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Abstract

Kinematic and kinetic requirements for robotic actuators are subject to uncertainty in the motion of the load. Safety
factors account for uncertainty in the design stage, but defining factors that translate to reliable systems without
over-designing is a challenge. Bulky or heavy actuators resulting from overdesign are undesirable in wearable or mobile
robots, which are prone to uncertainty in the load due to human-robot or robot-environment interaction. In this paper, we
use robust optimization to account for uncertainty in the design of series elastic actuators. We formulate a robust-feasible
convex optimization program to select the optimal compliance-elongation profile of the series spring that minimizes one
or multiple of the following objectives: spring elongation, motor energy consumption, motor torque, or motor velocity.
To preserve convexity when minimizing energy consumption, we lump the energy losses in the transmission as viscous
friction losses, which is a viable approximation for series elastic actuators powered by direct or quasi-direct drives. Our
formulation guarantees that the motor torque, winding temperature, and speed are feasible despite uncertainty in the
load kinematics, kinetics, or manufacturing of the spring. The globally optimal spring could be linear or nonlinear. As
simulation case studies, we design the optimal compliance-elongation profiles for multiple series springs for a robotic
prosthetic ankle. The simulation case studies illustrate examples of our methodology, evaluate the performance of robust
feasible designs against optimal solutions that neglect uncertainty, and provide insight into the selection of different
objective functions. With this framework the designer specifies uncertainty directly in the optimization and over the

specific kinematics, kinetics, or manufacturing parameters, aiming for reliable robots that reduce overdesign.
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1. Introduction

Twenty-five years ago, Pratt and Williamson [1] intro-
duced the benefits of series elasticity to the design and
control of actuators that interact with the environment.
Springs connected in series with an electric motor, also
known as series elastic actuators (SEAs), enabled the motor
to control torque by controlling the spring elongation and
improve torque tracking performance at low frequencies
[2-4]. Fixed or variable series elasticity, in the form of
SEAs or variable stiffness actuators (VSAs), can reduce the
energy lost during impacts [5], improve safety for human-
robot interaction [6], move loads with higher velocities [7],
and reduce the energy consumption of the system [8-10].
From the power perspective, springs are mechanisms that
store and release elastic potential energy, which modifies
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the speed-torque requirements for the SEA motor. Springs
are passive elements and cannot reduce the energy required
to produce motion over a periodic cycle [11]; however, they
can reduce the energy losses and adjust the speed-torque of
the motor to make it robust against load uncertainty [12].

The torque-velocity requirements of the SEA motor
depend on the load, which changes substantially during op-
eration for human-robot or robot-environment interaction.
For example, in the case of prosthetic robotic ankles, the
requirements in motor torque and velocity change depend-
ing on the mass of the user, the extra mass that the user
may carry, the speed of walking, the terrain, and the loco-
motion task [13]. Acknowledging uncertainty during the
design stage is key for implementing reliable systems and
introduces a trade-off between robustness and overdesign.
Traditional safety factors account for uncertainty, but it is
challenging to map these factors to specific representations
of uncertainty or include them in the optimization stage of
the design.

Brown and Ulsoy [14, 15] optimized parallel and series
springs to improve energy efficiency despite task uncer-
tainty. Their analysis of alternative maneuvers evaluated
the performance of springs optimized for one maneuver
when executing maneuvers for which they were not opti-
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mized. Their alternative maneuvers represented a stochas-
tic parameterization of uncertainty. Our previous work [12]
focused on the trade-off between uncertainty and feasibility
of the actuator constraints. Using methods from robust op-
timization, a technique with origins in operations research
[16], our designs satisfied motor-speed torque requirements
despite the worst-case manifestation of uncertainty.

