Exploring Faster RCNN for Fabric Defect Detection
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Abstract—This paper presents a fabric defect  detection net-
work (FabricNet) for automatic fabric defect detection. Our pro-
posed FabricNet incorporates several effective techniques, such
as Feature Pyramid Network (FPN), Deformable Convolution
(DC) network, and Distance IoU Loss function, into vanilla
Faster RCNN to improve the accuracy and speed of fabric defect
detection. Our experiment shows that, when optimizations are
combined, the FabricNet achieves 62.07% mAP and 97.37%
AP50 on DAGM 2007 dataset, and an average prediction speed
of 17 frames per second.
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1. INTRODUCTION

Defect inspection is a critical fabric production step in the
textile industry. Automated inspection is technically challeng-
ing due to the large variety of  defect types and variations
in size, shape, and texture. Human fabric defect detection
dominates in industry. However, human inspection is time-
consuming, inconsistent, error-prone, and expensive. Recent
advances in software and hardware in computer  vision and
artificial intelligence have made automatic machine inspection
a viable approach for this challenging task.

In this paper, we present a fabric defect detection network
(FabricNet) built upon vanilla Faster RCNN to automate the
fabric defect detection task. To improve the accuracy and
speed of defect detection, our proposed model employs several
effective techniques such as Feature Pyramid Network (FPN),
Deformable Convolution (DC) network, and Distance loU
Loss function. The proposed FabricNet achieves 62.07% mAP
and 97.37% AP50 on DAGM 2007 dataset [1], and an average
prediction speed of 17 frames per second on an NVIDIA GTX
1070 GPU.

II. RELATED WORK
A. Vanilla Faster RCNN

Region-based CNNs use selective search techniques [2] to
generate region proposals [3]. Compared to original RCNN,
Fast RCNN [4] has drastically reduced computational cost by
sharing convolutions for region proposals. Faster RCNN [5]
further improves the region proposal algorithm of Fast RCNN;
instead of using a fixed region proposal algorithm, it introduces
a novel Region Proposal Network (RPN) that can share
convolutional layers with other networks. By sharing these

convolutional layers, Faster RCNN boosts its prediction speed
by 10 times over Fast RCNN.

B. Deep Learning For Fabric Defect Detection

There have been several reports that propose to use deep
learning algorithms for fabric defect detection. For example,
[6] uses one CNN for fabric classification and the other for
defect detection. A hybrid approach [7] has been proposed
to combine CNN with auto-correlation where the result of
auto-correlation is added into CNN as an activation layer. A
fully convolutional network [8] is proposed to detect surface
defects where two FCNs are adopted for ~ segmentation and
detection individually. A similar fully convolutional networks
approach [9] is published that proposed a third stage called
Matting stage to refine the contour of defects to achieve
more accurate results. [10] and [11] propose autoencoder by
introducing a method to reconstruct images, and sharing the
similarity of image patches respectively.

III. PROPOSED METHOD

Our proposed network embraces the basic structure of Faster
RCNN [5] as visualized in Figure 1. However, to make it more
suitable for fabric defect detection task, we make several ef-
fective modifications. First, we replace the backbone of Faster
RCNN with ResNet101 [12]. Second, we replace the last stage
of ResNet-101 with a Deformable Convolution (DC)  block.
Third, we introduce the Feature Pyramid Networks (FPN) [13].
Fourth, we replace Rol Pooling with Rol Align [14].  Lastly,
we incorporate Distance IoU loss [15].

A. Backbone, Feature Fusion, and Deformable Convolution

The backbone of Faster RCNN usually serves as a feature
extractor. It extracts features by several convolutional layers.
We propose to use ResNet-101 over ResNet-50 as our back-
bone. ResNet-101 has five stages, each of which contains a
different number of convolutional and some other layers. After
the last stage, it generates a feature map of a fabric image,
which contains only ‘local’ features of the images. We observe
that most of defects are small taking up only about 10% of
fabric images, and they are different in shapes and sizes. Due
to locality, features from stage-5 are not very discriminative
in separating normal background of fabric images and defects.
Therefore, to solve this problem, we adopt Feature Pyramid
Networks [13] which is a way to fuse features in an image so
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Fig. 1: Architecture of the proposed FabricNet.

that feature maps fuse both high and low resolution features.
This technique helps the model distinguish between fabric
background texture and defects. Inspired by prior work [16],
we also adopt Deformable Convolution (DC) network to solve
the problem that fabric defects have different shapes and sizes.
DC Network can better adjust for different shapes like thick
curves, lines, etc. We replace the last stage, which usually has
several convolutional layers, with a DC block.

B. RPN and Rol Align

The role of Region Proposal Network (RPN) is to generate
region proposals, so called Region of Interests (Rols). It in-
cludes a binary classification layer and a bounding box regres-
sion layer. Traditional Faster RCNN uses Rol Pooling [5] to
filter out Rols. However, Rol Pooling has rounding operations
so that coordinates of Rols tend to be slightly inaccurate. To
address this problem, we embrace Rol Align technique from
Mask RCNN [14]. Rol Align utilizes bi-linear interpolation
to compute the floating-point location values from input. It
makes coordinates of Rols more accurately approximate their
original positions.

