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Abstract—Accurate delay estimation is one of the 
enablers of future network connectivity services, as it 
facilitates the application layer to anticipate network 
performance. If such connectivity services require isolation 
(slicing), such delay estimation should not be limited to a 
maximum value defined in the Service Level Agreement, 
but to a finer-grained description of the expected delay in 
the form of, e.g., a continuous function of the load. 
Obtaining accurate end-to-end (e2e) delay modeling is 
even more challenging in a multi-operator (Multi-AS) 
scenario, where the provisioning of e2e connectivity 
services is provided across heterogeneous multi-operator 
(Multi-AS or just domains) networks. In this work, we 
propose a collaborative environment, where each domain 
Software Defined Networking (SDN) controller models 
intra-domain delay components of inter-domain paths and 
share those models with a broker system providing the e2e 
connectivity services. The broker, in turn, models the delay 
of inter-domain links based on e2e monitoring and the 
received intra-domain models. Exhaustive simulation 
results show that composing e2e models as the summation 
of intra-domain network and inter-domain link delay 
models provides many benefits and increasing 
performance over the models obtained from e2e 
measurements. 
 

Index Terms— Cooperative Learning; Multidomain 
Networks; End-to-end Delay. 

I. INTRODUCTION 
 

OGETHER with throughput, one of the key 
performance indicators of packet connectivity 

services is end-to-end (e2e) delay. In fact, e2e delay 
plays a particularly important role in the development of 
new networking solutions and is one of the main drivers 
for the development of 5G and beyond networking [1]. 
Therefore, the maximum delay is one of the parameters 
to be guaranteed and it is part of the Quality of Service 
(QoS) requirements that customers request at the 
provisioning phase of packet connections. 
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QoS performance should be thus monitored 
periodically and passive and active monitoring 
techniques have been defined (see [2]). Passive 
monitoring entails collecting counters from routers and 
passive probes. Such data can be used for many 
purposed, e.g., for detecting bottlenecks, so that 
decisions can be made at the network management, as in 
[3]. In contrast, in active monitoring, active probes 
measure the round-trip time of packets by injecting 
trains of numbered and timestamped packets that are 
looped back by the remote probe [4]. In-band network 
telemetry (INT) [5] is an alternative active monitoring 
technique, where intermediate routers add statistics to 
packets so e2e QoS measurement can be achieved.  

Independently of the technique, monitoring data can 
be stored in a centralized repository, in the Monitoring 
and Data Analytics system of the network operator [6] 
besides the Software Defined Networking (SDN) 
controller. On their side, customers can get monitoring 
data from the operator, as in [7], only in case in case of 
single-operator scenarios) or they can install their own 
active probes and used to measure e2e delay. 
Monitoring data can be used for the estimation of the 
performance of packet connections, e.g., by training a 
Machine Learning (ML) model [8]. Note that such 
estimation would facilitate SDN and customer 
applications operation. 

In multi-operator (multi-Autonomous System –AS) 
networks, the provisioning of customer e2e connectivity 
services is provided across heterogeneous operator 
networks (or just domains). In this scenario, obtaining 
accurate e2e delay modeling is a challenging task that is 
difficult to achieve with current architectures based on 
intra-domain and inter-domain routing protocols, as 
they do not provide the needed capabilities for e2e delay 
management [9]. 

In this regard, ML models can be helpful, not only for 
e2e delay prediction, but also to detect deviations 
between predictions and real measurements, which is 
typical in non-stationary scenarios; note that initially 
small deviations can derive into anomalies [10]. To 
correct model inaccuracies, one needs to find the source 
of them. In multi-operator networks however, the source 
of observed inaccuracies can be any of the domains and 
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inter-domain links that support a given connection. 
Therefore, a way to find the source of deviations is by 
building differentiated models for domains and inter-
domain links, as opposite to e2e models. Nevertheless, 
inter-domain delay measurements are not generally 
available, specially to third domains or customers. 

The rest of the paper is organized as follows. Section 
II reviews the state-of-the-art related to delay modeling 
and presents the main contributions of this work. The 
multidomain scenario is presented in Section III. 
Options for modeling delay are presented and include 
e2e and per domain modeling that can be used afterward 
for prediction. Section IV focuses on inter-domain link 
modeling, intra-domain model correction, and 
inaccuracy detection and localization. The discussion is 
supported by the results presented in Section V. Finally, 
Section VI concludes the paper. 

II. RELATED WORK AND CONTRIBUTIONS 
In the literature, some previous works have proposed 

different methods for monitoring the QoS. Because 
using active probes requires dealing with the introduced 
overhead, the authors in [11] targeted at reducing the 
monitoring load without compromising delay accuracy, 
whereas the authors in [12] proposed to use active 
monitoring during commissioning testing to avoid such 
overhead. In the later work, the authors injected packet 
trains reproducing the real traffic that the service will 
support, and measurement data were used afterwards to 
produce a specific delay model for the packet 
connection that could be used during connection 
operation time. They showed that delay measurements 
can largely differ depending on the characteristics of the 
packet trains used for monitoring and therefore, those 
trains should be designed according to the traffic 
expected for the individual service. 

Aiming at collecting fine grain measurements, INT 
can be adopted to collect network status hop-by-hop, 
which fits well in single operator SDN environments. 
However, precisely the hop-by-hop characteristics of 
INT difficulties its application on multiple operator 
scenarios, as it might reveal internal details of the 
domains. Another option is network tomography [13], 
which consists in inferring domain and inter-domain 
link delay components from e2e measurements together 
with the available topology and routing information. 
Nonetheless, precisely topology and routing 
information, is not generally available in multi-operator 
scenarios. 

