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Abstract
The realization of electron vortex (EV) beams in the past decade has led to numerous proposed
applications in fields from electron microscopy to control and manipulation of individual
molecules. Yet despite the many unique characteristics and promising advantages of EV
beams, such as transverse momentum and quantized orbital angular momentum, there remains
a limited understanding of their fundamental interactions with matter at the atomic scale.
Collisions between EV projectiles and atomic targets can provide some insight into these
interactions and we present here fully differential cross sections (FDCS) for ionization of
excited state atomic hydrogen targets using EV projectiles. We show that the projectile’s
transverse momentum causes the ionized electron angular distributions to be altered compared
to non-vortex projectiles and that the ionized electron’s ejection angle can be controlled by
adjustment of the vortex opening angle, a feature unique to vortex projectiles. Additionally, an
inherent uncertainty in the projectile’s momentum transfer leads to a broadening of the
classical binary peak, making signatures of the target electron density more readily observable.
FDCS for aligned 2p targets exhibit structures can be used to determine the alignment.
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1. Introduction

For many decades, fundamental discoveries about the struc-
ture of atoms and molecules have been made through the
field of charged particle collisions [1]. These studies have
provided an invaluable amount of information about elec-
tron charge cloud distributions and Coulomb interactions in
few-body systems. Despite their long history, atomic colli-
sions are still providing new insights, and even surprises,
thanks to improved theoretical methods and advanced experi-
mental technologies. In recent years, the COLTRIMS exper-
imental technique has driven advancements by providing
unprecedented detailed measurements [2]. Complementary to
this, many theoretical models such as exterior complex scaling
[3], convergent close coupling [4], time dependent close cou-
pling [5], and R-matrix with pseudostates [6] models are now
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considered numerically exact for some collision processes,
essentially solving the three-body problem. Looking ahead,
electron vortex (EV) beamsmay provide the next leap forward
in atomic and molecular collisions, providing a new probe of
atomic structure and charged particle dynamics.

EV beams are matter waves with non-zero orbital angu-
lar momentum and transverse linear momentum. They have
recently been experimentally realized by several groups
[7–11], and may provide the opportunity for control and rota-
tion of nanoparticles [12–15], improved resolution in electron
microscopy [12, 16, 17], as well as the study of fundamental
atomic properties, such as the magneticmoment and electronic
transitions [12, 13, 18]. The development of EV beams was
inspired by their optical counterparts, which have been widely
studied [19] and are used extensively in applications such as
optical tweezers [20, 21], microscopy [22, 23], micromanipu-
lation [24] and astronomy [25]. EV beams, however, provide
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advantages their photonic counterparts cannot, such as smaller
wavelengths that allow formore precise interactionswith small
molecules [26]. EV beams also inherently carry charge, lead-
ing to electric and magnetic effects that can be exploited to
improve microscopy applications [7].

While optical vortex beams have a long history of study
and successful application, the study and application of EV
beams is still in its infancy. The proposed applications of
EV beams are far-reaching and development of these applica-
tions requires a solid understanding of their interactions at the
atomic scale, with atomic collision cross sections providing a
vital piece of the puzzle. In addition, EV beams present a new
tool for atomic and molecular collision physics itself to more
intimately explore the fundamental interactions and structures
of the particles in these collisions.

In [27, 28], we showed that the fully differential cross
sections (FDCS) for ionization of ground state hydrogen using
EV projectiles were significantly altered compared to their
non-vortex counterparts.We present here theoretical FDCS for
ionization of atomic hydrogen from the first two excited states
by EV projectiles. The present results show clear signatures
of the target state structure that are not visible in the FDCS of
non-vortex projectiles. We also show that FDCS for EV pro-
jectiles with carefully chosen physical characteristics can be
used to identify the orientation of a spatially asymmetric tar-
get. These results are an analogue and initial test case for future
studies aimed at identifying molecular structure and orienta-
tion. Through kinematical arguments, we explain the quali-
tative structures observed in the FDCS and show how these
features can be traced to characteristics of either the target
atom or vortex projectile. Atomic units are used throughout.

