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Abstract

This paper presents a framework for automated damage detection using a continuous stream of structural health monitoring
data. The study utilized measured strains from an optimized sensor set deployed on a double track, steel, railway, truss
bridge. Stringer—floor beam connection deterioration, a common deficiency, was the focus of this study; however, the
proposed methodology could be used to assess the condition of a wide range of structural elements and details. The
framework utilized Proper Orthogonal Modes (POMs) as damage features and Artificial Neural Networks (ANNs) as an
automated approach to infer damage location and intensity from the POMs. POM variations, which are traditionally input
(load) dependent, were ultimately utilized as damage indicators. Input variability necessitated implementing ANNSs to help
decouple POM changes due to load variations from those caused by deficiencies, changes that would render the proposed
framework input independent, a significant advancement. To develop an automated and efficient output-only damage
detection framework, data cleansing and preparation were conducted prior to ANN training. Damage “scenarios” were
artificially introduced into select output (strain) datasets recorded while monitoring train passes across the selected bridge.
This information, in turn, was used to train ANNs using MATLABs Neural Net Toolbox. Trained ANNs were tested
against monitored loading events and artificial damage scenarios. Applicability of the proposed, output-only framework
was investigated via studies of the bridge under operational conditions. To account for the effects of potential deficiencies
at the stringer—floor beam connections, measured signal amplitudes were artificially decreased at select locations. It was
concluded that the proposed framework could successfully detect artificial deficiencies imposed on measured signals under
operational conditions.

Keywords Railway - Bridge - Strain - Data - Cleansing - Proper orthogonal decomposition - Artificial neural networks -
Damage - Detection

1 Introduction

Aging infrastructure, increased traffic load and frequency,
and climate change motivate monitoring the condition of
our built environment using autonomous, continuous and
quantitative methods. Bridges, a key link in our trans-
portation infrastructure network, are largely assessed in the
US via visual inspection. This approach takes place at
prescribed frequencies and is costly, possibly unsafe, and
subject to human interpretation [1]. Automated procedures
to identify damage to bridges and other structures have
been investigated for some time and are typically referred
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to as Structural Health Monitoring (SHM) [2]. An ensem-
ble of sensors provides raw data that form the “front end”
of a SHM system. A signal-processing layer then extracts
information on structure condition and damage identifica-
tion techniques are applied to extract useful information
from the data. Subsequent information is incorporated into
structural analysis and probabilistic models to assess the
state of the structure and develop an updated health and
service life prognosis [3].

Normally, a structural deficiency leads to degradation of
material properties or variations in geometry and, there-
fore, results in changes in system dynamic properties. In a
vibration-based damage detection framework, properties
such as modal curvature [4], Eigenmodes [5-7], and modal
strain energy [8, 9] are sensitive to the aforementioned
deficiencies. The classic approach for vibration-based
damage detection is accomplished in two phases, modal
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identification and model updating, where an optimization
procedure is employed to find values for damage indices
that minimize a discrepancy function. Vibration signatures
are also combined with Machine Learning tools for iden-
tification of local deficiencies using fault detection methods
[10-12]. He et al. [10] used induced vibrations from trains
passing across a coupled FEM model of simply supported,
single span bridge and Genetic Algorithm to detect damage
location and intensity. Loads coupled to the bridge model
were from a single bullet train car and, as a result, did not
simulate most train loading configurations. Variations in
train axle loads were also not included. Kim et al. [11]
investigated recorded accelerations, temperature and vehi-
cle weights collected using a long-term SHM system
deployed on a steel multi-girder bridge to detect deficien-
cies. Their methodology included: employing autoregres-
sive model coefficients to extract damage-sensitive features
from recorded accelerations; considering environmental
and vehicle weights via regression analysis of damage
sensitive features; and making decisions about bridge
health based on differences between observed and pre-
dicted damage-sensitive features using Bayesian hypothe-
ses testing with a 95% confidence interval [11]. The
proposed framework was based on input measurement and
the damage detection scheme was not intended to pinpoint
damage location. It was concluded that using Bayesian
regression that incorporated environmental and vehicle
loading yielded more accurate results when compared
against cases where these items were excluded [11]. Bel-
lino et al. [12] used Principle Component Analysis to
eliminate site condition effects, such as train mass and
velocity, on structural frequencies so that frequency
changes would be purely due to damage. The study
included laboratory testing of a single moving mass on a
short cantilever beam subjected to damage to verify the
methodology and the proposed method was able to detect
damage and differentiate between various damage levels
[12].

