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ABSTRACT

The success of deep convolutional neural networks builds on top of the learning
of effective convolution operations, capturing a hierarchy of structured features
via filtering, activation, and pooling. However, the explicit structured features, e.g.
object parts, are not expressive in the existing CNN frameworks. In this paper,
we tackle the few-shot learning problem and make an effort to enhance structured
features by expanding CNNs with a constellation model, which performs cell
feature clustering and encoding with a dense part representation; the relationships
among the cell features are further modeled by an attention mechanism. With
the additional constellation branch to increase the awareness of object parts, our
method is able to attain the advantages of the CNNs while making the overall
internal representations more robust in the few-shot learning setting. Our approach
attains a significant improvement over the existing methods in few-shot learning
on the CIFAR-FS, FC100, and mini-ImageNet benchmarks.

1 INTRODUCTION

Tremendous progress has been made in both the development and the applications of the deep
convolutional neural networks (CNNs) (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016; Xie et al., 2017). Visualization of the internal CNN structure
trained on e.g. ImageNet (Deng et al., 2009) has revealed the increasing level of semantic relevance
for the learned convolution kernels/filters to the semantics of the object classes, displaying bar/edge
like patterns in the early layers, object parts in the middle layers, and face/object like patterns in the
higher layers (Zeiler & Fergus, 2014). In general, we consider the learned convolution kernels being
somewhat implicit about the underlying objects since they represent projections/mappings for the
input but without the explicit knowledge about the parts in terms of their numbers, distributions, and
spatial configurations.

On the other hand, there has been a rich history about explicit object representations starting from
deformable templates (Yuille et al., 1992), pictorial structure (Felzenszwalb & Huttenlocher, 2005),
constellation models (Weber et al., 2000; Fergus et al., 2003; Sudderth et al., 2005; Fei-Fei et al.,
2006), and grammar-based model (Zhu & Mumford, 2007). These part-based models (Weber et al.,
2000; Felzenszwalb & Huttenlocher, 2005; Fergus et al., 2003; Sudderth et al., 2005; Zhu & Mumford,
2007) share three common properties in the algorithm design: (1) unsupervised learning, (2) explicit
clustering to obtain the parts, and (3) modeling to characterize the spatial configuration of the
parts. Compared to the CNN architectures, these methods are expressive with explicit part-based
representation. They have pointed to a promising direction for object recognition, albeit a lack of
strong practice performance on the modern datasets. Another line of object recognition system with
the part concept but trained discriminatively includes the discriminative trained part-based model
(DPM) (Felzenszwalb et al., 2009) and the spatial pyramid matching method (SPM) (Lazebnik et al.,
2006). In the context of deep learning, efforts exist to bring the explicit part representation into deep
hierarchical structures (Salakhutdinov et al., 2012).

The implicit and explicit feature representations could share mutual benefits, especially in few-
shot learning where training data is scarce: CNNs may face difficulty in learning a generalized
representation due to lack of sufficient training data, whereas clustering and dictionary learning
∗indicates equal contribution
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provide a direct means for data abstraction. In general, end-to-end learning of both the implicit
and explicit part-based representations is a viable and valuable means in machine learning. We
view convolutional features as an implicit part-based representation since they are learned through
back-propagation via filtering processes. On the other hand, an explicit representation can be attained
by introducing feature clustering that captures the data abstraction/distribution under a mixture model.

In this paper, we develop an end-to-end framework to combine the implicit and explicit part-based
representations for the few-shot classification task by seamlessly integrating constellation models
with convolution operations. In addition to keeping a standard CNN architecture, we also employ a
cell feature clustering module to encode the potential object parts. This procedure is similar to the
clustering/codebook learning for appearance in the constellation model (Weber et al., 2000). The cell
feature clustering process generates a dense distance map. We further model the relations for the cells
using a self-attention mechanism, resembling the spatial configuration design in the constellation
model (Weber et al., 2000). Thus, we name our method constellation networks (ConstellationNet).
We demonstrate the effectiveness of our approach on standard few-shot benchmarks, including FC100
(Oreshkin et al., 2018), CIFAR-FS (Bertinetto et al., 2018) and mini-ImageNet (Vinyals et al., 2016)
by showing a significant improvement over the existing methods. An ablation study also demonstrates
the effectiveness of ConstellationNet is not achieved by simply increasing the model complexity using
e.g. more convolution channels or deeper and wider convolution layers (WRN-28-10 (Zagoruyko &
Komodakis, 2016)) (see ablation study in Table 3 and Figure 2 (e)).

2 RELATED WORK

Few-Shot Learning. Recently, few-shot learning attracts much attention in the deep learning
community (Snell et al., 2017; Lee et al., 2019). Current few-shot learning is typically formulated
as a meta-learning problem (Finn et al., 2017), in which an effective feature embedding is learned
for generalization across novel tasks. We broadly divide the existing few-shot learning approaches
into three categories: (1) Gradient-based methods optimize feature embedding with gradient descent
during meta-test stage (Finn et al., 2017; Bertinetto et al., 2018; Lee et al., 2019). (2) Metric-based
methods learn a fixed optimal embedding with a distance-based prediction rule (Vinyals et al., 2016;
Snell et al., 2017). (3) Model-based methods obtains a conditional feature embedding via a weight
predictor (Mishra et al., 2017; Munkhdalai et al., 2017). Here we adopt ProtoNet (Snell et al.,
2017), a popular metric-based framework, in our approach and boost the generalization ability of the
feature embeddings with explicit structured representations from the constellation model. Recently,
Tokmakov et al. (2019) proposes a compositional regularization to the image with its attribute
annotations, which is different from out unsupervised part-discovery strategy.

