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a b s t r a c t

A novel framework to accurately estimate nonlinear structural model parameters and
unknown external inputs (i.e., loads) using sparse sensor networks is proposed and vali-
dated. The framework assumes a time-varying auto-regressive (TAR) model for unknown
loads and develops a strategy to simultaneously estimate those loads and parameters of
the nonlinear model using an unscented Kalman filter (UKF). First, it is confirmed that a
Kalman filter (KF) allows to estimate TAR parameters for a measured, earthquake, acceler-
ation time-history. The KF-based framework is then coupled to an UKF to jointly identify
unmeasured inputs and nonlinear finite element (FE) model parameters. The proposed
approach systematically assimilates different structural response quantities to estimate
TAR and FE model parameters and, as a result, updates the FE model and unknown external
excitation estimates. The framework is validated using simulated experiments on a realis-
tic three-dimensional nonlinear steel frame subjected to unknown seismic ground motion.
It is demonstrated that assuming relatively low order TAR model for the unknown input
leads to precise reconstruction and unbiased estimation of nonlinear model parameters
that are most sensitive to measured system response.

! 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Estimating the remaining useful life of a structural system requires accurate identification of its current state of health
and prediction of the effects of future demands. Distefano et al. [1] were among the first to posit the condition assessment
of a structural system as a structural system identification problem. This requires identification of mechanistic, geometric,
and/or damping properties of a computational model used to represent the physical structure. Given that variations in those
properties can naturally affect a structure’s dynamic response, vibration-based system identification methods have been
extensively studied in the literature [2]. Vibration-based structural system identification can be approached as either (1)
output-only or (2) input-output estimation problems. While the former category relies merely on measured structural
response, the latter utilizes measurements of both excitation source and response of the structure to identify the structural
system. Currently, application of output-only methods to large-scale structures is centered on using operational modal anal-
ysis (OMA) with inverse methods to calibrate a linear computational model of the structure using the OMA results. This
framework is based on assuming that (1) structural response is linear and (2) random excitation is accurately represented
using broad bandwidth power spectra. In many practical applications, such as for structures subjected to wind loads, vehicle
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loads, and seismic ground motions, applied excitation violates the broadband assumption. In addition, many natural and
man-made hazards, including earthquakes, blasts, and impact, induce nonlinear structural response. To account for non-
stationary and non-broadband excitations and nonlinearities, response time histories can be directly incorporated into
structural system identification, so that inputs, parameters, and potentially entire states of the system model are
identified.

Identification of partially observed or hidden states of a system featuring measurement and modeling uncertainties is
typically pursued within a Bayesian estimation framework. In a seminal work, the Kalman filter (KF) was developed to
estimate the states of a linear system disturbed by white Gaussian measurement and process noises [3]. KF requires a pri-
ori knowledge of system inputs unless those inputs can be effectively assumed to be represented as broadband, stationary
noise. To account for a general input type, Kitanidis developed a method for linear system state estimation in the presence
of unknown or highly non-Gaussian system inputs [4]. Kitanidis proved that, although the filter was not globally optimum
in the mean square error sense, it performs well when unknown inputs take extreme or unexpected values [4]. Hsieh
developed a robust filter similar to that of Kitanidis for systems with unknown inputs and no direct feedthrough using
a two-stage KF framework [5]. Gillijns and De Moor proposed a new filter, one that is globally optimal in the
minimum-variance unbiased sense, for joint input and state (JIS) estimation for linear systems without direct feedthrough
[6]. Gillijns and De Moor further extended their filter to systems that include a direct feedthrough term [7]. Lourens et al.
utilized joint input-state estimation in structural systems [8]. Sedehi et al. developed a sequential Bayesian approach to
estimate states and input of dynamic systems using output-only measurements [9]. Additionally, augmented Kalman filter
(AKF) and dual Kalman filter (DKF) have been also developed to address structural input-state estimation problems
[10,11]. Those methods were validated using laboratory experiments as well as experiments on large scale, in-service
structural systems [12–14].

Linear and nonlinear state-space model parameter identification is typically conducted by defining a fictitious process
equation for the unknown parameters and augmenting those parameters into the state vector. Even if original system behav-
ior is linear, state-parameter estimation necessitates utilization of a nonlinear filtering technique. Extended Kalman filters
(EKFs), which are based on linearization of state-space equations by truncating a Taylor series expansion of the nonlinear
terms at each time step and using KF equations, have become the standard for weakly nonlinear systems disturbed by white
Gaussian noise [15]. In many cases, linearization adopted by the EKF may be inaccurate and/or accurate calculation of the
Jacobian not feasible. To account for these issues, Julier et al. proposed the unscented Kalman filter (UKF), where evolution
of statistics representing the state of the system is performed using a deterministic sampling scheme [16]. The basic premise
behind UKF is that sometimes it is more suitable to approximate the predictions of statistics of a state vector numerically,
than analytically approximating its nonlinear evolution equation. Most existing work deals with joint state and parameter
estimation of structural system phenomenological models and includes: linear and nonlinear shear building models [17–
19]; linear trusses [20,21]; and nonlinear hysteretic models [22,23]. A small subset of published literature addresses
state-parameter or parameter estimation of high-fidelity computational models of structural systems [24–27]. Astroza
et al. developed a UKF-based parameter identification scheme for nonlinear finite element (FE) models [26] and showed that,
for cases involving distributed plasticity within the system, smoothing yields a more accurate estimation of system
parameters.

