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Scattering dynamics are examined for Gaussian and non-Gaussian wave packets with identical momentum 
densities. Average arrival time delays, dwell times, and phase time delays are calculated for wave packets 
scattering from a square barrier, and it is shown that the non-Gaussian wave packets exhibit different 
average arrival time delays than the Gaussian wave packets. These differences result from the non-linear 
terms in the momentum wave function phase of the non-Gaussian wave packets, which alters the self-
interaction times of the wave packets. Control of the average arrival time delay can be achieved through 
adjustment of the momentum wave function phase, independent of wave packet energy and momentum 
density.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

What features of a quantum mechanical wave packet influence 
its interaction time with a localized potential and can a wave pack-
et’s arrival time at a given location be controlled? The answers to 
these questions have both fundamental importance, as well as ap-
plications in fields such as microscopy [1–3], attosecond science 
[4–6], materials science [7–9], and electronics [10,11]. The idea of 
interaction time relates closely to the concepts of traversal time 
and tunneling time, in which one is interested in the duration of 
time a particle spends in the interaction region and/or its arrival 
time at a given spatial location. For potential barriers, arrival of the 
particle beyond the interaction region may be a result of tunnel-
ing through the potential barrier or transmission over the potential 
barrier. Unfortunately, despite decades of investigations, there is no 
unique definition for a tunneling or arrival time because time is 
a parameter, not an observable, in quantum mechanics [12]. This 
has led to countless suggestions and definitions for calculating and 
measuring tunneling and arrival times [4,12–24].

For tunneling time, even the basic question of whether the 
tunneling process occurs instantaneously or over a finite time in-
terval has not yet been answered [4–6,15,25–28]. The question has 
been explored in the context of attosecond tunneling spectroscopy 
and attoclock experiments [4,6,26,29], as well as condensed mat-
ter applications [30,31]. Some experiments have yielded tunneling 
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times of zero [4,29,32], while others resulted in non-zero tunnel-
ing times [6,26]. Predictions of recent theoretical models are also 
mixed, with models such as the time-dependent Schrödinger equa-
tion and numerical attoclock simulations showing zero tunneling 
time [5,27,32–36], while earlier models predict non-zero tunneling 
times [12,18,37,38].

The interpretation of arrival times has also received its share of 
attention, especially with regards to what is known as the Hartman 
Effect. In 1962, Hartman showed that the transmission time for a 
tunneling Gaussian particle becomes independent of barrier width 
for wide barriers [38]. While this might seem to imply the possibil-
ity of superluminal velocity, there is no violation of causality and 
several explanations of the transmission time saturation have been 
proposed. These include wave packet reshaping, [38–42], satura-
tion of stored energy (photons) or integrated probability density 
(electrons) within the barrier [15,43,44], and interference effects 
[45–48].

In recent years, renewed interest in tunneling and arrival time 
has been spurred by technological developments and applications 
in areas such as electronics, imaging, and quantum information. 
Electronic devices such as Josephson junctions, tunnel diodes, and 
other nanoelectronic devices have electron tunneling at their core 
[2,8,9], where it is directly related to their functional speed. Fur-
ther miniaturization of these devises requires a thorough under-
standing of tunneling dynamics [9]. In imaging applications, elec-
tron microscopes are used to obtain detailed structural information 
about biological, molecular, and nanostructure samples. Enhance-
ments in microscope resolution require tunneling techniques, as 
do new methods that utilize electron wave function phase [2]. 
In the quantum information and quantum computing realm, the 
tunneling of Bose-Einstein condensates through optical lattices is 
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being explored [8], as is tunneling between quantum dots for use 
in computation and information storage [49]. Initial experiments 
show the possibility of controlling tunneling time in this environ-
ment [8].

In parallel with the recent interest in tunneling and arrival 
times has been the experimental generation of electron wave pack-
ets with non-Gaussian spatial profiles [1,50], such as electron Airy 
beams [1] and electron vortex beams [50,51]. These new spa-
tially structured electron wave packets have unique properties such 
as quantized orbital angular momentum, self-acceleration, self-
healing, and minimal dispersion [1,50,52]. Their proposed uses 
include the study of fundamental atomic properties [53–55], con-
trol and rotation of nanoparticles [53,54,56,57], and electron mi-
croscopy [53,58,59]. For example, super resolution and light sheet 
optical microscopy have become powerful tools that rely on the 
properties of spatially structured light beams to achieve resolution 
beyond the diffraction limit [60–62]. It is possible that spatially 
structured electron beams could lead to similar improvements in 
electron microscopy [2].

The experimental realization of spatially structured electron 
beams, combined with the fundamental importance and numerous 
applications of tunneling and arrival times, leads to the unique op-
portunity to combine these areas of study to directly examine how 
individual wave function properties affect interaction times. In par-
ticular, the comparison of scattering dynamics for carefully chosen 
Airy and Gaussian wave forms can provide insight into the ques-
tion of how wave function phase, spatial density, and momentum 
density influence arrival time, which in turn provides a test of the 
various arrival time definitions. Additionally, the investigation of 
non-Gaussian wave packet tunneling and transmission dynamics is 
useful for the proposed applications that rely on the use and con-
trol of these recently realized wave packets.

To date, most studies of tunneling and arrival time have been 
performed using Gaussian wave packets. In this case, any change to 
the spatial density of the wave packet also changes its momentum 
density, making direct study of how wave packet properties influ-
ence arrival time difficult. An Airy wave packet, on the other hand, 
has a Gaussian momentum density, but a non-Gaussian spatial 
density and can therefore be designed with a momentum density 
identical to that of a spatial Gaussian wave packet. This allows for 
direct comparison of the effect of spatial and momentum density 
on arrival time. In addition, Airy and Gaussian wave packets dif-
fer in momentum wave function phase, with the Gaussian wave 
function phase being linear, while the Airy wave function phase 
is cubic. Comparison of carefully designed Airy and Gaussian wave 
packets whose primary difference is momentum phase allows for 
direct study of the role of phase in arrival time.