Part-Based Constellation/Discriminative Models. The constellation model family (Weber et al.,
2000; Felzenszwalb & Huttenlocher, 2005; Fergus et al., 2003; Sudderth et al., 2005; Fei-Fei et al.,
2006; Zhu & Mumford, 2007) is mostly generative/expressive that shares two commonalities in the
representation: (1) clustering/codebook learning in the appearance and (2) modeling of the spatial
configurations. The key difference among these approaches lies in how the spatial configuration is
modeled: Gaussian distributions (Weber et al., 2000); pictorial structure (Felzenszwalb & Hutten-
locher, 2005); joint shape model (Fergus et al., 2003) ; hierarchical graphical model (Sudderth et al.,
2005); grammar-based (Zhu & Mumford, 2007). These constellation models represent a promising
direction for object recognition but are not practical competitive compared with deep learning based
approaches. There are also discriminative models: The discriminatively trained part-based model
(DPM) (Felzenszwalb et al., 2009) is a typical method in this vein where object parts (as HOG features
(Dalal & Triggs, 2005)) and their configurations (a star model) are learned jointly in a discriminative
way. The spatial pyramid matching method (SPM) (Lazebnik et al., 2006) has no explicit parts but
instead builds on top of different levels of grids with codebook learned on top of the SIFT features
(Lowe, 2004). DPM and SPM are of practical significance for object detection and recognition. In
our approach, we implement the constellation model with cell feature clustering and attention-based
cell relation modeling to demonstrate the appearance learning and spatial configuration respectively.

Parts models are extensively studied in fine-grained image classifications and object detection
to provide spatial guidance for filtering uninformative object proposals (Simon & Rodner, 2015;
Peng et al., 2017; Zhu et al., 2017; Ge et al., 2019; Qi et al., 2019). Related to our work, Neural
Activation Constellations (NAC) (Simon & Rodner, 2015) introduces the constellation model to
perform unsupervised part model discovery with convolutional networks. Our work is different from
NAC in three aspects: (1) The algorithmic mechanisms behind Simon & Rodner (2015) and ours are
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Figure 1: Illustration of our ConstellationNet pipeline where the bottom part is the network architecture
based on Conv-4 backbone, and the top part shows the constellation model. Our proposed ConstellationNet
consists of “Constell.” modules that perform explicit cell feature clustering with self-attention for joint relation
modeling.

different. Simon & Rodner (2015) implements a traditional Gaussian-based constellation module to
model the spatial configuration and part selection on top of a fixed pre-trained CNN. However, in
our ConstellationNet, our part representation and spatial configuration are modeled by cell feature
clustering and self-attention based cell relation module, which is general-purpose, modularized and
recursive. (2) In Simon & Rodner (2015) , the constellation module is optimized in an EM-like
algorithm, which is separate from the CNN optimization. Our constellation modules are seamlessly
integrated into the current CNNs and jointly optimized with them. (3) Our ConstellationNet uses
the dense cell features from the CNN feature maps, which considers all positions from the images
as potential parts and models their relation. However, (Simon et al. 2015) extracts sparse part
representations (i.e. it uses at most one part proposal per channel and selects even less parts later),
which may not fully utilize the rich information from the CNN feature maps.

3 FEW-SHOT LEARNING

In a standard classification problem, we aim to learn a model trained on the dataset Dbase that can
generalize its classification ability to unseen test set Dnovel belonging to same categories. In few-shot
classification problem, we encourage Dbase and Dnovel to be formed from different categories to
emphasize model’s generalization ability on novel categories, where we denote training categories as
Cbase, test categories as Cnovel, and Cbase ∩ Cnovel = ∅ to ensure the fairness.

In the training stage (a.k.a. meta-train stage), metric-based few-shot learning approaches (Snell et al.,
2017; Vinyals et al., 2016; Oreshkin et al., 2018) usually learn a feature extractor φ(x) on the dataset
Dbase to obtain generic feature embedding by optimizing the loss L(φ):

L(φ) = E{(x,y)}∼Dbase
�
(
{(φ(x), y)}

)
(1)

where {(x, y)} is a sampled mini-batch of data points and �(·) is usually an episodic few-shot loss
(Vinyals et al., 2016) or a standard cross-entropy loss (Chen et al., 2020).

In the inference stage (a.k.a. meta-test stage), a typical few-shot benchmark evaluates the model on
K-way, N -shot classification tasks T drawn from Dnovel, where each task has a support set and a
query set, i.e. T = (T supp, T query). The support set T supp contains K classes and each class has N
images (e.g. K = 5, N ∈ {1, 5}). Following Snell et al. (2017), the prediction ŷ′ of a query image
x′ ∈ T query is given by the label of nearest prototype ck from T supp under a cosine similarity d(·, ·):

ŷ′ = argmax
k

d
(
φ(x′), ck

)
, ck =

1

N

∑
(x,y)∈T supp, y=k

φ(x). (2)

An extended description of the few-shot learning framework can be found from Appendix A.1. The
generalization ability of the feature extractor φ(x) is improved in terms of training scheme (e.g.
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episodic learning (Vinyals et al., 2016)), network design (e.g. task condition (Oreshkin et al., 2018))
or objective function (e.g. learnable distance (Sung et al., 2018)). In our method, we propose a novel
network design by inserting constellation models into CNNs and strengthen the intermediate features.

4 CONSTELLATION MODEL

The concept of constellation has been introduced to the few-shot learning scenario in early years
(Fei-Fei et al., 2006), in which the appearance and the shape are independently learned in a mixture
model. In our work, we revisit the constellation model in an end-to-end learning framework: First, we
define the a cell feature as the individual local feature at a position in the feature map (see Figure 1).
We then employ cell feature clustering to model the underlying distribution of input cell features,
implying a part discovery procedure. We further obtain the distance map of the cell features from
clustering and then perform cell relation modeling to build spatial relationships.