Regarding the application of ML on the collected 
monitoring data, some previous works have proposed 
models for short-term and long-term traffic prediction at 
different time scales (see, e.g., [14] and [15] for second 

and day time scale, respectively). ML can be also used 
to predict the delay, which should be bounded by the 
maximum delay defined at the provisioning time. For 
instance, neural networks and random forests are 
proposed in [16] to model e2e delay, where the authors 
used traffic matrices (generated with the NS-3 simulator 
assuming Gaussian distributed traffic intensity for each 
flow) as input of the predictive models and evaluated 
their robustness and accuracy under different network 
scenarios. Other works have proposed alternative 
networking models together with control and 
orchestration plane architectures to provide the 
committed delay to customer connections. The authors 
in [17] leveraged a single domain SDN paradigm and 
proposed a model able to relate the complex network 
relationships to produce accurate estimates of the per-
packet delay distribution and loss. The authors in [18] 
proposed a network slicing orchestration solution able 
to handle e2e latency in multidomain single-operator 
networks. They leveraged a multi-armed-bandit method 
to allocate resources to slices to meet end-to-end latency 
requirements. Current networks are non-stationary in 
general and therefore, pre-trained networking models 
require fine-tuning to correct the model-mismatch 
problem, as highlighted in [19]. 

An issue related to the use of ML techniques is that a 
large data set for training is required to obtain accurate 
ML models. To solve that issue, authors in [12] used 
active monitoring to inject synthetic traffic reproducing 
the expected traffic patterns of a given customer 
connection and use a simulation tool to generate enough 
data for training delay models.  

Multi-operator networks bring additional challenges, 
in particular regarding e2e delay. One possible 
architecture to provide e2e services is that of peer-to-
peer, where operators exchange information among 
them directly. As an example, the authors in [20] 
studied the convenience of exchanging information 
related to the guaranteed latency and resource 
availability in each of the domains to reduce service 
provisioning blocking probability.  

Instead of peer-to-peer multidomain architectures, an 
e2e service provider can deploy a broker system (e.g., 
based on the one proposed in [21]) that coordinates e2e 
path provisioning and relies on domain SDN controllers 
for intra-domain provisioning. Here, domains would 
share information with the broker in targeting at 
providing better services while receiving performance 
feedback from the broker. This information or 
knowledge sharing has been successfully applied for 
autonomic domain networking [22]. Nonetheless, for 
that sharing to be realistic, exchanged information needs 
to be conveniently abstracted, so to ensure that internal 
details of the domain are not revealed. In that regard, the 
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Fig. 2. Provisioning of multidomain requests: reference approach (a) vs compound approach (b). Example of inaccuracy (c). 

connectivity manager in the broker receives and 
processes requests for connectivity with QoS 
requirements in terms of throughput and maximum 
delay among customer endpoints. The connectivity 
manager uses a planning tool for provisioning and 
reconfiguration purposes [28], and it is assisted by ML- 
based models to enhance connectivity provisioning. The 
broker connects to a set D of domains interconnected by 
a set L of inter-domain links and altogether provides 
connectivity to a set P of e2e connections, the 
performance of which is continuously monitored. 

Let us assume first that the performance of each 
connection p is monitored e2e between the endpoints in 
the customer sites and that data is gathered by the 
broker for various purposes, like QoS analysis, 
modeling, etc. In particular, we assume that throughput, 
xp(t), and delay, yp(t), are measured periodically, e.g., 
every 1 min, by the customer edge routers (passive 
monitoring) and that active monitoring is carried out. 
Then, after a sufficiently large period, enough data can 
be collected to train ML models for every connection. 
Note that protocols like IPFIX, gRPC, etc. can be used 
for monitoring data collection. 

Among possible ML models, path delay models 
(denoted as φ*

p) can be used to predict a delay-related 
performance metric, e.g., average or maximum delay, as 
a function of the normalized load (computed as the ratio 
between the measured throughput and the capacity of 
the path) [12]. The embedded graph in Fig. 1 illustrates 
an example of delay model. End-to-end delay ML 
models can be used, e.g., to anticipate QoS degradation 
and trigger reconfiguration. 

Note that the φ*
p models not only allow analyzing the 

e2e delay of a single path p but they can also be used to 
get some insight on the performance of the domains by 
considering groups of paths that cross a given domain. 

An example is in the case of detecting model 
inaccuracies (e.g., significantly higher delay than 
expected for the observed traffic load) in a group of 
paths; correlation of their routes through the domains 
can lead to finding a common set of segments, either 
domains or inter-domain links, that could potentially 
hold the source of the inaccuracy. Once some 
segment(s) have been identified, re-routing of those 
affected paths could be performed to avoid them. 

Nevertheless, this AI-assisted architecture suffers 
from an inherent drawback: the multidomain network is 
analyzed as a black-box, a fact that limits the 
applicability of advanced multidomain smart operation. 
An example is illustrated in Fig. 2, where two paths 
between domains A and B (p1 from RA.x to RB.y and p2 
from RA.y to RB.x) are established and e2e delay 
models have been accurately trained after some data 
collection phase (Fig. 2a). Then, let us now consider 
that a new request for a path from RA.x to RB.x arrives. 
Since no path between RA.x and RB.x was previously 
established, the broker does not have available e2e 
monitoring data and delay models to predict the delay 
behavior of such new connectivity request. This fact 
limits smart provisioning decision making, e.g., to 
choose the best route in terms of QoS. 

