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A B S T R A C T

Stringer-to-floor beam connections were reported as one of the most fatigue-prone details in riveted steel railway
bridges. To detect stiffness degradation that results from the initiation and growth of fatigue cracks, an auto-
mated damage detection framework was proposed by the authors (Eftekhar Azam et al., 2019; Rageh et al.,
2018). The proposed method relies on Proper Orthogonal Decomposition (POD) and Artificial Neural Networks
(ANNs) to identify damage location and intensity under non-stationary, unknown train loads. Bridge compu-
tational models were used to simulate damage scenarios and for training the ANNs. Damage detection method
efficiency and accuracy were shown to be significantly influenced by the level of modeling uncertainties (MUs).
To investigate the applicability of the proposed framework to in-service bridges, a systematic analysis of the
effect of MUs on the proposed POD-ANN framework was necessary. MU influence on the performance of the
POD-ANN damage detection method was investigated and a new procedure for generating training data for
ANNs was proposed. The procedure was based on synergizing Proper Orthogonal Modes (POMs) extracted from
measured structural response and POMs calculated from the numerical model. The current study integrated
numerical and field investigations. The main objective of the numerical investigation was to identify a robust
damage feature independent of the level and location of assumed MUs. Results showed that Damage Location
(DL) and Damage Intensity (DI) were detected with high accuracy for studied uncertainty cases; however, as
expected, damage detection accuracy reduced as MU increased. A hybrid experimental-numerical approach was
then implemented for the field investigation studies. This approach applied identified damage features from the
numerical investigation to measurements from an in-service railway bridge to produce damage scenarios used to
train the framework. MATLAB algorithms were developed that preprocessed field data and eliminated POM
variations resulted from loading uncertainties. ANNs were trained and tested using the field strain estimated
POMs from the hybrid approach and DL and DI results were obtained for the studied railway bridge under non-
stationary, unknown train loads. These results show the promise of the POD-ANN method as a robust, real-time
fatigue damage identification tool for steel railway bridges.

1. Introduction

Over 60% of railway bridges were constructed before 1950, with
50% of those structures being steel bridges that generally used riveted
connections [3]. In general, steel bridges are subjected to a wide range
of deficiencies associated with fatigue and corrosion [4]. Specifically,
common structural deficiencies in steel railway bridges include dete-
rioration of stringer-to-floor beam and stringer-to-lower lateral bracing
connections and frozen bearings [5]. Bridge owners are certainly con-
cerned about all these deficiencies; however, stringer-to-floor beam
connection deterioration is of significant importance for these type of
bridges as connection failure could cause extensive damage and

possibly failure, leading to safety concerns and traffic disruptions
[4,6,7]. As a result, the current study focuses on the identification of
these types of deficiencies.

The behavior and integrity of riveted steel railway bridges have
been examined by multiple investigators. A railway deck truss was
examined and interaction between various bridge elements was shown
to induce additional internal effects, such as stringer axial forces and
floor beam lateral bending, due to main truss longitudinal deformations
[8]. Consequently, the fatigue life of those components and their con-
nections might be compromised. Published numerical and laboratory
research concluded that stringer-to-floor beam connections are more
rigid than they initially assumed and, as a result, large bending stress
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cycles and corresponding fatigue degradation in connecting angles and
rivets may develop [4,6–12]. An analytical study focused on stringer
end fixity ratio effects on fatigue damage accumulation found that
stringer-to-floor beam connections experienced more severe damage
than floor beam-to-main girder connections in steel riveted plate girder
railway bridges [10]. Another study showed that, for double-track steel
railway bridges, increased connection fatigue damage was observed
when both tracks were loaded simultaneously [6]. A full-scale labora-
tory test on three panels from a demolished riveted steel railway bridge
concluded that stringer ends could be subjected to negative end mo-
ments that were 67% of continuous stringer bending moments and
vertical fatigue cracks developed in connecting angles under cyclic
loading [7].

Bridge condition is commonly assessed using visual inspections at a
prescribed frequency, a process that is qualitative, costly, and possibly
unsafe [13]. Developing an efficient, automated Structural Health
Monitoring (SHM) approach that continuously reports bridge health
under various loading and environmental situations is strongly desired
to track short and long-term changes in condition and ensure safety
[14]. SHM systems, which extract information via processing measured
responses and apply damage identification methods to the data to ex-
tract important information, are usually data-driven and incorporate
sparse sensor networks to collect desired response quantities such as
strains, accelerations or displacements [15]. A considerable amount of
research effort has been dedicated to investigating key aspects asso-
ciated with the development of data-driven SHM systems that can
identify fatigue prone regions and detect damage. For example, studies
have been completed that investigate the effectiveness of fiber optic
sensors for fatigue damage detection and their use within SHM systems
[16–18]. The influence of material degradation on dynamic char-
acteristics, including modal curvature [19] and strain energy [20,21]
and resulting Eigenmodes [22,23], has also been investigated.

Other research has focused on improving numerical techniques used
to identify the damage, such as one study that implemented Principle
Component Analysis to utilize frequency variations as damage in-
dicators, independent of site conditions [24]. Laboratory tests of a
short, based-excited cantilevered beam were completed at twelve
temperatures with “damage” represented as changes in mass. PCA was
shown to detect these “damage” levels successfully. Analytical studies
were also performed and showed that frequencies were influenced by
moving load mass and speed, damage location and intensity [24]. Re-
cently, some researchers have focused on developing a damage locali-
zation framework utilizing Proper Orthogonal Decomposition (POD)
[25]. In one study, an algorithm that produced POD based on a struc-
ture’s Frequency Response Function (FRF) was used to detect simulated
beam damage, with that damage being effectively detected over a
specific frequency range [26,27]. Research focusing on using multiple
numerical methods, including Artificial Neural Networks (ANNs),
Principle Component Analysis and Radial Basis Functions, to detect
wind turbine blade fatigue damage has shown promising results when

compared against experimental studies that induced fatigue cracks
[28]. Another study that compared statistical damage features and
modal parameters showed that statistically-based methods were more
effective at detecting damage [29]. While data-driven methods have
been shown to be an efficient tool to detect damage, current literature
lacks data from actual, in-service structures needed to further train
associated SHM frameworks. Even if a bridge owner allows for the
exploration of several damage scenarios in-situ, sufficient data would
not be produced to train the framework. To address this issue, work
presented herein implements a hybrid experimental-numerical, output-
only approach to develop damage training scenarios under non-sta-
tionary excitations. Classical output-only damage detection methods
are usually based on the operational modal analysis under stationary
excitations and require low signal-to-noise ratios. To include non-sta-
tionary loading conditions, the authors developed a damage detection
methodology based on POD and ANNs that integrated analytical and
experimental data [1,2]. Supervised learning was used to classify
output-only response, reduce Proper Orthogonal Mode (POM) varia-
tions from load variability and directly associate detected changes
caused by variations in Damage Intensity (DI) and Damage Location
(DL). Several aforementioned damage identification methods rely on
computational models for identification of structural damage; there-
fore, MU can affect their damage identification precision and robust-
ness.