Our contribution

A spring can be defined by the equation 75 = f(Js),
where f: R — R is the function that maps the spring elon-
gation, ds, to the spring torque, 7 [11]. Our contribution
is to formulate a convex optimization program to design a
series spring, i.e., define f(ds), and guarantee that the ac-
tuator is robust feasible (i.e., motor speed-torque, winding
temperature, and spring elongation constraints are satisfied
despite uncertainty in the load torque-speed, precision in
manufacturing of the spring, and unmodeled dynamics).
The optimization objective can be to minimize one or a
postive-weighted sum of the following cost functions: mo-
tor energy consumption for any combination of periodic
load trajectories (e.g., human walking and running) or any
l,-norm of motor torque or velocity for arbitrary load tra-
jectories. To preserve convexity when minimizing energy
consumption, we lump the energy losses in the transmission
as viscous friction losses, which is a viable approximation
for SEAs powered by direct or quasi-direct drives (see Sec. 2
for a definition of direct and quasi-direct drives).

Our previous work [11] discussed the convexity of the
optimization program to minimize motor energy consump-
tion for nonlinear springs, but there was no consideration of
robust feasibility. In [12], we introduced robust feasibility
but only for linear springs, did not match the actuator
viscous friction losses with experimental values, and did
not constrain the winding temperature. Our previous work
only considered uncertain affine constraints [12], but con-
straining winding temperature requires the robust-feasible
solution of an uncertain non-convex quadratic constraint.
In order to include uncertainty due to load speed in our
robust-feasible solution for nonlinear springs, we change
our optimization variable to be a discrete trajectory of
spring compliance as opposed to motor position in [11] or
a scalar value of compliance in [12].

We present the model and constraints of SEAs in Sec. 2.
We define the constraints as functions of the spring compli-
ance, our optimization variable. Sec. 3 defines the robust-
feasible design as a min-max program, which is then re-
duced to a computationally tractable convex optimization
program. In the same section, we describe three possible
choices of the minimization objective: motor energy con-
sumption, motor torque, and motor velocity. In Sec. 4, we
illustrate the application of our methodology for the design
of SEA-powered prosthetic robotic ankles and discuss our
simulation results. Sec. 5 summarizes the conclusions and
limitations of our work.

motor

l()zl(l
series spring
Ly low-ratio transmission

Figure 1: Electro-mechanical diagram of an SEA. Equations (1), (2)
and (4) illustrate the system’s dynamics. We use the term quasi-direct
drive to refer to a backdrivable low-ratio transmission combined with
a high-torque motor, illustrated in orange in the diagram.

Notation

In this paper, we use R} and Ry to denote the set of
non-negative and positive real numbers. Column vectors
in R™ are represented by bold lower-case characters and
matrices in R™*™ are in bold upper-case characters. The
subindex a; refers to the i-th element of the vector a. We
use 1 to represent a vector with all its elements equal to 1
and dimensions to be interpreted by the context. We use
b = abs(a) to represent a vector b with entries equal to
the element-wise absolute value of a. The term diag(x)
refers to the square matrix with the vector x along the
diagonal. In the case of square matrices, diag(A) refers
to the block diagonal matrix. The notation A;* refers to
the vector consisting of all the columns in the i-th row of
matrix A. The matrix inequality A = 0 indicates that the
matrix A is positive semidefinite.

2. Dynamic Model and Constraints of SEAs

In this section, we illustrate the differential and al-
gebraic equations that model the mechanical, electrical,
thermal, and elastic behavior of SEAs. We use these equa-
tions to write the actuator constraints as affine or quadratic
inequalities of the spring compliance; the robust-feasible
solution of these constraints is fundamental to our method.

2.1. Electro-mechanical modeling

Using the Newton-Euler method, we sum the torques
at the motor side (Fig. 1) to write the following equations
of motion:

.. . T
Tm = {mQm + mem + ?S + Tunc, (1)

n = g(q, G, ¢, 7e),
T = —Ts, (2)

where I, € R, is the rotor inertia of the motor; by, € Ryt
the motor’s viscous friction coeflicient; r € Ry the re-
duction ratio of the gearbox; qu, i, Gm € R are the posi-
tion, velocity, and acceleration of the motor respectively;
Tss Tm, T, Tune € R are the series spring torque, motor’s
electromagnetic torque, load torque, and uncertain torque
respectively (Sec. 3.1.2 explains in detail the definition
of Tune); and g : R* — R is the function that defines



the load dynamics, e.g., in the case of an inertial load
with viscous friction the load dynamics are defined by
9(q, 41, G1, 7e) = —LiGi — biGi, where I is the inertia of the
load, and b its corresponding viscous friction coefficient.
We assume the load trajectory is known with some un-
certainty and is defined as the set of variables qi, ¢, Gi, Te;
Sec. 3.1 describes in detail our definition of uncertainty.
The elongation of the series spring, s, is defined as