To overcome the aforementioned issue, we propose 
breaking the black-box, monolithic view of the 
multidomain network. End-to-end delay can be modeled 
by combining intra-domain and inter-domain segment 
models for those segments in the route of a path. This 
brings some benefits, as segment models can be used to 
create compound models not only for those established 
paths but also to infer models for not yet established 
paths. Following the previous example, the inferred 
model for the path request between RA.x to RB.x could 
be obtained by composing an e2e delay model from  
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Fig. 4. Main building blocks for training and correcting delay models at the broker plane. 

TABLE I. NOTATION 
Sets and parameters 
P Set of multidomain paths, index p. 
X={xp} Set of e2e traffic monitoring samples for all paths. 
Y={yp} Set of e2e delay monitoring samples for all paths. 
D Set of domains, index d. 
L Set of inter-domain links, index l. 
P(d) Subset of paths that traverse domain d 
δpl 1 if path p traverses inter-domain link l and 0 

otherwise. 
xi(t) Measured traffic throughput through element i at 

time t, where i might identify a path p or a link l.  
φp Compound e2e delay model for path p 
φpd(x) Intra-domain delay model for path p in domain d. 

The zero function if p does not cross d. 
φ*d Correction model for intra-domain delay for 

domain d. 
φl Inter-domain link delay model for link l 
Ttr Training phase duration (in monitoring intervals) 
ypinter(t) Aggregated inter-domain link delay of path p at 

time t 
E[·] Expectation 
Decision Variables 
yl(t) Delay at inter-domain link l at time t 
β(·)(t) Delay bias of path/domain 
up(t), 
vp(t) 

Delay slack and surplus variables for path p 

relationships for compound e2e delay modelling at the 
broker plane. Blocks have been conveniently numbered 
to facilitate the ongoing description and workflows. As 
depicted in Fig. 4, the main blocks can be organized into 
three clearly differentiated groups: i) inter-domain link 
delay component estimation (blocks 1-3); ii) inter-
domain link delay model training (blocks 6a and 7a);and 
iii) intra-domain delay model correction (blocks 7b and 
8b), which also includes inaccuracy detection (block 5) 
and localization procedure (block 6b) that keeps the 
highest goodness-of-fit through precise model 
improvement actions. In turn, some of the blocks 
perform some computation or solve optimization  
 

ALGORITHM I. INTER-DOMAIN LINK DELAY MODELING WITH 
INTRA-DOMAIN MODEL CORRECTION 

Input: X, Y, {φpd} Output: {φl}, {φ*d} 
1: 
2: 
3: 

 
4: 

 
5: 
6: 
7: 
8: 
9: 

 
10: 
11: 
12: 

Corrections ← {} 
while true 

{ypinter}← Inter-domain_Delay_Estimation(X, Y,  
{φpd}, Corrections) (block 2) 

{yl},{up},{vp} ← Link_Delay_Disaggregation_Bias  
({ypinter}, P, L) (block 3) 

inac ← Inaccuracy_Detection({up}, {vp}) (block 5) 
if !inac then  

{φl}←DNN_training (X, {yl}, P) (block 6a) 
break 

d*,{up},{vp}←Inaccuracy_Localization({ypinter}, 
P,L) (block 6b) 

φ*d ← Model_Correction (d*,{up}, {vp}) (block 7b) 
Corrections ←Corrections U {φ*d}  

return {φl}, Corrections 

TABLE II. RELATION BETWEEN BLOCKS AND PROBLEMS/EQS  

Block Problem Eq(s). 
2 Inter-domain Delay Estimation (2) 
3 Link Delay Disaggregation (4)-(5) 
3 Link Delay Disaggregation Bias (7)-(10) 
5 Inaccuracy Detection (11)-(12) 

6b Inaccuracy Localization (5), (8), (9), (13) 
 

problems. For the sake of clarity, Algorithm I presents 
the pseudocode for inter-domain link delay modeling 
and intra-domain model correction, and Table II relates 
the defined blocks to optimization problems or 
equations. The details of the above groups and blocks 
are presented in the next subsections. 

A. Inter-domain link delay modeling 

For modeling inter-domain link delay components, a 
training database (DB) with inter-domain link delays 
(yl(t)) is constructed based on the inter-domain link 
delays estimation, given intra-domain delay models and 
the measured throughput and e2e delay for the paths. 
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We assume that the intra-domain delay models have 
been received from the domain controllers and are 
stored in a DB, and a meaningful phase of monitoring 
data collection spanning Ttr monitoring time periods 
has been carried out and the data are stored in an e2e 
monitoring DB (this phase concerns blocks labeled 0a 
and 0b in Fig. 4); the proper value of Ttr needs to be 
chosen considering the trade-off between the required 
sample size to obtain meaningful inter-domain link 
models and the time needed to collect all monitoring 
measurements. 

