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ABSTRACT

This chapter extends application of a framework proposed by the authors (73, 74) for automated damage 
detection using strain measurements to study feasibility of using sensors that can measure accelerations, 
tilts, and displacements. The study utilized three-dimensional (3D) finite element models of double track, 
riveted, steel truss span, and girder bridge span under routine train loads. The chapter also includes 
three instrumentation schemes for each bridge span (65) to investigate the applicability of the framework 
to other bridge systems and sensor networks. Connection damage was simulated by reducing rotational 
spring stiffness at member ends and various responses were extracted for each damage scenario. The 
methodology utilizes Supervised Machine Learning to automatically determine damage location (DL) 
and intensity (DI). Simulated experiments showed that DLs and DIs were detected accurately for both 
spans with various structural responses and using different instrumentation plans.
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INTRODUCTION

Monitoring aging infrastructure performance under various loading and environmental conditions 
continuously via an automated monitoring system that evaluates their structural health quantitatively 
is very significant to ensure safety and avoid progressive collapses. One of the important elements in 
any transportation system are bridges which currently subjected to increased traffic load and frequency. 
In the United States, bridges structural health is usually assessed via visual inspection which is costly, 
might be unsafe and subjected to human interpretation as examined by Phares et al. (Phares et al., 2001). 
Structural Health Monitoring (SHM) often involves detecting structural damages automatically which 
explored previously by Farrar and Worden (Farrar & Worden, 2012). SHM involves extracting structural 
health information via signal processing layer from responses collected with a set of sensors deployed 
on a structural system. Significant information features usually extracted from the data using damage 
identification methods and integrated into analyses or probabilistic models to evaluate the structure 
health and expected service life (Achenbach, 2009).

SHM systems usually incorporate one or more of strains, accelerations and displacement where ac-
celeration measurements provide insights on the structural global behavior while strain measurements 
provide unique understanding of structural local behavior. Research work was conducted to investigate 
the effectiveness of certain types of strain sensors in damage detection within SHM applications (Glisic 
& Inaudi, 2008; Glisic & Inaudi, 2012; Harmanci et al., 2016). Fiber Optic (FO) sensors application 
in SHM damage detection was investigated using two main FO techniques, where the first technique 
was based on fiber Bragg-gratings and the other was based on Brillouin optical time-domain analysis. 
The first technique allows the use of long gage FO sensors and the second one allows for distributed 
FO sensors. Glisic et al. (2013) applied the framework to a full-scale reinforced concrete structure and 
it was found that both sensing techniques are suitable for SHM damage detection (Glisic et al., 2013). 
To locate structural damage from dynamic strain measurements using local modal filters, a framework 
was proposed and validated experimentally in the laboratory by Tondreau and Deraemaeker (2014) on 
a steel beam with a dense array of strain sensors (Tondreau & Deraemaeker, 2014).

Material degradation and geometry changes are usually associated with structural damage, which 
influences structural dynamic characteristics which was examined by naby researchers. Shokrani et al., 
(2018) examined the effect of structural damage on modal curvature (Shokrani et al., 2018). Ashory et 
al., and Tan et al., (2017) investigated structural damage effect on modal strain energy (Ashory et al., 
2017, Tan et al., 2017), and; structural damage influence on Eigenmodes was examined by Moaveni 
et al., and Taciroglu et al., (Moaveni et al., 2010; Taciroglu et al., 2017). In a vibration-based damage 
detection, modal identification and model updating are usually included where damage intensity is de-
termined using an optimization process that minimizes discrepancies between field and updated model 
results. Detecting localized deficiencies using fault detection methods is achieved by implementing a 
framework that combines vibration properties and Machine Learning tools which was investigated by 
multiple researchers (Bellino et al., 2010; He et al., 2011; C. Kim et al., 2015). Bellino et al., (2010) 
examined site condition effects such as train velocity and mass effects on structural frequencies which 
were eliminated using Principle Component Analysis so that frequency variations would be solely 
caused due to damage (Bellino et al., 2010). To verify this approach, a laboratory testing using a single 
moving mass on a short cantilever beam subjected to damage was conducted where various level dam-
ages were detected successfully (Bellino et al., 2010). However, Loads applied to the bridge were from 
a single bullet train car that did not simulate trains actual loading configurations where train axle loads 
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variations were not involved as well. Kim et al., (2015) examined a steel multi-girder bridge deficiencies 
detection from a long-term SHM recorded data with collected accelerations, temperature and vehicle 
weights were studied (C. Kim et al., 2015). Detecting damage procedure involved three steps: extracting 
damage-sensitive features from collected accelerations using autoregressive model coefficients; analyz-
ing damage-sensitive features regressively to consider environmental and vehicle weights variations, 
and using Bayesian hypothesis testing with a 95% confidence interval for differences between observed 
and predicted damage-features to make decision about the bridge health (C. Kim et al., 2015). The study 
found that including environmental and vehicle loading variations in the Bayesian regression yielded 
more reliable results when compared against situations where these items were excluded; however, the 
framework damage detection methodology did not include determine damage location (C. Kim et al., 
2015). HE et al., (2011) used Genetic Algorithm in detecting damage location and intensity for a coupled 
FEM model of a simply supported single span bridge under induced vibrations from a crossing train 
(He et al., 2011).