0s = q — qm/7- (3)

We assume that the torques generated by the gear-
box can be lumped into the inertial and viscous friction
torques of the motor, backlash is negligible, and the system
is fully backdrivable. These assumptions imply that the
motor speed after the gearbox is ¢, /r and Coulomb fric-
tion torques from the gearbox are negligible. We use these
assumptions to show the convexity of our optimization
program when minimizing energy consumption in Sec. 3.
In practice, these assumptions apply for SEAs powered by
direct drives (i.e., actuators without a transmission [17])
or quasi-direct drives. In this paper, a quasi-direct drive is
any combination of an electric motor and a backdrivable
gearbox where the transmission dynamics are negligible or
fully captured by its inertial and viscous friction torques.
Neglecting backlash and Coulomb friction of the gearbox
is an approximation that depends on the type of transmis-
sion. In general, the lower the reduction ratio the more
accurate is the approximation. The actuator in [18] with a
22:1 single-stage stepped-planet compound planetary gear
transmission is an example of a quasi-direct drive. In [18],
the authors experimentally showed that damping, inertia,
and Coulomb friction have negligible effects in the per-
formance of the actuator. Our energy analysis in Sec. 3
does not apply for non-backdrivable systems with consid-
erable friction or backlash, which is typically the case for
high-transmission-ratio SEAs.

Using Kirchhoff’s voltage law across the motor’s wind-
ing (Fig. 1), we model the electrical behavior of the SEA’s
motor with the following equation:

Vg = b R + Lm% + Vemf, (4)
where vy € R is the voltage of the source, i, € R is
the motor current, R, € R, is the motor resistance,
L, € R, is the motor inductance, and vensr € R is
the electromotive voltage of the motor. To simplify the
analysis, we will assume that the voltage drop at the motor’s
inductance is negligible compared to the voltage drop at
the winding resistance, which is a common assumption in
practice [19]. In SI units, the electromagnetic torque and
electromotive voltage relate to motor current and speed as
follows:

Tm = ktimy Vemf = thma (5)
where ky € R is the motor torque constant. Substituting

the electromotive voltage and motor current in (5) into (4)
and neglecting the motor’s inductance voltage, we express

+Tw
Ryh
Ploss(Tw) <D #Th  —— Cwa
Rha Cha
+Ty

Figure 2: Thermal model of the motor’s winding. It describes wind-
ing (T\w) and housing (T},) temperatures as a function of the Joule
heating generated by the motor current. In this electrical analogy,
temperature is equivalent to voltage and heat flux is equivalent to
current, as discussed in [20, 22, 23].

electromagnetic torque as a function of supplied voltage
and motor speed

2
Tm:Usti;7(ij]jitm- (6)
In this article, we will use the motor constant, k, =
ktR;UQ, to calculate motor heat losses in Sec. 3.3.1. The
expression in (6) is typical for DC motors and could be
adapted to brushless DC motors using field oriented control,
representing the three-phase winding in the real and imag-
inary axis with the Clarke and Park transforms [20, 21].
In practice, the rotor inertia, I, is the sum of the mo-
tor’s rotor inertia and the inertia of the gearbox (both are
available in datasheets or through CAD). However, the mo-
tor’s viscous friction coefficient, by, is rarely documented;
one useful approximation is to estimate this coefficient
from the no-load current, 4,51, and no-load speed of the
system, ¢mnl, using the equation: b, = ktimnlqmnl_l. Ex-
perimentally, we can identify I, and b, fitting a first-order
model to a system using i, as input and ¢, as the output
[18]. For more details in the experimental identification of
the model parameters, we encourage the reader to check
[18—20].