4.1 CELL FEATURE CLUSTERING

In convolutional neural networks (CNNs), the convolutional filters are learned to detect the dis-
criminative patterns from low-level to high-level through back-propagation (Zeiler & Fergus, 2014).
In fact, the backward signal in the back-propagation is not necessarily needed to obtain a pattern
detector. With the feature map in the forward step of the CNN, we are able to cluster the individual
features at each location of the feature map (a.k.a. cell features) into multiple centers and employ
the cluster centers as filters (Coates & Ng, 2012; Krähenbühl et al., 2015). Assume we obtain a
convolutional feature map U with batch size B, spatial size H×W and channels C. We disensemble
the feature map U ∈ RB×H×W×C into a cell features set U = {u1,u2, ...,un} where n = BHW
and ui ∈ RC is a cell feature. Naively, we can conduct a k-means algorithm on input cell features U
to solve the clustering objective:

min
∑
i

∑
k

mik||ui − vk||22 s.t. mik ∈ {0, 1},
∑
k

mik = 1 (3)

where V = {v1,v2, ...,vK} is a set of cluster centers and mik indicates if the input cell feature ui is
assigned to cluster center vk. The clustering-based filters V can model the underlying cell feature
distributions and capture the most frequent features, which can be explicitly interpreted as meaningful
part patterns/part types. The hard assignment map mi = (mi1,mi2, ...,miK) of input cell feature ui
onto the cluster centers can be used as a part-based representation, providing alternative information
to the next layer in the CNN.

However, there are two issues remaining unsolved in the naive design: Firstly, CNNs are typically
optimized in a stochastic gradient descent (SGD) manner. Thus, in each forward step, only a mini-
batch of images are proceeded to provide cell features, which implies that the cluster centers cannot
extract the global feature distribution across the whole dataset. Secondly, the hard assignment map
has limited information due to its discrete representation. Therefore, inspired by Sculley (2010), we
design a mini-batch soft k-means algorithm to cluster the cell features approximately:

• Initialization. Randomly initialize global cluster centers V = {v1,v2, ...,vK} and a counter
s = (s1, s2, ..., sK) = 0.

• Cluster Assignment. In forward step, given input cell features U = {u1,u2, ...,un}, we compute
the distance vector di = (di1, di2, ...diK) between input cell feature ui and all cluster centers V .
We then compute the soft assignment mik ∈ R and generate the current mini-batch centers v′k:

dik = ||ui − vk||22, mik =
e−βdik∑
j e
−βdij

, v′k =

∑
imikui∑
imik

(4)

where β > 0 is an inverse temperature.
• Centroid Movement. We formulate a count update ∆s =

∑
imi by summing all assignment

maps mi = (mi1,mi2, ...miK). The current mini-batch centers v′k are then updated to the global
centers vk with a momentum coefficient η:

vk ← (1− η)vk + ηv′k, η =
λ

sk + ∆sk
(5)

• Counter Update. Counter s is updated and distance vectors {di} are reshaped and returned:
s← s + ∆s (6)
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With gradually updating global cluster centers, the above algorithm is able to address the issue of
limited data in a mini-batch. In addition, we reshape the distance vectors {di} of all input cell features
to a distance map D ∈ RB×H×W×K . Each distance vector di can be seen as a learned cell code in
codebook (dictionary) learning, which encodes a soft assignment of the visual word (i.e. cell feature)
onto the codewords (i.e. cluster centers) and implies a part representation. The distance map D then
can be viewed as a cell code map that represents a spatial distribution of identified parts, which is
passed to following layers. Empirically, it is observed that when ui and vk are L2 normalized, the
training procedure is more stable and the Euclidean distance dik is equivalent to a cosine similarity
up to an affine transformation. Details of the cell feature clustering can be found in Appendix A.9.

4.2 CELL RELATION AND SPATIAL CONFIGURATION MODELING

Before the deep learning era, traditional constellation models (Fei-Fei et al., 2006) decompose visual
information into appearance and shape representation. The appearance of different parts in the
image is treated independently while the shape of parts is assumed to have spatial connections.
In our constellation model, we establish the spatial relationship among the individual part-based
representations at a different location from the distance map as well. Specifically, we apply the
self-attention mechanism (Vaswani et al., 2017) to build the spatial relationship and enhance the
representation instead of using probabilistic graphical models in prior work (Fei-Fei et al., 2006).

In cell relation modeling, we add a positional encoding P ∈ RB×H×W×C following Carion et al.
(2020) for spatial locations to the distance map D and obtain the input feature map FI for query and
key layers. For value layer, we directly flatten the distance map D to another input feature map F′I:

FI = SpatialFlatten(D + P) ∈ RB×HW×K , F′I = SpatialFlatten(D) ∈ RB×HW×K (7)

The input feature maps FI,F
′
I are transformed into query, key and value {Fq , Fk, Fv} ⊂ RB×HW×K

by three linear layers {Wq , Wk, Wv} ⊂ RK×K and further computes the output feature FA:

[Fq,Fk,Fv] = [FIW
q,FIW

k,F′IW
v] (8)

FA = Att(Fq,Fk,Fv) = softmax
(Fq(Fk)>√

K

)
Fv (9)

The softmax of dot product between query and key matrix Fq(Fk)> ∈ RB×HW×HW calculates the
similarity scores in the embedding space among features across the spatial dimension. This encodes
the spatial relationships of input features and leads to an enhanced output feature representation
FA. Besides,

√
K in the denominator is to stabilize the gradient. In practice, we adopt a multi-head

attention to model the feature relation in the embedding subspaces:

FMHA = MultiHeadAtt(Fq,Fk,Fv) = [F1, ...,FJ ]W, Fj = Att(Fqj ,F
k
j ,F

v
j ) (10)

In a J-head attention, the aforementioned similarity scores in the K ′ = K
J dimensional embedding

subspace are calculated using the query, key and value from j-th head, i.e. {Fqj , Fkj , Fvj} ⊂
RB×HW×K′

. The output features Fj of each head are computed following Eq. 9. All the output
features {F1, ...,FJ} are concatenated back into K dimension embedding and further processed with
a linear layer W ∈ RK×K to generate multi-head output features FMHA. Such multi-head attention
settings could provide more diverse feature relation without introducing extra parameters.