2. Theory

EV beams are experimentally generated using high energy
electrons on the order of a few keV, making the first Born
approximation (FBA) sufficient for the calculation of FDCS.
Details of the FBA model for ionization by EV projectile
can be found in [27, 28], and we present only the essential
information here. The FDCS for ionization by EV projectile
is

d3σ
dΩ1dΩ2dE2

= μ2
paμie

k f ke
ki

∣∣TVfi (�q)
∣∣2, (1)

where TVfi (�q) is the transition matrix element and the momenta
of the incident projectile, scattered projectile, and ionized elec-
tron are �ki,�k f ,�ke respectively. The momentum transfer vector
is given by �q = �ki −�k f , and the reduced masses of the projec-
tile and target atom and the proton and ionized electron are μpa

and μie, respectively.
The vortex transition matrix element is given by

TVfi = −(2π)3/2 〈Ψf |Vi|Ψi〉 , (2)

where Ψi,f is the initial (final) state wave function and Vi

is the perturbation, which is simply the Coulomb interaction
between the projectile and target atom

Vi = − 1
r1

+
1
r12

. (3)

The projectile-nuclear distance is r1and the projectile-target
electron distance is r12.

The initial state wave function is a product of the inci-
dent projectile Bessel wave function χ�ki (�r1) and the target
hydrogen atom wave function Φ (�r2)

Ψi = χ�ki (�r1)Φ (�r2) . (4)

The target hydrogen atom wave function is known ana-
lytically and readily available in any quantum mechanics
textbook. The Bessel wave function can also be written
analytically and although similar to the more familiar plane
wave function, has some key differences. Like the plane wave
function, the Bessel wave function has infinite extent in the
transverse direction. However, unlike the plane wave, the
Bessel wave function has quantized orbital angular momen-
tum, and as a result, is not uniform in the transverse direction.
Instead, it has a phase singularity at a specific spatial location.
To define the location of the phase singularity, we define the
z-axis to be along the longitudinal incident projectile momen-
tum direction with the target atom located at the origin. Then,
an impact parameter�b can be defined that describes the trans-
verse location of the phase singularity relative to the z-axis. For

an impact parameter of
∣∣∣�b
∣∣∣ = 0, the Bessel wave function is a

free particle solution to the Schrödinger equation in cylindrical
coordinates (ρ1,ϕ1, z1), and can be written as

χ�ki (�r1) =
eilϕ1

2π
Jl (ki⊥ρ1) eikizz1 (5)

where ki⊥ and kiz are the vortex projectile’s transverse and
longitudinal momenta and l is the quantized orbital angular
momentum. These linear momenta can be written in terms of
the beam’s opening angle α as

ki⊥ = ki sin α, (6)

and
kiz = ki cos α. (7)

From equations (5) and (6), it is clear that, unlike the
plane wave, the Bessel wave function has non-zero transverse
momentum. In fact, one of the inherent features of a vortex
projectile is that the transverse momentum is not well-defined;
only the magnitude of the transverse momentum is specified,
not its azimuthal angle. This uncertainty in incident momen-
tum can also be seen by writing the Bessel wave function as a
superposition of tilted plane waves [29]

χ�ki (�r1) =
(−i)l

(2π)2

∫ 2π

0
dφki eilφki ei

�ki·(�r1−�b), (8)

where φki is the azimuthal angle of the incident projectile
momentum. As discussed below, this leads to an uncertainty
in the momentum transfer vector, which has a noticeable effect
on the FDCS.