MUs that influence damage detection effectiveness have been ad-
dressed using three SHM frameworks: offline; online; and machine
learning [30–36]. Offline framework applications have been examined
by multiple researchers, with one study investigating modeling error
effects on a model-based framework using a numerical process that
involved optimal selection of modes and modal residual weights to
define multiple model updating classes [30]. Bayesian model class se-
lection and model averaging techniques were implemented to detect
damage for selected classes and structural damage was detected with
high accuracy when performed analytically [30]. Another study in-
volved examined modeling error effects on a damage detection frame-
work based on wavelet coefficients developed using finite element (FE)
analyses of a two-dimensional (2D) frame under sinusoidal excitation
[31]. Simulated errors included excitation force, mass, support stiffness,
member bending stiffness and damping ratios and the framework was
minimally influenced by the errors [31]. Dynamic tests on a full-scale
seven-story reinforced concrete building were conducted to further
examine uncertainty effects on the accuracy of well-established damage
detection methods in an offline framework [32,33]. Certain modal
parameter uncertainties, including modeling errors stemming by mesh
density, influenced the level of confidence associated with detected
damage. Effects arising from modeling errors associated with nonlinear
FE model updating have also been examined, with an Unscented
Kalman Filter (UKF) used to estimate examined model parameters and
data from dynamically tested buildings, one a two-dimensional steel
frame and the other a three-dimensional concrete frame, being used to
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investigate uncertainty influence on damage detection accuracy [34].
Results showed that MUs had a significant impact on damage detection
using updated FE models[34]. The accuracy of online damage detection
frameworks of nonlinear systems having unknown parameters and ill-
defined numerical models have been investigated using a Bayesian
approach and UKFs [35]. Chatzi et al. (2010) investigate model com-
plexity and parameterization effects that introduced uncertainties via
comparison against laboratory tests of a nonlinear joint setup and the
effectiveness of the proposed method was demonstrated [35]. One
study of machine learning damage detection frameworks looked at
modal property based damage detection and implemented neural-net-
works to investigate modeling errors [36]. The study found that mode
shape component ratios or differences between those ratios, which are
considered to be robust damage features, showed minimum sensitivity
to modeling errors. Applicability of the framework was validated via
numerical analyses, laboratory tests of a simple beam and field tests of a
multi-beam bridge. A companion study incorporated a UKF to estimate
FE model parameters and a Linear Kalman Filter (LKF) to estimate si-
mulation errors [37]. A 2D steel frame model was employed to validate
the approach and MUs included gravity loads, structure geometry,
damping ratios and member inertia and results illustrated that using the
proposed framework for model updating allowed for more accurate
damage detection [37].

It is recognized that using an integrated approach introduces in-
herent MUs largely related to model complexity. Previously discussed
research focused on the POD-ANN framework developed by the authors
[1,2] outlined how the method was developed and examined its ef-
fectiveness via comparison to numerical models and one week of
measured strains from a monitored, in-situ, steel railway bridge. In the
previous research work, the influence of the signal to noise ratio on
POD-ANN framework effectiveness was also examined. The investiga-
tion incorporated correlated and uncorrelated noise with noise ratios of
10, 15 and 20%. It was observed that the framework was robust to noise
and damage was accurately detected and located [1,2].

In this study, the effect of model MUs on the accuracy of the de-
veloped POD-ANN damage detection framework was investigated to
identify robust modeling features that could be implemented when
detecting damage of an in-situ railway bridge. The current research
work introduced a hybrid experimental-numerical damage detection
framework to detect damages in a real-world application. As outlined in
the following sections, a numerical investigation was carried out to
identify a robust damage feature largely independent of MU. The
identified feature was then used to impose damage scenarios to eight
weeks of measured strains to train the ANNs to validate further iden-
tified feature robustness to MU.

2. POD-ANN method for damage identification in the presence of
MU

2.1. POD for feature extraction

POD of a set of data is accomplished by obtaining a set of ordered,
orthonormal bases and collecting detailed information concerning re-
levant energy contents. As a result, POD addresses feature extraction by
discovering underlying, hidden information in the data and di-
mensionality reduction by appropriately capturing dynamic system
features in the smallest corresponding subspace. The concept of POD
was central to the development of various techniques, such as: Principal
Component Analysis (PCA), Karhunen–Loève decomposition (KLD), and
Singular Value Decomposition (SVD) [38–40]. A detailed discussion of
PCA, KLD and SVD commonalities can be found elsewhere [41].

The current study uses data sets comprised of samples taken from
time histories of in-situ bridge response to a train passage, with data
from each train passage being stored in snapshot matrices. SVD of the
snapshot matrix helps to extract damage features [40]:

=U L R
T (1)

where: ×
U

n nm s is the snapshot matrix from nm measurements and ns
samples; ×

L
n nm m is an orthonormal matrix whose columns are the

left singular vectors of U; ×n nm s is a diagonal semi-matrix whose
components ii are singular values of U; and ×

R
n ns s is an ortho-

normal matrix whose columns are the right singular vectors of U. It is
known that the left singular vectors are POMs of the snapshot matrix. It
was shown that the first bridge response POMs to train passages (i.e.,
the first left singular vector of the corresponding snapshot matrices)
contain information on intensity and location of damage at the stringer
to floor-beam connections. It should be noted that, unlike linear vi-
bration modes, structural response POMs could vary as excitation
source changes. Therefore, when POMs are used as damage features, a
machine learning algorithm is needed to differentiate variations in-
duced by damage from ones caused by load variations.