Here, we use the average arrival time delay [13], phase time 
delay [18–20], and dwell time [14] to quantify the interaction time 
for both over-the-barrier scattering and tunneling. We show that 
the average arrival time delays and phase time delays of wave 
packets with identical momentum densities are not necessarily 
identical, and we determine under what conditions the arrival time 
of an Airy wave packet differs from that of a Gaussian wave packet 
with identical momentum density. We also show that the arrival 
time of a general non-Gaussian wave packet can be controlled 
through adjustment of the momentum wave function phase, in-
dependent of the incident wave packet’s energy or momentum 
density.

2. Theory

Consider the one-dimensional scattering of a wave packet with 
mean incident momentum �k0 from a square barrier of height V0
and width L, as shown in Fig. 1. During the collision, the wave 
packet undergoes reflection, transmission, and tunneling. Classi-
2

Fig. 1. Wave packet with mean momentum �k0 and mean position x0 incident on a 
square barrier potential with width L and height V0. Average arrival time is calcu-
lated at x′ .

cally, if the particle’s incident energy E is less than the barrier 
height, it can only be reflected. For classical transmission be-
yond the barrier region to occur, the particle’s energy needs to be 
greater than the barrier height. However, for quantum mechanical 
particles, transmission can occur even when the particle’s mean 
energy is less than the barrier height, resulting in a non-zero prob-
ability of finding the particle beyond the barrier region. Conversely, 
quantum mechanical wave packets with mean energy above the 
barrier height will experience some reflection from the barrier, re-
sulting in transmission probability less than 1.

Reflection and transmission coefficients can be used to quan-
tify the probability of finding the particle to the right or left of the 
barrier long after the scattering has occurred, and these asymptotic 
quantities provide information about the spatial and momentum 
features of the interaction. However, they do not provide informa-
tion about the time of interaction. To gain insight into the wave 
packets’ temporal interactions with the barrier, it is necessary to 
examine quantities that characterize the duration of the scattering 
process, which requires the calculation of time-dependent wave 
functions.

We calculate time-dependent spatial wave functions with our 
Path Integral Quantum Trajectory (PIQTr) model [63] in which an 
initial state wave function is propagated in time by iterating the 
equation

ψ (xb, tb) =
∞∫

−∞
K (xa, xb, ta, tb)ψ (xa, ta)dxa, (1)

for small time steps. The initial state wave function at position xa
and time ta is ψ (xa, ta). The propagator K (xa, xb, ta, tb) is written 
in terms of the classical action, and the result is the time-evolved 
wave function ψ (xb, tb) at position xb and time tb . To directly 
determine how wave packet properties, such as spatial density, 
wave function phase, and spatial and momentum uncertainty af-
fect interaction time, we compare three specific wave packets: the 
Gaussian, Airy, and inverted Airy wave packets.

2.1. Gaussian wave packets

The Gaussian wave packet is the most common localized wave 
packet used for the study of scattering and its spatial wave func-
tion is given by

ψG (x,0) = e−(x−x0)2/2σ 2

(
πσ 2

)1/4 eik0(x−x0), (2)

with standard deviation σ and initial mean position x0. It is the 
minimum uncertainty wave packet because it satisfies the lower 
bound of the uncertainty relation

�x�p ≥ �/2. (3)

For the Gaussian wave packet, the equality in Eq. (3) holds, and 
there is a one-to-one relationship between the spatial and mo-
mentum uncertainty. A larger spatial uncertainty always results in 
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a smaller momentum uncertainty and vice versa. The correspond-
ing Gaussian momentum wave function is itself a Gaussian

ϕG (p,0) = σ 1/2

π1/4
e−ipx0e−σ 2(p−k0)

2/2, (4)

with linear phase

φG = −px0. (5)

2.2. Airy wave packets

Recently, non-Gaussian localized wave packets have been ex-
perimentally generated using electrons [1,51,64,65]. One such wave 
packet is the truncated Airy wave function [1,66]

ψ A (x,0) = (8πα)1/4 e−α3/3Ai (x− x0) e
α(x−x0)eik0(x−x0), (6)

with truncation parameter α and Airy function Ai(x − x0). The 
Airy wave function without the truncation term is a solution to 
the free particle Schrödinger equation [52], but like its more com-
monly used plane wave counterpart, has infinite transverse extent 
and infinite energy. The truncation term in Eq. (6) yields a finite 
width wave packet with finite energy that is square normaliz-
able.

Airy wave functions have many unique properties, including 
self-acceleration, self-healing, and minimal spreading [1,52,66] and 
were first described by Berry and Balazs [52]. They showed that 
the ideal Airy wave function is non-dispersive and that its indi-
vidual lobes move along parabolic trajectories. However, the ex-
pectation value of the Airy’s position does not exhibit acceleration 
and therefore the wave packet’s mean position follows the same 
linear path as any other free particle. These unique properties gen-
erally persist for the truncated Airy wave packet, as well [1,66]. 
Self-acceleration of the individual lobes is observed, as is mini-
mal dispersion and self-healing. While these features are intrigu-
ing by themselves, we are primarily interested in the truncated 
Airy wave function’s Gaussian momentum density because it pro-
vides a straightforward means to directly study the role of position 
and momentum uncertainty, spatial and momentum density, and 
momentum wave function phase in scattering dynamics through 
comparison of Gaussian and Airy wave packets.

The Airy momentum wave function is given by

ϕ A (p,0) = (8πα)1/4√
2π

e−α(p−k0)
2
e−ipx0e

i

[ (
p−k0

)3
3 −α2(p−k0)

]
, (7)

with cubic phase

φA = φG +
[

(p − k0)
3

3
− α2 (p − k0)

]
. (8)

The modulus squared of Eq. (7) is clearly seen to be Gaussian, 
allowing for the standard deviation of the Gaussian wave packet 
and the truncation parameter of the Airy wave packet to be cho-
sen in such a way that their initial momentum densities |ϕ (p,0)|2
and momentum uncertainties �p will be identical (α = σ 2

2 ). How-
ever, their spatial densities |ψ (x,0)|2, position uncertainties �x, 
and momentum wave function phases φA,G will be different. For 
example, an Airy wave packet with α = 0.317 has the same mo-
mentum density and momentum uncertainty as a Gaussian wave 
packet with σ = 0.795, but a different spatial density, position un-
certainty, and momentum wave function phase (see Table 1 and 
Fig. 3).