Once data are available, the delay component 
estimation starts, and for each collected measurement 
<xp(t), yp(t)>, t=1..Ttr, several steps are executed to infer 
the components of such delay introduced for each inter-
domain link crossed by a path. First, the domain delay 
models are used to produce the delay expected (φpd(∙)) 
in every domain (block 1). Next, block 2 focuses on 
isolating the per-path aggregated inter-domain delay 
component  𝑝     (𝑡), defined as the remainder of delay 
that cannot be explained by the summation of the 
expected domain contributions predicted by domain 
models;  𝑝     (𝑡) can be formally defined as: 

 𝑝
     (𝑡) =  𝑝(𝑡) − ∑𝜑𝑝𝑑 (𝑥𝑝(𝑡))

𝑑∈𝐷

 (2) 

Consecutively, block 3 processes jointly all  𝑝     (𝑡) 
values to disaggregate the delay per-inter-domain link. 
The result of this step allows inferring inter-domain link 
delays yl(t) from monitoring data. This inference is 
supported by the assumption that the expectation (E[∙]) 
of per-path aggregated inter-domain delay component 
equals the sum of the expectations of the delays 
introduced by each inter-domain links of the path, i.e.: 

𝐸[ 𝑝
     (𝑡)] = ∑𝛿𝑝𝑙 · 𝐸[ 𝑙(𝑡)]         ∈  

𝑙∈𝐿

 (3) 

According to Eq. (3), the estimation of yl(t) values 
given a set of paths P and a set of per-path aggregated 
inter-domain delays  𝑝     (𝑡) can be done by simple 
regression techniques. In this work, we propose 
implementing the disaggregation block (3) by using the 
least absolute deviation regression [29], which entails 
solving the Link Delay Disaggregation optimization 
problem in Eqs. (4)-(5) independently for each t=1..Ttr: 

min ∑ | 𝑝
     (𝑡) −∑𝛿𝑝𝑙 ·  𝑙(𝑡)

𝑙∈𝐿

|

𝑝∈𝑃

 (4) 

subject to: 

 𝑙(𝑡) ∈ ℝ+          ∈ L (5) 

After solving the above optimization problem, we 
apply spline smoothing to the obtained yl(t) values to 

make them more consistent with the continuous 
temporal collection and to eliminate those variations 
resulting from solving each time independently. The 
results are then used to populate a training dataset 
(block 4), together with the model input features, i.e., 
the measurements of the e2e traffic xp(t). 

The resulting dataset can be used for training a fully 
connected, feedforward Deep Neural Networks (DNN) 
(block 6a) that predicts 𝜑𝑙 of every inter-domain link as 
a function of both the traffic {xp(t)} and the route (only 
inter-domain links) of the paths ({δpl}). The DNN 
exploits the fact that different paths crossing different 
inter-domain links could have, however, similar 
behavior and correlation between traffic and delay. The 
trained models are stored in a DB and are ready to be 
used (block 7a). 

B. Intra-domain model correction 

Although the procedure in the previous subsection 
has been designed to achieve accurate estimation of the 
actual inter-domain link delays, there are two cases 
where that accuracy can be seriously affected: i) the 
availability of a limited number of multidomain paths 
with few distinct routes can lead to the impossibility of 
properly isolating and inferring inter-domain link 
delays. In this regard, our proposed method exploits as 
much as possible the available information from 
existing multidomain paths to produce the most accurate 
compound e2e delay models; ii) inaccurate intra-domain 
delay models. Note that those models are obtained 
during the commissioning testing phase and updated 
periodically using active probes, which, as discussed in 
the introduction, need to be properly configured as 
otherwise, delay measurements could largely differ 
from those experienced by the real traffic, thus resulting 
in inaccurate intra-domain delay modeling. 

Especially for the second case, the broker can play a 
key role in detecting, identifying, and correcting the 
intra-domain delay model inaccuracies before 
compound models are used. Note that the benefits are 
two-fold: 1) after intra-domain models are properly 
corrected, the broker can make use of accurate 
compound e2e models without any re-training 
performed by domains; and 2) the applied corrections 
can be notified to the affected domain(s), which in turn 
can use that useful information to tune and adapt 
its/their mechanism for intra-domain modeling of future 
services, e.g., using more realistic packet trains used by 
the active probes. 

Before introducing the procedure to detect and 
identify intra-domain delay model inaccuracies and 
compute model corrections, the formulation proposed in 
Section IV.A needs to be revisited. 

The presence of inaccuracies in the intra-domain 
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delay models impacts negatively on the veracity of the 
assumption formulated in Eq. (2) and now  𝑝     (𝑡) 
values contain not only the aggregated inter-domain link 
delay component but also the error (underestimation or 
overestimation) introduced by inaccurate intra-domain 
delay models. Since inter-domain links can support both 
accurate and inaccurate paths, finding a common inter-
domain link delay value that fits all the paths traversing 
the link is, by definition, imprecise. In other words, the 
expression in Eq. (3) defines an expectation of inter-
domain link delay that could be far from the true value. 
Consequently, the condition in Eq. (3) need to be 
extended to incorporate a per-path bias βp(t) that 
collects those potential intra-domain inaccuracies: 

𝐸[ 𝑝
     (𝑡)] = ∑𝛿𝑝𝑙 · 𝐸[ 𝑙(𝑡)] + 𝛽𝑝(𝑡)      ∈  

𝑙∈𝐿

 (6) 

Hence, the Link Delay Disaggregation optimization 
problem in Eqs. (4)-(5) needs to be extended to quantify 
that bias for every path; the mentioned optimization is 
reformulated as follows: 

min ∑𝛽𝑝(𝑡)

𝑝∈𝑃

 (7) 

subject to: 

 𝑝
     (𝑡) = ∑ 𝛿𝑝𝑙 ·  𝑙(𝑡)

𝑙∈𝐿(𝑝)

+  𝑝(𝑡) −  𝑝(𝑡) 

  ∈   
(8) 

𝛽𝑝(𝑡) =  𝑝(𝑡) +  𝑝(𝑡) (9) 

 𝑙(𝑡) ∈ ℝ+          ∈ L (10) 

The Link Delay Disaggregation Bias optimization 
problem—that now implements block 3—finds the least 
absolute deviation of inter-domain link delay 
components in Eq. (8) with the adjustment of both slack 
and surplus variables for each path and time t (up(t) and 
vp(t)). Eq. (9) relates per-path bias to slack and surplus 
variables). Note that as the Link Delay Disaggregation 
problem, the Link Delay Disaggregation Bias one needs 
to be solved for all samples collected during the training 
period defined by Ttr. However, this problem produces 
not only the set of all inter-domain link delay 
components but also the set of slack and surplus values 
to be stored in the inter-domain delay DB (block 4). 