In the absence of input information, structural system identification becomes particularly challenging. To deal with this
problem in a recursive Bayesian framework, Yang et al. proposed an adaptive EKF for structural damage identification in
the presence of unknown inputs [28]. Lei et al. developed a framework for identification multi-story shear building
response under unknown earthquake excitation using a substructuring method, an EKF, and partial output measurements,
and validated it using numerical simulations and laboratory experiments [29]. Naets et al. developed an online, coupled,
structural dynamics state/input/parameter estimation framework based on parametric model order reduction and EKF
[30]. Several filtering and smoothing algorithms based on extension of JIS to nonlinear systems were recently developed
[18,31,32]. Recursive Bayesian methods of input-state-parameter estimation research currently encompasses methods that
extend EKF [28,33], UKF [34,35], and particle filters [19,36] to account for unknown inputs. Batch and sequential Bayesian
methods have also been developed to address unknown input [37,38]. In similar fashion to published state-parameter esti-
mation research, only a small fraction of existing literature deals with system identification using high fidelity, nonlinear
structural system models in the presence of unknown inputs. Astroza et al. studied this problem by assessing the effects of
input uncertainty on nonlinear FE model updating effectiveness for structural systems subjected to unmeasured seismic
excitations [39].

In this paper, a novel framework is proposed for updating of high-fidelity nonlinear structural FE models subjected to
unknown seismic excitations. Nonlinear model updating is divided into two parts: input estimation and parameter identi-
fication. While auto-regressive moving average (ARMA) models have been utilized to represent seismic excitations in the
literature [40], the current study models input using a time-varying auto-regressive (TAR) model [41]. In addition, a random
walk is implemented for time evolution of FE model parameters. An UKF is employed to jointly estimate TAR load and FE
model parameters. Extensive simulated experiments demonstrate the precision and robustness of the developed framework.

The remainder of this paper is organized as follows. In Section 2 a detailed study is presented for TAR models utilized for
replicating seismic ground motions and the proposed KF method for identification of its parameters. In Section 3 the detailed
algorithm for input and parameter estimation of nonlinear FE models is developed. In Section 4 simulated experiments on a
realistic steel frame are reported, and in Section 5 conclusions are drawn.
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2. Time-varying auto-regressive (TAR) models for ground acceleration time histories

2.1. Problem formulation

The discrete-time equation of a TAR model of order p for the j-th component of a set of time histories, in this paper,
ground accelerations, at time tkþ1 ¼ kþ 1ð ÞDt, in which k = 0, 1, . . ., N % 1, Dt = time step, and N = number of samples,
can be expressed as:

€s jð Þ
kþ1 ¼ %

Xp

i¼1

a jð Þ
kþ1;i

€s jð Þ
kþ1%i þ e jð Þ

kþ1 ¼ b€s
jð Þ

kþ1 þ e jð Þ
kþ1; ð1Þ

where €s jð Þ
kþ1 2 R = j-th component of the measured ground acceleration at time step (k + 1); e jð Þ

kþ1 2 R ¼ prediction error, which

is assumed to be uncorrelated white Gaussian noise with zero-mean and standard deviation r jð Þ
kþ1 2 R, i.e. e jð Þ

kþ1 & N 0;r jð Þ
kþ1

! "
;

a jð Þ
kþ1;i 2 R ¼ TAR model time-variant parameters; p 2 R ¼ TAR model order; and b€s

jð Þ
kþ1 = TAR model prediction of the j-th com-

ponent of the ground acceleration at time step kþ 1ð Þ. Eq. (1) can be rewritten as:
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where h jð Þ
k

! "T
2 R1'p = vector of ground accelerations at previous time steps and "hinp jð Þ

kþ1 2 Rp'1 = TAR model parameter vector

at time tkþ1, i.e.:
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k
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Utilizing Eqs. (3) and (4) allows to express Eq. (2) in vector form for ns ground acceleration components at time step
kþ 1ð Þ as:

€skþ1 ¼ diag HT
kH

inp
kþ1

! "
þ e

&
kþ1 ¼ €̂skþ1 þ e

&
kþ1; ð5Þ

where €skþ1 2 Rns'1 = vector of ground accelerations measured at time step kþ 1ð Þ; diag(A) represents the diagonal of matrix

A; e
&
kþ1 2 Rns'1 = uncorrelated white Gaussian noise prediction error vector having zero-mean and covariance matrix

Rinp
kþ1 2 Rns'ns , i.e. e

&
kþ1 & N 0;Rinp

kþ1

! "
; ns = number of ground acceleration components; HT

k 2 Rns'ns = matrix containing ground

accelerations at previous time steps; and Hinp
kþ1 2 Rp'ns = matrix containing TAR model parameters. The ground acceleration

vector and both matrices defining the TAR model prediction can be written as:
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Assuming that TAR model parameters are modeled as a random vector process according to the Bayesian estimation
approach, its evolution can be described using a random walk process. This assumption together with Eq. (5) define the fol-
lowing linear state-space model:

hinpkþ1 ¼ hinpk þ bk; ð9Þ
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2 Rp(ns'1 and bk 2 Rp(ns'1 ¼ process noise vector assumed to be stationary

zero-mean white Gaussian noise with covariance matrix Q inp
k 2 Rp(ns'p(ns , i.e., bk & N 0;Q inp

k

! "
. This formulation permits using

a Kalman filter (KF) to estimate the mean vector and covariance matrix of the TAR model parameters, hinp. When ground
acceleration is directly measured, HT

k is constructed using the measurements from preceding time steps. However, when a
TAR parameter estimation problem is solved within an input-state estimation framework with ground acceleration not
directly measured, matrix HT

k is obtained from previous ground acceleration estimates. To ensure that the filter converges
when estimating TAR model parameters at each time step, the KF correction step may include iterations until certain con-
vergence criteria are satisfied. Fig. 1 depicts the pseudo code for the proposed algorithm that estimates the parameters of
TAR models representing ground acceleration time histories.