Unlike the Gaussian wave packet, the Airy wave packet is not 
a minimum uncertainty wave packet and there is not a one-to-
one relationship between position and momentum uncertainty. For 
3

Fig. 2. Position and momentum uncertainties for the Gaussian, Airy, and inverted 
Airy wave packets as a function of standard deviation σ and truncation parameter 
α.

most values of α, a given position uncertainty leads to two differ-
ent momentum uncertainties, such that two Airy wave functions 
can be designed with identical position uncertainties �x, but dif-
ferent momentum uncertainties �p. For example, Airy wave pack-
ets with α = 0.317 and α = 1.5 have identical position uncertain-
ties but different momentum uncertainties, spatial densities, and 
momentum wave function phases. Fig. 2 shows the spatial and 
momentum uncertainties of the Gaussian and Airy wave packets 
as a function of the standard deviation and truncation parameter. 
For large values of α and σ , the position and momentum uncer-
tainties of the Airy and Gaussian wave packets become identical, 
however their momentum wave function phases and spatial densi-
ties remain different.

2.3. Inverted airy wave packets

Unlike the Gaussian wave function, the Airy wave packet’s spa-
tial density is not symmetric (see Fig. 3) and the spatial orientation 
of the wave packet relative to its momentum direction is physically 
important. An Airy wave packet with its largest peak to the right 
and momentum to the right behaves differently than an Airy wave 
packet with its largest peak to the left and momentum to the right. 
The latter case is a spatial reflection of the Airy wave packet and 
is referred to as the inverted Airy wave packet.

The inverted Airy momentum wave function is identical to that 
of the Airy wave function, except for a change in sign in the non-
Gaussian term of the phase

ϕ I A (p,0) = (8πα)1/4√
2π

e−α(p−k0)
2
e−ipx0e

−i

[ (
p−k0

)3
3 −α2(p−k0)

]
, (9)

with

φ I A = φG −
[

(p − k0)
3

3
− α2 (p − k0)

]
. (10)

Airy and inverted Airy wave functions with identical truncation 
parameters will always have the same spatial uncertainties, mo-
mentum uncertainties, and momentum densities, but different mo-
mentum wave function phases and spatial densities. Comparison of 
Airy and inverted Airy wave packet scattering can then be used to 
isolate the effects of momentum wave function phase and spatial 
density.
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Fig. 3. Spatial densities for the Gaussian (σ = 0.795), Airy (α = 0.317), and inverted 
Airy (α = 0.317) wave packets with x0 = 0 a.u. The Gaussian and Airy curves have 
been shifted above the x-axis for clarity.

2.4. Interaction time

Unfortunately, even the simple concept of when a particle ar-
rives at a given spatial location still has no universally accepted 
definition within quantum mechanics [4,12–23]. While such an ar-
rival time definition is straightforward for classical particles, quan-
tum particle characteristics such as tunneling, interference, uncer-
tainty, and dispersion complicate attempts to define a quantum 
mechanical arrival time. Many candidates are offered in the ex-
tensive literature that discusses the feasibility and applicability of 
such definitions [4,12–24], and we refer the interested reader to 
these more detailed analyses and references therein. Here, we have 
chosen three generally accepted quantities to characterize the in-
teraction time. They are the average arrival time delay [13], the 
average dwell time of the particle in the barrier region [14], and 
the group (or phase time) delay [18–20].

The average arrival time T (x′) is a local quantity that averages 
the spatial density at a location x′ over time to yield an average 
time that the particle arrives at x′ . It is given by [13]

T (x′) =
∞∫
0

dtt Px′(t), (11)

where Px′ (t) is the arrival time distribution

Px′ (t) =
∣∣ψ (

x′, t
)∣∣2∫ ∞

0 dt′ |ψ (x′, t′)|2 . (12)

Since we are interested in the duration of the interaction, the av-
erage arrival time delay between interacting and non-interacting 
particles can be used to quantify the interaction time. The average 
arrival time delay is defined as

�T i = T i
int − T i

free, (13)

where T i
int is the average arrival time of an interacting particle, 

T i
free is the average arrival time of an identical non-interacting 

free particle, and i = G, A, I A refers to either a Gaussian, Airy, or 
inverted Airy wave packet, respectively. A positive value of �T i in-
dicates that the interacting particle was impeded by the barrier, 
while a negative value indicates that the particle was accelerated 
by its interaction with the barrier.
4

The group delay, or phase time delay, can be found through an-
alytical analysis using the stationary phase approximation [18–20]. 
In this approximation, it is assumed that the phase of the momen-
tum wave function is stationary at each barrier edge x = 0 and 
x = L, and a time of arrival at these two points is used to quan-
tify the delay of the particle relative to an identical free particle. It 
is analogous to the average arrival time delay [13]. The phase time 
delays for the Airy �t Aζ and inverted Airy �t I Aζ wave packets have 
an additional term compared to the Gaussian phase time delay 
�tGζ such that their phase time delay either increases or decreases 
relative to the Gaussian wave packet (see Appendix A). They are 
given by

�t Aζ = �tGζ +m
(kT − k0)

2 − α2

�kT
(14)

for the Airy wave packet and

�t I Aζ = �tGζ −m
(kT − k0)

2 − α2

�kT
(15)

for the inverted Airy wave packet, where �tGζ is the Gaussian 
phase time delay time, �kT is the average momentum of the trans-
mitted wave packet, and m is the mass of the particle. The addi-
tional term in the phase time delay results from the non-linear 
terms in these wave packets’ momentum wave function phases. 
Physically, the phase time delay is a result of two independent 
contributions [15,67] – the dwell time τD and the self-interaction 
time τI

�tζ = τD + τI . (16)

The dwell time quantifies the total time a particle spends in the 
barrier region. It is a non-local quantity that averages the spatial 
density of the wave packet over the barrier region [14]

τD =
∞∫

−∞
dt

L∫
0

dx |ψ (x, t)|2 . (17)

The self-interaction time is a result of interference between the 
incident and reflected parts of the wave packets in the region to 
the left of the barrier and can be found by subtracting the dwell 
time from the phase time delay.