Per-path slack and surplus values are analyzed in the 
inter-domain delay validation (block 5) by solving the 
Inaccuracy Detection problem. This problem aims at 
identifying the presence of a large bias as a consequence 
of some intra-domain delay model inaccuracies. 
Specifically, a decision score s is defined based on key 
statistical quartiles [30] of the average bias of every 
path in time. Equation (11) formally describes the 
computation of the quartiles 25%, 75%, and 100% % of 

the bias of all paths. The obtained results are then used 
to compute s in Eq. (12), where the interquartile range 
(𝑞75% − 𝑞25%) is multiplied by the maximum 𝑞 00%. 
〈𝑞25% 𝑞75% 𝑞 00%〉 = 𝑄 (

 

𝑇
· ∑ β𝑝(t) = ..𝑇  

 

  ∈  ; 〈25% 75% 100%〉)  
(11) 

𝑠 = (𝑞75% − 𝑞25%) ·  𝑞 00% (12) 

Intra-domain model inaccuracies increase the bias of 
some paths, so we expect that both maximum 𝑞 00% and 
interquartile range (𝑞75% − 𝑞25%) increase, which 
makes that the proposed score sharply increases. In the 
case that the score is under a predefined threshold, then 
the inter-domain components in the dataset (block 4) are 
validated and they can be used for training the DNN 
(block 6a); otherwise, the phase of inaccuracy 
localization starts. 

C. Inaccuracy localization 

Upon the detection of inaccuracy, the localization of 
the source of such inaccuracy (block 6b) can be done by 
solving the Inaccuracy Localization optimization 
problem, which is a variation of the Link Delay 
Disaggregation Bias one. This variation requires 
selecting one domain d at a time and the set of paths 
crossing it. The formulation of the Inaccuracy 
Localization problem is as follows: 

min 𝛽𝑑(𝑡) =
1

| \ (𝑑)|
∙ ∑ 𝛽𝑝(𝑡)

𝑝∈𝑃\𝑃(𝑑)

 (13) 

subject to: Constraints (5), (8), and (9)  

The Inaccuracy Localization problem excludes 
domain d from the objective function and therefore, 
slack and surplus variables of the paths traversing d can 
take any value with no additional cost. Then, if the 
inter-domain link delays can be obtained without 
significant bias of the non-affected paths, the selected 
domain is a source of inaccuracy. Therefore, we solve 
the Inaccuracy Localization problem for every domain 
and select the one with the lowest bias βd(t) as 
responsible for the inaccuracy. 

Finally, block 7b estimates—e.g., by applying cubic 
spline regression [31]—the needed correction φ*

pd as a 
function of the load using the obtained slack and surplus 
values. Such corrections are stored in a DB (block 8b), 
so the prediction of intra-domain models is computed as 
the sum of the prediction of the model itself plus the 
prediction of the correction model. 

V. ILLUSTRATIVE RESULTS 
This section presents simulation results to validate the 

blocks, models, and procedures described in Section IV. 
TABLE III. CHARACTERISTICS OF GENERATED TRAFFIC  
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 min max median mean std. dev. 
Traffic 
(Gb/s) 0.78 10 3.68 3.95 2.56 

Delay (ms) 9.42 75.38 13.24 19.32 12.92 

A. Simulation Scenario 

CURSA-SQ [32] was used as a simulation 
environment. The CURSA-SQ methodology was tuned 
with the experimental measurements in [12], and 
successfully used to reproduce realistic packet 
scenarios, including converged fixed-mobile [33] and 
time-sensitive networks [34]. 

A multidomain topology was reproduced, which 
consisted of four domains and 12 inter-domain 
unidirectional links connecting border routers of two 
different domains. Seven customer sites (endpoints of 
multidomain paths) were connected to domain edge 
routers in every domain. Five distinct candidate routes 
ranging between 500 km and 1000 km were considered 
for every pair edge-border and border-border routers, to 
emulate a wide variety of intra-domain networks. The 
topology represents a moderated but realistic size of a 
multidomain topology [23]. Based on this reference 
topology, scenarios consisting of several multidomain 
paths traversing 3 out of 4 domains, were generated. 
Every multidomain path requested 10 Gb/s maximum 
capacity and was routed randomly, firstly at inter-
domain level (by selecting a sequence of domains and 
inter-domain links) and secondly at intra-domain level 
(by selecting a candidate route per each path segment), 
being the total length of the e2e routes between 1,000 
and 3,000 km. Inter-domain links were dimensioned to 
fit the sum of maximum traffic of all traversing paths. 
Besides, background single domain 10 Gb/s paths, using 
the same candidate intra-domain routes, were added to 
generate different scenarios, where the proportion of 
delay introduced by inter-domain links with respect to 
the total e2e delay (hereafter, denoted as proportion ρ) 
varies. CURSA-SQ was used to generate seven days of 
traffic, emulating daily variations under the assumption 
of stationary traffic conditions for each configuration: 
<number of multidomain paths, ρ>. The generated 
traffic was injected in the scenario defined above. The 
characteristics of the traffic are summarized in Table III. 