One of the major challenges with modal based damage detection is their sensitivity to modeling 
error where analysis models with high accuracy should be generated. Moaveni et al., (2010) examine 
uncertainties in well-known damage detection methods with dynamic tests carried on a full-scale 
seven-story reinforced concrete building (Moaveni et al., 2010). The study concluded that uncertainty 
in identified modal parameters such as spatial density of measurements and modeling errors such as 
mesh size influenced the level of confidence in detected damage results. Hu et al., (2017) and Moaveni 
(2012) investigated another major concern associated with Operational Modal Analysis (OMA) which 
is environmental conditions such as temperature and wind which shown to influence identified modal 
properties dramatically (Hu et al., 2017; Moaveni & Behmanesh, 2012). Identified modal parameters 
could also be influenced by the ambient excitation which is often assumed as stationary white noise in 
OMA algorithms. Abazarsa et al., and Ghahari et al., examined the influence of non-stationary external 
inputs on damage detection (Abazarsa et al., 2015; Ghahari et al., 2017). It can be concluded that a 
reliable SHM system requires high precise models, stationary excitations and low noise-to-signal ratio 
which might be difficult to achieve. High accuracy models require time and experience, while low noise-
to-signal ratio requires high-quality sensors, which increases the SHM system cost.

Data-driven methods in SHM applications research was recently motivated due to several concerns. 
Those concerns stated by Farrar and Worden (2012) include: considering unknown and non-stationary 
excitations; the effectiveness of extracting damage features under operational conditions automatically; 
and the low accuracy related to the use of global damage features in detecting localized damages (Farrar 
& Worden, 2012). Developing SHM system that determines damage features by analyzing recorded sen-
sor data is the main objective related to previous issues (Worden et al., 2000). Many studies investigated 
the development of SHM system output-only damage detection requirements. Thiene and Galvanetto 
(2015) developed an innovative damage localization framework bhy implementing Proper Orthogonal 
Decomposition (POD) (Thiene & Galvanetto, 2015). Y. Kim and Eun (2017) developed an algorithm 
based on POD of the structure Frequency Response Function (FRF) was examined to detect damage of 
simulated beam experiments where damage was shown to be detected effectively with POMs of FRFs 
within specific frequency range (Y. Kim & Eun, 2017). O’Connor et al., (2017) carried a study that in-
corporated a combination of Statistical Process Control (SPC) and Gaussian Process Regression (GPR) 
for detecting damage based on novelty detection where continuous monitoring system was deployed on 
a highway bridge(O’Connor et al., 2017). To detect damage, GPR was used to mitigate environmental 
conditions and vehicle-bridge interaction with SPC threshold being determined using a long measurement 
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window. Dervilis et al., (2014) studied the use of multivariate numerical methods such as Artificial Neural 
Networks (ANNs), Principle Component Analysis and Radial Basis Functions. The study methodology 
was validated experimentally using a wind turbine blade laboratory fatigue tests where measurements 
were recorded under harmonic excitations (Dervilis et al., 2014). Ou et al., (2017) conducted a study on 
wind turbine blades to examine and compare statistical damage features and modal parameters based 
SHM systems, which concluded that statistical-based damage feature methods were more effective in 
detecting damage (Ou et al., 2017). El Kadi et al., (2017) examined textile reinforced cement self-healing 
behavior and structural conditions using acoustic emission measurements (El Kadi et al., 2017).