3. Results

3.1. Wide barrier

We begin with the specific case of Gaussian, Airy, and inverted 
Airy wave packets scattering from a barrier of height V0 = 50 a.u. 
and width w = 1 a.u. The wave packets are chosen such that they 
have identical momentum densities, but different spatial densities, 
position uncertainties, and momentum wave function phases. They 
are labeled as wave packets 1-3 in Table 1, which lists their posi-
tion and momentum uncertainties and average arrival time delays. 
The initial mean position of the wave packets is x0 = −15 a.u. and 
the initial mean momentum is �k0 = 7.75 a.u. The average arrival 
time delays are calculated at x′ = 1 a.u., which is the right edge 
of the barrier, and x′ = 20 a.u., which is sufficiently far from the 
barrier that the scattering process has been completed. The av-
erage arrival time delays at x′ = 1 a.u. show that the Gaussian 
and inverted Airy wave packets are accelerated by their interac-
tion with the barrier relative to an identical non-interacting free 
particle, which results in negative average arrival time delays. In 
contrast, the Airy wave packet is delayed by its interaction with 
the barrier. However, at the asymptotic location of x′ = 20 a.u., all 
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Table 1
Position and momentum uncertainties and average arrival time delays for the wave packets discussed in 
the text and figures. Average arrival time delays are calculated for x′ = 1 a.u., x′ = 20 a.u., x0 = −15 a.u., 
V0 = 50 a.u., �k0 = 7.75 a.u., and w = 1 a.u.

(1) (2) (3) (4) (5) (6)
Inverted Airy Gaussian Airy Inverted Airy Gaussian Airy
α = 0.317 σ = 0.795 α = 0.317 α = 1.5 σ = 1.76 α = 1.5

�x 1.25 0.56 1.25 1.25 1.25 1.25
�p 0.89 0.89 0.89 0.4 0.4 0.4
�T (x′ = 1) −0.8 −0.3 0.3 −0.2 −0.2 −0.2
�T (x′ = 20) −1.4 −0.9 −0.3 −0.3 −0.3 −0.3
three wave packets arrive before their free particle counterparts. 
This is due to an increase in the mean momentum of the trans-
mitted wave packet relative to the mean incident momentum, as 
discussed below.

Clearly, the average arrival time delays are different for wave 
packets 1-3, and we note that regardless of which position is used, 
the relative average arrival time delays between the wave pack-
ets are unchanged. The inverted Airy wave packet has the small-
est average arrival time delay, indicating that its interaction time 
with the barrier is shortest and it arrives at x′ earliest. The Airy 
wave packet has the largest average arrival time delay and inter-
action time with the barrier and therefore arrives at x′ latest. The 
Gaussian wave packet’s average arrival time delay lies in between 
the Airy and inverted Airy wave packets’ average arrival time de-
lays. Additional evidence of the variation in average arrival time 
delays can be observed in the time-dependent position and mo-
mentum densities, as well as the arrival time distributions shown 
in Fig. 4.

The arrival time distributions Px′(t) (row 1) for wave packets 
1-3 show signatures of the different average arrival times between 
the three wave packets, with the peaks of the inverted Airy wave 
packet distributions located at earlier times than the Gaussian and 
Airy wave packet distributions. This separation of the distributions 
leads to the quantifiable differences in average arrival time delays 
shown in Table 1. The shapes of the arrival time distributions are 
a result of the different spatial density profiles of the transmit-
ted wave packets, which are altered from the incident wave packet 
densities due to the scattering process.

The time-dependent spatial densities for wave packets 1-3 are 
shown in row 2 of Fig. 4, where the inverted Airy wave packet 
is observed to arrive at x′ = 1 a.u. and x′ = 20 a.u. before the 
Gaussian wave packet, while the Airy wave packet arrives after the 
Gaussian wave packet. Because Fig. 4 and Table 1 show clear dif-
ferences in average arrival time delays between wave packets with 
identical momentum densities, we conclude that a wave packet 
characteristic(s) other than momentum density determines the in-
teraction time. The remaining differences between the wave pack-
ets are the spatial densities, position uncertainties, and momentum 
wave function phases, and a pair-wise comparison of wave packet 
scattering dynamics can be used to identify which of these charac-
teristics causes the average arrival time delays to be different.

The Airy and inverted Airy wave packets have identical position 
uncertainties, but different average arrival time delays, eliminating 
position uncertainty as the source of the differences in average ar-
rival time delays. Therefore, either the momentum wave function 
phase or the spatial density profile must cause the difference in 
average arrival time delays. These two characteristics of the wave 
functions are inextricably linked, and their effects cannot be in-
dividually isolated. A change in momentum wave function phase 
always results in a change in spatial density and vice versa, and so 
we conclude that both the momentum wave function phase and 
spatial density profile control the interaction time.

Some insight into the role of these two features can be found 
by examining the phase time delay for the different wave packets, 
5

which is analogous to the average arrival time delay at the right 
edge of the barrier [13]. Equations (14) and (15) predict that the 
Airy (inverted Airy) will arrive after (before) the Gaussian wave 
packet with a difference in phase time delays of ±m (kT −k0)

2−α2

�kT
. 

Using the mean transmitted momentum value from the numerical 
simulations (kT = 10.4 a.u. for wave packets 1-3) yields a predicted 
difference in phase time delays of +0.7 a.u. between the Gaussian 
and Airy/inverted Airy wave packets. These values are similar to 
the numerical results found in the simulation and shown in Ta-
ble 1, confirming the relationship between average arrival time 
delay and phase time delay and demonstrating that the momen-
tum wave function phase is the source of the time delay differ-
ences between the wave packets. If conditions are such that the 
non-Gaussian term in the phase time delay is negligible, then no 
difference in average arrival time delays will be observed, despite 
the differences in momentum wave function phase.