A major challenge associated with using identified
modal properties for damage detection under operational
conditions is that environmental conditions (i.e., tempera-
ture, moisture, wind) may drastically affect identification
results [13, 14]. Additionally, most operational modal
analysis (OMA) algorithms assume that ambient excita-
tions are stationary, white noise. In many cases, this
assumption may be violated and, consequently, modal
properties would not be consistently identified. Research is
in progress that focuses on alleviating issues caused by
these non-stationary external inputs [15, 16].

Another major drawback of conventional modal-based
damage detection methods is their sensitivity to modeling
errors. In an attempt to address this issue, full-scale,
dynamic tests of a seven-story reinforced concrete building

were completed to examine uncertainties in common
damage detection methods [17]. Findings indicated that
level of confidence in damage identification results was a
function of the level of uncertainty in identified modal
parameter choices when designing the monitoring schemes
(e.g., spatial density of measurements) along with model-
ing errors (e.g., mesh size) [5, 18]. Based on these findings,
it can be inferred that, for reliable structural health moni-
toring to occur, there is a need for high signal-noise ratios,
precise modeling, and stationary external excitations.
However, the stationarity condition is often violated,
highly accurate models demand time and expertise, and
high signal-noise ratios are usually not achievable using
reasonably priced sensors.

Several issues have motivated research on data-driven
methods for SHM. These include: efficacy of automatic
damage feature extraction under operational conditions; the
“curse of dimensionality” when dealing with relatively
large parameter sets; how to accurately account for
unknown and non-stationary external excitations; and
inaccuracies associated with using global damage features
to pinpoint local deficiencies [2]. An objective stemming
from these issues could be succinctly stated as developing
SHMs that correctly detect statistically significant damage
feature variations via analysis of sensor data [19].
Researchers are attempting to address this output-only,
damage feature detection need. One study implemented a
continuous monitoring system on a highway bridge and
used a combination of Statistical Process Control (SPC)
and Gaussian Process Regression (GPR) for centralized
damage identification based on novelty detection [20].
GPR was used to mitigate vehicle-bridge interaction and
environmental effects to isolate damage and a relatively
long window of measurements was used for determining
the SPC threshold. A second study utilized laboratory
fatigue tests of a wind turbine blade and adopted multi-
variate numerical analysis methods such as Radial Basis
Functions, Principal Component Analysis, and Artificial
Neural Networks (ANNs) to detect damage via measure-
ment of system response to harmonic excitations [21]. Yet,
another study developed a novel impact localization
method using Proper Orthogonal Decomposition (POD)
[22]. Acoustic emission measurements were also used to
evaluate structural condition and self-healing performance
of textile reinforced cements [23]. The effectiveness of
SHM schemes based on statistical damage features versus
those based on modal parameters was examined via a
second study of a wind turbine blade. It was concluded that
statistical-based methods better identified induced damage,
even at low damage levels [24]. Kim and Eun performed
simulated experiments on a beam to study damage detec-
tion capabilities of an algorithm based on POD of the
structure’s Frequency Response Function (FRF). It was
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concluded that using POMs of FRFs in specific frequency
ranges could effectively identify incurred damage [25].
Most health monitoring systems are centered on mea-
suring strains, accelerations, displacements, or a combi-
nation of these items. While acceleration measurements are
suited for monitoring global behavior of structural systems,
strain measurements provide a unique understanding of
local behavior of the system. Recent research has focused
on the use of specific types of strain sensors to not only
evaluate their effectiveness in the field but also to examine
their efficacy for detecting damage in a SHM application
[26] and their use continues to be studied [27, 28]. Glisic
et al. compared damage detection capabilities of the two
main FO techniques, one based on fiber Bragg gratings and
the other on Brillouin optical time-domain analysis. The
former technique enables long gage lengths and the latter
allows for distributed sensing. It was concluded that both
strain sensing techniques are suitable for damage detection
via their application to full-scale reinforced concrete
structures [29]. Tondreau and Deraemaeker developed a
method to locate structural damage based on local modal
filters applied to dynamic strain measurements and per-
formed lab experiments to validate their method using a
dense array of strain sensors installed on a steel beam [30].
Reported output-only damage detection methods are
dependent on stationary, external, system excitations and
require high signal-noise ratios for accurate detection. To
address these apparent interdependencies, the authors
developed a framework for detecting damage under
operational conditions using POD and Artificial Neural
Networks (ANNs) [26, 31]. A supervised learning
scheme was proposed for output-only classification of
structural response to minimize POM variations that
belong to each defined damage class and load intensity.
Additionally, a regression analysis was performed using
ANNs to quantify the relationship between identified
POMs and damage severity and location. Summarized
herein is an extension of the experimental validation of
this technique to include the effects of system nonlin-
earities, measurement errors, local impacts induced by
vehicle—structure interaction, and other operational load
aspects that potentially could affect performance. A
railway bridge was adopted and instrumented as the full-
scale test bed. The relatively large ratio of passing train
axle loads to the bridge weight rendered system matrices
time-varying. Moreover, train loads varied significantly
and were highly non-stationary. To validate the accuracy
of the method, measured signals from operational train
loads were fed into a damage detection algorithm. Arti-
ficial, “high-noise” signals were used within the damage
detection algorithm to assess its robustness. It was
observed that the method was able to expand damage
detection capabilities under new, unknown train loads