2.2. Thermal modeling

The electrical diagram in Fig. 2 models the motor wind-
ing (Ty) and housing temperatures (73) as a function of
motor current, as reported in [20, 22, 23]. Balancing heat
flux at the T3, and T} nodes, we write the differential
equations that model the thermal behavior as

Tw —Ti d(Ty — T,
]Dloss = h + ( )Cwaa
Ryn dt (7)
Tw —Th - Thw — Ty n d(Th_Ta)C
Ren B M

where T, Th, T, € R are the winding, housing, and ambi-
ent temperatures, respectively; Ryn, Rna € Ry are the
thermal resistances of winding-to-housing and housing-to-
ambient; Cya, Cha € Ry are the thermal capacitances of
winding-to-ambient and housing-to-ambient. The power
lost due to Joule heating is

P)loss = Zr2an (8)



The winding’s electrical resistance changes as a function of
the winding’s temperature based on

an = Rm@a(l + O4Cu(T’W - Ta))a (9)

where R, @, is the winding’s electrical resistance at ambient
temperature and acy is the copper’s temperature coefficient
of resistance. To give some perspective, Ry, can increase
around 50 % with respect to Rynaa when Ty, = 150 °C and
T, = 25°C. Notice that changes in Ry, imply that the
motor constant is a function of temperature as well.

Accurate estimation of the winding’s temperature is fun-
damental for the motor’s health and generation of torque be-
yond the manufacturer’s continuous torque (see Sec. 2.3.2).
Some motor manufacturers, such as Maxon Motor, doc-
ument the thermal capacitances and resistances in the
motor’s datasheet. If this information is not available, the
designer can use thermal images or temperature sensors in
the encapsulation of the winding or housing to identify the
thermal parameters, as in [20, 22]. In general, it is good
practice to update the thermal model after the final assem-
bly. Different components in the mechanism, including the
structural frame, can work as heat sinks and modify the
thermal capacitances and resistances [24]. For example, in
[23], the structural frame improved heat dissipation and
increased the continuous torque by 46 %.

2.8. Actuator constraints as functions of spring compliance

The SEA’s motor and spring have constraints in torque,
speed, winding temperature, and elongation. In this sec-
tion, we represent these constraints as affine and quadratic
inequalities of the spring compliance, which are computa-
tionally tractable forms for the robust design of the spring
in Sec. 3.2. To numerically solve these inequalities, we
discretize the continuous-time trajectories using n samples.
Thus, sampling the continuous-time spring stiffness, i.e.,
ks = (d7s)/(dds), we write the spring compliance vector,
as € R}, as follows:

o — d651
sz*dTSia
Ssi
==, (10)

Tsi

This definition applies for 75; # 0. For an energetically
conservative spring, 75; = 0 implies that §s; = 0. Thus,
ag; can be defined as ag; = o, where j is the index of
the last sample where 7; # 0.

2.8.1. Constraining motor velocity

In practice, the input voltage and mechanical compo-
nents, such as bearings, limit the velocity of the motor.
Based on these limitations, we write the maximum motor
speed as ¢max € Ry4, which means that the motor must
satisty |Gm| < ¢max during operation. Combining (10) and
(3), we write the motor velocity as

4, = a+ Bas, (11)

where a = ¢r and B = —diag(7s)r. Using (11), we can
enforce |¢m| < ¢max using the affine inequality

B 1(jmax —a
(Blacfi=ca

2.8.2. Constraining mazimum motor torque
Similarly as in (11), we write the motor acceleration as

G, = c+ Dayg, (13)

where ¢ = §yr, D = —diag(#s)r — rdiag(7s) D1, and Dy is
the first-order derivative operator matrix [10, 25]. Substi-
tuting (11) and (13) into (1) we write the motor’s electro-
magnetic torque as

Tm = e+ Fay, (14)

where e = I,c+bna—7sr ' —Tyne and F = I, D +b,,B.
The continuous torque limits the torque that can be applied
in continuous operation, which is normally associated with
the RMS(7,) and winding temperature (see Sec. 2.3.3).
Assuming that the winding temperature is within safe
limits, electric motors may apply sporadic torques up to
the saturation torque, which is the torque limit where parts
of iron in the stator become magnetically saturated. The
saturation torque defines the current limit before the current
and torque relationship becomes highly nonlinear [26]. In
this section, we assume that the saturation torque defines
the maximum torque, Tmax € R. Using (14), we enforce
|Tm| < Tmax with the inequality
F 1Tmax — €

Hlaclrd
2.8.3. Constraining motor winding temperature

We can limit the temperature of the winding using one
of two methods: 1) indirectly by constraining the RMS
torque or 2) directly by explicitly modeling or sensing the
winding temperature. In the Appendix A, we show that the
direct method constrains winding temperature using a finite
set of quadratic inequalities (A.4). The robust-feasible
formulation of these inequalities complicates the notation
and the robust solution of the optimization program. In
the remainder of this paper, we will only consider the
indirect method to simplify our robust-feasible formulation
in Sec. 3.