The final state wave function is a product of the scattered
projectile plane wave χ�k f (�r1) and the ionized electron wave

function χ�ke (�r2)
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Ψ f = χ�k f (�r1)χ�ke (�r2) . (9)

No post-collision interaction between the two outgoing elec-
trons in the final state is included because only highly asym-
metric energy sharing is studied here, making the effects of
the post-collision interaction negligible. The plane wave for
the scattered projectile is given by

χ�k f (�r1) =
ei�k f ·�r1

(2π)3/2
. (10)

For the kinematics considered here, the ionized electron is
much slower than the projectile, and we have improved upon
the model in [27, 28] by now representing the ionized electron
by a Coulomb wave in the field of the residual H+ ion

χ�ke(�r2) = Γ (1−iη) e−
πη
2

ei�ke·�r2

(2π)3/2
1F1

(
iη, 1,−iker2 − i�ke ·�r2

)
,

(11)
where Γ(1− iη) is the gamma function and η is the Sommer-
feld parameter.

Combining the above equations yields the following inte-
gral form for the vortex transition matrix in terms of the plane
wave transition matrix TPW

fi (�q )

TVfi (�q) =
(−i)l
(2π)

∫ 2π

0
dφki eilφkiTPW

fi (�q) e−i
�ki·�b, (12)

where TPW
fi (�q) is calculated for incident χ�ki and scattered χ�k f

projectile plane waves

TPW
fi =

−1
(2π)

∫
d�r1d�r2 ei�q·�r1χ∗

�ke
(�r2)ViΦ (�r2) . (13)

Equation (12) is the transition matrix for ionization by an inci-
dent Bessel projectile with fixed impact parameter. However,
in an experiment, it is not possible to control the impact param-
eter for each collision event, and therefore an average over
impact parameters is necessary. As detailed in [27, 28, 30],
the FDCS averaged over impact parameter is equivalent to an
average over incident momentum azimuthal angles and can be
conveniently written in terms of the non-vortex plane wave
transition matrix

d3σ
dΩ1dΩ2dE2

= μ2
paμpi

k f ke
(2π)kzi

∫
dφki

∣∣TPW
fi (�q)

∣∣2. (14)

In order to calculate the FDCS using equation (14), one
needs to write the momentum transfer vector �q in terms of its
components, including the vortex opening angle and projectile
momentum azimuthal angle. In the collision system used here,
the final state projectile scatters into the x–z plane with scatter-
ing angle θs and positive x-coordinate. By definition, the x–z
plane is the scattering plane and contains the incident longi-
tudinal momentum and scattered projectile momentum vector,
but not necessarily the momentum transfer vector. Because the
incident momentum vector can have a non-zero y-component

Figure 1. Momentum transfer vector projections in the scattering
plane for an EV projectile for all possible φki. Each opening angle α
has a set of momentum transfer vectors that lie on a cone. The heads
of these vectors appear as a line (red) when projected onto the
scattering plane. For an incident plane wave, there is only one
momentum transfer vector (black arrow). The blue circles at the
minimum qx values occur for φki = 0 and the black squares at the
maximum qx values occur for φki = π. Results are shown for an
incident projectile energy of 1 keV, scattering angle 100 mrad,
ionized electron energy 5 eV, and n = 2 hydrogen target.

that lies outside the scattering plane, the momentum transfer
vector is also not restricted to lie in the scattering plane. In this
coordinate system, the momentum transfer vector components
are given by

qx = ki sinα cosφki − k f sin θs (15)

qy = ki sinα sinφki (16)

qz = ki cosα− k f cos θs, (17)

where θs is the projectile scattering angle. Because the inci-
dent momentum is uncertain, with only the magnitude of
transverse momentum specified, the momentum transfer �q is
also uncertain. This uncertainty in the momentum transfer
is accounted for by averaging the FDCS over the incident
momentum azimuthal angle (see equation (14)).