It is noted that other parameterizations for earthquake ground motions could be considered instead of the TAR model.
However, as shown in Section 2.2, a low order for TAR models is sufficient to properly reproduce seismic motions, which
allows to have a reduced number of model parameters to be estimated. Other parametrizations (e.g., [42,43]) have great
potential to be used with a batch estimation approach. In this study, a TAR model facilitates the estimation process since
a recursive estimation approach is employed. On the other hand, no parametrization of the unknown input, e.g., assuming
a random walk for the input sample, can also be considered (e.g., [39]). However, the parametrization of the input excitation
allows reducing the computational cost involved in the estimation process.

2.2. Validation

The purpose of this section is to confirm that a well calibrated TAR model is able to properly represent an earthquake
ground motion. Results are presented for the 1994 Northridge earthquake recorded at the Sylmar Country Hospital station.
The 90" component of the earthquake motion is selected and, while results for only one earthquake ground motion are
shown, consistent accuracy was obtained for a much larger set of strong motions but results of latter are not reported for
the sake of brevity. Estimation of TAR model parameters ultimately aims to completely reconstruct an unknown ground

Fig. 1. TAR model calibration pseudo-code for representing earthquake ground motions.
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acceleration time history for use in output-only nonlinear FE model updating. Since the objective is to simulate and estimate
the input, it is assumed that the time history is measured using an accelerometer with the available measurement at time
tkþ1 being referred to as €skþ1. Note that this input is considered unknown or unmeasured in the following sections.

The initial estimate for the input ground acceleration is taken equal to €̂s0j0 ¼ 0:01½ *m=s2 2 R1'1 and the initial estimate of
the unknown TAR model parameters is ĥinp0j0 ¼ 0:1; :::;0:1½ *T 2 Rp'1. The initial estimate of the covariance matrix is

P̂inp
0j0 ¼ 1:0' Ip'p, where Il'l ¼ l' l identity matrix. The prediction error covariance matrix is taken as

Rinp
kþ1 ¼ 0:1' I1'1 m=s2

% &2 and the covariance matrix of the process noise vector is assumed to be Q inp
kþ1 ¼ 1 ( 10%5 ' Ip'p. In this

case, a maximum number of iterations, Niter = 3, and a convergence criterion, e = 2%, are considered (see Fig. 1). Fig. 2 shows

true input ground acceleration €s and estimated input ground acceleration €̂s for various orders of the TAR model (p = 5, 6, and
7). Note that, for this case study, Dt ¼ 0:02s, N ¼ 600, and ns ¼ 1. Excellent performance of the proposed algorithm is
observed for the different order TAR models that were analyzed. It is also observed that, as the TAR model order increases,
goodness-of-fit between true and estimated time histories, measured using relative root mean squared error (RRMSE),
improves since the model accounts for additional information from previous time history steps. Recall that the RRMSE
between two signals, sig1 and sig2, having N samples is defined as:

RRMSE sig1; sig2
! "

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
sig1

i % sig2
i

! "2
=
XN

i¼1
sig1

i

! "2
r

' 100 %ð Þ: ð10Þ

3. Input and parameter estimation for nonlinear FE models

The dynamic response of a structural system can be obtained using a discrete-time equation of motion of a nonlinear FE
model of the system. At discrete time tkþ1, this equation can be expressed as:

M hfem
! "

€qkþ1 hfem
! "

þ C hfem
! "

_qkþ1 hfem
! "

þ rkþ1 q1:kþ1 hfem
! "! "

¼ fkþ1 þ gkþ1; ð11Þ

where hfem 2 Rnfem'1 = unknownmodel parameter vector of the FE model; nfem = number of unknown FE model parameters; q,
_q, €q 2 Rn'1 = nodal displacement, velocity, and acceleration response vectors; n = number of degrees of freedom;
M 2 Rn'n = mass matrix; C 2 Rn'n = damping matrix; r q hð Þð Þ 2 Rn'1 = history-dependent internal resisting force vector;
f 2 Rn'1 = vector of known external dynamic forces; g 2 Rn'1 = vector of unknown external dynamic forces; and the sub-
scripts indicate the time step. This general formulation, including known and unknown excitations, is preferred because
it allows to cover different cases that can be faced in practical applications, such as, partially measured excitations (e.g., prob-
lems involving soil-structure interaction, extended structures with sensors installed only at some supports, cases with mal-
functioning sensors) and completely unmeasured excitations.