4.3 INTEGRATE CONSTELLATION MODEL WITH CNNS

Our constellation model has the capability to capture explicit structured features and encodes spatial
relations among the cell features. The output features yield informative visual cues which are able
to strengthen the convolutional features. Thus, as shown in Figure 1, we place the constellation
model after the convolution operation to extract its unique explicit features and concatenate them
with the original convolutional feature map. A following 1 × 1 convolutional layer is used on the
concatenated features to restore the channels of convolutional feature map. In Table 3, we provide
evidence that merging features from constellation model to the CNN backbone can significantly
improve the representation ability. In contrast, increasing channels in CNNs alone to double the
parameters (second row in Table 3) can only improve the performance marginally. Optionally, we
found it is useful to adopt auxiliary loss when training the constellation model in deeper networks
(e.g. ResNet-12). On top of each constellation model, we conduct a standard classification to acquire
additional regularization.
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4.4 WHY CLUSTERING AND SELF-ATTENTION (CLUSTERING MAP + POSITIONAL ENCODING)?

As described in Section 1 and 2, classical constellation models (Fergus et al., 2003; Felzenszwalb
& Huttenlocher, 2005) extract parts with their spatial relationships; they are expressive but do not
produce competitive results on modern image benchmarks. CNN models (Krizhevsky et al., 2012; He
et al., 2016) attain remarkable results on large-scale image benchmarks (Deng et al., 2009) but they
are limited when training data is scarce. We take the inspiration from the traditional constellation
models, but with a realization that overcomes their previous modeling limitations.

The main contribution of our work is a constellation module/block that performs cell-wise clustering,
followed by self-attention on the clustering distance map + positional encoding. This separates
our work from previous attempts, e.g. non-local block work (Wang et al., 2018) in which long-range
non-linear averaging is performed on the convolution features (no clustering, nor positional encoding
for the spatial configuration). The main properties of our constellation block include: (1) Cell based
dense representation as opposed to the sparse part representation in (Weber et al., 2000) to make
the cells recursively modeled in the self-attention unit in a modularized and general-purpose way.
(2) Clustering to generate the cell code after clustering (codebook learning) that attains abstraction
and is not dependent on the CNN feature dimensions. (3) Positional encoding (as in Carion et al.
(2020)) for cells to encode the spatial locations. (4) Tokenized representation as expressive parts
(code/clustering distance map + positional encoding) for the cells. (5) Self-attention to jointly model
the cell code and positional encoding to capture the relationships between the parts together with
their spatial configurations.

5 EXPERIMENT

5.1 DATASETS

We adopt three standard benchmark datasets that are widely used in few-shot learning, CIFAR-FS
dataset (Bertinetto et al., 2018), FC100 dataset (Oreshkin et al., 2018), and mini-ImageNet dataset
(Vinyals et al., 2016). Details about dataset settings in few-shot learning are in Appendix A.2.

5.2 NETWORK WITH MULTI-BRANCH

We build ConstellationNet on two ProtoNet variants, namely Conv-4 and ResNet-12, which are
commonly used in few-shot learning. Details of networks and the optimization are in Appendix.

We develop a new technique, Multi-Branch, to optimize standard classification loss and prototypical
loss simultaneously. We find the two training schemes, standard classification scheme and prototypical
scheme, can be a companion rather than a conflict. Details of these two schemes can be found from
Appendix A.1. Different from standard network backbone used in prior works, our embedding φ(x)
is separated into two branches after a shared stem (Y-shape). Details of our multi-branch design are
elaborated in A.10. The detailed ablation study is described in Table 3.

Feature Augmentation. During the meta-testing stage, we discover that concatenating features before
average pooling to the final output can improve classification accuracy. The advantage of this
technique is that no additional training and model parameters are introduced.

5.3 RESULTS ON STANDARD BENCHMARKS

Table 1 and 2 summarize the results of the few-shot classification tasks on CIFAR-FS, FC100, and
mini-ImageNet, respectively. Our method shows a notable improvement over several strong baselines
in various settings. ConstellationNet significantly improves the performance on shallow networks
(Conv-4). In Table 2, our model outperforms SIB (Hu et al., 2020) 1-shot by 0.6% and 5-shot by
5.6%. In Table 1, our model outperforms MetaOptNet (Lee et al., 2019) by 5.95% in 1-shot and
6.24% in 5-shot. For deep networks with rich features, the constellation module still contributes to
the performance, showing its complementary advantage to convolution. Our ResNet-12 model beats
(Lee et al., 2019) 1-shot result by 2.7% on FC100, 3.4% on CIFAR-FS, and 1.72% on mini-ImageNet.
The consistent improvement over both shallow and deep networks across all three datasets shows
the generality of our method. Our ConstellationNet is orthogonal to the margin loss based methods
(Liu et al., 2020; Li et al., 2020), and we also do not use extra cross-modal information (Xing et al.,
2019; Li et al., 2020). On the contrary, our model enhances the embedding generalization ability
by incorporating its own part-based representation. Additionally, to verify the orthogonality of our
method, we adapt the negative margin loss following Liu et al. (2020) to our Conv-4 models in
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Table 1: Comparison to prior work on mini-ImageNet. Average 5-way classification accuracies (%) on
mini-ImageNet meta-test split are reported with 95% confidence intervals. Results of prior works are adopted
from Lee et al. (2019) and original papers. † used extra cross-modal information.