The next subsections present the obtained results. 

B. Inter-domain link delay modeling 

Let us first study and validate the accuracy of the 
proposed methodology for inter-domain link delay 
estimation, i.e., blocks 2 and 3 in Fig. 4 including the 
Link Delay Disaggregation problem defined in Section 
IV.A, assuming the availability of accurate intra-domain 
delay models. Since we simulated each delay 
component to elaborate e2e measurements, we had 

access to the real delay introduced by each inter-domain 
link. Therefore, we compared the estimated delay 
against the real one and computed the inter-domain link 
delay error estimation. 
Fig. 5 presents the obtained results as a function of two 
of the most relevant factors impacting on such error: i) 
the number of multidomain paths; and ii) parameter ρ. 
In particular, Fig. 5a plots the performance for several 
values of ρ as a function of the number of paths, 
whereas Fig. 5b highlights the results for 60, 120, and 
240 paths as a function of ρ. We observe that the higher 
the number of multidomain paths is, the more accurate 
the delay estimation becomes. However, the proportion 
of multidomain traffic is crucial to determine the 
magnitude of this error. In scenarios where the intra-
domain delay is far greater than the inter-domain one 
(ρ=15%), achieving the desired target error below 5% is 
not possible even when many multidomain paths are 
available. However, as soon as the impact of inter-
domain link delay increases, the error sharply drops. 
Indeed, we observe in Fig. 5b that a small relative error 
(< 5%) is achieved for ρ=30% with 160 multidomain 
paths, which is a reasonable configuration in realistic 
multidomain scenarios [23]. This observation highlights 
the importance of accurate estimations of the inter-
domain link delay components. 

Assuming a realistic configuration of 240 paths and 
ρ=25%, let us now focus on analyzing the goodness of 
fit of the compound model in Eq. (1). We assume that 
block 6a in Fig. 4 is executed after one day of e2e traffic 
and delay measurements being available, i.e., the 
number of periods Ttr of monitoring data collection for 
model training purposes was set to 1,440 (1 day with 1 
min. granularity).  

These data were split 80-20% for training and 
validation, respectively and used to find the 
configuration of the DNN that returns the best 
performance in terms of accuracy with a moderated size 
to avoid overfitting. The backpropagation training 
algorithm using batches of 64 samples was considered; 
training took 30 min, which is much less that the time 
needed to collect used monitoring data. After evaluation 
of a wide range of number of hidden layers and size, a 
fully-connected DNN with three hidden layers and 10 
neurons per layer implementing the hyperbolic tangent 
activation function was selected. Fig. 6 shows both 
training and validation loss, computed as the mean 
absolute deviation between the predicted and the actual 
delays as a function of the number of training epochs, 
for inter-domain links between domains 1 and 2. We 
observe that the convergence to an accurate and robust 
model is achieved after only a small number of training 
epochs; a common behavior observed in the rest of the  
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Fig. 5. Inter-domain link delay error estimation vs. number of multidomain paths (a) and proportion ρ (b). 
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Fig. 6. Domain 1 to domain 2 link modeling performance. 
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inter-domain link models. The embedded table in Fig. 6 
summarizes the prediction accuracy for the selected 
inter-domain link, where accuracy above 0.9 allows 
validating the reliability and high accuracy of the 
proposed method to estimate and model inter-domain 
link delay. 

Let us study now how increasing the monitoring 
period impacts the accuracy of the model. Fig. 7 
presents the incremental maximum and the average 
error when larger monitoring periods are considered. 
We observe that the 1 min monitoring period can be 
relaxed to 5 or even 15 min without a major impact on 
the models’ accuracy.  

C. Benchmarking 

Once the accuracy of the compound model has been 
validated, let us now compare this approach against two 
different methods that can also be used to compute and 
predict not only the e2e delay, but also the delay 
introduced by the domains and inter-domain links that a 
given path traverses. The methods are based on network 
tomography [13] and INT [5]. 

Since no information about the internal topology of 
the domains is available in the defined multi-operator 
scenario, we have applied network tomography to infer 
the delay of domains and inter-domain links from e2e 
measurements, predictions, and inter-domain routing. 
Specifically, the delay introduced by every component 

is computed so to minimize the mean square error 
between the approximated delay of every path, 
computed as the sum of the inferred delays of crossed 
segments, and the real e2e measurement. Regarding 
INT, the broker would be able to collect per-packet 
telemetry data, which includes the real delay introduced 
at every hop from source to destination. To hide internal 
domain topology, we assume that only edge and border 
routers add INT measurements to the packets. 

For the sake of a fair comparison, we assume that all 
the models are obtained using the measurements 
obtained for path under study. Note that in the case of 
network tomography and INT, this assumption entails 
that there are not measurements available just after the 
path is established, whereas in the case of the compound 
model, domain models are available as measurements 
are collected during the commissioning testing. The 
same DNN configuration as for the compound model 
approach is used for these two approaches. We assumed 
the aforementioned realistic configuration (240 paths, 
ρ=25%) and conducted exhaustive evaluation of all the 
approaches for different values of parameter Ttr. 