Current output-only damage detection methods are based on stationary excitations and require a 
low noise-to-signal ratio. To include non-stationary loading conditions, the authors developed a dam-
age detection methodology based on POD and ANNs (Eftekhar Azam et al., ; Rageh et al., 2018). An 
output-only structural response classification based on a supervised learning method was performed to 
reduce POMs variations and keep those variations related to DI and DL only where the relation between 
POMs variation, DI and DL was determined vis ANNs regression analysis.

In the research work completed in this study is an extension to the framework developed by Eftekhar 
Azam et al., and Rageh et al., (2018) where the former work involved a simply supported steel riveted 
truss double-track bridge span (Eftekhar Azam et al., 2018; Rageh et al., 2018). Responses included in 
the earlier proposed framework were predicted strains based on an analytical model (Eftekhar Azam et al., 
2018) or measured strain responses under routine loadings (Rageh et al., 2018) where ILs (i.e., locations 
where strains were extracted or measured) were stringer ends. The current work includes analytically 
applying POMs and ANNs framework to: (i) two different steel riveted double-track bridge segments 
with a truss and a plate girder systems; (ii) various structural responses which are strains, strong-axis 
rotations, vertical displacement and vertical accelerations; and (iii) three different instrumentation plans 
with varying sensors numbers and locations. It was observed that the developed framework was robust 
and applied to various structural systems, extracted responses and instrumented plans.

STUDIED BRIDGE SPAN, INSTRUMENTATION, NUMERICAL MODEL

The research focused on in-service steel, riveted, double track, bridge having five truss and six through 
plate girder spans. One truss and one through plate girder span were selected as the testbeds. The current 
study focused on assessing feasibility of using time histories of strains, member strong-axis rotations, 
vertical displacements or accelerations at locations that were part of 3 instrumentation plans (IP). The 
selected quantities of structural response were selected as there are off the shelf solutions for measuring 
them. The selected instrumentation plans best reflected one of the most likely damage scenarios, namely 
stringer-to-floor beam connection degradation, which were reported by the bridge owner to be prevalent 
locations for damage in these types of structures.

Studied Bridge Spans

The bridge spans are simply supported and composed of rolled and riveted built-up steel elements. Each 
span supports two tracks spaced laterally at 3.95 m center-to-center. The rails rest on wood ties that are 
supported by stringers spaced laterally at 2.15 m on center. Lateral bracing systems are provided with 
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the truss having top and bottom lateral bracing while the through girder had bottom lateral bracing only. 
The truss span description was given in Section 2.5 and is shown in Figure 1.

The through plate girder has a 22.0 m span divided to 7 panels with floor beams longitudinally spaced 
at 3.14 m. The main plate girders and floor beams are riveted, built-up-I-sections having a web plate 
and flanges constructed using angles and cover plates of varying number and thickness. Stringers are 
rolled S 24x80, I-beams. Bottom lateral bracing is composed of single angles with varying dimensions. 
A girder elevation and span framing plan view are shown in Figure 2. More details about cross-sectional 
dimensions can be found in (Rageh & Linzell, 2018).

Numerical Model

Three-dimensional frame finite-element models were developed in SAP2000 for the bridge spans under 
study. The constructed models contained the trusses and plate girders, stringers, floor beams and brac-
ing systems. Train loads were applied via a set of point moving loads. Riveted truss elements and floor 
beams were modeled as rigidly connected at their ends while truss eyebars and bracing members were 
pinned. Stiff rotational springs were used at the ends of each stringer span to facilitate simulating con-
nection damage via reduction of their stiffness. Isometric views of the developed models are shown in 
Figure 3. More details about constructed models are provided in (Rageh & Linzell, 2018).