Model Backbone mini-ImageNet 5-way

1-shot 5-shot
Meta-Learning LSTM (Ravi & Larochelle, 2016) Conv-4 43.44 ± 0.77 60.60 ± 0.71
Matching Networks (Vinyals et al., 2016) Conv-4 43.56 ± 0.84 55.31 ± 0.73
Prototypical Networks (Snell et al., 2017) Conv-4 49.42 ± 0.78 68.20 ± 0.66
Transductive Prop Nets (Liu et al., 2018) Conv-4 55.51 ± 0.86 69.86 ± 0.65
MetaOptNet (Lee et al., 2019) Conv-4 52.87 ± 0.57 68.76 ± 0.48
Negative Margin (Liu et al., 2020) Conv-4 52.84 ± 0.76 70.41 ± 0.66

ConstellationNet (ours) Conv-4 58.82 ± 0.23 75.00 ± 0.18
SNAIL (Mishra et al., 2018) ResNet-12 55.71 ± 0.99 68.88 ± 0.92
TADAM (Oreshkin et al., 2018) ResNet-12 58.50 ± 0.30 76.70 ± 0.30
TapNet (Yoon et al., 2019) ResNet-12 61.65 ± 0.15 76.36 ± 0.10
Variational FSL (Zhang et al., 2019) ResNet-12 61.23 ± 0.26 77.69 ± 0.17
MetaOptNet (Lee et al., 2019) ResNet-12 62.64 ± 0.61 78.63 ± 0.46
CAN (Hou et al., 2019) ResNet-12 63.85 ± 0.48 79.44 ± 0.34
SLA-AG (Lee et al., 2020) ResNet-12 62.93 ± 0.63 79.63 ± 0.47
Meta-Baseline (Chen et al., 2020) ResNet-12 63.17 ± 0.23 79.26 ± 0.17
AM3 (Xing et al., 2019) † ResNet-12 65.21 ± 0.30 75.20 ± 0.27
ProtoNets + TRAML (Li et al., 2020) ResNet-12 60.31 ± 0.48 77.94 ± 0.57
AM3 + TRAML (Li et al., 2020) † ResNet-12 67.10 ± 0.52 79.54 ± 0.60
Negative Margin (Liu et al., 2020) ResNet-12 63.85 ± 0.81 81.57 ± 0.56
ConstellationNet (ours) ResNet-12 64.89 ± 0.23 79.95 ± 0.17

Table 2: Comparison to prior work on FC100 and CIFAR-FS. Average 5-way classification accuracies (%)
on CIFAR-FS and FC100 meta-test split are reported with 95% confidence intervals. Results of prior works are
adopted from Lee et al. (2019) and original papers.

Model Backbone CIFAR-FS 5-way FC100 5-way

1-shot 5-shot 1-shot 5-shot
MAML (Finn et al., 2017) Conv-4 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks (Snell et al., 2017) Conv-4 55.5 ± 0.7 72.0 ± 0.6 - -
Relation Networks (Sung et al., 2018) Conv-4 55.0 ± 1.0 69.3 ± 0.8 - -
R2D2 (Bertinetto et al., 2018) Conv-4 65.3 ± 0.2 79.4 ± 0.1 - -
SIB (Hu et al., 2020) Conv-4 68.7 ± 0.6 77.1 ± 0.4 - -
ConstellationNet (ours) Conv-4 69.3 ± 0.3 82.7 ± 0.2 - -

Prototypical Networks (Snell et al., 2017) ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
TADAM (Oreshkin et al., 2018) ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
MetaOptNet-RR (Lee et al., 2019) ResNet-12 72.6 ± 0.7 84.3 ± 0.5 40.5 ± 0.6 55.3 ± 0.6
MetaOptNet-SVM (Lee et al., 2019) ResNet-12 72.0 ± 0.7 84.2 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

ConstellationNet (ours) ResNet-12 75.4 ± 0.2 86.8 ± 0.2 43.8 ± 0.2 59.7 ± 0.2

Appendix A.8. We observe ConstellationNet with negative margin brings 0.52% improvement to
ConstellationNet, and obtains 6.93% gain compared with baseline on mini-ImageNet.

6 MODEL ANALYSIS

6.1 ARCHITECTURE ALTERNATIVES

In Table 3, we first study the role of each module in ConstellationNet, where the number of parameters
is controlled approximately equivalent to the baseline’s size. Our constellation model brings 6.41%
and 2.59% improvements over baseline on 1-shot Conv-4 and ResNet-12 results. Combined with our
multi-branch training procedure, the model further improves additional 1.34% and 1.26% on 1-shot
Conv-4 and ResNet-12, respectively. Finally, feature augmentation from penultimate layer to final
output embedding brings additional 0.45% and 0.27% improvements on two variants.

We also test the baseline model with extra channels in the Table 3. The new model only shows
slight improvements over original baseline, and is outperformed by our ConstellationNet with a large
margin. We also obtain WRN-28-10 baseline results to validate our improvement. While making
ResNet baselines deeper and wider, our ConstellationNet still outperforms this strong baseline. In
Figure 2 (e), we further study whether the performance gap between ConstellationNet and baseline
can be reduced by simply altering the baseline’s model complexity using e.g. more convolution
channels. Although the trend of baseline accuracy increases when increasing the model parameter
number gradually, the performance gap is still significant. This validates our concept that modeling
hierarchical part structures can greatly benefit features learned from convolution operation, and obtain
a more robust feature representation. In addition, applying self-attention on the distance map (6-th
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Table 3: Effectiveness of modules. Average classification accuracies (%) on mini-ImageNet meta-test split.
We compare our ConstellationNet with alternative architectures including the baseline and the modified baseline
with extra channels based on Conv-4 and ResNet-12. We also include a baseline with WideResNet-28-10
(Zagoruyko & Komodakis, 2016) backbone for comparison.