and was robust enough to accurately address noisy
measurements.

2 Studied bridge and implemented
monitoring system

To explore the efficacy of the coupled POD and ANN
methodology, an in-service, steel, truss, double track,
railway bridge in central Nebraska was monitored. The
bridge was instrumented using strain transducers and
measured response was continuously transferred to a data
acquisition system that was accessed remotely. This section
describes the bridge span under study and the monitoring
system.

2.1 Studied bridge

The selected bridge is a simply supported, through-truss
that spans 44.7 m. This truss is comprised of six panels
with floor beams spaced longitudinally at 7.45 m. The truss
span contains riveted and built-up members including: end
posts; top chords; verticals; diagonals; and, in the first two
panels adjacent to supporting piers, bottom chords. Mid-
span bottom chords and diagonals are composed of eyebars
of varying thickness.

Two types of built-up, I-sections are used for the floor
beams, each having differing numbers and sizes of web
plates, angles, and cover plates. One built-up, stringer cross
section is provided and consists of an I-section with a web
plate and angles for the flanges. Bottom laterals and laterals
between stringers are single angles of varying dimensions.
Top laterals and end portals are trussed elements contain-
ing double angles, single angles and lacing bars. Elevation
and plan views of the bridge span are shown in Fig. 1. In
general, steel bridges can be subjected to a wide variety of
deficiencies caused by corrosion, fatigue cracks, scour and
other items [32]. For the bridge under study, main struc-
tural deficiencies included stringer—floor beam connection
deterioration, deterioration of the stringer and bottom lat-
eral connections and members, and frozen roller supports
[33]. While all of these deficiencies can be of concern to
the bridge owner, as stated earlier, fatigue of stringer—floor
beam connections is of primary concern for many riveted,
steel, truss railway bridges as connection failure can lead to
partial collapse of the structure, potential safety concerns
for employees and citizens and expensive traffic disrup-
tions [32, 34, 35]. Therefore, while other SHM configura-
tions were utilized on the selected bridge, the SHM system
reported herein was designed to focus on potential defi-
ciencies at the stringer—floor beam connections. It should
be noted that proposed method can be used to detect other
deficiencies using differing sensor configurations [33].
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Fig. 1 Truss span plan and