Multi-step static and time history analyses were used to obtain the desired static and dynamic response 
for each train passage and damage scenario. Strains, strong-axis rotations and vertical displacements 
were extracted from the multi-step static analyses while vertical accelerations were extracted from the 
time-history analyses. The maximum number of modes defined in the modal analyses were 50 and 25 
for the truss and the plate girder spans, respectively, and were selected based on comparing strain and 
displacement results of both analyses cases.

Figure 1. Studied truss span elevation view and plan views
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Matlab and the SAP2000 OAPI Open Application Programming Interface (OAPI) were used to 
automate each type of analysis. Automation was implemented to (i) model selected trains; (ii) simulate 
damage locations and intensities, of which there were 201 scenarios for the truss and 241 for the through 
plate girder, for each train passage; and (vi) extract internal effects that included loads (strains), strong-
axis rotations, vertical displacements and accelerations.

Figure 2. Through plate girder span elevation and plan view

Figure 3. SAP2000 isometric view: (a) truss span; and (b) plate girder span
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ANALYTICAL “INSTRUMENTATION” PLANS AND SIMULATED DAMAGE

Commonly reported deficiencies for these types of railway bridges include: stringer-to-floor beam con-
nection deterioration and damage; stringers and bottom laterals connection deterioration and member 
failure; and frozen supports (Rageh & Linzell, 2018). For the bridges understudy, stringer-to-floor beam 
connection deterioration was one of the more prevalent and important deficiencies to identify and track 
and, as a result, “instruments” in the models were placed to detect changes of various responses due to 
damage at or near those locations.

Three instrumentation schemes were examined analytically and are shown in Figure 4 for the truss 
span and Figure 5 for the through plate girder span. For the truss span, IP-1 in Figure 4 (a) had 20 sensors 
at stringer ends, IP-2 in Figure 4 (b) had 20 sensors at stringers midspans and IP-3 in Figure 4 (c) had 
12 sensors at stringers midspan. For the through plate girder span, IP-1 in Figure 5 (a) had 24 sensors 

Figure 4. Truss instrumentation plans: (a) Instrumentation plan 1 (IP-1); (b) Instrumentation plan 2 
(IP-2); and (c) Instrumentation plan 3 (IP-3)



31

Robust Output Only Health Monitoring of Steel Railway Bridges
 

at stringer ends, IP-2 in Figure 5 (b) had 24 sensors at stringers midspans and IP-3 in Figure 5 (c) had 
12 sensors at stringers midspan. Selected instrument locations were based on sensitivity analyses and 
those analyses are reported elsewhere (Rageh & Linzell, 2018).

For each of the examined instrumentation plans, the damage was simulated at 20 stringer ends in 
the truss span and 24 in the through plate girder. Differences between the number of simulated damage 
locations were due to the number of panels and stringers (i.e., the truss span has 24 stringers while the 
through plate girder has 28 stringers). Connection deterioration would reduce rotational stiffness and, as 
a result, a “rigid” connection would revert to semi-rigid connection and, ultimately a pinned connection 
(Al-Emrani, 2005). Continuous reduction in rotational stiffness was used to simulate crack propagation 
through connecting clip angles. Simulated Damage Locations (DL) are shown in Figure 6.

To select loadings for the analyses, the bridge owner provided Weigh-In-Motion (WIM) data for 
81 trains of varying loadings, axle spacing, lengths and travel speeds. Preliminary analyses, which as-
sumed that the bridges were undamaged, subjected to the 81 trains were completed using Matlab and the 
SAP2000 Open Application Programming Interface (OAPI) to extract structural responses at locations 
marked in IP-1 shown in Figure 4 (a). Of the 81 trains, 24 were selected for validating the framework 
expanded herein, where those 24 trains used because they have the highest strain RMS among the 81 
trains (Eftekhar Azam et al., 2018).