2.2. ANN for damage identification

Feedforward ANNs have been extensively studied for structural
damage identification. To facilitate autonomous damage identification,
a two-layer, feedforward ANN was adopted by several authors for
creating a nonlinear mapping between damage indices and features
extracted from the structural response [42–44]. This architecture has
been proven to precisely approximate arbitrary nonlinear functions,
provided that they have sufficient numbers of nodes in their hidden
layers [45,46]. Based on these studies, ANN feedforward damage
identification models have been constructed based on a linear combi-
nation of predetermined nonlinear basis functions ( )j [47]:

=

=

d f wW( , ) ( )

j

M

j j

1 (2)

where: d is the vector of damage indices; is the damage feature; W
is the matrix of ANN weights; and f (■)is the identity for regression
problems and is a nonlinear activation function (i.e., softmax). It was
proven that this architecture approximated arbitrary nonlinear func-
tions well [46,48]. The relationship between input and the jth compo-
nent of the output for this type of ANN is given by [47]:

= + +

= =

d hW( , ) W W W Wk

j

M
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i

D

ji i j k

1

(2)

1

(1)
0
(1)

0
(2)

(3)

where: d nd is the vector whose rows feature damage indices;
n
s are damage feature vectors; M denotes the number of neurons

in the hidden layer; Wkj
(2) and W

k0
(2) represent weights and biases of the

output layer; and W ji
(1) and W j0

(1) represent weights and biases of the
hidden layer. Activation functions limit a layer’s output to a manage-
able range and need to be nonlinear to guarantee a perceptron’s pre-
diction capabilities in a noncompeting ANN [49]. Logistics and hyper-
bolic tangent functions are two of the most widely used ANN activation
functions and are continuously differentiable with a limited range that
renders gradient-based optimization feasible [47,49]. Logistic functions
limit the range of payer output to 0 and 1, and hyperbolic tangent
functions limit the output range to −1 and 1. In this study a hyperbolic
tangent sigmoid activation function, h (■), is employed for the hidden
layer. This function allows for centering layer output around zero. For
an extensive discussion of various activation functions readers are re-
ferred to [50]. The activation function for the regression output layer
σ(■) is represented by the identity matrix. In a supervised learning-
based damage identification scheme, ANN weights W need to be ob-
tained using a set of damage features and corresponding damage in-
dices.

2.3. Overview of POD-ANN for damage identification in the absence of MU

The authors developed a supervised Machine Learning scheme for
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detecting, locating, and quantifying the intensity of fatigue-induced
damage in railway bridges using POM and ANNs [1]. A neural classifier
was trained to categorize response to different load patterns, and a
regression ANN was subsequently trained using an ensemble of applied
loads to detect possible damage from resulting, categorized POMs. In
doing so, the average strain time history root mean square (RMS) for
each train passage was used as a feature weight classification and the
first snapshot matrix POM was used as the damage feature. Since the
damage feature and, subsequently, damage detection accuracy could be
sensitive to variations in train load under operational conditions, the
ANN needed to be robust to address damage scenarios and train axle
loads not used for training.

It is known that Bayesian regularized ANNs are more robust than
standard back-propagation ANNs and can decrease the need for cross-
validation. Bayesian regularized ANNs are difficult to over-train since
evidence procedures provide an objective Bayesian criterion for stop-
ping training using early cessation. Moreover, the regularization term
added to their objective function also makes them robust to overfitting.
To improve ANN generalization capabilities for damage identification
under operational conditions, Bayesian regularization was adopted for
optimally finding ANN weights [48,51]. The following objective func-
tion needed to be minimized to find the optimal weights:

= +E E Ed w (4)

in which:

=

=

E w

j

N

j
w

1

2

w

(5)

and:

=

=

t x wE y ( , )d

k 1

N

k k k
2

(6)

In Eqs. (4) and (5), w is a vector that includes all network weights;
and are objective function parameters; and xk and tk respectively
denote the training input vectors and their corresponding target values
for =k N1, 2, , . The ratio of objective function parameters de-
termines training emphasis, with larger pushing the network to-
wards generalization and smaller ratios driving the network towards
error minimization [52].

For the previous study, the first POM n
m of bridge strain re-

sponse to train passage was used as a damage feature [1,2]. Therefore,
when using Nt train passage scenarios and Nd damage scenarios, the
following input matrix can be used for training the ANN:

× ×
[[ ] [ ]]N N N N

n N N

1,1 ,1 1, ,
( )

d t d t

m t d (7)

where superscripts for respectively denote the damage and the
training scenario.

2.4. Novel damage feature for POD-ANN damage identification in the
presence of MU

Based on MU existence and assumptions made on the availability of
train axle loads, four possible damage identification scenarios are
possible:

1. No MU, known loading configurations;
2. No MU, unknown loading configurations;
3. MU, known loading configurations; and
4. MU, unknown loading configurations.

The first two scenarios could be effectively addressed using the
framework summarized in Section 2.3 [1,2]. The two latter scenarios
feature new MU and POD-based damage features. Proposed meth-
odologies to address these cases are presented in the following two

subsections.

2.4.1. POMs for training ANNs in the presence of MU, absence of load
uncertainty

In general, it is known that structural response POMs are a function
of: sensor network topology; sensor types; structure mechanistic and
geometric properties; and external loads. These parameters can be re-
presented as:

(8)

where: l pl is the vector that includes pl parameters that affect
local structural response; g p

g denotes the vector that includes p
g

parameters that affect global structural response; ×nn dm defines
coordinates of the sensor network so that j corresponds to j,1:3; and

denotes the vector of external loads.
If the change in mechanical or geometric properties of a structural

member affects the local structural response, any change in POMs
would be predominantly local. Assume that different models of a cer-
tain structure were available and denoted by Mi , =i m1, 2, , . Also,
assume that g and for eachMi is constant. Finally, it will be assumed
that the number of sensors is equal to the number of parameters that
govern the local response, i.e. =n pm l, and that j

l affects the structure’s
response at the sensor installed in j,1:3. As a result:

=
l

l

j
l

n
l

1

(9)

and, for all models Mi :

(10)

where: j
l denotes an increment of jth row of the vector l. It is shown

that the change in the jth component of POM j is proportional to the

increment of jth row of the vector l:

.j j
l

(11)

It follows that, if is used as a damage feature within a POD-ANN
damage identification framework, and g, and are constant, any of
Mi models could effectively generate damage scenarios required for
training the ANNs. Extensive numerical investigations in Section 4
support this premise and show that, while globally varies by j

l for
any Mi subjected to the same external load, varies locally. When the
damage scenario is a local phenomenon, it will produce an increment in
the value of the parameter that changes local structural response:

=
d h (12)

where: d denotes the first POM of the structure in a damaged state; and
h stands for the first POM of the healthy, baseline structure. To train

the ANN for damage detection, the following features for Nd damage
scenarios are proposed:

×
[ ]N

n N

1 d

m d (13)

where the superscript for indicates the damage scenario.
If a suitable model class is constructed for the actual structure and

MUs are predominantly stemming from unknown parameter values
rather than mechanical characterization, one can argue that ΔPOMs
obtained from response measured before and after a deficiency happens
could be reasonably approximated by ΔPOMs from models Mi :
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Mexp i (14)

It might be challenging to calculating for real-world scenarios
due to difficulty associated with having the same loading configurations
for healthy and damaged conditions. However, this scenario was in-
cluded to account for situations where owners would be willing to run
the same train for assessing bridge health. For example, owners might
be able to run a train composed of 3 or 4 locomotives with a consistent
speed periodically to improve health assessment capabilities. This sce-
nario could also be used for roadway bridges where testing vehicle
loads, speeds and locations are known and controlled.