The clear influence of the momentum wave function phase on 
the average arrival time delay does not provide any information 
regarding the role of spatial density on the interaction time. To 
understand the effect of spatial density profile, it is necessary to 
examine the dwell times and self-interaction times of the different 
wave packets. Recall from Section 2.4 that the phase time delay 
can be written as the sum of the dwell time and self-interaction 
time. Therefore, the increased (decreased) interaction time with 
the barrier for the Airy (inverted Airy) wave packet relative to the 
Gaussian wave packet must be due to either or both of these com-
ponents. Using Eq. (17), we calculated the dwell times for wave 
packets 1-3 and found them to be identical with τD = 0.03 a.u.,
which is at least an order of magnitude smaller than the magni-
tude of the average arrival time delays. This makes the effect of 
the dwell time on the average arrival time delay negligible and 
implies that the average arrival time delay is largely determined 
by the self-interaction time, which therefore must differ by wave 
packet type. The self-interaction time is a result of interference 
between the incident and reflected parts of the wave packet, and 
insight into its variation with wave packet type can be found from 
the time-dependent momentum density plots in row 3 of Fig. 4.

They show that the reflected part of the wave packet appears 
earliest for the inverted Airy wave packet, followed by the Gaus-
sian and Airy wave packets. This is because the tail of the inverted 
Airy wave packet has significant non-zero density well to the right 
of the average position of the wave packet and it begins interacting 
with the barrier earlier than the leading edge of the Gaussian or 
Airy wave packets. Therefore, the reflection process begins first for 
the inverted Airy wave packet and last for the Airy wave packet. 
The momentum density plots also show that the small, positive 
momentum components persist for less time for the inverted Airy 
wave packet than for the Gaussian or Airy wave packets. This im-
plies that for the inverted Airy wave packet, these components 
spend less time interacting with the barrier.

Additional information about the complementary roles of the 
spatial density and momentum wave function phase can be found 
through comparison of wave packets with very similar spatial den-
sities, but different momentum wave function phases. Three such 
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Fig. 4. Row 1 – arrival time distributions at x′ = 1 a.u. and x′ = 20 a.u. for inverted Airy, Gaussian, and Airy wave packets interacting with a square barrier of height 
V0 = 50 a.u. and width w = 1 a.u. The mean incident momentum is �k0 = 7.75 a.u. and initial mean position is x0 = −15 a.u. Rows 2 and 3 – time-dependent position 
and momentum densities for the same wave packets. The color bar corresponds to the densities |ψ (x, t)|2 (row 2) and |ϕ (p, t)|2 (row 3). Row 2 insets – initial wave packet 
spatial densities. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
wave packets are listed as wave packets 4-6 in Table 1 and shown 
in Fig. 5. These wave packets have identical spatial uncertainties, 
identical momentum densities, and nearly identical spatial densi-
ties, but different momentum wave function phases. Table 1 shows 
that the average arrival time delays for wave packets 4-6 are equal 
at x′ = 1 a.u. and x′ = 20 a.u. Calculation of their dwell times 
also results in identical values (τD = 0.02 a.u.), and therefore, their 
self-interaction times must be identical. This confirms that while 
the momentum wave function phase is the source of the different 
interaction times, the wave packets must also have significantly 
different spatial densities in order to exhibit differences in interac-
tion times.

Lastly, for the wide barrier, we investigate the cause of the 
negative average arrival time delays. The acceleration of a wave 
packet due to its interaction with the barrier can be a result of 
two possible scattering mechanisms: tunneling or over-the-barrier 
scattering. It is well-known that tunneling wave packets arrive 
6

before their identical non-interacting counterparts [13,15,38,68], 
however in this case, the large barrier width suppresses tunneling. 
This is confirmed by the presence of only momentum components 
corresponding to energies above the barrier in the transmitted 
wave packet and is observable in the momentum density plots of 
Fig. 4. Momentum values greater than 10 a.u. correspond to en-
ergies above the barrier height and are the primary components 
in the transmitted wave packets. Therefore, the negative average 
arrival time delays are due to the over-the-barrier scattering and 
not tunneling. The transmitted wave packets also each exhibit an 
increased average velocity (inverse slope, �kT = 10.4 a.u.) relative 
to the incident velocity (green line, �k0 = 7.75 a.u.), as seen by 
the change in slope of the transmitted wave packet trajectory in 
the spatial density plots. This is another indication that the large 
momentum components of the wave packet are the dominant con-
tribution to transmission. The barrier effectively acts as a filter, 
allowing only the large momentum components to be transmitted.
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Fig. 5. Spatial densities for wave packets 4-6 with x0 = 0 a.u.

3.2. Narrow barrier

As shown above, the interaction times of the Airy, Gaussian, 
and inverted Airy wave packets differed due to their momentum 
wave function phases and spatial densities, but this was for one 
particular case when transmission was caused by over the barrier 
components of momentum and the contribution of tunneling to 
transmission was negligible. To determine if differences in inter-
action times exist for tunneling wave packets, we calculate time-
dependent wave functions and interaction times for wave packets 
1-3 with the same kinematics scattering from a narrow barrier 
with w = 0.2 a.u. Fig. 6 shows time dependent spatial (row 2) and 
momentum (row 3) densities and arrival time distributions (row 
1) for wave packets 1-3 scattering from the narrow barrier.

The momentum densities show that for the tunneling wave 
packets, a larger range of momentum components are transmit-
ted through the barrier with an average transmitted momentum of 
�kT = 8 a.u. for all three wave packets. While the tunneling wave 
packets’ transmitted momenta are now more similar to the inci-
dent momentum, they are still larger, and therefore the tunneled 
wave packets arrive at x′ = 20 a.u. before their free particle coun-
terparts with negative average arrival time delays. The wider range 
of transmitted momentum values and the lower mean transmit-
ted momentum are a result of more below-the-barrier momentum 
components tunneling through the barrier and contributing to the 
transmitted momentum. The similarity of transmitted and incident 
momentum values is also observed in the spatial densities of Fig. 6
that show the slopes (inverse velocity) of the transmitted wave 
packet trajectories are similar to the slopes of the incident wave 
packets (green lines). The momentum density plots also show that 
as in the case of the wide barrier, the reflected part of the wave 
packet appears earliest for the inverted Airy wave packet, followed 
by the Gaussian and Airy wave packets. This is expected because 
this feature is caused by the spatial profile of the wave packets and 
should be independent of barrier width.