Considering the case of rigid-base seismic excitation, the external dynamic force vectors take the form fkþ1 ¼ %MLu€ukþ1

and gkþ1 ¼ %MLs€skþ1, where Lu 2 Rn'nu = known base excitation influence matrix; nu = number of known acceleration base
excitation components; €ukþ1 2 Rnu'1 = known input ground acceleration time histories; Ls 2 Rn'ns = unknown base excitation
influence matrix; ns = number of unknown acceleration base excitation components; and €skþ1 2 Rns'1 = unknown input
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Fig. 2. True (actual) ground acceleration time history and estimated time histories based on TAR models of different orders.
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ground acceleration time histories. As presented in Section 2, a TAR model can be used to represent the unknown input
ground accelerations at each time step (€skþ1). An augmented vector containing FE model parameters (hfem) and TAR model
parameters (hinp) can then be defined as follows:

h ¼ hfem
! "T

hinp
! "T

# $T
; ð12Þ

where h 2 Rnh'1 denotes the vector of unknown parameters to be estimated and nh ¼ nfem þ nsp. The discrete-time equation
of motion for the nonlinear FE model with unknown input parameterized using the TAR model can be written as:

M hfem
! "

€qkþ1 hð Þ þ C hfem
! "

_qkþ1 hð Þ þ rkþ1 q1:kþ1 hð Þ
% &

¼ %M hfem
! "

Lu€ukþ1 þ Ls€skþ1 hinp
! "! "

: ð13Þ

According to Eq. (13), the response of the nonlinear FE model at time tkþ1 can be expressed as a nonlinear function of FE
model parameter vector (hfem), TAR model parameters (hinp), known input ground acceleration (€u1:kþ1), and initial conditions
(q0; _q0) as

ŷkþ1 ¼ lkþ1 hfem; hinp; €u1:kþ1;q0; _q0

! "
; ð14Þ

where ŷkþ1 2 Rny'1 = vector of predicted structural output response of the nonlinear FE model; lkþ1 = nonlinear response
function; q0 = initial displacement; and _q0 = initial velocity.

Actual response of a structure can be recorded using a heterogeneous array of sensors (e.g. accelerometers, strain-gauges,
GPS and others) and can be related to the FE predicted response vector ŷkþ1 by:

ykþ1 ¼ ŷkþ1 þ vkþ1; ð15Þ

where ykþ1 2 Rny'1 = vector of measured structural responses and vkþ1 2 Rny'1 = simulation error vector assumed to be a sta-
tionary, zero-mean, white Gaussian noise process with covariance matrix Rkþ1 2 Rny'ny , i.e.,vkþ1 & N 0;Rkþ1ð Þ.

The vector of measured responses from time t1 to tkþ1, y1:kþ1 ¼ yT
1; y

T
2; :::; y

T
kþ1

( )T , can be expressed as a nonlinear function
of the unknown parameter vector h, €u1:kþ1, q0, _q0, and v1:kþ1 (simulation error from t1 to tkþ1,

v1:kþ1 ¼ vT
1;vT

2; :::;vT
kþ1

( )T 2 Rny kþ1ð Þ'1) as:

y1:kþ1 ¼ hkþ1 h; €u1:kþ1;q0; _q0ð Þ þ v1:kþ1; ð16Þ

where hkþ1 (ð Þ is the nonlinear response function from t1 to tkþ1.
Here, uncertainty in the unknown parameter vector (h) is modeled as a random walk according to the Bayesian approach.

The following nonlinear state-space model can then be formulated:

hkþ1 ¼ hk þwk; ð17Þ

y1:kþ1 ¼ hkþ1 h; €u1:kþ1;q0; _q0ð Þ þ v1:kþ1;

where wk 2 Rnh'1 = process noise assumed to be a stationary zero-mean white Gaussian noise with covariance matrix
Q k 2 Rnh'nh , i.e., wk & N 0;Q kð Þ. Note that it is assumed that different components of input ground acceleration time histories
are uncorrelated, which is not expected in real earthquake records because of wave propagation path and surface geology
effects. Although this assumption adds more flexibility to the time histories to be estimated, it does not affect the estimation
process as shown latter in this paper. It is also assumed that, for Eq. (17), when updating the model and identifying the
unknown input at time step (k + 1), the prior TAR model parameter estimates at that time step are equal to TAR model pos-
terior parameters estimated at time step k.

An UKF is used to estimate unknown parameter vector h, which contains unknown FE model parameters hfem and unknown
TAR model parameters hinp. At each time step, the first two statistical moments of h, its mean vector ĥ and covariance matrix P̂hh,
are estimated using UKF given measured structure response (y), measured input acceleration time history (€u), and unknown
input acceleration time history (€s) that is reconstructed using estimated TAR model parameters. Fig. 3 depicts the pseudo-
code that jointly estimates FE and TAR model parameters defining unknown ground acceleration time histories.

It is worth noting that alternative approaches in the literature have proposed using surrogate models for replacing com-
putationally more expensive FE models (e.g., [44,45]). However, state-of-the-art mechanics-based nonlinear FE models
which are able to capture the complex nonlinear behavior of civil structures, as those used in this paper, allows to better
identify the damage in the structure, providing information about the presence, location, and extend of damage. In addition,
current research on surrogate models have employed empirical-based nonlinear models, such as the Bouc-Wen model, and
to our best knowledge, surrogate models for state-of-the-art modeling techniques for civil engineering structures have not
yet been proposed in the literature.

Updating state-of-the-art nonlinear structural FE models involves significant computational cost and complex nonlinear
FE models with high dimensional parameter spaces might make difficult to solve the inverse problem. Astroza et al. [46]
recently proposed a simple two-step approach to deal with this problem in the case of structures subjected to measured seis-
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mic excitation, consisting on a one-at-a-time sensitivity analysis and a batch-recursive estimation approach. However, it is
out of the scope of this paper to investigate and extend that formulation to the case of models with unknown input
excitations.