Baseline
Cell Cell Multi Feature Extra 1x1 #Params Conv-4 ResNet-12Feature Relation

Clustering Modeling Branch Augment Channels Convolution Conv-4/Res-12 1-shot 5-shot 1-shot 5-shot

� 117K/8.0M 50.62 ± 0.23 68.40 ± 0.19 60.77 ± 0.22 78.76 ± 0.17
� � 222K/16M 51.76 ± 0.22 69.54 ± 0.18 61.45 ± 0.22 79.33 ± 0.16
� � 146K/8.3M 53.34 ± 0.23 70.61 ±0.19 62.24 ± 0.23 79.55 ± 0.16
� � 184K/9.7M 55.92 ± 0.23 73.02 ± 0.18 62.75 ± 0.23 79.21 ± 0.17
� � � 192K/8.4M 55.46 ± 0.23 72.52 ± 0.18 61.54 ± 0.24 76.51 ± 0.18
� � � 200K/8.4M 57.03 ± 0.23 74.09 ± 0.18 63.36 ± 0.23 79.72 ± 0.17
� � � � 200K/8.4M 58.37 ± 0.23 74.52 ± 0.18 64.62 ± 0.23 79.60 ± 0.17
� � � � � 200K/8.4M 58.82 ± 0.23 75.00 ± 0.18 64.89 ± 0.23 79.95 ± 0.17

WRN WideResNet-28-10

� � 36.5M 61.54 ± 0.25 79.41 ± 0.23

row: 57.03% on Conv-4, 1-shot) achieves better performance than directly applying it to the original
cell features (i.e. convolutional feature map) (4-th row: 55.92% on Conv-4, 1-shot). We also tried to
replace the cell feature clustering module with a 1x1 convolution layer (output dimension is equal to
the number of clusters) (5-th row: 55.46% on Conv-4, 1-shot). It is worse than our results (6-th row)
as well. We observe that the 1x1 convolution layer is less expressive than the cell feature clustering
module, making it difficult to extract enough context information during cell relation modeling.

6.2 MODULES ANALYSIS

Figure 2: Modules analysis. (a, b, c, d) We study the effectiveness of changing the number of clusters, the
number of heads in attention layer, and the layer indices with constellation based on Conv-4, (e) We demonstrate
the performance gain of our ConstellationNet is unmatched by increasing the model complexity of our baselines.
All experiments are done on mini-ImageNet.

In Figure 2 (a), we vary the number of clusters adapted in all layers to observe the performance
change. We found that increasing the number of clusters improves the accuracy in general, and
set clusters to 64 is optimal in terms of both model size and classification performance. Figure 2
(b) shows the number of attention heads does not effect performance as much as the number of
cluster, and 8-head attention obtains 1.80% performance gain on the 1-shot setting compared to
1-head attention. In Figure 2 (c, d), we also study the effectiveness of clustering algorithm applied to
different layers. The results show both early features and high-level features benefit from introducing
clusters algorithm into the original CNN architecture.

6.3 VISUALIZATION

Figure 3 demonstrates the visualization of cluster centers in each layer of Conv-4 model on mini-
ImageNet. In the upper part of the figure, each image shows patches corresponding to the nearest
cell features to a cluster center (i.e. with lowest Euclidean distance). It is observed that clusters in
early layers (e.g. layer 1,2) represent simple low-level patterns while the clusters in high layers (e.g.
layer 3,4) indicate more complex structures and parts. In the lower part of the figure, we choose two
cluster centers from layer 4 for further interpretation: The left one with green box could possibly
represent legs since it consists of various types of legs from human, dog and other animals. The right
one with the red box shows most nearest cell features to this cluster center are parts with bird’s head
or beetles, which share a dotted structure (i.e. black dots on beetles / eyes on bird’s head).

The left side of Figure 4 shows the visualization of cell features that are assigned to different clusters.
For each image, we extract the assignment maps corresponding to three cluster centers generated in
the last constellation module of Conv-4 and find multiple cell features with the highest assignments
within each assignment map. The locations of cell features are projected back in the original image
space, marked by three different colors of "·" in the raw image to show three different feature clusters.
For a given class of images, the same cluster centers are selected for comparison across 6 samples.
As shown in Figure 4, we observe part information of each class is explicitly discovered. For the bird
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Dog’s legs

Other legs

Unicycle wheels
(w/ human legs)

Human legs

Bird’s head

Beetles

Layer 1 Layer 2 Layer 3 Layer 4

Figure 3: Visualization of cluster centers. (Upper) We visualize four cluster centers in each layer by showing
patches associated with cell features that have the nearest distance to the clustering center. (Lower) Identifying
parts from two cluster centers in layer 4: Left one with green box represents various types of legs. Right one
with red box mostly shows beetles and bird’s head, sharing a dotted structure.

Figure 4: Visualization of the cells assignment and attention maps. (Left) Each color represents a cluster,
and each point, marked as "·", represents a cell assigned to a cluster center. We demonstrate 6 samples for each
class (bird, dog and tank). (Right) We visualize attention maps of one query feature (at the location of red point
in left part) with all key features. The middle part shows the attention maps corresponding to 8 heads in the
multi-head attention. The right part shows an overlapped map of all attention maps.

category, we can see different parts in each image, including head (cyan "·"), body (purple "·") and
tail (yellow "·"). For the dog category, we see parts including heads (red "·"), legs (green "·") and
body (blue "·"). For the tank category, we see parts like track (light blue "·") and turret (pink "·").

The right side of Figure 4 visualizes the attention maps in the cell relation model. We use the last
constellation module in the ResNet-12 model for visualization since it captures high-level features that
better represent parts. We choose one query feature at the center of the object and show its attention
map to all key features. The middle part of the figure shows the attention maps corresponding to 8
heads in the multi-head attention. It is observed that some parts are identified such as head (second
map in first row), legs (first two map in second row), buttock (first map in first row) and body (second
map in the second row). A merged attention map by overlaying all 8 attention maps is presented at
right part of the figure. It indicates that all the attention heads together can extract the features of the
whole object, which would be useful for final classification.

7 CONCLUSION

In this paper, we present ConstellationNet by introducing an explicit feature clustering procedure with
relation learning via self-attention. We implement a mini-batch soft k-means algorithm to capture
the cell feature distribution. With integrated implicit (standard CNN modules) and explicit (cell
feature clustering + cell relation modeling) representations, our proposed ConstellationNet achieves
significant improvement over the competing methods on few-shot classification benchmarks.
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A APPENDIX

A.1 FEW-SHOT LEARNING FRAMEWORK

In this section, we introduce background concepts of meta-learning and elaborate the few-shot
learning framework used in our ConstellationNet.