2.4.2. Approximating POMs for training ANNs in the presence of MU and
load uncertainty: Hybrid experimental-numerical approach

The premise from Section 2.4.1 is used herein for approximating
damage scenario POMs. Using POMs of a healthy structure obtained
from experimental data and ΔPOMs of damage scenarios obtained from
the numerical model Mi one can deduce the following when con-
sidering Eqs. (12) and (14).:

M
= +

d d
exp
h

i (15)

where denotes an estimate of . Estimated POMs then could be used
as input for training the ANN:

× ×
[[ ] [ ]]N N N N

n N N

1,1 ,1 1, ,
( )

d t d t

m t d (16)

Extensive numerical analyses in Section 4 again support this pre-
mise.

3. Studied bridge, instrumentation, numerical model

The structure under study is an in-service, multi-span, railway
bridge located in central Nebraska. The bridge is comprised of rolled
and riveted, built-up, steel elements. Bridge spans include simply-sup-
ported through-girder and truss systems. This study focuses on a truss
span with span geometry, field testing instrumentation and its numer-
ical model being described in the following sections. Additional details
are provided in a previous publication [5].

3.1. Studied span

The studied truss span is 44.7 m long and contains six panels with
stringers connected to floor beams that are spaced at 7.45 m on-center
longitudinally. The stringers are laterally spaced at 2.15 m on-center
and support two tracks spaced laterally 3.95 m center-to-center. A
lateral wind bracing system is provided with laterals being provided.
Truss diagonals, end-posts, verticals, top chords and end bottom chords
are riveted built-up members while midspan diagonals and bottom
chords are eyebars of varying thickness. Floor beams and stringers are
riveted, built-up I-sections with the floor beams composed of a web
plate, flange angles and cover plates while the stringers have a web
plate and angles only. Lower lateral bracing members are single angles
of varying dimensions while upper lateral bracing are laced angles.
Stringer lateral bracing is also provided using single angles located
close to the top flange. Elevation and plan views of the studied span are
found in Fig. 1.

3.2. Instrumentation plan

The implemented SHM system utilized strain time-histories to
measure truss response to train loads. Strain measurements were se-
lected since they are direct indicators of local damage, such as that
stemming from fatigue. These measurements also maximize data sig-
nificance while minimizing sensor numbers. A sensitivity analysis was
carried out to ensure proposed instrumentation provided enough in-
formation for the identification of stringer-to-floor beam connection
damage [5]. It was determined that 20 strain transducers installed at
stringer bottom flanges close to stringer-to-floor beam connections
would yield precise damage identification results. Strains were ex-
tracted from numerical investigations or measured from field tests at
these locations. A plan view showing instrument locations is shown in
Fig. 2.

4. Numerical validation

The objective of the numerical investigation was to identify a robust
damage feature that is independent of MU and could be used to identify
damage scenarios from field measured strains. Five numerical models

Fig. 1. Truss elevation and plan view.
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helped identify the feature, with one being the base model with no MU
and the rest including simulated MUs. The most consistently recognized
damage feature was selected and applied to data produced from the
numerical models and field tests. A flowchart describing the numerical
validation procedure is shown in Fig. 3.

4.1. Numerical model

The FE model was developed using SAP2000 and validated against
measured data from the field tests. The model contained the trusses,
stringers, floor beams and bracing systems. Riveted truss elements and
floor beams were modeled as rigidly connected at both ends while truss
eyebars and bracing members were modeled as pinned at their ends.
Stringers connections were modeled using rotational springs to

R1LR4LR5LR6L L2R R0LR3L

L6L L5L L1LL4L L2LL3L L0L

[1] [2] [3] [4] [5]

[6] [7] [8] [9] [10]

[11] [12] [13] [14] [15]

[16] [17] [18] [19] [20]

Fig. 2. Truss span instrument and damage locations (IL and DL).

Fig. 3. Numerical investigation flowchart.
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facilitate simulating stringer-to-floor beam connection damage as a
reduction in rotational stiffness. In earlier research work, model cali-
bration was completed so that measured strain time histories and their
corresponding values from the three-dimensional finite element model
had good agreement [5]. Parameters used to improve model accuracy
included explicitly modeling the rails, incorporating vertical offsets for
floor system members to better account for structural element locations,

modifying bottom lateral axial stiffness and varying stringer end con-
nections bending and axial stiffness. The final calibrated model in-
cluded the rails, vertical offsets and modified stringer end connection
bending fixity ratios. For more details about the calibration activities,
see [5]. This calibrated model is used herein as one of the MU cases and
is denoted as M1. An isometric view of the developed model is shown in
Fig. 4 [5].

Published fatigue laboratory tests of two panels having stringers
with riveted end connections showed a gradual decrease in rotational
stiffness associated with the crack growth [7]. As a result, a semi-rigid
connection would ultimately become a pinned connection. It was re-
ported that the developed crack vertical projection depth at which
pinned behavior was observed was when the crack propagated to ap-
proximately 40% of the angle leg length. Fig. 5 depicts typically de-
veloped fatigue cracks in the angle legs and Fig. 6 shows the corre-
sponding decreases in rotational stiffness [7]. Continuously reducing
connection rotational stiffness could be used to simulate crack propa-
gation and the associated reduction in stringer end strains. For the
current study, the damage was simulated at the 20 stringer ends by
reducing end spring rotational stiffness 0% to 100% reduction (i.e.,
DI = 0% to DI = 100%) in increments of 10%. Stiffness reductions
were applied to one stringer end at a time, with other connections being
undamaged and, as stated earlier, Damage Locations (DLs) corre-
sponded to instrument locations in Fig. 2.

The bridge models were excited using real train loads. Weigh-In-
Motion (WIM) recorded loading configurations for 81 trains of varying
axle loads, axle spacing’s and overall lengths that traversed the bridge
were selected. The numerical analyses and extraction of significant
results for each of the studied damage scenarios were automatically
performed using MATLAB [53] and SAP2000 Open Application

Fig. 4. SAP2000 isometric view.
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Table 1
MU cases.