4. Simulated experiments

4.1. Structural system and input excitation

To validate the proposed methodology, a three-dimensional, 4-story, steel framed, building was studied (Fig. 4). This
structure was designed according to the 2012 International Building Code [47]. The building is assumed to be located in
downtown Seattle (class D soil), so its short-period spectral acceleration and one-second spectral acceleration are SMS = 1.37 g
and SM1 = 0.53 g, respectively. The columns are 3.5 m in height with corner and interior columns being W14'61 and
W14'90, respectively. Longitudinal beams (global X) have a length of 7.0 m and are W21'62 for floors 2 and 3 and
W21'55 for floor 4 and the roof. Beams in the transverse direction (Z) are 8.0 m long and are W18'40 for levels 2 and 3
and W18'35 for levels 4 and roof. All the columns are made of A992 Grade 50 steel while the beams are made of A36 steel.

Fig. 3. Nonlinear FE model updating pseudo-code incorporating unknown input using TAR model.
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Ground accelerations from the 1994 Northridge earthquake recorded at the Sylmar Country Hospital station were
selected as base excitations. Fig. 5 depicts the two horizontal components of the earthquake, which were recorded at a sam-
pling frequency of 50 Hz (i.e., Dt ¼ 0:02), had a total number of samples N ¼ 600, and reached peak ground accelerations of
0.84 g for the 360" component and 0.60 g for the 90"component.

4.2. Finite element model

The building was modeled in OpenSees [48] using mechanics-based, nonlinear, fiber-section, beam-column elements uti-
lizing a force-based formulation [49]. For each beam and column member, a single force-based element was used, seven
integration points (IPs) were considered along its length, and Gauss-Lobatto quadrature was employed. Note that the num-
ber of IPs was chosen such that the tributary length of the extreme IPs equaled the anticipated size of plastic hinges. Uniaxial

Fig. 4. 3-D steel frame structure.
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stress-strain behavior of the steel fibers was assumed to be governed by the modified, nonlinear, Giuffré-Menegotto-Pinto
material constitutive law [50]. This material model characterizes cyclic inelastic behavior of the steel fibers through eight
time-invariant parameters. For this study, these parameters were subdivided into primary and secondary groups based
on their influence on global structural response measurements taken from real-world tests. The three primary parameters
included the elastic modulus (E), initial yield strength (f), and strain-hardening ratio (b), while the secondary parameters
were those that control curvature of hysteresis loops and isotropic hardening [51]. Primary parameters were considered
as unknowns during the estimation phase with secondary parameters remaining fixed. Rayleigh damping was also included
in the model considering a critical damping ratio of n ¼ 2% for the building’s first two initial longitudinal modes. Fig. 6
depicts assigned nodal masses, distributed beam dead and live loads taken from the 2012 International Building Code,
and FE model geometry.

4.3. Response simulation

Response of the structural system was simulated considering base excitations from both horizontal ground motion com-
ponents recorded at the Sylmar station (Figure 5) during the Northridge 1994 earthquake. As stated in the previous section,
designated primary parameters were eventually considered as unknowns and can be depicted using the following vector:

hfem ¼ Ecol f col bcol Ebeam f beam bbeam½ *T 2 R6'1 ð18Þ

To simulate structural response, the following primary parameter values, referred to as true parameters, were selected:

hfem;true ¼ Etrue
col f truecol btrue

col Etrue
beam f truebeam btrue

beam

h iT
; ð19:aÞ

hfem;tue ¼ 200GPa 345MPa 0:04 200GPa 250MPa 0:03½ *T : ð19:bÞ

Simulated building response using these true parameters, referred to as the true response, were determined using the FE
model described in Section 4.1 subjected to earthquake ground motions shown in Fig. 5. True responses were subsequently
contaminated using zero mean white Gaussian noise to account for measurement uncertainty.

Note that one set of material model parameters for each type of steel (A992 for columns and A36 for beams) was consid-
ered. This is a valid assumption if all cross-sections of a steel grade were fabricated during the same manufacturing process.

Fig. 6. 3-D steel frame finite element model.
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4.4. Sensitivity study

Quantifying sensitivity of various measurement types and locations to variations in model parameters is crucial for cor-
rectly developing a sensor network and for updating the companion numerical model. To circumvent problems associated
with unidentifiability of model parameters, various methods for quantifying and visualizing sensitivity have been developed.
Tornado diagrams, which sort parameters based on the sensitivity of measured response to a designated variation in their
value, were selected for the current study [52]. This is a simple, single-variate, sensitivity analysis in which each unknown
model parameter is individually perturbed around its true value by ±5% with other parameters being fixed. Measured
responses for each perturbed model subjected to Sylmar ground motions were computed and compared to those obtained
from the true model using RRMSE. A large RRMSE implied that the response was sensitive to the corresponding model
parameter and depicted using longer swings in the tornado diagram.

It was assumed that absolute accelerations in both horizontal directions could be measured at every level and relative
displacements measured at Level 4 and the roof (see Fig. 4). Fig. 7 shows the tornado diagrams associated with roof absolute
longitudinal (X axis in Fig. 4) acceleration and relative longitudinal displacement, which are both included in the instrumen-
tation plans (see Fig. 4) used for FE model updating later. Both roof absolute acceleration and the relative displacement are
more sensitive to the modulus of elasticity of the beam (Ebeam) and column (Ecol) fibers and less sensitive to material hard-
ening ratios (bbeam and bcol). Absolute acceleration was observed to be slightly less sensitive to parameters governing the
structure post-yield nonlinear behavior than relative displacement. Sensitivity analysis results for other observed responses
follow similar trends to those presented here.