elevation

2.2 Monitoring system

A total of 24 strain transducers, manufactured by Bridge
Diagnostics, Inc. (BDI), were deployed on the bridge to
measure structural response under train passage and 20 of
those instruments were installed at stringer ends as shown
in Fig. 2. Sensors were installed on the stringer bottom
flanges. Selected instrument locations were based on rec-
ommendations by the bridge owner and preliminary FEM
models. A sensitivity analysis using an FE model of the
bridge, completed in a previous study, showed that while
the sensor network reported herein furnished excellent
sensitivity to critical damage scenarios at the connections,
a sparser instrumentation plan using 12 sensors located at
midspan of the stringers provided enough response sensi-
tivity for effective detection of stiffness degradation at non-
instrumented stringer—floor beam connections [33].

The monitoring system consists of a BDI data logger, a
wireless base station and wireless nodes, with each node
being connected to 4 strain sensors using cables as shown
in Fig. 3. The system was powered using six 24-volt bat-
teries that were recharged by two solar panels, also shown
in Fig. 3. Example sensor installations on stringer bottom
flanges near floor beam connections are shown in Fig. 4.
Data were collected remotely with the system set to

6x745m=44.7m

activate and record strains at a sampling rate of 50 Hz
when a train crossed the bridge. It was understood by the
authors that measured strains and associated POMs would
likely be affected by environmental conditions. Those
effects are being examined in a follow-up study.

3 Feature extraction and data cleansing

The current study considered 1 week of train “events,”
which totaled 363 recorded passages. Live loads associated
with these datasets varied with respect to speed, number of
axles, and axle load magnitudes. The proposed methodol-
ogy is discussed in the subsections that follow and sum-
marized in a flowchart in Fig. 19.

3.1 POD for feature extraction using POMs

POMs are known to contain information on structural
deficiencies and have been widely used for model reduc-
tion [36], impact localization [22], and damage detection in
mechanical systems [37, 38]. POMs are used to graphically
highlight data having the most variation for a given number
of events. Therefore, for the current study, POMs were
dependent on recorded strain magnitude and duration,

Fig. 2 Stringer instrumented L6R L5R L4R L3R L2R LIR LOR
locations e —_— — — — 1
—————— W T N B i
=l | 2] I N N O T~ I 5
"""" I L T T U el
E— ] — o] p— ] — ] p— ] —
L6L L5L LAL L3L L2L L1L LOL
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Fig. 3 Deployed monitoring system: a BDI node; b solar panels

Fig. 4 Installed strain sensors (circled)

which are a function of train configuration and speed. To
minimize POM variations, strain signals included in
snapshot matrices used for POM extraction needed to be of
similar magnitude and features, and data reduction and
cleansing were necessary prior to mode extraction.
Therefore, data windowing, load location identification and
peak picking were performed. MATLAB algorithms were
implemented or developed to render this process autono-
mous and involved steps are described in the sections that
follow.

3.2 Windowing recorded events

The first step was elimination of time intervals having
negligible live load strains, typically before and after train
passage. The MATLAB find algorithm was applied to
window the recorded strains at Location 3 in Fig. 2,
selected since that sensor was positioned at midspan under
a train rail and, as a result, would be quite sensitive to live
load effects. Time steps involving strain changes greater
than 7.5 pe were selected as the first filter through an

offline trial and error process. Subsequently, all time steps
having magnitudes less than 7.5 pe at the start and end of
each event were eliminated. Two representative recorded
signals at Locations 3 and 18 are shown in Fig. 5 before
and after windowing.