Let us first focus on the difference of the e2e delay 
prediction accuracy among the approaches for just one 
single path. Fig. 8 shows the measured and predicted 
e2e delays as a function of normalized input traffic x for 
the considered approaches. Fig. 8a plots the prediction 
before collecting any monitoring sample, i.e., just using  
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Fig. 8. End-to-end delay prediction example before (a) and after (b) training (Ttr=1440). 
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Fig. 9. End-to-end models prediction error (a) and anticipation of compound model w.r.t benchmarking approaches (b). 
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Fig. 10. Domain models prediction error (a) and inter-domain link models prediction error (b). 

the available information regarding the path distance in 
the case of tomography and INT -based approaches, and 
just with the intra-domain models in the case of the 
compound model. It is worth noting that the compound 
model approach offers the possibility to estimate a 
lower bound of the e2e delay consisting in the sum of 
all intra-domain delay components. In contrast, that 
bound, under the other approaches, is simply reduced to 
the less informative transmission delay. Fig. 8b plots the 
prediction after data collection and model training for 
Ttr=1440 (i.e., 1 day with 1 min. granularity). In this 
case, assuming that a wide range of loads was observed 
during that period, all approaches quickly converge to 
the measured delay. The compound model and the INT-

based approaches closely fit the perfect relation between 
load and e2e delay, whereas the tomography-based 
approach still needs some additional monitoring data to 
better learn the behavior of the e2e delay at high loads. 
Fig. 9a shows the relative e2e prediction error (average 
and max for all 240 paths) as a function of Ttr, 
normalized to the value, where all approaches reached 
negligible average error (~1%). We observe that the 
compound model converges faster than other 
approaches, especially for the maximum error. 
Assuming that Ttr is chosen to guarantee a maximum 
error under a given target, Fig. 9b shows the relative 
anticipation of the compound model to achieve such 
target error w.r.t. the time needed under tomography or 
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INT -based approaches (both since they exhibit same 
maximum error performance in Fig. 9a). Given the 
results, we can conclude that the compound approach 
reaches reasonable maximum error (around 10-15%) 
with a monitoring period between 20% and 35% shorter 
for training purposes. 

Finally, delay prediction accuracy is evaluated in Fig. 
10 for all the considered approaches as a function of Ttr. 
The tomography-based fails to produce accurate domain 
and inter-domain link delay models, as it can be 
observed in Fig. 10a and Fig. 10b, respectively. The 
rationale is related to the fact that paths with the same 
edge/border nodes can follow different inter-domain 
routes. The compound modeling approach exhibits the 
best combined performance; on the one hand, domain 
delay prediction error is constant and remarkably low 
since accurate models are available from the very 
beginning of operation, whereas inter-domain link delay 
prediction accuracy converges rapidly with time, 
following noticeable close to that given by the models 
trained with data from INT. In that regard, the INT-
based approach produces very accurate models, but 
needs time to collect the required training dataset. 

In conclusion, these results allow to validate the 
compound approach as a fast and accurate way to obtain 
e2e delay models and their per-segment components. 

D. Intra-domain model correction 

Let us now focus on validating the models and 

methods proposed in Section IV.B to detect and localize 
inaccuracies in intra-domain models during the 
compound model training phase. Recall that inaccuracy 
detection is based on solving Link Delay 
Disaggregation Bias optimization problem and 
computing score s in Eq. (11). As score s is expected to 
increase when inaccuracies become larger, to 
demonstrate the validity of the detection and 
localization method we need to demonstrate that it is 
possible to set up a threshold value that discriminates 
inaccuracies with high precision, thus ensuring that 
accurate models robustly produce score values clearly 
under the threshold. 

Fig. 11 shows the score in the absence of inaccuracies 
for all the configurations of the number of paths and ρ 
already tested in the previous section. We observe that 
despite some oscillations in the score, the obtained 
results do not exceed s=1, whose value can be set as the 
threshold that separates accurate from inaccurate intra-
domain models. 

Let us now compute the score s in the case of 
inaccurate intra-domain models. To this aim, we 
consider again the realistic scenario with 240 paths and 
ρ=25% and we have synthetically generated 
inaccuracies by adding some additional delay to the 
intra-domain prediction, thus emulating a hidden delay 
not considered during the intra-domain model training 
[12]; inaccuracies range from 1 to 50 ms and were  
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Fig. 11. Score values vs number of paths (a) and proportion ρ (b) in the absence of domain model inaccuracies. 
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Fig. 12. Inaccuracy detection: score vs inaccuracy magnitude (a) and detection precision vs inaccuracy magnitude (b). 
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Fig. 13. Inaccuracy localization: example of 10 ms inaccuracy in domain 1 (a) and average results (b). 
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Fig. 14. Inaccuracy detection and localization for sudden inaccuracies. 

introduced at one single domain at a time. Fig. 12a 
shows the score as a function of the inaccuracy 
magnitude; curves for the minimum and maximum 
scores obtained for a given path and domain are 
presented. In the figures, we observe that the threshold 
defined as s=1 was clearly exceeded when magnitudes 
over 6-7 ms were introduced. Aiming at providing 
deeper insight into the performance of accuracy 
detection, Fig. 12b shows the precision computed as the 
probability of detecting a true inaccuracy, as a function 
of the inaccuracy magnitude for the range of magnitudes 
between 1 and 10 ms. Here, we can confirm 100% of 
precision for inaccuracy magnitude greater than 7 ms. 

E. Inaccuracy localization 

Once an inaccuracy has been detected, we need to 
localize it. Therefore, let us now focus on studying the 
performance of the inaccuracy localization procedure 
defined in Section IV.C. Recall that we proposed the 
Inaccuracy Localization optimization problem to that 
aim, and the domain with the lowest bias βp is selected 
as the affected domain. 