ANN Training Using POMs

ANN training data was generated for 10 DIs between 10% and 100% in 10% increments at each DL, with 
each increment representing progressive damage at a stringer-to-floor beam connection. A total of 4800 
(truss) and 5760 (plate girder) damage scenarios were analytically studied using this approach for the 
24 selected train passages. Matlab coding showing rotations, displacement and acceleration extraction 
for IP-1.These damage scenarios helped train ANNs using the MATLAB Neural Net Fitting function, 
where various numbers of internal neurons were explored to ensure ANNs were accurately generalized 
for damage identification. ANNs could detect DL and DI once trained with the available data. A nonlin-
ear regression ANN was selected to establish damage detection with POMs for each DI/DL scenario. It 
was decided that 70% of the input POMs would be used for training, 15% for ANN validation and 15% 
for testing with 18 trains strain POMs being used to train the ANNs. The number of trains selected for 
ANN training was based on a trial and error approach using 6, 12 or 18 trains.

A representative comparison between ANNs testing under 6 train passages using 6, 12 or 18 train 
passages in training are shown in Figure 7 for the truss span with a DI 50% at DL 8. ANNs trained and 
tested with POMs developed using stringer end bending rotations. Figure 7 (a) shows testing of ANNs 
trained with 6 train passages, Figure 7 (b) shows the testing of ANNs trained with 12 train passages and 
Figure 7 (b) shows testing of ANNs trained with 18 train passages. As expected, the figure indicates that 
increasing the number of events in the training process increased DI/DL prediction accuracy and reduced 
false positives and negatives. More detail on selected trains can be found in (Eftekhar Azam et al., 2018).
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Figure 5. Through plate girder instrumentation plans: (a) Instrumentation plan 1 (IP-1); (b) Instrumen-
tation plan 2 (IP-2); and (c) Instrumentation plan 3 (IP-3)
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ANN Testing, Truss Span

As stated earlier, 75% of DI/DL scenarios were used for ANN training, with training and testing pro-
portions being selected based on trial and error. This provided 3600 damage scenarios for training and 
1200 for testing with extracted strain, rotation, displacement and acceleration POMs. Representative 
results that detail the effectiveness with which each response POM detects damage are presented in the 
following section for IP-1.

Figure 6. Simulated damage locations (DL): (a) truss span; and (b) through plate girder span

Figure 7. Influence of number of train events used in training process, DI=50% at DL 3, rotation POMs, 
truss span: (a) Training with 6 trains; (b) Training with 12 trains; and (c) Training with 18 trains
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IP-1

Representative results for a single train (Train 69) at DL 3 for a DI of 40% are shown in Figure 8. The 
figure details detected DI/DL for ANNs tested and trained with POMs extracted from various structural 
responses. As shown in the figures, DI/DL were detected with very good accuracy with ANNs trained 
with various responses POMs except for acceleration, which showed very low DIs at all locations. Pre-
dicted damages for various responses were: (i) DI =40.3% at DL 3 for strains POMs, Figure 8 (a); (ii) 
DI= 40% at DL 3 for rotation POMs, Figure 8 (b); (iii) DI= 40% at DL 3 displacement POMs, Figure 8 
(b); and (iv) for acceleration POMs, DI and DL were not captured where 15 DLs indicated false positives 
and 4 DLs indicated false negatives with a maximum DI = 7.5%, Figure 8 (b).

To investigate the efficiency and the effectiveness of using POMs/ANNs to detect damage under 
different train loads, results from 6 train events at DL 13 for a DI of 80% are shown in Figure 9. The 
results indicated that strain POMs accurately predicted the DI and DL for all trains. Predicted DI for 
strain POMs ANNs testing ranged from 79.2% to 81.0% with maximum false positive and negative of 
1.0 and 1.2%, respectively, which showed reliable results for detecting damage under a wide variety of 
train loadings, Figure 9 (a). Rotation POMs/ANNs also showed reasonable accuracy, Figure 9 (b). ANN 
testing of displacement did not demonstrate similar accuracy levels with false negatives and positives 
being observed, Figure 9 (c).ANNs testing with acceleration POMs were not reliable for determining 
DLs or DIs for any of the considered trains, Figure 9 (d). As a result of the studies that were completed, 
POMs extracted from strain or rotation measurements were recommended for the framework with truss 
span IP-1.