Unlike the arrival time distributions for the wide barrier, the 
arrival time distributions for the narrow barrier are overlapping 
and result in identical average arrival time delays that are close 
to zero (�T

(
x′ = 0.2

) = −0.01, �T (x = −20) = −0.03 a.u.). Cal-
7

culation of the dwell times for the tunneling wave packets again 
yields identical values of τD = 0.02 a.u. for each of the wave pack-
ets, which results in identical self-interaction times. At first glance, 
this seems contradictory to the results for scattering from the wide 
barrier, where the wave packets’ spatial densities caused differ-
ent self-interaction times and average arrival time delays. However, 
no contradiction exists because the spatial density profile only in-
fluences arrival times when the non-Gaussian term in the phase 
time delays of Eqs. (14) and (15) is significantly non-zero. In the 
case of tunneling wave packets, the similarity of the mean trans-
mitted momentum and the mean incident momentum results in 
the non-Gaussian term in the phase time delays being negligible. 
Therefore, no difference in average arrival time delay is observed 
and consequently, there is no difference in self-interaction times. 
In this case, the spatial density of the wave packet is unimportant 
because the difference in phases does not lead to a difference in 
arrival times.

3.3. Conditions for average arrival time delay differences

The results presented above were for wave packets with mean 
incident energy below the barrier height, and it is important to 
know how the interaction times change with incident energy. To 
this end, we calculate average arrival time delays, phase time de-
lays, and dwell times as a function of incident momentum in three 
situations: (a) wave packets 1-3 scattering from the wide barrier, 
(b) wave packets 1-3 scattering from the narrow barrier, and (c) 
wave packets 4-6 scattering from the wide barrier.

In case (a), the wave packets have identical momentum den-
sities but very different spatial densities and momentum wave 
function phases. Because the wide barrier is used, transmission is 
dominated by over-the-barrier momentum components and tun-
neling is negligible. Fig. 7a and 7b show the average arrival time 
delays for case (a) as a function of incident energy. Generally, for 
wave packets with energies below the barrier height, the average 
arrival time delays are negative, while wave packets with energies 
above the barrier height have positive average arrival time delays. 
The one exception is the Airy wave packet average arrival time de-
lay at the right edge of the barrier, which is positive for all incident 
energies. In this case, the Airy wave packet always arrives after its 
free particle counterpart, which is likely a result of the extended 
tail of the incident Airy wave packet to the left of its mean posi-
tion.

The negative average arrival time delays for mean incident en-
ergy below threshold are expected because below-the-barrier scat-
tering preferentially selects large momentum components from the 
incident wave packet resulting in the advance of an interacting 
wave packet relative to a free particle [13]. Wave packets with en-
ergies above the barrier will experience a reduced velocity in the 
barrier region, leading to positive average arrival time delays. The 
average arrival time delays of the wave packets are most different 
at low energy, with the Airy (inverted Airy) wave packet having 
the least (most) negative average arrival time delay. Further details 
on the differences in average arrival time delays can be observed 
in Fig. 7c, which shows the relative average arrival time delays 
(�T G − �T A,I A ) and relative phase time delays (�tGζ − �t A,I A

ζ ) of 
the Airy and inverted Airy wave packets compared to the Gaussian 
wave packet. As incident energy increases, the mean transmitted 
momentum approaches the mean incident momentum, and the 
relative time delays go to zero, such that all three wave pack-
ets have identical interaction times. The dependence of the rela-
tive time delays on transmitted momentum is expected from the 
phase time delays of Eqs. (14) and (15) and is consistent with the 
special cases examined above. Only when the mean transmitted 
momentum differs from the mean incident momentum does the 
non-Gaussian term in the phase time delay result in non-zero rel-
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Fig. 6. Same as Fig. 4, but for a barrier width of w = 0.2 a.u.
ative average arrival time delays. The relative average arrival time 
delay curves in Fig. 7c are approximately symmetric about zero, 
indicating that any advancement of the inverted Airy wave packet 
relative the Gaussian wave packet is nearly identical to the lag ex-
perienced by the Airy wave packet. Again, this is consistent with 
the predictions of Eqs. (14) and (15).

The dwell times for wave packets 1-3 are identical at each en-
ergy and shown as a function of incident energy in Fig. 8. For case 
(a), the dwell time is a maximum for E

V0
= 1.2, where it is of sim-

ilar magnitude to the average arrival time delay. Near threshold, 
the dwell time is the dominant contribution to the time delays 
and the self-interaction time is negligible. This is caused by re-
duced reflection probability for wave packets with larger incident 
energies, resulting in reduced interference between the incident 
and reflected parts of the wave packet. For wave packets with 
mean incident energies below the barrier height, the opposite is 
true. The dwell time is negligible and the self-interaction time is 
the dominant contribution to the time delays due to the increased 
probability of reflection that increases interference between the in-
cident and reflected parts of the wave packet.
8

For case (b), we performed calculations of average arrival time 
delays, phase time delays, and dwell times for wave packets 1-3 
scattering from the narrow barrier while varying the incident mo-
mentum (7 a.u. ≤ �k0 ≤ 13 a.u.). In these cases, tunneling is the 
dominant transmission mechanism and the average arrival time 
delays are close to zero (

∣∣�T (x′ = 1)
∣∣ < 0.02 a.u., 

∣∣�T (x′ = 20)
∣∣ <

0.05 a.u.). The ratio of the mean transmitted momentum to mean 
incident momentum is between 1 and 1.05 for all incident en-
ergies, which results in relative average arrival time delays and 
relative phase time delays also near zero. The dwell times for 
wave packets 1-3 were again identical at each incident energy 
and, as shown in Fig. 8, exhibit a similar energy dependence as 
those of the wide barrier, except that they are an order of magni-
tude smaller. This again results in dwell time being the dominant 
contribution to average arrival time delays for wave packets with 
incident energies near threshold, but an insignificant contribution 
at low incident energies. Consequently, the self-interaction time 
is most important at low energies where more reflection occurs, 
however, it is independent of wave packet type due to the non-
Gaussian term in the phase time delays being negligible.