Fig. 13a shows the results obtained for the scenario 
used for the detection study, where an inaccuracy of 10 
ms was introduced in domain 1; the bias (normalized to 
the domain that produces the maximum value) for each 
of the domains is shown. Note that domain 1 clearly 

presents the lowest bias (around 60% lower than the rest 
of the domains); the gap between inaccurate and 
accurate domains is represented by the double arrow in 
Fig. 13a. Fig. 13b shows the lowest bias (inaccurate 
domain) and the lowest bias among all accurate domains 
as a function of inaccuracy magnitude. We observe that 
the gap is large for all the inaccuracy magnitudes 
analyzed (from 10-50 ms), which supports a 100% 
localization precision in the studied range as the bias of 
accurate domains never drops below the bias of the 
inaccurate one. 

F. Using compound modeling to detect and localize 
inaccuracies in-operation 

The previous studies focused on the training phase; 
we complement those results with a study of the use of 
the compound model once in-operation to detect 
inaccuracies and localize its potential root cause phase.  

Let us first focus on analyzing how the compound 
model can be efficiently used if a sudden event in a 
domain, e.g., an internal domain reconfiguration, affects 
the accuracy of the intra-domain delay models for all 
the multidomain paths crossing the domain. We assume 
the previous network scenario with 240 paths and 
consider that the proposed training procedure resulted in 
accurate compound models; the operation was emulated 
by generating 60 days of monitoring data samples. 

In this case, the inaccuracy is detected by simply 
comparing the predicted and the measured e2e delays 
for every multidomain path and analyzing the resulting 
deviation; a threshold can be configured so its violation 
triggers its analysis. Fig. 14 shows the average deviation 
observed for a path crossing the inaccurate domain and 
for a path routed through other different (and accurate) 
domains, for different values of inaccuracy magnitude. 
Thus, setting up a deviation threshold around 15 ms 
allows us to detect significant inaccuracies above 10 ms. 
The localization of the inaccurate domain can be 
implemented by finding the common ones crossed by all 
affected paths (see [35] for an example applied to single 
domain networks). 
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Fig. 15. Inaccuracy detection (a) and localization for gradual inaccuracies (b-c). 

Let us assume now a more realistic scenario where 
not all the paths in a domain are affected by an 
inaccuracy, its magnitude gradually increases with time, 
and it affects each path differently. Two different 
scenarios have been analyzed for a set of affected paths 
Pinac: i) intra-domain increase, where |Pinac| is large; ii) 
e2e increase, where |Pinac| is a small set and all paths 
share the same e2e route. To illustrate the difference 
between both scenarios, Fig. 15a shows the evolution of 
the number of inaccurate paths detected using the 
deviation analysis presented in Fig. 14 as a function of 
the time normalized to the instant when all the paths 
affected by the inaccuracy are detected. Once a path is 
detected, every component (domain or inter-domain 
link) is evaluated as a potential source of inaccuracy. To 
this aim, a list of a priori conditional assumptions for 
each component, which need to be previously defined, 
need to be evaluated. In this work, we simplify this list 
by considering only a maximum delay bound that 
cannot be exceeded in every domain and inter-domain 
link. Then, the potential set of inaccuracy sources is 
updated as soon as a path violates the delay bound until 
the inaccurate one is isolated. 

Fig. 15b-c show the evolution of the localization 
accuracy in finding the inaccurate model component for 
the two scenarios considered. For comparison purposes, 
we have also considered the tomography-based 
approach where, due to the lack of intermediate accurate 
model components, localization is done by choosing the 
domain or inter-domain link supporting the maximum 
number of inaccurate paths. We observe that the 
compound model allows almost perfect localization of 
the inaccurate component regardless of the scenario.  

Note that the accuracy of the tomography-based 
approach is very dependent on the scenario, which 
discourages from utilizing it for e2e model evaluation 
purposes. Another result is that the minimum number of 
paths required to achieve virtually perfect localization 
accuracy (>99%) remains almost constant in the 
compound model approach, which is an important 

outcome as it allows identifying a priori condition 
(number of inaccurate paths detected) that can be 
applied to decide whether the inaccurate component 
localization procedure is trustworthy or not and 
eventually validates the proposed approach based on a 
compound e2e modeling for different scenarios. 

VI. CONCLUDING REMARKS 
This work proposed a coordination environment for 

multidomain networks, where domain networks and an 
inter-domain orchestrator (broker) consistently work for 
accurate analysis and modeling of e2e delay of 
multidomain paths. The proposed environment fosters 
cooperation by distributing tasks between the domains 
(in charge of modeling intra-domain delay components) 
and the broker (responsible for modeling inter-domain 
delay components). As a result of this cooperation, 
compound e2e delay models consisting of the sum of 
intra- and inter-domain components are obtained and 
used for multiple purposes, like QoS estimation for 
connectivity provisioning and reconfiguration upon 
anticipated QoS degradation. 

A numerical evaluation of the proposed compound 
e2e delay modeling was conducted and compared 
against reference approaches, where models were 
trained by using e2e delay monitoring data only 
(tomography-based) or per-segment monitoring data 
(INT-based). The results show that: i) the inter-domain 
link delay can be accurately estimated by combining e2e 
monitoring data and intra-domain model predictions; ii) 
the broker can detect intra-domain model inaccuracies 
even when their magnitudes are small with respect to 
the total e2e delay; iii) the compound modeling 
approach converges to highly accurate e2e delay models 
faster than reference approaches; iv) once trained, the 
compound models can be effectively used to detect 
sudden in-operation inaccuracies under different 
potential scenarios, improving the performance of 
reference e2e delay models. These results validate the 
proposed cooperative e2e delay modeling architecture 
and methodology. 
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