Figure 8. Truss span ANNs testing, IP 1, Train 69, DI=40% at DL 3: (a) strain; (b) rotation; (c) dis-
placement; (d) acceleration
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ANNs Testing, Plate Girder Span

As stated earlier, 75% of DI/DL scenarios were used for ANN training, with training and testing dis-
tribution proportions being selected based on trial and error. This provided 4320 damage scenarios 
for training and 1440 for testing with extracted strain, rotation, displacement and acceleration POMs. 
Representative results that detail the effectiveness with which each response POM detects damage are 
presented in the following section for IP-3.

Figure 9. Truss span ANNs testing, IP 1, all testing trains, DI=80% at DL 13: (a) strain; (b) rotation; 
(c) displacement; and (d) acceleration
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IP-3

Representative results for a single train (Train 69) at DL 3 for a DI of 40% are shown in Figure 10. The 
figure details detected DI/DL for ANNs tested and trained with POMs extracted from various structural 
responses. As shown in the figures, DI/DL were detected with very good accuracy with ANNs trained 
with various response POMs except for acceleration, which showed very low DIs at all locations. Pre-
dicted damages for strain, rotation and displacement POMs at DL 3 varied between 36.8 to 39.9% with 
maximum false positive and negative of 9.3 and 4.0%, respectively, Figure 10 (a-c). Acceleration POMs 
ANNs testing showed false positives at multiple locations with magnitudes between 3.1 to 0.40%, Figure 
10 (d).

To investigate the efficiency and effectiveness of using POMs/ANNs to detect damage under dif-
ferent train loads, results from 6 train events at DL 15 with a DI of 80% are shown in Figure 11. The 
results indicate that using strain, rotation and displacement POMs predicted DI and DL accurately for all 
trains. Predicted DI at DL 15 for strain, rotation and displacement POMs ranged from 77.1 to 82.7% with 
false positives and negatives less than 5.0%, which showed reliable results for detecting damage under 
a wide variety of train loadings and responses, Figure 11 (a-c). However, ANNs testing for acceleration 
POMs detected neither DL nor DI accurately where DI detected at DL 15 were between 18.6 to 20.0% 
with additional false positives at DLs 5 to 8 of with magnitudes between 2.9 and 19.8%, Figure 11 (d).

As a result of the studies that were completed, POMs extracted from strain, rotation and displacement 
measurements were recommended for the framework with through plate girder span IP-3.

Figure 10. Plate girder span ANNs testing, IP 3, testing Train 69, DI=40% at DL 3: (a) strain; (b) rota-
tion; (c) displacement; and (d) acceleration
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CONCLUSION

The viability of expanding an output-only, automated, strain-based damage detection framework that 
utilized POD/POMs and ANNs, see (Eftekhar Azam et al. 2018, ; Rageh et al., 2018) to include other 
response parameters (rotations, displacements and accelerations) was studied. The expanded framework 
was examined via its application to an in-service steel truss span and an in-service through plate girder 
span in Nebraska. Optimizing instrumentation schemes were concurrently studied; with 3 proposed 
sensors schemes being examined for each bridge span, see (Rageh & Linzell, 2018).

Figure 11. Plate girder span ANNs testing, IP 3, all testing trains, DI=80% at DL 15: (a) strain; (b) 
rotation; (c) displacement; and (d) acceleration
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A set of 24 routine train loading events and combinations of damage locations (DLs) and intensities 
(DIs) were simulated using Matlab and the SAP2000 OAPI. Results demonstrated the efficiency and 
applicability of the proposed framework for detecting localized stringer-to-floor beam damage for a 
wide variety of responses, train events and instrumentation plans. The proposed methodology could be 
extended further to include other structural systems or deficiencies.

It was concluded that:

• Damage detected accurately for involved bridge spans where damage location and intensity were 
captured.

• Investigated instrumentation plans were shown to be very informative in railway bridges SHM 
applications where instrumented locations provided sufficient information to assess the structural 
health.

• Strain, rotation, displacement or acceleration sensors could be used in monitoring the investigated 
bridge.

Ongoing work includes:

• Investigating applying the framework to in-service bridges with a filed data-based framework.
• Developing ANNs training set based on continuous SHM field measurements.
• Investigating modeling errors to allow for training ANNs with damage scenarios using field 

measurements.
• Studying the effects of environmental variations on framework accuracy.
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