In practice, many electric motors operate without mea-
surements or estimations of the winding temperature. In
this case, the designer can constrain the motor winding
temperature to be within a safe region by constraining the
RMS motor torque to be less than the continuous torque,
ie, rms(Tm) < Tcont, Where Teont € Ry is the motor
continuous torque. Normally, manufacturers report the
continuous torque in the motor’s datasheet. In our formula-
tion, we use (14) to write rms(7y,) < Teont as the following
quadratic function of spring compliance

A/ TETmn ™! < Teont,

o' FT'Fa, +2e"Fo, +eTe < 72 1. (16)

{0)



2.8.4. The motor torque-velocity constraint

An electric motor can operate as generator and actu-
ator. As the rotor spins with constant voltage input, the
generated electromotive voltage limits the current that can
flow through the winding as seen in (6). In addition, the
PWM to the motor can vary the motor voltage from zero
up to the battery voltage. Thus, for positive velocity and
torque, the equality in (6) becomes the following inequality:
Tm < ktRm_le — ktsz_lqm, i.e., the higher the motor
velocity the lower the torque that can provide. As a result,
in the four quadrants of the speed-torque plane, the speed
and torque of the motor should satisfy the inequality [27]:

kt k't2 |~ ‘

5 Us — 5 |9m];s

R ® Rl

which can be written as an affine function of compliance
using (11) and (14) as follows:

|Tim] <

F + kR, 'B 1k Rm ‘vs — e — ak?Ry, !
F - kR, 'B 1k Ry ‘v — e+ ak?Ry !
—F+ k2R 'B| ® = |1k Ry 'vs + e — ak?Ry, "
—F - kR, 'B 1k Ry 'vs + e + akZRy

(17)

2.3.5. Constraining mazimum spring elongation

The elongation of the spring relates to its compliance by
dds = agdrs. Using the trapezoidal method to numerically
approximate the integral, we obtain

ty

65 = / Oésfsdt + 680
to

o Qs Tsi + Qi 1) Ts (i1

‘ 2

~
~

) At + 6507
i=1
which in vector form is equal to

65 = Las + 16507 (18)

where L is the cumulative integration operator in matrix
form, i.e.,

0 ... 0

Ts, Tey O 0

= At a, 2h, A 0
2 | .

: 0

Fo, ey ... 2, T

To guarantee that the elongation (18) stays within safe
margins, we will enforce |0s| < dgmax Satisfying the following

inequality:
L ]-Jsmax - 1550
|:L:| s < |:165max + 1550 . (19)

To simplify notation, we lump the affine inequalities
(12), (15), and (19) as
Mo, <p (20)

where p € R™, M € R™*"™ and m is the number of rows
that results from stacking the affine inequalities vertically.
(20) and (16) represent our complete set of constraints.

3. Spring Design for Robust Feasible Actuators

Previous research explored the effects of series springs
on torque bandwidth [28], energy consumption [11], peak
power [11, 29], and impedance control for human-robot
interaction [3]. However, the benefits of series springs
to enhance system robustness are not clearly understood.
In this section, we illustrate how series springs can en-
hance robustness by guaranteeing that the elongation of
the spring, motor torque, winding temperature, and motor
speed are within feasible regions despite uncertainty in
the load, unmodeled dynamics, or limited precision during
manufacturing of the spring. In other words, our objective
is to design a; so that the constraints (20) and (16) are
feasible despite uncertainty in M, p, F', and e. The solu-
tion of affine and quadratic inequalities with uncertainty in
the parameters is part of the field of robust optimization
[16]. In addition to robust feasibility, we illustrate how to
design series springs to minimize energy consumption, mo-
tor torque, or motor velocity without sacrificing robustness
during operation. For all the cases, we will show that our
formulation leads to convex optimization programs with
computationally tractable solutions. The numerical solvers
for these optimization programs reach globally optimal
solutions regardless of the initial conditions and within
polynomial time.