JID:PLA AID:127038 /DIS Doctopic: Quantum physics [m5G; v1.297] P.9 (1-12)

T.A. Saxton and A.L. Harris Physics Letters A ••• (••••) ••••••
Fig. 7. (a) Average arrival time delays for wave packets 1-3 at x′ = 1 a.u. as a func-
tion of incident energy E relative to barrier height V0. The barrier width is w = 1
a.u. (b) Same as (a), but at x′ = 20 a.u. (c) Relative average arrival time delays (lines) 
and relative phase time delays (points) of the Airy and inverted Airy wave packets 
as a function of incident energy. The top horizontal axis shows transmitted wave 
packet mean momentum �kT relative to mean incident momentum �k0.

Fig. 8. Dwell time as a function of incident energy for wave packets 1-3 interacting 
with barriers of width w = 0.2 and w = 1 a.u.

For case (c), we performed calculations for wave packets 4-6 
scattering from the wide barrier with incident momentum 7 a.u. ≤
�k0 ≤ 13 a.u. As in case (a), transmission here is largely due to 
over-the-barrier momentum components. However, unlike case (a), 
wave packets 4-6 have very similar spatial profiles, differing pri-
marily only in momentum wave function phase. Based on the re-
sults above, we expect that the average arrival time delays will be 
similar in magnitude to those in case (a) and that if the ratio of 
mean transmitted momentum to mean incident momentum is ap-
proximately unity, the average arrival time delays will be identical 
for wave packets 4-6. This is exactly what is observed. The ratios 
of kT /k0 are between 1 and 1.09, leading to identical average ar-
rival time delays at x′ = 20 a.u. between −0.3 (E/V0 = 0.5) and 
0.25 (E/V0 = 1.1). The dwell times for wave packets 4-6 are also 
identical at each energy, closely resembling those in case (a). This 
again leads to the dwell time being the dominant contribution to 
time delays for wave packets with energies near threshold, while 
the self-interaction time is dominant for wave packets with ener-
gies below threshold.
9

Overall, cases (a)–(c) confirm that when the mean transmit-
ted momentum is significantly different than the mean incident 
momentum, the non-linear terms in the momentum wave func-
tion phase lead to arrival times that are different from those of a 
Gaussian wave packet. The relative delay or advance of the non-
Gaussian wave packet is caused by its altered self-interaction time 
that results from the wave packet’s non-Gaussian spatial density 
profile. Differences in average arrival time delays are predomi-
nantly observed for wide barriers where transmission is dominated 
by over-the-barrier momentum components. For narrow barriers, 
where tunneling is the dominant transmission mechanism, no dif-
ferences in average arrival time delays are observed.

The influence of the wave packet spatial profile and momentum 
wave function phase on the average arrival time delay provides a 
means for temporal control of wave packets with identical ener-
gies and momentum densities. This control is only possible with 
wave packets having non-linear momentum wave function phases, 
and in the next section, we demonstrate how such control may be 
achieved.

3.4. Controlling arrival time

The Airy and inverted Airy wave packets are two special cases 
of wave packets with cubic phases. To demonstrate the possibility 
of controlling average arrival time, we introduce a more general 
momentum wave function with a cubic phase containing an ad-
justable parameter b

ϕC (p,0) =
√

σ

π1/4
e−σ 2(p−k0)

2/2e−ipx0eib(p−k0)
3
, (18)

where σ is the standard deviation of the Gaussian wave packet. 
The inverse Fourier transform of this wave function yields an ini-
tial state spatial wave function (see Fig. 9) that can then be time 
evolved to study scattering dynamics and interaction times, as 
above. The stationary phase approximation predicts that the rel-
ative phase time delay between a Gaussian wave function and the 
wave function in Eq. (18) will be − 3b(kT −k0)

2

�kT
, which varies linearly 

with b. This implies that control of arrival time can be achieved by 
alteration of the cubic parameter b, independent of wave packet 
energy and momentum density.

In Fig. 9 we show results from our numerical simulations and 
the stationary phase approximation for the relative average arrival 
time delay between the wave packet of Eq. (18) and a Gaussian 
wave packet as a function of b. Both wave packets have identical 
momentum densities with mean incident momentum �k0 = 7.75
a.u. and mean incident position x0 = −15 a.u. The barrier width 
is w = 1 a.u. and barrier height is V0 = 50 a.u. As predicted by 
the stationary phase approximation, Fig. 9 shows that the relative 
average arrival time delay of the numerical calculations varies lin-
early with b and confirms that the arrival time of a wave packet 
can be controlled through adjustment of this parameter. We note 
that the spatial wave function corresponding the momentum wave 
function of Eq. (18) resembles the Airy (positive b) or inverted Airy 
(negative b) wave packet with multiple peaks and larger spatial 
uncertainty than a Gaussian with identical momentum density. As 
b increases, the spatial uncertainty increases, resulting in a larger 
self-interaction time that in turn leads to a larger relative average 
arrival time delay.

Greater control over wave packet arrival time can be achieved 
through additional terms in the momentum wave function phase. 
For example, quadratic or linear terms could be included with in-
dependent parameters that provide further means of control. It is 
also possible to use polynomials higher than third order in the 
momentum wave function phase, which will yield more control 
parameters, each of which could be adjusted to provide the de-
sired arrival time.
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Fig. 9. Top – initial wave packet spatial densities for the momentum wave func-
tion of Eq. (18). Bottom – relative average arrival time delays (red dashed line) and 
relative phase time delays (points) for the wave packet of Eq. (18). Mean incident 
energy is �k0 = 7.75 a.u., mean initial position is x0 = −15 a.u., barrier width is 
w = 1 a.u., and barrier height is V0 = 50 a.u.

The influence of wave packet phase on average arrival time de-
lay raises the question of whether the Hartman effect is present for 
non-Gaussian wave packets. For Gaussian wave packets, Hartman 
showed that the transmission time became independent of barrier 
width for wide barriers. By definition, the Hartman effect is based 
on the transmission time as defined by the phase time or group 
delay [38]. For non-Gaussian wave packets, we have shown that 
the phase time is simply the Gaussian phase time plus additional 
terms due to the non-linear parts the phase (see Eqs. (A.14) and 
(A.15)). These additional terms are independent of barrier width, 
leaving only the Gaussian term to vary with barrier width. There-
fore, the Hartman effect is present for non-Gaussian wave packets 
(including the Airy and inverted Airy wave packets) and will have 
an identical functional dependence on barrier width, but a dif-
ferent asymptotic value of the saturated phase time due to the 
non-linear phase terms.