Model Assignment Normalized rotational spring coefficient
(M Mi 0)

M0 Uniform 1.00
M1 Uniform, increase +80% of

M0

1.80

M2 Uniform, decrease −50% of
M0

0.50

M3 Random, ± 25% of M0 Between 0.76 and 1.25
M4 Random, ± 50% of M0 Between 0.53 and 1.45
M5 Random, ± 100% of M0 Between 0.23 and 1.92
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Programming Interface (OAPI) for the 81 trains [1]. Extracted strains at
the instrumented locations were placed into matrices with each matrix
containing time histories for one train passage “snapshot.” RMS means
of the snapshot matrices were used to sort train events and trains were
divided into four different groups based on resulting ranges. It is

important to note that a strong correlation was observed between strain
snapshot RMS and train loads, with higher RMS shown to represent
heavily loaded trains [1]. The effect of train speed was also in-
vestigated, and it was observed that variation in speed could influence
POD-ANN framework results. To reduce speed effects on POD-ANN
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Fig. 7. Strain time-history comparisons for different MU scenarios: (a) DI 40% at DL 3; (b) DI 60% at DL 8; (c) DI 80% at DL 13; and (d) DI 100% at DL 18.
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framework damage detection, it was concluded that selected snapshots
should include the same number of strain peaks (i.e., having the same
number of strain peaks under trains of varying speed would produce
different snapshot sizes). A subset of the 81 trains, ones with RMS
causing higher strains and POMs of minimal variation, were selected.
This resulted in 24 trains being used for the current study [1].

The numerical study completed herein considered strain POM var-
iations caused by: (i) non-stationary (i.e., moving) train loads; (ii) DLs
and DIs; and (iii) MUs. Analyses for various trains loadings and DL/DI
combinations were completed automatically using MATLAB and

SAP2000 OAPI. For each simulated MU, the number of associated
analyses was 4824 damage scenarios, which corresponded to 24 trains,
10 DIs and 20 DLs.

The authors were unable to find resources that helped couple
MATLAB code to the SAP2000 OAPI to complete automated analyses
and output extraction. As a result, online resources for the processes
developed for the current study are provided. Online Resource 1 con-
tains MATLAB code for running multi-step analyses and Online
Resource 2 details relationships between MATLAB coding and SAP2000
OAPI windows for some of the crucial functions.

4.2. MU cases

Stringer-to-floor beam end-fixity ratios vary widely and, as a result,
no clearly defined relationship exists. Design practice assumes that
these connections would transfer shear force only; however, laboratory
and field tests indicated a high amount of end fixity [4,7–10,12].
Stringer-to-floor beam connection end fixity ratio was shown to influ-
ence stress time histories significantly. As a result, fatigue crack de-
velopment was mainly attributed to out-of-plane deformation of con-
necting angles and stress concentrations at rivets heads [10].

Because of significant variations of end fixity ratios observed from
the tests, higher discrepancies between actual and modeled ratios are
expected. As a result, end fixity ratio was selected as the major MU
factor for the current study. As stated earlier, the base model had no MU
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(M0) and the end fixity ratio was assumed to be 67% of that for a fully
continuous stringer [7]. This corresponded to a linear rotational spring
coefficient of 803,435 kN-m/rad applied uniformly to all stringer ends.
The first 2 MU cases (M1 andM2) uniformly varied all stringer end fixity
ratios by +80% and −50% of that assigned inM0, which corresponded
to assigned spring coefficients of 1,446,183 and 401,717 kN-m/rad for
M1 and M2, respectively. The 80% increase was based on results from
model validation activities [5]. The other 3 MU cases (M3 to M5) used
randomly modified end fixity ratios at ± 25, 50, and 100% of the M0

case, which produced randomly varying coefficients at each

connection. Assigned spring coefficients are listed in Table 1 for each
stringer.

To demonstrate the influence of selected MU cases on strain re-
sponse, results were compared for M0 to M5 cases where significant
change in strain time-histories was observed, especially for
Instrumented Locations (IL) located beneath the unloaded track (i.e.,
DL 11 to DL 20). A comparison of strains is shown in Fig. 7 for selected
MU cases having 40, 60, 80 and 100% DI at DLs 3, 8, 13 and 18. Clearly
apparent changes in strain from M0 were observed for M1 to M5 strain
time-histories.
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4.3. Robustness of ΔPOMs to MUs

Strains were extracted at the ends highlighted in Fig. 2 and corre-
sponding

Mi
were calculated for each of the considered Mi cases and

damage scenarios. Fig. 8a shows a comparison of
M

h

i
for the 24 train

events for the Mi cases where significant change was observed due to
MUs and minimal effects observed from load variations. Fig. 8b depicts
the mean for

M

h

i
for considered Mi cases, which again highlights sig-

nificant
M

h

i
changes associated with MUs. Since

M

h

i
varies significantly

for the MUs, it cannot be classified as a robust damage feature that
could eliminate or reduce MU effects. To eliminate

Mi
variations at-

tributed to examined MUs,
Mi

was calculated for each damage sce-
nario as:

M M M
=

d h

i i i (17)

Resulting
Mi

showed that variations due to MUs were sig-
nificantly reduced when compared against

Mi
variations. As shown in

Fig. 8, DL 18 experienced the highest variation in
M

h

i
; however, when

Mi
was used the variation was significantly lower and the DL accu-

rately identified. Fig. 9a shows that
Mi

at DL 18 for DI 80% and the
considered train events showed minor variation observed for examined
MUs and train loadings. Fig. 9b compares the mean of

Mi
for the MUs

and again shows minor variations. These minor variations indicate that,
for the studied bridge, model and scenarios,

Mi
could be considered a

robust damage feature that is largely independent of MUs and train
loads.

Since generating damage scenarios for an in-situ bridge is largely
impossible, an alternate way to develop damage scenarios is by im-
plementing

Mi
as a damage feature. To do so, d was calculated to

generate damage scenarios as a function of
M

h

1
to

M

h

5
and

M0
as:

M M M
= +

d h

i i0 (18)

Since
Mi

variations due to MUs were observed to be minor,
M

d

i

(i.e., estimated) is expected to match closely
M

d

i
(i.e., the model ex-

tracted). To ensure the applicability of
M

d

i
for simulating actual da-

mage scenarios, comparisons between
M

h

i
,

M

d

i
and

M

d

i
where com-

pleted and close agreement was observed between
M

d

i
and

M

d

i
at

different MUs. One example of those comparisons shown in Fig. 10 for
DIs of 40, 60, 80 and 100% simulated at DL 3, 8, 13 and 18 for M1 to
M5. The comparison showed a very close match between

M

d

i
(i.e., es-

timated from
M0

and
M

h

i
) and

M

d

i
(i.e., calculated from deficient

models strains M1 to M5) for various DIs, DLs and MUs. The results
proved that generating damage scenario POMs (

M

d

i
) from

M0
of one

model and
M

h

i
of another model is possible. As a result, a similar ap-

proach could be applied to generate
exp
d from

exp
h from measured

strains. In other words, exp
d can be generated from

Mi
and exp

h .
It is important to note that, while inaccurately modeling stringer to
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Fig. 15. ANN testing with MU and known loading, all testing events: (a) DI 40% at DL 3, ; (b) DI 60% at DL 8, ; (c) DI 80% at DL 13, ; and (d) DI 100% at
DL 18, .