8.1. Sources of uncertainty

Our formulation of the actuator constraints in Sec. 2.3
is broad enough to accommodate multiple sources of un-
certainty. However, we will focus on parameters that are
relevant to the application of powered prosthetic legs and
exoskeletons. For example, the robot kinematics are un-
certain due to unexpected changes in the terrain [30]; the
kinetics may change if the user changes mass, e.g., by
wearing a backpack; and the limited manufacturing preci-
sion may lead to uncertainty in the spring stiffness. Our
approach can be extended to account for sources of uncer-
tainty not considered in this section. In general, we will
introduce two kinds of uncertainties: additive and multi-
plicative. For example, if the variable z is uncertain, we
will use €, and €, to identify its corresponding additive
and multiplicative uncertainties with respect to the nom-
inal value Z, i.e., x = (1 £ &, ) £ €,,. In this work, we
consider the following sources of uncertainty:

8.1.1. Manufacturing of the spring

Uncertainty in the spring stiffness is typical due to
limited manufacturing tolerances. For instance, in [31]
the designed stiffness of a rotational spring is 100 N-m.
However, the stiffness of the manufactured springs varied
with a standard deviation of about 10%. In this work,
we consider additive uncertainty in the spring compliance,
which manifest in r; and the vector p. For example, p € Uq,



as defined by the following uncertainty set:

U, ={x e R™: p—abs(M - 1)eq,, <x <

p+abs(M - 1)eq,. }, (21)

where p defines the nominal value of p, i.e., without un-
certainty, and €4, defines the additive uncertainty in the
compliance of the spring. In our case studies, we con-
sider £_, = £20 % of the optimal linear-spring compliance
(Table 1).

3.1.2. Unmodeled dynamics
Also defined as the uncertain torque, Tync, in (1). This
unmodeled dynamics torque lumps unmodeled effects at
the motor and load side such as cogging torque and friction.
The elements of the n dimensional vector Tyne € U, are
defined by the uncertainty set,
U

Tunc

— n. X e
- {w eR": “ETunci S i S €Tunci772 - 1’ e

,’I?,},
(22)

where €, . € R" is the vector of additive uncertainty that
defines the box constraints in Tupc.

3.1.3. Kinematics and kinetics of the load

In some applications such as rehabilitation robotics one
of the biggest sources of uncertainty is the definition of
the motion task. In the case of robotic knee and ankle
prostheses, the reference kinematics and kinetics vary con-
siderably as humans change walking speed or inclination
during locomotion [13], or perform custom tasks that are
difficult to predict, e.g., dancing, jumping, or adapting
their natural gait due to irregular terrain. Even for the
same motion task, such as level-ground walking, the mean
coefficient of variation (standard deviation divided by the
sample mean) over a stride of the knee joint angle can be
as high as 25 % [32].

Thus, explicit consideration of uncertainty in the kine-
matics and kinetics is critical for a robust design. In our
work, we consider additive and multiplicative uncertainty
for position, velocity, acceleration, and torque of the load.
For example, we define the load position vector as q; € Uy,,
where

Ug, ={x € R": qii — |Qiilegn — €qras < T
<qi+ |qli‘€qun T E€qras> i=1,... ’n} (23)

is the uncertainty load position set and g is the nominal
position vector for the load. The same definition applies to
Ug,, Ug,, Ur,. We assume that these uncertainty sets are
independent of each other, i.e., the uncertainty on velocity
of the joint is independent of its uncertainty in position. In
a multiple degree of freedom application, the uncertainty of
one joint can affect the other through our external torque,

g(qmaq'mz(jmﬂ—e)v in (2)

3.2. Design of spring compliance for a robust feasible ac-
tuator

The general idea of our robust design is to select a
value of compliance, ag, to solve the following optimization
program:

minimize  g(a)
subject to ol FT'Fa, +2¢"Fags+ee <720
Mo, <p, V{M,p,F,e} clU
(24)

where g is the objective function that depends on the opti-
mization variable a. A robust solution to this optimization
program is a value of the spring compliance that satisfies
the actuator constraints for all possible realizations of uncer-
tainty within the uncertainty set, i.e., Vv {M,p, F e} € U,
where U = Ug, X Ug, X U, X Ur; X Ur,,. X Ua,. The opti-
mization program (24) has affine and quadratic inequalities.
The following sections explain the robust feasible solution
for each kind of constraint.