For each azimuthal angle φki , there is a unique momentum
transfer vector, which has its tail at the origin. The set of vor-
tex momentum transfer vectors then form a cone with the point
at the origin. If the heads of the vectors forming the cone are
projected onto the scattering plane, they lie along a line par-
allel to the x-axis. In other words, for a given opening angle,
the longitudinal components of the vortex momentum transfer
vectors are constant. Figure 1 shows a plot of the projection of
the heads of the momentum transfer vectors in the scattering
plane as a function ofφki for several opening angles. For a non-
vortex projectile, there is only a single, well-defined momen-
tum transfer vector shown in figure 1 as a solid black arrow.
We refer to this as the classical momentum transfer. If φki = 0
or π, the vortexmomentum transfer vector lies in the scattering
plane, while for all other values of φki , the momentum trans-
fer vector points outside the scattering plane. As the opening
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angle increases, the spread of the vortex momentum transfer
vectors increases, resulting in larger uncertainty in themomen-
tum transfer vector. Additionally, for an opening angle greater
than the scattering angle, some of the vortex momentum trans-
fer vectors have a transverse component in the same direc-
tion as the scattered projectile (positive x-component). We
show below that this has a significant effect on the ejected
electron angular distributions. These features of momentum
transfer uncertainty hold for all excited states of the target
atom.

3. Results

For FDCS with EV projectiles averaged over impact parame-
ter, the only physical parameter distinguishing the EV projec-
tile from that of a plane wave is the opening angle α, which
determines the projectile’s transverse momentum. If α = 0,
the plane wave projectile is recovered and the incident projec-
tile has only longitudinal momentum. For α �= 0, the incident
vortex projectile has both longitudinal and transverse momen-
tum ki⊥, leading to the uncertainty in momentum transfer dis-
cussed above. This uncertainty has the effect of broadening
the main peak in the FDCS as observed in figures 2 and 3,
which show the FDCS for ionization of hydrogen from the
ground and first two excited states as a function of ejected
electron angle and opening angle. In figure 2, the FDCS are
plotted as a heat map with the magnitude of the FDCS repre-
sented by color. A horizontal trace through the plots in figure 2
results in the FDCS for a fixed opening angle. A few select
traces for α = 0, 0.05, 0.1, and 0.15 rad are shown in figure 3.
The kinematics were chosen such that future experiments may
be possible (high incident energy) and the FBA is applicable
(asymmetric outgoing electron energies and small perturbation
parameter). For these FDCS, a 1 keV incident electron scat-
ters from the target at a fixed scattering angle of 100 mrad
(5.73◦); the ionized electron has an energy of 5 eV. We note
that the FDCS for other kinematical parameters exhibit the
same qualitative behaviors observed here, and we begin with
a discussion of some qualitative features present for all target
states.

Figures 2 and 3 show that for small values of α (� 0.05
rad), the traditional binary peak due to a direct collision
between the projectile and target electron is observed along the
classical momentum transfer direction (θe = 81.8◦ for n = 1,
θe = 84.7◦ for n = 2, and θe = 85.3◦ for n = 3). However, no
recoil peak along the direction opposite the classical momen-
tum transfer direction is present due to the kinematics. As
is well-understood in plane wave collisions, if the momen-
tum transfer �q and initial target electron momentum are well-
defined, then the binary peak would be sharp. However, the
momentum distribution of the initial target electron results
in a broad binary peak centered about the classical momen-
tum transfer direction. The same broad binary peak is also
observed for vortex collisions, however as the vortex opening
angle α increases, the binary peak broadens even more due
to the uncertainty in the momentum transfer. The location of
the binary peak also shifts to smaller angles as opening angle
increases.

For α > 0.1 rad, the dominant peak is observed at the
classical recoil peak direction, opposite to the classical
momentum transfer direction. This shift is a result of one
momentum transfer direction being dominant in the average
over azimuthal angles. Because each non-vortex FDCS used
in the average depends inversely on powers of the momentum
transfer magnitude, FDCS from azimuthal angles resulting in
smaller momentum transfer magnitudewill dominate the aver-
age. Figure 4 shows the magnitude of the momentum transfer
as a function of opening angle for all projectile momentum
azimuthal angles. From this, it is clear that for a given open-
ing angle, the smallest value of momentum transfer magnitude
occurs for φki = 0 and the largest for φki = π. This indicates
that the non-vortex FDCS for φki ≈ 0 dominates the average,
with the contributions of all other FDCS diminishing rapidly
as φki moves away from 0. Because φki = 0 is dominant in the
average of the FDCS, the direction of the momentum transfer
for this particular azimuthal angle is the primary influence of
the peak location in the FDCS. It can be seen from figure 1
that the momentum transfer direction for φki = 0 (blue cir-
cles) shifts to a more forward direction as α increases toward
0.1 rad, is exactly forward (qx = 0) at α = 0.1 rad, and then
is oriented backward for α > 0.1 rad, which nicely correlates
with the FDCS peak location.