Table 2
MU and known load testing results.

Figure Subplot MU case Simulated DI
and DL

Detected DI at
simulated DL

False positive
and negative
DIs

Fig. 15 a M1 40% at DL 3 31–33% 3%
b M2 60% at DL 8 66–67% 15 and 25%
c M4 80% at DL 13 86–88% 9 and 9%
d M5 100% at DL 18 91–95% 4 and 10%

Fig. 16 a M1 70% at DL 15 60–61% 4% and 8%
b M2 70% at DL 15 73–76% 10% and 12%
c M4 70% at DL 15 67–71% 51% and 18%
d M5 70% at DL 15 62–65% 10% and 18%
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floor beam connections is not the only source of MU, a significant in-
fluence on predicted response accuracy is anticipated to occur when the
connections are inaccurately represented. Another potential source of
MU could include inaccurate representation of (1) material properties,
represented using inaccurate elastic moduli (E), and (2) bridge support
conditions. To examine the influence of these MU sources on , addi-
tional cases were studied. These included: (i) uniformly increasing or
reducing E of the entire bridge by 20% (1.2E and 0.8E); (ii) uniformly
increasing or reducing E of the stringers by 20%
(1.2E Str and 0.8E Str); and (iii) using longitudinal springs at the free
(roller supported) end to account for frozen bearings, with spring
coefficients set to 50 and 100% of the bridge longitudinal stiffness (K)
(0.5 KSpr and 1.0 KSpr). The longitudinal bridge stiffness was esti-
mated as the inverse of the longitudinal displacement at the roller ends
of the bridge under longitudinal point loads. In addition, the effects of
multiple MU sources on were also examined as follows: (i) +M E0.81 ;
(ii) +M EStr1.22 ; (iii) +M E1.25 ; (iv) + +M EStr KSpr0.8 0.51 ; and (v)

+ +M E KSpr1.2 1.0 .4

Fig. 11 contains representative comparisons between
M0

and for
M1 and M5 and the sources of MU outlined in the preceding paragraph.
As can be seen in the figure, including additional MU sources or their
combinations slightly influenced when compared against the M1 to M5

cases, with agreement improving when a validated version of the base
model was used. Fig. 12 shows additional comparisons between

Mi
at

DL 13 for DI 80%. Minor variations between the M1 to M5 cases and the
additional cases were again observed. These findings support using MU
cases M1 to M5 for the current study and also support the premise that

Mi
is a robust damage feature largely independent of MUs.

Comparisons between
M

h

i
,

M

d

i
and

M

d

i
for multiple MUs were also

completed with excellent agreement observed. An example of those
comparisons is shown in Fig. 13 for DIs of 40, 60, 80 and 100% at DL 3,
8, 13 and 18. The results prove that generating damage scenario POMs

(
M

d

i
) from

M0
of one model and

M

h

i
from another model is possible

when multiple MUs are included.

4.4. ANN training and testing data sets

Training data was generated for the 10 DIs at each DL shown in
Fig. 2. A total of 4800 damage scenarios corresponding to each MU
were developed by sequentially varying DIs at the designated DLs for
the 24 train events. ANNs were trained using MATLABs Neural Net
Fitting toolbox, which produced a nonlinear regression that, in turn,
helped establish damage detection effectiveness.

Extracted
M

h

i
and

M

d

i
values were used to train and test the ANNs.

Of the 24 trains, 18 were used to train the ANNs and six to test their
ability to detect DLs and DIs. More details about the process can be
found elsewhere [1]. The four training scenarios discussed in Section
2.4 were considered.

For a given MU and known loading scenario,
M0

was used to train
the ANNs and

M1
to

M5
used to test them. The training and testing

data sets differed based on: (i) the presence of or absence of MUs; and
(ii) training load events differing from those used for testing. For a real-
world application, however, train loading configurations should be
known to calculate (i.e., it is calculated as the difference between
two for the same train event). For each MU and unknown loading
scenario,

M

d

i
was then adopted to impose damage. Testing was com-

pleted for
M

d

i
, which was directly calculated from deficient numerical

models. These training and testing data sets differed because: (i)

M

d

i
involved MUs used to train ANNs while

M

d

i
was used to test them;

and (ii) training train events loadings were different from testing loads.
A desktop computer having a multi-core architecture and a

Windows 7 64-bit operating system was used to perform ANN training.
The computer’s Central Processing Unit was an Intel Xeon E5-2630
2.4 GHz processor with 8 Cores, 32 GB DDR4 of RAM and a 20 MB
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Fig. 16. ANN testing with MU and known loading, DI 70% at DL 15, all testing events: (a) ; (b) ; (c) ; and (d) .

A. Rageh, et al. International Journal of Fatigue 134 (2020) 105458

12



Smart Cash. Training time was between 1050 and 1300 min for each
considered MU case.

4.5. Damage identification results

In this section, POD-ANN framework testing results are presented
and discussed. Testing was completed using a total of six train
“Loading” events that were not included in the ANN training process, as
mentioned earlier.

4.5.1. Training with MU and known loads
One of the most critical issues with any health monitoring system is

avoiding false alarms, which are an erroneous report of damage de-
tection. To ensure the developed method was robust against false
alarms, POMs for healthy scenarios subjected to testing train “loading
events” were used to test trained ANNs for a given MU. Fig. 14 shows
testing results when trained using MUs and known loads for healthy
scenarios. It plots ANN testing for healthy scenarios under selected
testing loading events for M1, M2, M4 and M5 where the likelihood of
false alarms is assumed to be low. It was observed that, for events as-
sociated with the six trains selected for ANN testing, the maximum
false-positive DI was approximately less than 0.1%, which was deemed
to be low when compared against the actual DI of 0%. These results
support the premise that the method would successfully detect damage
with the need for determining an acceptable threshold via long-term
monitoring.

To further evaluate the ability of the proposed methodology to de-
tect DL and DI for various MUs, ANN damage detection effectiveness at
instrumented locations was studied. Results of some of the damage

scenarios are described herein for the sake of brevity. DLs and DIs were
arbitrary with DLs of 3, 8, 13 and 18 chosen and DIs of 40, 60, 80 and
100% used for M1, M2, M4 and M5. Results from ANNs for all train
events are shown in Fig. 15. DIs and DLs were detected with reasonable
accuracy for the considered MU cases. However, false positives and
negatives were observed with varying magnitudes depending on the
levels of MU and DL. Results presented in Fig. 15 are summarized in
Table 2.