3.2.1. Robust feasible solution of affine constraints

The definition of ¢ indicates whether the uncertainty
affects the left-hand, right-hand, or both sides of the in-
equality constraints. For example, the uncertainty due
to limited manufacturing precision of the spring affects
exclusively p, as defined in (21). However, uncertainty in
I, affects simultaneously M and p as it relates to the
definition of left-hand and right-hand terms of the inequal-
ity, e.g., F' and e in (15). When the uncertainty manifest
exclusively in p, the robust solution is straightforward; we
just need to find pf = inf{p;, € U | i = 1,...,m}, and
replace p; with p} in the definition of (24). In the general
case, when the uncertainty is coupled in the left-hand and
right-hand side of the inequality, the robust solution of the
optimization program requires the solution of the following
min-max optimization program:

min.  g(as)
Qg

s.t. a;?FFTFaS +2e'Fa,+efe <72 n (25)
max. m! oy — p;
mispi <0,i=1,...,m.
s.t. m;,p; €U

The inner maximization program represents the worst
possible realization of the uncertain parameters over the
uncertainty set. The optimization variables in the inner
optimization program are m; and p; instead of the vector
of spring compliance. The optimal values m; and p; maxi-
mize the left hand side of the inequality, i.e., they represent
the worst possible scenario. Ben-Tal et al. [16] present the
solution of a similar version of (25) when U is a polytope
or a ellipsoid, which is our case as the uncertainty set is
a collection of box constraints (Sec. 3.1). However, our
solution of (25) will be slightly different from [16]. Our solu-
tion method will separate the dot product m? ay based on



known and uncertain elements of M. Without this separa-
tion, the optimization program may be incorrectly classified
as infeasible, as shown in this section. We solve (25) in
two steps: 1) we rewrite the min-max program (25) as a
min-min program using the Lagrange dual of the maximiza-
tion program that defines the constraints; 2) we write the
resulting min-min program as a single convex-optimization
program.

In the solution of (25), we only include the uncertain
elements of M and p into the inner maximization program
by writing the constraints as

max. qlxy . _
qu; + QT <0,i=1,...,m. (26)
s.t. quuz S v;

where q,; is the vector with the uncertain elements of
M and p, x,; is the vector of compliance elements that
multiply the uncertain coefficients, V; and v; define the
box constraints on the elements of q,,; as defined in Sec. 3.1,
g.; is the vector with known elements of M and p, x.; is
the vector of compliance elements that multiply the known
coefficients, and the subindex i refers to the i-th row in
M and p. For example, if all the elements of row i are
uncertain then

T
qdy; = |:’n;Z :| y Lui = |:a15:| y dej = 07 xe; = 0.

In our case, M represents a sparse matrix, which implies
that most of the elements in m; are zero by construction.
These known coefficients and corresponding compliance
elements are assigned to q.; and x., respectively.

As a first step, we write the Lagrange dual of the inner
linear program [25, p. 219] in (26) as

min}i\anize )\;Tr’vi
such that A; >0 + qlixei <0, (27)
VI =z
where i = 1,...,m and \; € RF are the Lagrange multipli-

ers corresponding to the inequality constraints V;q,; < v;.
The separation of known and uncertain parameters in (26)
prevents the term VZ»T)\Z» = x,; to unnecessarily constrain
elements of a to be equal to zero, which may mistakenly
produce an infeasible optimization program. Because the
dual and primal problem have zero duality gap, we can
replace the primal with the dual and have the same optimal
point. The second step is to merge (27) into (25) as follows:

minimize  g(ay)
sy A
subject to ol F" Foy +2e" Fa, +eTe < 72,0

A v + qhxe <0,

ViT)\i = Xy, (28)
Ai >0,

Zyilal 1" =z,

T T .
Zci[as,l] = T¢;, z:l,...,m.

for all {F, e} € U, where Z; and Z; are the matrices that
map the uncertain and certain coefficients of the compliance
vector to x; and x;.