A plot of the momentum transfer angle for φki = 0 com-
pared to the peak location of the FDCS is shown in figure 5
for the ground state, where it is readily observable that the
FDCS peak is almost exactly predicted by the momentum
transfer direction for φki = 0. Similar results are found for
all but the 2pz excited state, which exhibits a double peak
structure centered around the classical momentum transfer
direction for φki = 0. This explains the transition from a dom-
inant peak along the classical binary peak direction to along
the classical recoil peak direction, as seen in figures 2 and 3.
In fact, this ‘recoil’ peak is actually the binary peak caused
by a momentum transfer vector resulting from the projectile
being deflected toward the beamdirection (−x direction) rather
than away from it (+x direction). This is a feature only possi-
ble with EV projectiles, as a non-vortex projectile is always
deflected toward the +x direction for FDCS with fixed scat-
tering angle and the geometry defined here. The shift in loca-
tion of the binary peak provides a possible means to control
ionized electron emission angle for fixed energies and scatter-
ing angle, which could have potential applications in electron
microscopy or collisions with delicate targets. In these cases,
low energy electrons may cause additional noise in a signal or
possible damage to a target or sample. If the secondary elec-
tron could be primarily emitted into a region not of interest,
the signal to noise ratio may be enhanced or the lifetime or
survivability of the sample improved.

The FDCS for α = 0.1 rad exhibit features that are sig-
nificantly different than those for other opening angles. This
is because for α = θs and φki = 0, the incident projectile has
approximately the same transverse momentum as the scattered
projectile, resulting in only longitudinal momentum trans-
ferred to the target. Purely longitudinal momentum trans-
fer then results in two peaks in the FDCS parallel (0◦) and
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Figure 2. FDCS for ionization of H by EV projectile as a function of EV opening angle α (vertical axis) and ionized electron angle θe
(horizontal axis). The color bar represents the magnitude of the FDCS in atomic units. The incident projectile energy is 1 keV, scattering
angle is 100 mrad, and ionized electron energy is 5 eV. The target state is shown in the figure.

antiparallel (180◦) to the beam direction for spherically sym-
metric target s-states. The FDCS for spatially oriented target
p-states exhibit different features for α = θs due to their ini-
tial state orientations. Details of these features are discussed
below.

Also, for the excited s-state targets, interference structures
can be observed in the FDCS due to the multilobe structure
of the target. While present for most values of α, includ-
ing α = 0 non-vortex projectiles, the interference patterns are
most noticeable for α near θs. This is likely due to the spread-
ing of the dominant lobe as the uncertainty in the momentum
transfer increases,making the interference structuresmore vis-
ible. For non-vortex projectiles, the interference structures are
one to three orders of magnitude below the dominant binary
peak, making them difficult to observe. However, for vortex
projectiles, the interference structures are within an order of
magnitude of the maximum of the FDCS, and therefore more
easily visible.

Unlike the s-state targets, the 2p target is not spheri-
cally symmetric and can serve as an analogue for diatomic
molecule targets, where nuclear alignment effects are known
to be important [31, 32]. As seen from figures 2 and 3,
the orientation of the target in the 2p state has a significant
influence on the shape of the FDCS, although some of the

features observed in the s-state FDCS persist. For α < θs, the
FDCS for 2pz orientation show a minimum along the classi-
cal momentum transfer direction with equal magnitude peaks
on either side of this direction. This is because the 2pz plane
wave transition matrix is minimized for the ejected electron
momentum along the momentum transfer direction. For 2py
orientation, the FDCS are zero at α = 0 due to zero target
wave function density in the scattering plane and the momen-
tum transfer vector lying in the scattering plane. However,
the use of a vortex projectile results in an out-of-plane com-
ponent to the momentum transfer, which can then produce
electrons ejected into the scattering plane, resulting in a sin-
gle binary peak in the FDCS. A similar binary peak struc-
ture is seen in the 2px FDCS, which is enhanced for vortex
projectiles.