To illustrate the effect of MU level on DL and DI detection, another
comparison between MUs at DL 15 and a DI of 70% under all testing
loading events was completed as shown in Fig. 16. As demonstrated in
the figure, the accuracy of detecting DL and DI varies based on MU level
with both false-positives and negatives being observed. A summary of
the testing results are also shown in Fig. 16 are listed in Table 2.

4.5.2. Training with MU and unknown loads
Fig. 17 shows testing results for MUs, unknown loads and healthy

scenarios. It was observed that, for events associated with the six trains
selected for ANN testing, the maximum false-positive DI was approxi-
mately less than 3%, which was considered low given the actual DI of
0%. As discussed previously, these results supported that the method
would successfully detect damage with the need for determining an
acceptable threshold via long-term monitoring since similar observa-
tions were made in the previous testing results.

Fig. 18 shows another example of ANN testing for all included train
events and MUs for an unknown loading data set. As shown in the
figure, DIs and DLs were detected with acceptable accuracy for con-
sidered MU cases. Observed false positives and negatives had magni-
tudes that varied with the level of the MU and DL. Ttesting results
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shown in Fig. 18 are summarized in Table 3.
The influence of MU level on DL and DI detection is illustrated via

comparisons for DL 15 and a DI of 70% for all loading events shown in
Fig. 19. As shown in the figure, DL and DI detection accuracy vary
based on the MU level with false positives and negatives were observed.
Summarized results from Fig. 19 are listed in Table 3.

In this section, a numerical investigation was completed to identify
a robust damage feature that is largely independent of MU to help
generate damage scenarios from measured strains (

exp
). The identified

damage feature was
Mi

, which is the difference between healthy and
deficient POMs ( ). ANNs were trained and tested based

Mi
being the

damage feature for various MUs and known or unknown loadings.
Testing results showed that DL and DI were reasonably detected for
different MUs. However, false positives and negatives were observed
with magnitudes and locations that varied based on MU and DL. In

general, it can be concluded that MUs with stiffer stringer-to-floor beam
end fixity ratios tended to underestimate DIs while MUs cases with
more flexible stringer ends tended to overestimate the DI.

5. Field investigation

In this section, measured strains are used to develop exp
h considering

the studied bridge is currently in a healthy state (i.e., no observed
stringer-to-floor beam connection damage). As a result,

exp
h is depen-

dent on recorded strain signal magnitudes and durations, which are a
function of train load, length and speed. To reduce

exp
h variations as-

sociated with train crossing events, data preprocessing was completed
to ensure that snapshots used in exp

h calculations were of similar mag-
nitude and feature.

Since the identified damage feature
Mi

was shown to be in-
dependent of the MU level largely, a similar correlation was expected
between model

Mi
and field

exp
; meaning that both should be

close to one another. As a result,
Mi

were used to generate damage

scenarios as a function of exp
h so that training and testing ANNs using

damage scenarios developed from measured strains were possible. A
flowchart describing the field investigation procedures is shown in
Fig. 20.

5.1. Monitoring system and data collection

Stringer end strains were measured at instrumented locations de-
picted in Fig. 2 using 20 strain transducers manufactured by Bridge
Diagnostics Inc. (BDI). The strain transducer is a waterproof, full
Wheatstone bridge with 350 Ω resistance. Transducers are installed by
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Fig. 18. ANN testing with MU and unknown loading, all testing events: (a) DI 40% at DL 3 with ; (b) DI 60% at DL 8 with ; (c) DI 80% at DL 13 with and
(d) DI 100% at DL 18 with .

Table 3
MU and unknown load testing results.

Figure Subplot MU case Simulated DI
and DL

Detected DI at
simulated DL

False positive
and negative
DIs

Fig. 18 a M1 40% at DL 3 30–33% 3%
b M2 60% at DL 8 71–78% 12 and 15%,
c M4 80% at DL 13 84–89% 3 and 5%
d M5 100% at DL 18 73–75% 21 and 24%

Fig. 19 a M1 70% at DL 15 61–65% 7 and 10%
b M2 70% at DL 15 72–82% 6%
c M4 70% at DL 15 65–70% 17 and 16%
d M5 70% at DL 15 35–58% 26 and 15%
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preparing the surface of the material and applying adhesive. Strains
were recorded when a train crossed the bridge at a sampling rate of
50 Hz. Comparison of measured strain time histories with 50 Hz and
200 Hz sampling rate proved that there was not significant amount of
information lost when sampling at 50 Hz. A record event technique was
adopted by triggering the strain at ILs 8 and 13 to start recording once
their measured strain magnitudes exceeded the predefined value of ±
5µε. Event recording was set to record strains for a time-window of
4 min. Data preprocessing was completed without prior knowledge of
train loads, lengths, location, direction of travel or speed. As a result,
loads were non-stationary and unknown.

5.2. Data preprocessing and POM extraction

A total of 2951 train passage events were selected, with strains
being collected between June 30 and August 31, 2017. The selection of
data processing parameters such as strain magnitudes and signal length
was based on trial and error approach to minimize exp

h variations and
maximize the remained number of training trains. The first preproces-
sing step involved eliminating time steps before and after train passage.
The second step classified signals based on which track was loaded. This
yielded a total of 1471 out of the 2951 train events that crossed the
bridge on Track 2. Track 2 was the focus of this research work since the
bridge is symmetric about its longitudinal axis. More details about the
first two preprocessing steps can be found elsewhere [2].

The third step retained signals for similar trains for
exp
h calculations

to reduce loading configuration effects. To reduce exp
h variations re-

sulting from differing railroad car numbers and train loads, the first 15
strain peaks from a time-history were automatically selected using re-
corded strains at location 8 when Track 1 was loaded or location 13
when Track 2 loaded (see Fig. 2). Locations 13 and 18 were selected to
be at midspan of the bridge and represented both tracks. Midspan

locations were selected to reduce localized, support induced effects on
senros readings so that the selected signal time-window start, end and
duration would be the same for all sensors. Train events having strain
magnitudes greater than 71 µε and less than 95 µε at locations 8 or 13
were retained, which resulted in 195 and 490 train events for Track 1
and Track 2, respectively. The MATLAB findpeaks function was used to
select desired strain peaks within defined thresholds. The developed
code excluded the first eight peaks out of the 15 that were selected to
reduce additional transient variations from locomotive passage. Train
speed and axle spacing effects were reduced by selecting signals having
a number of time steps greater than 210 and less than 225, which
yielded 59 and 172 train events for Track 1 and Track 2, respectively.
The thresholds outlined above were determined using a trial and error
approach. Since the number of retained train events for Track 2 was
higher than those for Track 1, Track 2 results were rack 2 events pro-
vided a larger training set and were selected.