4. Conclusion

We have examined time-dependent scattering of non-Gaussian 
wave packets from one-dimensional square barrier potentials. We 
used average arrival time delay, phase time delay, and dwell time 
to quantify the wave packet’s interaction time with the barrier. 
By comparing wave packets with identical momentum densities, 
we showed that the average arrival time delays of the transmit-
ted wave packets are controlled by the momentum wave func-
tion phase. Under certain conditions, non-Gaussian wave packets 
exhibit different average arrival time delays than their Gaussian 
10
counterparts. When the mean transmitted momentum is signif-
icantly different than the mean incident momentum, the phase 
time delay of a non-Gaussian wave packet is shifted from that of a 
Gaussian wave packet due to the non-linear terms in its momen-
tum wave function phase. Differences in the average arrival time 
delays are primarily observed for wave packets scattering from 
wide barriers, where transmission of over-the-barrier momentum 
components is the primary scattering mechanism. At low energies, 
the probability of reflection increases, which leads to an increased 
self-interaction time that becomes the dominant contribution to 
the time delay. The different spatial density profiles for Gaussian 
and non-Gaussian wave packets cause the self-interaction times to 
vary by wave packet type.

We have also demonstrated that the arrival time of a wave 
packet can be controlled by adjustment of the momentum wave 
function phase. Such control is only possible with non-Gaussian 
wave packets and numerical and analytical calculations for a wave 
function with an arbitrary cubic phase showed that the relative 
average arrival time delay was linearly dependent on the cubic 
term’s coefficient, as predicted by the relative phase time delay. 
Thus, wave packets with identical incident energies and momen-
tum densities can be designed to arrive on the far side of the 
barrier at differing and controllable times.

As interest in spatially structured electron beams grows, so too 
will the need to understand their dynamical properties. The differ-
ence in interaction times between the Gaussian and non-Gaussian 
wave packets shown here adds to the list of unique features ex-
hibited by these wave packets and may open the door to new 
applications. Current experimental techniques allow for measure-
ments on the timescales of a few attoseconds, making the relative 
average arrival time delays predicted here large enough to be mea-
sured. Thus, an experiment comparing average arrival time delays 
of Airy and Gaussian wave packets could provide insight into the 
validity of the various arrival time definitions.
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Appendix A

We are interested in calculating the phase time delays of Airy, 
inverted Airy, and Gaussian wave packets using the stationary 
phase approximation. Following the derivation of [20], a time-
evolved wave packet initially centered at x = x0 may be written 
as

ψ (x, t) = 1√
2π

∞∫
−∞

φ (p,0)up(x)e
−i �p2

2m tdp (A.1)

where φ(p, 0) is the initial momentum wave function and up(x)
is an energy eigenstate with momentum p. For the transmitted 
wave packet to the right of the barrier, the energy eigenstate can 
be written as

up (x) = Ceipx, (A.2)
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where C = − e−ρL2i sin2θ
R e−ipLe−iβ and |C |2 is the transmission co-

efficient. The quantities ρ, R, θ , and β are expressed in terms of 
p and incident wave number k0

ρ2 = k20 − p2 (A.3)

cos θ = p

k0
(A.4)

sin θ = ρ

k0
(A.5)

Re−iβ = e2iθe−2ρL − e−2iθ (A.6)

R =
√
1+ e−4ρL − 2e−2ρL cos4θ (A.7)

tanβ = cothρL tan2θ. (A.8)

Inserting the momentum wave function for the Gaussian wave 
packet of Eq. (4) into Eq. (A.1) yields

ψG (x, t) = −1√
2π

∞∫
−∞

σ
1
2

π1/4
e−ipx0e−σ 2(p−k0)

2/2

× e−2ρL2i sin2θ

R
e−ipLe−iβeipxe−i �p2

2m tdp. (A.9)

By assuming that the phase f of the wave packet in Eq. (A.9) is 
stationary at the right edge of the barrier (x = L), an equation of 
motion can be found that yields a time of arrival at the right edge 
of the barrier, i.e.

df

dp

∣∣∣∣
kT

= 0, (A.10)

where �kT is the mean momentum of the transmitted wave 
packet. For the Gaussian wave packet, the phase is

f = p (x− x0 − L) − π

2
− β − �p2t

2m
(A.11)

and the corresponding equation of motion is

x = x0 + L + dβ

dp

∣∣∣∣
kT

+ �kT t

m
. (A.12)

Setting x = L and solving for t gives

tGL =
−m

(
x0 + dβ

dp

∣∣∣
kT

)
�kT

. (A.13)

Similar derivations for the Airy and inverted Airy wave packets 
yield

t AL =
m

[
−x0 − dβ

dp

∣∣∣
kT

+ (kT − k0)
2 − α2

]
�kT

= tGL +
m

[
(kT − k0)

2 − α2
]

�kT
(A.14)

and

t I AL =
m

[
−x0 − dβ

dp

∣∣∣
kT

− (kT − k0)
2 + α2

]
�kT

= tGL −
m

[
(kT − k0)

2 − α2
]

�kT
. (A.15)

These are the stationary phase times for wave packet arrival at the 
right edge of the barrier. The corresponding phase time delays can 
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be found by subtracting the non-interacting wave packet arrival 
time at x = L from the scattered wave packet arrival time

�tiζ = tiL − m (L − x0)

�k0
, (A.16)

where i = G, A, I A for Gaussian, Airy, and inverted Airy wave pack-
ets. Using Eqs. (A.13)-(A.16), the phase time delays can be written 
as in Eqs. (14) and (15)

�t Aζ = �tGζ +m
(kT − k0)

2 − α2

�kT
(A.17)

�t I Aζ = �tGζ −m
(kT − k0)

2 − α2

�kT
. (A.18)
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