3.3 Determining load location

The second step focused on developing automated classi-
fication of recorded signals based on the track upon which
the train crossed the bridge. Initial field testing and model
results indicated that stringer end bottom flange strains
would be in compression if that stringer was underneath the
loaded track and in tension if the other track was loaded
[33]. Means for recorded strains at Locations 1-10,
underneath Track 2, were calculated and if values exceeded
zero, the train was classified as being located on Track 1,
with the opposite sign indicating the train was located on
Track 2. This classification showed that 187 of 363 trains
traversed the bridge on Track 1. Windowed strain signals at

w
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Fig. 5 Signal windowing: a original; b windowed
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Location 3 and 18 for a train on Track 1 and on Track 2 are
shown in Fig. 6.

3.4 Automated peak picking

The third step focused on automatically selecting a con-
stant number of peaks in each recorded event dataset so
that POM variations due to train load disparities were
minimized. A lower bound threshold of 50 pe for recorded
strain peaks was established based on average strains
recorded at Location 3 when Track 1 was loaded or the
corresponding location (Location 18) when Track 2 was
loaded. The MATLAB findpeaks function was used to
select the first 40 peaks having strains greater than 50 e at
Locations 3 or 18, with 40 peaks being selected to ensure
that the snapshot matrices included enough samples for
stable POM calculation. The developed code excluded the
first five peaks, corresponding to four train cars, to elimi-
nate transient response developed from the locomotives.
After automated peak peaking was performed, 74 events
were filtered, 15 for trains on Track 1 and the remainder for
trains on Track 2. Representative final strain events used to
develop POMs for trains on Tracks 1 and 2 at Locations 3
and 18 are shown in Fig. 7. Figure 7a is for a case where
the train is located on Track 1, while Fig. 7b is for the train
located on Track 2.

4 ANN training
4.1 Theoretical background
Regression and classification models can be constructed

based on a linear combination of predetermined nonlinear
basis functions ¢ (x) [39]:
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Fig. 6 Load location: a Track 1; b Track 2
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Fig. 7 Peak picking: a Track 1; b Track 2

M
=f ijf/’j(x) , (1)

where f [®] is a nonlinear activation and classification
function, which, for regression situations, equals the iden-
tity matrix. One neural network development approach is to
assume predetermined nonlinear basis functions are them-
selves parametric functions of inputs, where coefficients of
the linear combinations are adaptive parameters that should
be determined for each specific problem. A two-layer,
feed-forward neural network was adopted for the current
study, as it has been proven that this architecture can
approximate arbitrary nonlinear functions [40, 41]. The
relationship between input and the jth component of the
output of such network is given by [39]:

M
ye(x,w) =0 Zwk]
=

where y € RX is the output vector; x € R” is the input of

the neural network; M denotes the number of neurons in
(2)

Zw il | 4wl @)

the hidden layer; w;;” and WkO represent weights and biases

of the output layer; and w](,- ) and W;o>

stand for weights and
biases of the hidden layer.

The process of obtaining weights and biases of above-
mentioned relationship between input and output from a set
of data is called supervised training of ANN. Consider a
given set of training data including input vectors {x},
where k = 1, 2,..., N and their corresponding target values
{t:}. Training of the network is performed by minimizing
discrepancies between target and computed output. When
dealing with regression, the most common objective
function is the least mean squared error [42]:

N

E! = Z Itk = yeee, w2, (3)

k=1

where d refers to data. For training a feed-forward ANN,
the weights and biases (thresholds) are calculated in batch
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mode and the Levenberg—Marquardt (LM) algorithm is
often adopted for optimization [43]. In general, one of the
issues with LM is its inability to identify global minimums
of the objective function. To alleviate this issue, one might
need to utilize the algorithm several times with different
initializations for the parameters or use soft computing
methods, such as simulated annealing or genetic algorithms
[44]. With regard to use of LM for calculating ANN
weights, until the late 1990s, it was believed that classic
gradient descent algorithms would be “trapped” at poor
local minima locations [45]. Additional research indicated
that poor local minima were not detrimental for large
ANNS and that a suboptimal set of weights could furnish a
near optimal network performance [45]. For ANNs having
more than one hidden layer, error back propagation in the
LM algorithm is often used to determine objective function
gradients and to optimize corresponding weights [45].