One of the most interesting features of the 2p FDCS is the
structure observedwith α = θs. As for the s-states, the φki = 0
FDCS is dominant and the primary momentum transfer direc-
tion is parallel to the beam direction. Therefore, any struc-
tures observed at ionized electron angles other than 0◦ or 180◦

must be due to the target electron’s initial momentum or spa-
tial distribution. For 2px orientation, two peaks in the FDCS
are observed to either side of the classical beam direction,
possibly caused by the target electron being offset to either
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Figure 3. Fixed opening angle FDCS from horizontal traces through the plots of figure 2.

Figure 4. Magnitude of momentum transfer as a function of
projectile opening angle α and incident momentum azimuthal angle
φki . The incident projectile energy is 1 keV, scattering angle
100 mrad, ionized electron energy 5 eV, and n = 2 hydrogen
target.

side of the beam direction with zero density along the z-axis.
This initial spatial distribution, combined with a momentum
transfer vector along the beam direction, then results in an
ionized electron distribution primarily located to either side of

Figure 5. Momentum transfer angle (red line) as measured
counterclockwise from the beam direction for incident momentum
with azimuthal angle φki = 0. Also shown is the ionized electron
angle (black squares) corresponding to the maximum FDCS value.
The incident projectile energy is 1 keV, scattering angle 100 mrad,
ionized electron energy 5 eV, and ground state hydrogen
target.

the beam direction. For 2py orientation, the ionized electrons
are nearly uniformly distributed due to the initial state elec-
tron distribution being symmetric about the scattering plane
with zero initial state density in the scattering plane. For
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2pz orientation, peaks are observed along and opposite the
beam direction due to the momentum transfer along the beam
direction and the electron density oriented along the beam
direction. The strong dependence of the FDCS on 2p target ori-
entation, along with the easily observable interference struc-
tures in the 2s and 3s FDCS provide preliminary evidence that
the target orbital structure and orientation can be deduced from
the FDCS using EV projectiles. This is a promising indica-
tor that EV collisions may be used to characterize molecular
structure.

4. Conclusion

FDCS for ionization of atomic hydrogen excited states by EV
projectiles show signatures of atomic orbital structure and tar-
get orientation. Some of these features are not present in FDCS
for non-vortex projectiles and others are more enhanced when
EV projectiles are used. In particular, clear signatures of ori-
entation effects were seen in the FDCS for 2p targets, and
interference effects were observed for 2s and 3s targets result-
ing from their nodal structure. Analysis of the FDCS revealed
that while the momentum of the incident projectile, and there-
fore the momentum transfer, is uncertain, the FDCS are dom-
inated by an incident projectile with azimuthal angle φki = 0.
As the opening angle of the EV projectile is varied, the uncer-
tainty in the momentum transfer leads to a spreading of the
ejected electron binary peak. The location of the binary peak
was strongly correlated with the momentum transfer direction
for an incident projectile with φki = 0.

The results here demonstrate the potential feasibility of
using ionization cross sections to infer target structure infor-
mation, a requirement for some of the proposed applica-
tions of EV projectiles, such as characterization of chiral
molecule enantiomers [13]. Our results also demonstrate a
possible mechanism for controlling ionized electron emis-
sion angle by altering the EV opening angle. The FDCS
presented here provide valuable fundamental information
for use in potential applications of EV projectile collisions
and provide proof of principle that EV projectiles yield
information not available or easily accessible by non-vortex
projectiles.
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