4.5. Parameter and input estimations

It was assumed that exact values for the six primary material model parameters in Eq. (19) and the transverse input exci-
tation (i.e., 90" component of the Sylmar record) were unknown, i.e., nfem ¼ 6, ns ¼ 1, and nh ¼ 6þ 1 ( p. Note that considering
one unknown input earthquake component mimics a real situation with a malfunctioning sensor at the base of a building.
Eighteen different estimation cases were analyzed considering different orders of the TAR model and with and without iter-
ations in the UKF correction step (see Fig. 3). These cases were chosen to study and evaluate convergence and performance of
the proposed algorithm for estimating FE model parameters and unknown input excitation and to analyze computational
costs. Cases ID1 to ID9 assumed that eight absolute acceleration responses were recorded (i.e., both horizontal components
are each floor). Cases ID10 to ID18 assumed that four relative displacement responses (at levels four and the roof) were mea-
sured in addition to the eight accelerations. Measurement locations are shown in Fig. 4. As stated earlier, response data used
to estimate the unknownmaterial model parameters and input excitations were simulated using true responses presented in
Section 4.3 corrupted by zero-mean white Gaussian noise having root-mean-square amplitudes of 0.5% g and 2 mm for the
accelerations and displacements, respectively. Note that accelerometers record absolute accelerations, therefore this type of
measurement is considered (it is not realistic to consider relative acceleration as measurement). Then, during model updat-
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Fig. 7. RRMSE tornado diagrams for: (a) roof absolute longitudinal acceleration; and (b) roof relative longitudinal displacement.
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ing, absolute acceleration responses are computed by adding the relative responses obtained from the model (see Eq. (13))
and the estimated input excitation.

The initial unknown input excitation estimate was taken equal to €̂s0j0 ¼ 0:01½ *m=s2 2 R1'1 and the initial TAR model
unknown parameter estimate was ĥinp0j0 ¼ 0:1; :::;0:1½ *T 2 Rp'1. The initial FE model parameter estimate was assumed as

ĥfem0j0 ¼ 1:4 ( Etrue
col 0:7 ( f truecol 0:8 ( btrue

col 1:5 ( Etrue
beam 0:8 ( f truebeam 1:3 ( btrue

beam

h iT
2 R6'1. The initial covariance matrix P̂hh

0j0 was

assumed to be diagonal, i.e., initial unknown input excitation parameters and FE model were statistically uncorrelated. Diag-

onal terms are chosen as P̂hh
0j0

! "

i;i
¼ 0:05' ĥfem0j0

! "2
for i ¼ 1; :::;nfem, which corresponded to FE model parameter covariance,

and P̂hh
0j0

! "

i;i
¼ 1:00' ĥinp0j0

! "2
for i ¼ nfem þ 1; :::;nfem þ p ( ns, which corresponded to TAR model parameter covariance. Corre-

sponding acceleration and displacement response on the diagonal for R were 9 ( 10%4 m=s2
% &2 and 2.25 mm2, respectively.

The process noise was assumed time-invariant and with diagonal entries equal to 1 ( 10%5 ' ĥ
inp
0j0

! "2
for the TAR model

parameters and 1 ( 10%6 ' ĥ
fem
0j0

! "2
for the FE model parameters.

Table 1 lists FE model parameter estimation results corresponding to eighteen case studies that considered different out-
puts (i.e., acceleration and acceleration + displacement), TAR model orders p ¼ 4;6;10f g and number of iterations
Niter ¼ 0;2;3f g. Precise estimates are observed for the elastic modulus and yield stress for all cases, with relative errors lower
than 3%. However, strain hardening ratio estimates featured significant bias and were attributed to lower sensitivity of mea-
sured response to these parameters as discussed and shown in Section 4.4. Estimates did not significantly improve when
displacement responses were considered in addition to accelerations. Note that parameter estimates with relative errors less
than or equal to 5% are shaded in grey in Table 1.

Table 2 shows the RRMSEs between true and estimated input excitations, with estimated values developed using TAR
model parameter estimates. Input estimates slightly improved when displacement responses were considered in addition
to accelerations. The effects of adding iterations and increasing TAR model order were negligible in both FE model and
unknown input estimates.

Two representative case studies are discussed in more detail. The first corresponded to case ID1, which considered a TAR
model of order p ¼ 4 without iterations. The second case is ID18, which considered p ¼ 10 and three iterations. Fig. 8 shows
time histories based on FE models using estimated parameters from each of these cases. Both cases showed precise perfor-
mance of the proposed algorithm for estimation of the primary FE model parameters in the presence of unknown seismic
inputs. Estimates for the beam and column fiber moduli (Ecol and Ebeam) and yield stresses (fcol and fbeam) converged to their
true values while hardening ratio parameters (bcol and bbeam) did not converge. The elastic moduli of beams and columns
converged in the first 0.5 s of the analyses, prior to the structure entering the nonlinear response regime. When the nonlinear

Table 1
Parameter estimation results.
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response of the structure begins at about 2.5 s, the yield stresses and hardening ratios start to update and the former quickly
converge to their true values. Although the case presented considers six unknown model parameters, other cases including
eighteen model parameters (one set of material model parameters for each element cross-section) were also analyzed and
results consistent to those reported here were obtained.