Meta-Learning in Few-Shot Classification. Current few-shot learning is typically formulated as
a meta-learning task (Finn et al., 2017), in which an dataset Dbase is used to provide commonsense
knowledge and a dataset Dnovel for the few-shot classification. Dbase has the classes Cbase which are
disjoint from the Cnovel in Dnovel to ensure fairness. There are two stages, meta-training and meta-test,
in the meta-learning framework: In meta-training stage, we attempt to train a model to learn generic
features from Dbase. In meta-test stage, we adapt the model on the limited training split from Dnovel

and evaluate the performance of the model on the test split.

ProtoNet-Based Framework. In our ConstellationNet, we adopt ProtoNet (Snell et al., 2017) as
the base few-shot learning framework. In ProtoNet, the dataset Dnovel is represented by a series
of K-way N -shot tasks {T } where each task consists of a support set and a query set, i.e. T =
(T supp, T query). The support set T supp contains K classes and each class has N examples from the
training split of Dnovel, which are used to adapt the model in meta-test stage. The query set T query

from the test split of Dnovel is then used to evaluate the model.

The ProtoNet attempts to learn a generic feature extractor φ(x) on image x, and represent a class k
by the prototype ck, which is the average feature of examples from support set T supp with this class:

ck =
1

|N |
∑

(x,y)∈T supp,y=k

φ(x) (11)

During the meta-test stage, we use the prototypes to compute the probability pk of a query example
x′ ∈ T query on class k and predict its label y′:

pk = p(y = k|x′, T supp) =
exp(d(x′, ck))∑
k′ exp(d(x′, ck′))

, y′ = arg max
k

pk. (12)

where d(·, ·) is a cosine similarity function (different from the Euclidean distance in Snell et al.
(2017)).

During the meta-training stage, there are two different training schemes: The prototypical scheme
from ProtoNet uses an episodic learning strategy that also formulates the dataset Dbase as a series of
tasks {T }. The negative log-likelihood loss L(φ) is optimized:

`(T supp, T query) = E(x′,y′)∈T query − log p(y = y′|x′, T supp), (13)

L(φ) = ET =(T supp,T query)∼Dbase`(T supp, T query). (14)

Another way is the standard classification scheme (Chen et al., 2020): It simply uses Dbase as a
standard classification dataset {(x, y)} consisting of Q classes in total. Thus, a cross-entropy loss
L(φ) is optimized:

L(φ) = E(x,y)∼Dbase − log
exp(wy · φ(x))∑
q exp(wq · φ(x))

(15)

where wq is the linear weight for class q. In our ConstellationNet, we use the standard classification
scheme at default. For the experiment with multi-branch network, we use the prototypical scheme
and standard classification scheme for separate branches.

A.2 DATASETS

The CIFAR-FS dataset (Bertinetto et al., 2018) is a few-shot classification benchmark containing
100 classes from CIFAR-100 (Krizhevsky et al., 2009). The classes are randomly split into 64, 16
and 20 classes as meta-training, meta-validation and meta-testing set respectively. For each class, it
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contains 600 images of size 32× 32. We adopt the split from Lee et al. (2019). The FC100 dataset
(Oreshkin et al., 2018) is another benchmark based on CIFAR-100 where classes are grouped into
20 superclasses to void the overlap between the splits. The mini-ImageNet dataset (Vinyals et al.,
2016) is a common benchmark for few-shot classification containing 100 classes from ILSVRC-
2012 (Deng et al., 2009). The classes are randomly split into 64, 16 and 20 classes as meta-training,
meta-validation and meta-testing set respectively. For each class, it contains 600 images of size
84 × 84. We follow the commonly-used split in Ravi & Larochelle (2016), Lee et al. (2019) and
Chen et al. (2020). In all experiments, we conduct data augmentation for the meta-training set of all
datasets to match Lee et al. (2019)’s implementation.

A.3 NETWORK BACKBONE

Conv-4. Following Lee et al. (2019), we adopt the same network with 4 convolutional blocks. Each
of the 4 blocks has a 3×3 convolutional layer, a batch normalization layer, a ReLU activation and a
2×2 max-pooling layer sequentially. The numbers of filters are 64 for all 4 convolutional layers.

ResNet-12. Following Chen et al. (2020), we construct the residual block with 3 consecutive
convolutional blocks followed by an addition average pooling layer where each convolutional block
has a 3×3 convolutional layer, a batch normalization layer, a leaky ReLU activation, and max-pooling
layers. The ResNet-12 network has 4 residual blocks with each filter size set to 64, 128, 256, 512,
respectively.

WRN-28-10. WideResNet expands the residual blocks by increasing the convolutional channels and
layers (Zagoruyko & Komodakis, 2016). WRN-28-10 uses 28 convolutional layers with a widening
factor of 10.

A.4 CONSTELLATION MODULE CONFIGURATION

To achieve the best performance with constellation modules, we do not always fully enable them after
all the convolutional layers. For Conv-4, we use constellation modules after all four convolutional
layers, but the cell relation modeling module is disabled in first two constellation modules due
to the high memory consumption. For ResNet-12, we enable the constellation modules after the
convolutional layer 1,7,8,9 and disable the relation modeling module in the first constellation module.
We use the deep supervision in ResNet-12 to stablize the training of constellation modules.

A.5 SELF-ATTENTION SETTINGS

We follow the common practice in Vaswani et al. (2017) to set the attention layer with residual
connections, dropout and layer normalization. The sine positional encoding follows settings in Carion
et al. (2020).

