait cycles under various
conditions (see Tables II and III), which is an equivalent of
only a few minutes of walking time. Our results reported here
represent the state of the art in automatic configuration of
powered prosthetic knee devices. This result can potentially
lead to the practical use of the FPI in clinics. In turn, this can

significantly reduce health care cost and improve the quality
of life for the transfemoral amputee population in the world.
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