Fig. 9 compares true and estimated input motions for case studies ID1 and ID18. RRMSEs are practically the same for both
cases, with a difference lower than 0.5%. Since a low-frequency component is observed in the estimated inputs, a high-pass
Butterworth filter of order 7 and cut-off frequency at 0.15 Hz is applied. RRMSEs between filtered estimated and true input
excitations are also shown in Table 2. It is observed that errors are all lower than 5.0%, indicating excellent estimation of
unknown input excitation using the proposed framework, even when using a lower order TAR model (p = 4) with no itera-
tions (Niter = 0). Observed low-frequency as force estimation drift has been previously reported in the literature [10,39]. For-
mal observability and identifiability studies for nonlinear structural systems subjected to unknown inputs are rare, and the
subject is an open research area. In this regard, Maes et al. developed a geometric algorithm based on Lie algebra to inves-
tigate the theoretical observability of nonlinear systems with partially measured inputs and outputs [53]. Their algorithm

Table 2
RRMSEs for true and estimated earthquake input motions.

Response measurement Case ID p Niter RRMSEinput (%) RRMSEinput (%) – Filtered

Acceleration 1 4 NO 11.1 4.1
2 4 2 12.3 4.1
3 4 3 11.9 4.1
4 6 NO 10.7 3.9
5 6 2 11.6 4.0
6 6 3 11.7 4.1
7 10 NO 11.7 4.3
8 10 2 11.7 4.1
9 10 3 11.6 4.0

Acceleration + Displacement 10 4 NO 10.2 4.1
11 4 2 10.1 4.1
12 4 3 9.2 4.2
13 6 NO 8.4 3.9
14 6 2 11.7 4.2
15 6 3 10.1 4.1
16 10 NO 11.2 4.2
17 10 2 9.6 4.0
18 10 3 10.7 4.0
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assumes that the measurements are continuous over time; therefore, it cannot be adopted for systems featuring discrete
state space equations.

4.6. Errors between measured and unobserved responses

RRMSEs corresponding to measured response quantities used in the estimation process for the eighteen cases described
in Section 4.5 are reported in Table 3. RRMSEs between true responses (without noise) and those obtained from final FE
model parameter and input estimates (without high-pass filtering) are reported. Practically all acceleration responses exhibit
an error lower than 10%, while measured displacements show errors between 10 and 15%, confirming a very good agreement
between true and estimated responses. Fig. 10 compares true and estimated acceleration time histories in the building’s
transverse direction (i.e., direction of unknown input) for ID1 and ID18 and excellent agreement is observed.

Since prediction of unobserved (unmeasured) structural response is crucial for optimal and effective structural health
monitoring and subsequent damage identification, RRMSEs for local, unobserved response quantities are also investigated.
Moment, curvature, strain, and stress are analyzed with critical column and beam sections selected and responses from the
true FE model subjected to the true excitation compared to those obtained from final estimates of FE model parameters and
estimated unfiltered input. Table 4 shows RRMSEs for the eighteen case studies, with bending moment and curvature at the
bottom of a column (Section 1-1 in Fig. 4) and at the end of longitudinal beam (Section 2-2) and stress and strain at the same
column section and at the end of a transverse beam (Section 3-3) being studied. For most responses, very low RRMSEs are
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Table 3
RRMSEs of measured responses.

Response measurement Case ID p Niter RRMSE (%) – Measured response

a2t a3t a4t a5t d4t d5t

Acceleration 1 4 NO 8.4 8.5 9.3 6.8 – –
2 4 2 9.2 9.4 10.1 7.5 – –
3 4 3 8.9 9.1 9.8 7.3 – –
4 6 NO 8.1 8.2 8.9 6.6 – –
5 6 2 8.6 8.8 9.5 7.0 – –
6 6 3 8.8 8.9 9.7 7.2 – –
7 10 NO 9.1 9.1 10.1 7.4 – –
8 10 2 8.9 9.0 9.8 7.2 – –
9 10 3 8.7 8.9 9.6 7.1 – –

Acceleration + Displacement 10 4 NO 7.9 7.9 8.8 6.5 13.1 14.0
11 4 2 7.7 7.9 8.5 6.4 13.9 13.3
12 4 3 7.2 7.3 7.8 5.9 11.7 11.2
13 6 NO 6.6 6.7 7.2 5.4 11.0 10.6
14 6 2 8.8 9.1 9.7 7.3 15.9 15.2
15 6 3 7.8 7.9 8.6 6.4 12.9 12.3
16 10 NO 8.8 8.7 9.8 7.2 14.3 13.7
17 10 2 7.4 7.5 8.2 6.0 12.4 11.9
18 10 3 8.1 8.3 9.0 6.7 13.6 13.1
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obtained, which indicated good prediction capabilities for unobserved responses using the proposed approach.
Displacement-related responses (curvature and strain) exhibited larger errors than force-related responses (moment and
stress), which is consistent with results obtained for measured responses. These trends are attributed to displacement-
related responses being more sensitive to low-frequency drift from the estimated input. Note that RRMSEs larger than
15% are shaded in grey in Table 4. Fig. 11 compares true and predicted unmeasured responses for case studies ID1 and
ID18 and similar agreement is obtained. The roof drift ratio (RDR) and base shear in the transverse direction normalized
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Table 4
RRMSEs of unmeasured responses.
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by the total weight of the building (Vb/W), both global response measures, are shown and also demonstrate excellent
agreement.