One of the most striking properties of ANNs is network
generalization, which means that, once the network is
appropriately trained for a set of input and output data, it
will make accurate predictions given arbitrary inputs.
During the training process, however, the network might
not distinguish between noise and hidden structure of the
data. This issue is referred to as network overfitting. To
alleviate this issue, Bayesian regularization of the objective
function is commonly pursued. The basic idea behind
Bayesian regularization is that the true underlying function
is smooth to some extent and when the weights in a net-
work are kept small, network response will be smooth [46].
Therefore, the regularization adds another term to the
objective function:

E = BEY + oE", (4)

where E" is the sum of square root of network weights;
superscript w refers to weights; and o and f§ are objective
function parameters. The ratio of the objective function
parameters determines training emphasis, with larger o/f8
pushing the network toward generalization and smaller
values driving the network to smaller errors [46]. The main
challenge in implementing ANN regularization is choosing
appropriate regularization parameters value. MacKay pro-
posed a Bayesian framework for obtaining optimal objec-
tive function values [40], termed Bayesian regularization.

Another strategy for overfitting is early cessation of
weight optimization iterations [47]. In this method, avail-
able input and output data are divided into three subsets: a
training subset; a validation subset; and a test subset.
Training subset data are used to calculate gradients and
optimize weights using the LM algorithm, while testing
subset is used to verify the network generalization by
monitoring its validation error. Typically, for the initial
training phase, validation errors decrease; however, when
the network begins to overfit the training data, validation

error increases and LM iterations cease before they con-
verge to a global minimum of the training data set objec-
tive function. In current study, Bayesian regularization and
early cessation were used for training ANNs.

4.2 Automated peak picking, windowing,
and load classification for filtering ANN
training data

To investigate statistical relationships between various
train loading configurations that helped in identifying
snapshot matrix features used to develop POMs, an ana-
lytical study was completed using SAP2000 v19 [48]. The
study involved 81 different train loads recorded using
weigh-in-motion systems in close proximity to studied
bridge, with data being provided by the bridge owner [31].
Calculated strains were automatically extracted at sensor
locations (Fig. 2) using MATLAB in conjunction with the
SAP2000 v19 Open Application Programming Interface
(OAP]) [31]. Average root mean square (RMS) values were
calculated from extracted analytical stresses for each train
with corresponding RMS values cumulatively representing
stress statistics during each event [31]. Equivalent uniform
loads for each event were also determined as they were
efficient representations of train load intensity and length.
As shown in Fig. 8, comparison between normalized val-
ues of average RMS and equivalent uniform load demon-
strated strong correlation, with higher equivalent uniform
loads producing higher RMS averages. As a result, average
RMS was chosen as the main feature for output-only load
classification and feature extraction.

To further mitigate influence of variable non-stationary
external inputs on field-measured strain POM variability,
snapshot matrices for both tracks were sorted based on
average RMS, with matrices having RMS averages
between 45.4 and 47.1, a range of minimal variation, being
selected for damage detection. In Fig. 9, average RMS
snapshot matrices for Track 1 and 2 are shown. Track 2
matrices were selected for training and testing the
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developed damage detection ANNs, with matrices for
trains 29-46 specifically being selected due to similar RMS
averages. It is important to note that testing snapshot
“events” were not included in the ANN training process.
They were used to investigate how accurately the proposed
method detected damage under various loading scenarios
in the same average RMS range. Snapshots for trains 29,
35, 41 and 46 were randomly selected for ANN testing,
while snapshots for trains 30-34, 3640 and 42-45 were
used for ANN training.