The fourth step ensured that the twenty stringer ends in Fig. 2 were
subjected to appreciable strains from selected trains. To do so, retained
Track 2 strain time-histories were sorted based on average RMS with
strain snapshots for RMSs between 44.5 and 47.0 selected having
minimal average RMS variation. After performing the fourth step, a
total of 100 train events out of the original 1471 events for Track 2 were
retained.

The progression of strain signal strain filtering steps at location 13
in Fig. 2 and resulting exp

h for Track 2 are shown in Fig. 21. Table 4
provides additional details.

It is observed that strains and exp
h for the retained train events show

close agreement. Averages of Track 2 strain snapshot matrices RMS
values after filtering out loading effects (172 trains events) are shown in
Fig. 22 with selected trains highlighted.

It is important to note that changing data processing parameters
would change the features and number of retained training and testing
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Fig. 19. ANNs testing with MU and unknown loading, DI 70% at DL 15, all testing events: (a) ; (b) ; (c) ; and (d) .
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trains. However, the same criteria should be used for data processing
when using the developed framework to assess bridge health. For other
bridges, new data processing parameters should be determined from
measured responses.

5.3. ANN training and testing data sets

As shown in Fig. 22, selected train IDs were from 62 to 161 with 90
used for ANN training and ten used for testing. Testing IDs were from

Fig. 20. Field investigation flowchart.
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112 to 121, with average RMS located in the middle of the selected
range. Imposing damage to the actual structure was not possible and, as
a result, exp

h was calculated for the 100 train event strain snapshot

matrices and used to develop estimated damage scenarios ( exp
d ) as a

function of
Mi

. It is important to reiterate that
Mi

could be assumed

to be very close to
exp

. Based on these findings,
exp
d was calculated as:

M
= +

exp
d

exp
d

exp
h

1 (19)

where
M1

was selected from considered MU cases because it was

shown that
M

h

1
was closer to

exp
h when compared against the other MU

cases as shown in Fig. 23. A set of example comparisons between exp
d

and exp
h as shown in Fig. 24 for DIs of 40, 60, 80 and 100% simulated at
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Fig. 21. Track 2 measured strain time-histories
exp
h values at location 13: (a and b) No filtering, 1471 train events; (c and d) railroad cars, overall length and load

magnitude filters applied, 490 events; (e and f) speed and axle spacing filters applied, 172 events; and (g and h) average RMS range filter applied, 100 events.

Table 4
Train event preprocessing summary.

Figure Number of train events Preprocessing steps

Fig. 21a-b 1471 Trains classified to Track 2
Fig. 21c-d 490 eliminating railroad car number, length and loading effects
Fig. 21e-f 172 eliminating train speed and axle spacing effects
Fig. 21g-h 100 Selected train events after sorting trains by RMS
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DL 3, 8, 13 and 18 for trains 61, 86, 111 and 136. The comparison
showed significant variation for simulated DLs in exp

d when compared

against exp
h , with minor variations being observed at other healthy DLs.

The figure also shows that the magnitude of the variation increase as DI
increases.

For the 100 train events included in ANN testing and training, a
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total of 22,000 damage scenarios were generated using
M1

, with
19,800 used for training the ANNs. CPU time used for training in-
creased to 4800 min.

5.4. Damage identification results

As mentioned earlier, trains 112 to 121 were arbitrarily selected to
validate ANN effectiveness. For the ten observed train events, false
positives were between 2 and 15%, which was considered low when
compared to the DI of 0%. See Fig. 25.

ANN testing for DIs of 40, 60, 80 and 100% at DL 3, 8, 13 and 18 are
shown in Fig. 26 for all selected events. DI and DL were detected with
acceptable accuracy for considered damage scenarios and testing
events; however, detected DI accuracy and the numbers of false

positives varied based on DL and DI. It was observed that false-positive
existence and magnitudes increased with lower DI and reduced as DI
increased. The results shown in Fig. 26 are summarized in Table 5.

In this section, a field investigation was completed that involved
preprocessing measured strains to reduce

exp
h variations associated with

variations in loading configurations, training, and testing the ANNs
with damage scenarios generated from exp

h and
M1

. The results
showed that DI and DL were detected with acceptable accuracy under
the included field loading events.

6. Conclusions

Stringer-to-floor beam connections are known to be fatigue prone
details in riveted, steel, railway bridges. Preemptively detecting po-
tential fatigue damage is of significant interest to railway bridge owners
to prevent future deficiencies that could lead to safety concerns and
traffic interruptions. SHM has been used by bridge owners to establish
structural health with researchers studying model-based and data-based
SHM frameworks to locate potential fatigue prone zones via detecting
changes in bridge behavior.

To advance SHM state-of-the-art associated with detecting and
characterizing potential fatigue prone locations on a double-track, steel,
riveted truss, railway bridge, an output-only, automated, damage
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Fig. 26. ANN field testing, all testing events: (a) DI 40% at DL 3; (b) DI 60% at DL 8; (c) DI 80% at DL 13; and (d) DI 100% at DL 18.

Table 5
Field testing results.

Figure Simulated DI and
DL

Detected DI at
simulated DL

False positive and
negative DIs

Fig. 26a 40% at DL 3 17–43% 32%
Fig. 26b 60% at DL 8 49–70% 11 and 15%
Fig. 26c 80% at DL 13 74–82% 12 and 10%
Fig. 26d 100% at DL 18 100–102% 10 and 13%
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detection framework based on recorded strains and using POD and
ANNs as previously proposed by the authors [1,2]. The current study
uses a hybrid experimental-numerical approach to improve the frame-
work further so that it can maintain damage detection accuracy in the
presence of modeling uncertainties. The numerical portion of the study
identified a damage feature, , that is largely independent of MU
level. While the identified feature was quite robust, it was observed that
damage detection accuracy reduced as the level of the assumed MU
increased.

The experimental portion of the study generated damage scenarios
based on

M1
to train ANNs under the passage of 90 train events over

an in-situ bridge whose strain response was measured. Developed ANNs
were tested under an additional ten train events. Acceptable DI and DL
detection was observed, with DI detection accuracy increasing as si-
mulated DI increased. The magnitude and existence of false positives
were also influenced by DI and DL, with a higher number and magni-
tudes of false positives observed for lower DIs.

It is important to note that, when MU is considered, and if mea-
suring train loadings and configurations are possible, should be used
to train and test the developed POD-ANN framework to improve its
damage detection accuracy. When measuring loading configuration is
challenging, exp

d (i.e., estimated damage scenario POMs based on field
measurements) should be used to train and test the framework with
lower damage detection accuracy being expected when compared
against the known loading scenario.

Ongoing work includes:

• Considering environmental variability to improve the framework
and further eliminate false alarms;

• Determining damage thresholds from statistical investigations; and

• Imposing damage scenarios on the studied bridge to evaluate the
correlation between numerical and experimental .
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