4.7. Parametric studies on the filter parameters

It is well-known that the performance of Kalman-based filters is influenced by the four variables defining them, i.e. initial
estimate (ĥ0j0), initial covariance (P̂hh

0j0), process noise covariance (Q), and measurement noise covariance (R). To analyze the
effects of these variables in the estimation results of the framework proposed in this paper, a set of nine parametric studies
was conducted. As a reference, case ID1 was considered, i.e., acceleration-only response, p = 4, and no-iterations. The esti-
mation results for the parametric studies are summarized in Table 5. Note that in this table

ĥfem;1
0 j 0 ¼ 1:4 ( Etrue

col 0:7 ( f truecol 0:8 ( btrue
col 1:5 ( Etrue

beam 0:8 ( f truebeam 1:3 ( btrue
beam

h iT
; ĥfem;2

0 j 0 ¼
h
0:5 ( Etrue

col 2:0 ( f truecol 1:4 ( btrue
col

0:6 ( Etrue
beam1:5 ( f truebeam1:3 ( btrue

beam

iT
, and the coefficients shown for P̂hh

0j0 and Q represents the factor r in the (i,i) entry of the diag-

onal matrices P̂hh
0j0

! "

i;i
¼ r ' ĥ0j0

! "2

i
and Q i;i ¼ r ' ĥ0j0

! "2

i
, respectively. As observed from the table, very good estimation

results were obtained for different values of the parameters defining the filter, except when the initial covariance of the
TAR model parameters is low (case PS3) and when the initial estimate of the parameters is far from the true values and
the initial covariance of the FE model parameters is low (r = 0.05) (case PS7). In the former case, considering 2 iterations
allowed to improve the estimation and achieve excellent results. In the latter, considering 2 iterations (Niter = 2) or increasing
the initial covariance of the FE model parameters implied that the filter accurately estimates the input and appropriately
update the FE model. These parametric studies clearly show that the proposed framework is robust and that appropriate def-
inition of the variables involved in the algorithm provides accurate estimation results. Note that in Table 5, cells shaded in
green refer to the filter parameters modified with respect to case ID1, while cells shaded in red indicate cases for which no
proper estimation is achieved.
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From all the analyses conducted, it is suggested to consider a low to moderate initial covariance of the FE model param-
eters (r = 0.05 to r = 0.15), a high initial covariance of the TAR model parameters (r = 1.00), and low values for the diagonal
terms in the process noise covariance matrix Q (r = 1e%5 or r = 1e%6). Based on the results obtained, the approach is robust
to the measurement noise covariance R.

4.8. Computational cost

An algorithm computational cost plays an important role when selecting a framework, since quickly knowing structural
conditions and possible damage is of vital importance when making decisions after an extreme event. Table 6 lists wall-clock
time required for the estimation process for each case study. Note that all results were obtained from analyses performed
using 8 cores from a desktop workstation having an Intel Xeon E5-2650 (2.3 GHz) processor and 64 GB random-access mem-

Table 5
Results of parametric studies on the filter parameters (all with acceleration-only response and p = 4).

Table 6
Wall-clock time to complete the estimation process.

Response measurement Case ID p Niter Wall-clock time (h)

Acceleration 1 4 NO 2.7
2 4 2 5.2
3 4 3 7.7
4 6 NO 4.0
5 6 2 7.2
6 6 3 9.1
7 10 NO 4.8
8 10 2 9.4
9 10 3 14.5

Acceleration + Displacement 10 4 NO 2.5
11 4 2 5.1
12 4 3 8.0
13 6 NO 3.7
14 6 2 7.1
15 6 3 8.8
16 10 NO 5.1
17 10 2 9.7
18 10 3 15.4
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ory. As pointed out by other researchers, UKF can take advantage of parallel processor capabilities and using more cores can
efficiently decrease computation times [54,55].

As anticipated, computational cost increases significantly as iterations and higher TAR model orders are considered. How-
ever, based on presented results a low TAR model order and no iterations achieves very good estimation results, almost iden-
tical to those obtained using higher order TAR models with iterations. It is concluded that p = 4 without iterations is a good
combination to properly estimate unknown FE model parameters and input excitations.

5. Conclusions

This study proposed a new framework for calibration of nonlinear structural finite element (FE) models subjected to
unknown excitations using response time histories obtained from a sparse sensor network. It was initially shown that seis-
mic excitation sources could be effectively reconstructed using relatively low order time-varying auto-regressive (TAR) mod-
els. A novel iterative Kalman filter (KF) was developed to recursively estimate TAR model parameters when past seismic
excitation source measurements were available. The framework was further extended to cases with unknown parameters
of the structural model and no seismic excitation measurements being available. For these cases TAR model parameters
are estimated solely based on measured structural response. The proposed output-only nonlinear FE model updating frame-
work employs an unscented Kalman filter (UKF) to jointly estimate FE and TAR model parameters using sparsely measured
global structural response quantities. Extensive numerical analyses were conducted on a realistic three-dimensional steel
frame, assuming unknown material model parameters and seismic excitations, to validate the applicability of the proposed
framework. TAR models with various orders were considered and, additionally, analyses featuring various numbers of iter-
ations were compared. It was concluded that the proposed framework allows for proper calibration of nonlinear FE models
and proper reconstruction of seismic excitations using estimated TAR model parameters. TAR model orders as low as 4
involving no filtering iterations step provide precise input identification and unbiased FE model parameter estimates, thus
providing a computationally efficient algorithm for parameter-input estimation of nonlinear structural models. It was
observed that the estimation did not improve when heterogeneous responses (i.e. absolute acceleration and relative dis-
placement) were considered. In addition, it was shown that global and local responses predicted using the calibrated FE
model and estimated input excitation are in very good agreement with true responses for both measured and unmeasured
response quantities. Acceleration and force-related responses (moment and stress) were better predicted than strain, curva-
ture, and displacement responses, with low frequency drift in the estimated input most likely causing the increased error for
the displacement-related responses. Although the case study presented includes one unknown input component and six
unknown model parameters, the mathematical formulation proposed is general and it does not limit the number of model
parameter or number of unknown input components.
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