Since imposing actual damage on the studied bridge was
not permissible, measured strains were reduced by multi-
plying a reduction factor to account for various levels of
damage at stringer—floor beam connections. This “dam-
age” was simulated via reduction of field measured strains
at selected locations, with reductions being proportional to
assumed damage intensities (DIs). These reductions were
based on the assumption that connection deterioration
would reduce rotational stiffness, and in the limit would
convert a semi-rigid (“healthy”) connection into a pinned
connection having limited to no moment restraint [35].
Potential crack propagation through the connection depth
was modeled via continuous decrease in connection rota-
tional stiffness [35], resulting in smaller moments at the
connection and, accordingly, smaller stringer bottom flange
strains. In this study, induced damage at any connection
was simulated using a strain reduction factor at that con-
nection, with other connections being undamaged.

4.3 Nonlinear regression ANN for damage
detection

To generate training data, 10 DIs, varying between 10 and
90% in 10% increments, were examined at each field
instrument location (see Fig. 2). The DIs were sequentially
varied at the 20 locations for 14 train events, which pro-
duced 2800 damage scenarios. These damage scenarios
trained the ANNs using MATLABs Neural Net Fitting
function, where various numbers of internal neurons were

explored to ensure that ANNs were accurately generalized
for damage identification. A nonlinear regression ANN was
used to establish damage detection from POMs of exam-
ined scenarios. It was decided that 70% of the input POMs
would be used for training, 15% for validation and 15% for
testing during ANN regression analysis. ANN regression
correlation curves for training, testing and the entire input
data set are shown in Fig. 10a—c. In each subplot in
Fig. 10, solid lines represent the best fit of the estimated
DIs. Higher scatter was observed for DIs less than 20% in
Fig. 10a—c, meaning that DIs greater than 20% could be
more accurately predicted.

5 ANN testing

As stated earlier, Trains 29, 35, 41 and 46 were randomly
selected to test ANN effectiveness, with tested ANNSs
featuring 25, 50, 100 and 200 internal neurons, with the
number of neurons being selected to use trial and error for
determining the appropriate number of internal neurons. A
representative comparison between ANNs using 100 and
200 neurons for a DI of 90% at Location 8 when loaded by
Train 29 is shown in Fig. 11. The figure indicated that both
ANNs predicted damage location and intensity very well;
however, the network with 200 neurons appeared to be
marginally affected by overfitting as evidenced by false
positives and negatives shown in Fig. 11b. The 100 neuron
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Training the ANNs was performed using a desktop com- Instrumented location
puter, featuring a multi-core architecture and running f,g T ] 1
Windows 7, 64 bit, as operating system. Its Central Pro- Sa0 |
cessing Unit (CPU) was an Intel Xeon E5-2630 2.4 GHz g 28’ T 1
processor, 8 Cores, 32 GB DDR4 RAM of main memory 20 ! — -

and 20 MB Smart Cash. Training time varied based on the
number of internal neurons in the internal layer of the
ANNS. For 20, 50, 100, and 200 neurons, the elapsed CPU
time was, respectively, 27, 47, 120, and 221 min.

To ensure that the developed method was robust against
false-positive damage signals, POMs for a healthy bridge
subjected to various load events were also used to test
trained ANNs. As shown in Fig. 12, it was observed that,
for events associated with the 4 trains selected for ANN
testing, the maximum false-positive DI was approximately
6%, which was deemed to be small when compared against
the actual DI of 0%. These results supported the premise
that the method would successfully detect damage with the
caveat that an acceptable threshold should be established
via long-term monitoring and corresponding statistical
analyses.