C. Distance loU Loss

We also introduce a new loss function specifically designed
for object detection problems. Originally, Smooth L1 loss is
used for bounding box coordinates in Fast RCNN, where the
Smooth L1 loss individually calculates the loss of predicted
four bounding box coordinates.
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where X represents coordinates of each corner of bounding
box. We see that smooth L1 loss does not compute loss as a
whole since it only cares about each coordinate of bounding
boxes. However, when quantifying the performance of  the
model, Intersection over Union (IoU), IoU = poB Z, is
used, where the ground-truth box B9 = (x 9,9, wd, hgt)
and predicted bounding box B = (x,y, w, h) affect the
performance heavily. With this observation, we employ a new

loss, Distance [oU (DIoU) Loss [15], to calculate bounding
box regression, which is defined as
P2(b, b")
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where p(-) is the Euclidean distance, b and b are the central
points of B and B9 respectively, and € is the diagonal length
of the smallest enclosing box covering the ground truth box
and predicted box. Compared with Smooth L1 loss, Distance
IoU loss directly maximizes loU and minimizes the distance
between two central points.

IV. EXPERIMENTS
A. Dataset

Our proposed method is tested on DAGM 2007 dataset [1]
which has six categories of fabric images. Each category has
150 images that are manually labeled. All images are 512% 512
pixels, with each pixel having 256 grayscale levels. Out of the
total 900 images, we randomly selected 540 images as the
training set, 180 images as the validation set  and fixed 180
images as the testing set. To avoid any unsettled results, we
repeated the random selection process 3 times.

B. Data Augmentation

We utilize data augmentation techniques during training to
enhance the performance of our model [17], [18]. We use a
factor of 0.7 to crop images including ground truth labels.

If the cropped images contain no defects at  all, we simply
discard those images. We also randomly flip the images to
cover different orientations of defects and for overall better
coverage and accuracy.

C. Implementation Details

We use an NVIDIA GTX 1070 GPU for training and testing.
More specifically, transfer learning is used in our model. We
used pre-trained weights from ImageNet [19] for ResNet-101.
Anchor ratio is (0.5, 1, 1.5)and scale is (322, 64, 128, 256).
The anchors with IoU of  ground truth greater than 0.7 are
considered as foreground, while the anchors with IoU of
ground truth lower than 0.3 are considered as background.
Those IoU scores between 0.3 and 0.7 are ignored in our case.



We use Stochastic Gradient Descent (SGD) to train our model
because we found that in our model, SGD is stable and does
not cause gradient explosion.

V. ANALYSIS
A. Accuracy

Table I compares the results of different settings and config-
urations of neural nets we have tested. From Model 1 and 2,
it is clear that FPN improves accuracy by approximately 4%.
FPN fuses high and low level features to generate semantic-
rich feature maps for better understanding the relation of
fabric background and defects. Model 3 shows that ResNet101
improves performance over ResNet50 by 2%. We believe
that a deeper backbone helps generate semantic-richer feature
maps. Model 4 demonstrates that Deformable Convolution
(DC) layers make the net slightly better as they are capable
of conveying the context of irregular shapes of defects. By
comparing Model 4 with 5 and 3 with 6, we see 7% and 10%
accuracy improvements respectively. Distance IoU loss can
regress the four coordinates of a predicted box as a whole
and directly minimize the center  distance of the predicted
bounding boxes and the ground truth boxes. However, model
5 and model 6 tell us that DIoU loss decreases mAP with DC.
We believe that DC brings predicted B-boxes closer to ground-
truth B-boxes, which compromises DIoU loss, especially when
aspect ratio of both differ.

We visualize the results in Figure 2. The first and third
columns show the results of Model 3 and the second and
fourth columns show the results of the proposed model. With
Model 3, some of the defects are detected with multiple boxes
and some are overlooked. Some predicted boxes are larger
than defects. Our proposed model, on the other hand, predicts
defects with single compacted boxes covering whole defects
with more precise locations.

B. Speed

We trained and tested the model on an NVIDIA GTX
1070 GPU. Table IT demonstrates that the proposed FabricNet
achieves an average prediction speed of 17 frames per second
(fps). By comparing model 1 with 2, we notice that there
is a significant fps improvement, we believe the number of
pre-proposals matters in this case. It is also noticeable that,
as incorporating more techniques into the model, we do not
encounter any significant speed drop. From Model 2 and 6
of Table Il and Model 2 and 6 of Table I, we can say that
with around 5 fps  drop, we achieve about 12% accuracy
improvement. In terms of speed and accuracy ratio, we think
it is a reasonable trade-off.

VI. CONCLUSIONS

We presented a fabric defect detection network (FabricNet)
for fabric defect detection. Our proposed model improves
Faster RCNN by integrating several effective techniques tai-
lored for fabric defect detection. Our results with DAGM 2007
dataset demonstrate that artificial neural network is a viable
solution for automated defect detection.
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TABLE I: Comparison between different settings of faster RCNN.
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6 (proposed)  ResNetl01 X DIoU 62.07 97.37 69.71 52.97

FPN: Feature Pyramid Network. SL1: Smooth L1 Loss. DC: Deformable Convolution. DIoU: Distance IoU loss.
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Fig. 2: Prediction results: comparison between Model 3 and 6 (proposed).
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