A.6 TRAINING DETAILS

Optimization Settings. We follow implementation in Lee et al. (2019), and use SGD optimizer with
initial learning rate of 1, and set momentum to 0.9 and weight decay rate to 5× 10−4. The learning
rate reduces to 0.06, 0.012, and 0.0024 at epoch 20, 40 and 50. The inverse temperature β is set to
100.0 in the cluster assignment step, and λ is set to 1.0 in the centroid movement step.

A.7 ABLATION STUDY ON THE NUMBER OF CLUSTERS

Table 4 studies the number of clusters needed for random and similar classes. The result shows
the optimal number of clusters are less affected by the number of clusters but more affected by
the similarity between classes. Less number of clusters are needed for dataset with classes of high
similarity, which aligns with our intuition, limited number of patterns exist in this dataset so that
small number of clusters are enough to represent its part-based information.

FC100 training dataset consists of 60 classes that are grouped evenly into 12 superclasses. In the
random classes group, the training dataset includes 6 randomly selected super-classes (i.e., 30 classes)
and models are trained with 8, 16, 32, 64 and 128 number of clusters. The highest accuracy occurs
at 16 clusters (1-shot: 39.12% in ResNet-12). In the similar classes group, 30 classes are randomly
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Table 4: Ablation study on the number of clusters for random and similar classes. We investigate how
similarities of images in the training dataset affect the optimal number of clusters. The first group of experiments
use training dataset with 30 similar classes while the second group use 30 random classes from FC100 dataset,
all of which performed on ResNet-12 with Constellation module.

# Clusters Similar Classes Random Classes

1-shot 5-shot 1-shot 5-shot
8 38.9 ± 0.2 52.8 ± 0.2 40.9 ± 0.2 54.5 ± 0.2

16 39.1 ± 0.2 51.8 ± 0.2 40.9 ± 0.2 54.9 ± 0.2
32 38.7 ± 0.2 52.3 ± 0.2 40.9 ± 0.2 54.7 ± 0.2
64 38.8 ± 0.2 52.3 ± 0.2 41.2 ± 0.2 54.9 ± 0.2

128 38.8 ± 0.2 52.1 ± 0.2 40.8 ± 0.2 54.7 ± 0.2

sampled from the original training dataset and we repeat the same experiments as above. The highest
accuracy occurs at 64 clusters (1-shot: 41.22% in ResNet-12), which is much more than the 16
clusters used for images from similar classes.

A.8 ADDITIONAL EXPERIMENTS WITH NEGATIVE MARGIN

Table 5: Additional experiments with the use of negative margin. Average classification accuracies (%) on
mini-ImageNet meta-test split. We compare our ConstellationNet and baseline with and without the negative
margin loss based on Conv-4.

Baseline Cell Feature Cell Relation Negative Conv-4

Clustering Modeling Margin 1-shot 5-shot

X 50.62 ± 0.23 68.40 ± 0.19
X X 51.42 ± 0.23 68.84 ± 0.19
X X X 57.03 ± 0.23 74.09 ± 0.18
X X X X 57.55 ± 0.23 74.49 ± 0.18

Table 5 studies the use of negative margin loss (Liu et al., 2020) on our Conv-4 models. In the
negative margin loss, we use the inner-product similarity, the temperature coefficient β = 1.0 and
the negative margin m = −0.5, which attains the best performance improvement on our models.
Besides, we do not have the fine-tune step during meta-test. Our baseline with the negative margin
loss obtains 0.80% improvement on 1-shot and 0.44% improvement on 5-shot compared with the
baseline. Similarly, our ConstellationNet with the negative margin loss achieves 0.52% improvement
on 1-shot and 0.40% improvement on 5-shot. The consistent improvement of negative margin loss on
the baseline and our ConstellationNet indicates that our constellation module is orthogonal to the
negative margin loss, and both modules can boost the performance on few-shot classification.

A.9 CLARIFICATION ON CLUSTERING PROCEDURE

In this section, we add more clarification on our cell feature clustering procedure in Sec. 4.1: During
the training stage, the global cluster centers V = {vk} are updated by the computed clustering centers
{v′k} in current mini-batch. Each update to a cluster center vk is weighted by a momentum coefficient
η determined by the value of an associated counter sk, since we would like to avoid large adjustment
from the current mini-batch in order to stabilize the global cluster centers. Besides, the mini-batches
of examples are randomly drawn from the dataset following Sculley (2010), without specialized
design to optimize clustering learning. During the evaluation stage, we fix the global cluster centers
V in the forward step of our model, avoiding the potential information leak or transduction from the
test mini-batches.

A.10 MULTI-BRANCH DETAILS

Our embedding φ(x) is separated into two branches after a shared stem (Y-shape), which is defined
as φ(x) = {φcls(x), φproto(x)} and φcls(x) = gcls(f stem(x)), φproto(x) = gproto(f stem(x)). Two
branches φcls(x), φproto(x) are trained by standard classification and prototypical schemes separately
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in a multi-task learning fashion. During the testing time, φcls(x) and φproto(x) are concatenated
together to compute distance between support prototypes and query images.

For our ConstellationNet, we split the network into two branches after the second convolutional
blocks (Conv-4) or the second residual blocks (ResNet-12). We keep the shared stem identical to the
network backbone and reduce the channels of two separate branches to match the parameter size of
the model without multi-branch.

A.11 CONNECTION WITH CAPSULE NETWORKS

A notable development to learning the explicit structured representation in an end-to-end framework
is the capsule networks (CapsNets) (Sabour et al., 2017). The line of works on CapsNets (Sabour
et al., 2017; Hinton et al., 2018; Kosiorek et al., 2019; Tsai et al., 2020) intends to parse a visual
scene in an interpretable and hierarchical way. Sabour et al. (2017) represents parts and objects
in vector-based capsules with a dynamic routing mechanism. Tsai et al. (2020) uses a stacked
autoencoder architecture to model the hierarchical relation among parts, objects and scenes. Here
our ConstellationNet maintains part modeling by enabling the joint learning of the convolution and
constellation modules to simultaneously attain implicit and explicit representations.
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