To further ascertain the ability of the proposed
methodology to detect damage location and intensity, ANN
damage index predictions at instrumented locations were
studied. Representative results are shown in Figs. 13, 14
and 15. The choice of damage intensity and location was
arbitrary; however, DIs ranged from O to 90% and locations
were chosen to cover various spots on the bridge. Results
of ANN testing at Location 11 are shown in Fig. 13 and
indicated that DI predictions might be affected by recorded
signals from certain trains, especially at low DIs. A DI of
20% was captured well for all testing sets except for Train
35, where false-positive DIs, approaching 5%, existed.
Figure 14 demonstrates the ability of the proposed
methodology for capturing the studied range of DIs at

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Instrumented location

Fig. 12 Healthy bridge ANN testing: a Train 29; b Train 35; ¢ Train
41; and d Train 46

Predicted DI (%)

20
Applied DI (%)

Fig. 13 ANN testing, Location 11, Train 35, all DIs

Location 8. Predicted DIs for Train 29 were 17, 37, 58, 79
and 89% for imposed DIs of 20, 40, 60, 80 and 90%,
respectively.

Conversely, Fig. 15 presents damage identification
capabilities of trained ANNs for a DI of 60% at Location
13 under multiple train loads. Trains 29, 35, 41 and 46 and
were used and damage location and intensity were, again,
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Predicted DI (%)

Applied DI (%)

Fig. 14 ANN testing, Location 8, Train 29, all DIs

Train ID

Fig. 15 ANN testing, Location 13, Trains 29, 35, 41 and 46,
DI = 60%

captured accurately with predicted DIs ranging between 57
and 60%.

To estimate the importance of classifying trains based
on RMS as shown in Fig. 9, the trained ANN was tested
using healthy POMs for 4 trains whose average RMS was
located outside the selected range. Trains 10, 20, 50 and 55
were selected for this exercise. A moderate increase in
false positives was evident for three of the four selected
trains (Trains 10, 50 and 55), with false positives predicting
DI ranges between 8 and 25% as shown in Fig. 16a, c—d.
For Train 20, the predicted DI showed a significant
increase in false positives, with maximum value of 70% as
shown in Fig. 16b. These results showed that selecting
ANN training sets based on the associated average RMS is

necessary to reduce POM variations associated with
changes in non-stationary loading configurations.

To examine the effectiveness of the proposed method-
ology for detecting damage using noisy strain signals, as is
often the case with low-cost sensing devices, zero mean,
white Gaussian noise was added to the measured strain
time-histories. A representative example of noisy strain
signals for Train 41 is shown in Fig. 17. ANNs were
retrained and retested using the “noisy” data and results
showed that the proposed methodology was capable of
capturing damage from noisy signals with acceptable ac-
curacy. “Noisy” strains at Location 15, for a DI of 80% for
Trains 29, 35, 41 and 46 are shown in Fig. 18. Predicted
DIs ranged from 78 to 81%.

As stated earlier, a flowchart describing the methodol-
ogy is shown in Fig. 19.

6 Conclusions

In this study, an automated, output-only, damage detection
approach using POD and ANNs was developed and
investigated for steel truss railway bridges. Measurements
from full-scale field monitoring data and calibrated
numerical models were used to develop and examine the
proposed approach. Results demonstrated its efficacy for
detecting deficiencies in stringer—floor beam connections
and the approach can be extended to include damage
detection for other structural systems, details and types of
data. The following conclusions were drawn from the
study:

e The proposed method successfully detects damage
using strain outputs induced by unknown, nonstationary
external inputs.

e Automated data cleansing prior to POM extraction was
necessary to reduce discrepancies caused by nonsta-
tionary inputs.

e The developed approach could accurately capture
damage represented by DIs great than 20%, with
clearly improved accuracy for DIs higher than 40%.

e The method is robust enough to accurately predict
damage supplied from highly noisy signals.

It should be reiterated that the current study was per-
formed neglecting modeling errors and environmental
variability. It is noteworthy that existing filtering methods
in the literature, even in the absence of modeling errors and
environmental effects, lead to large estimation errors when
measurement noise is large and a relatively large number of
damage indices have to be identified. For example, hybrid
particle filters systematically account for modeling and
measurement errors but are prone to bias as the noise—
signal ratio increases [38].
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