8.2.2. Robust feasible solution of quadratic constraints

Satisfying winding temperature limits despite the uncer-
tainty in Sec. 3.1 requires a robust feasible solution to the
quadratic constraint in (16). The uncertainty in Sec. 3.1
manifests explicitly as uncertainty in e but not in F be-
cause the terms I, by, D, and B in the definition of F
are known. This means that the linear and constant terms
of the quadratic constraint (16) are uncertain but not the
quadratic term al F* Foy. Ben-Tal et al. [16] present the
general robust feasible solution of quadratic constraints
when an ellipsoid defines the uncertainty set of the coeffi-
cients. In this section, we derive the specific robust feasible
solution for quadratic constraints with uncertain linear and
constant terms. We define the parameter e to be uncertain
but bounded by the ellipsoid e € £, where

& ={x|(x - eC)TPfl(m —e.) <1}, (29)

€. is the nominal value of e, and the square root of the
eigenvalues of P define the length of the semi-axes of the
ellipsoid. For example, a ball with radius r is an ellipsoid
with P = r2I. The ellipsoid £ can be also written as
{x|z" P 'z —2eT P 'z + el P 'e, < 1}[25)].

Our solution will follow similar steps as in Sec. 3.2.1.
First, we formulate the uncertain program in (28) as a min-
max program. Second, we rewrite the inner maximization
program as a minimization program by writing the corre-
sponding Lagrange dual. Third, we merge the inner and
outer programs into a single convex semidefinite program
(SDP). In our first step, we rewrite (28) as

min. «
Juig. g(as)
. max. 2eTFozs +eTe
s.t. o'FT'Fa,+ | © <72 .,
s.t. eecf
T
>\i v; + qz;wcz S Oa
T
Vidi=zw,
>\i Z 07

Zui[aZ; 1]T = Lui,

T T .
ZCi[asvl} = Lci, Z=17...,m.

We rewrite the uncertain quadratic constraint in the
previous equation as

min. —e’Te— 2aSTFTe
aZFTF(IS - € S Tgontn'
st. eeé&
(30)
The inner program is not convex as it minimizes a quadratic
term with a negative definite Hessian, i.e., the matrix



—1 is negative definite. The advantage of the ellipsoidal
constraint and the Lagrange dual is that we can rewrite
this non-convex program as a convex SDP. We write the
corresponding Lagrangian as

Lie,\,) = —eTTe —2aT FTe+
N(eTP le—2eTP e+ el P le, —1).

The dual function is
9(Aq) = inf L(e, Ag)

91(Aq) ()‘qP_l —1) =0, A; 20,
= A(eTP e, —1) e RAP = T)
—00 otherwise
where g1(\,) = MN(elP'e. — 1) — (Fay +
MNP le)T(\P ' — 1) (Fas + N\,P 'e.). The
dual and primal have zero duality gap, even if the primal
(30) is non-convex [25, p. 654]. Using the slack variable v
and the dual function, we rewrite (30) as

min. 7y
Y
oTFTFa,+ 3%~ 91(Ag) <7 <72 .n. (31)
A >0,

MNP =120

Using the Schur complement we include (31) into (28)
as follows

min. g(as)
st.  alF"Foa,+~ <721,
I-)\P! Fa,+ )P e,
(Fas + P le)t N(1—-elPle.)—~
Ag = 0,
)\ZT’Ui + qz;—fbci <0,
VIAi =z,
Ai >0,

Zui[a27 1]T = Lus,

0,

Zm—[aST, 1]T =Xy, 1=1,...,m,

(32)
with optimization variables oy, Aq, and A;. The solution
of this convex optimization program is a robust feasible
solution to the uncertain program (24). Note that while
(24) has an infinite number of constraints, (32) has a finite
number and can be solved directly by existing numerical
solvers.

3.8. Selecting the objective function

Any spring that represents a feasible point of (32) sat-
isfies the actuator constraints despite uncertainty. Among

feasible points, we can select the robust solution that min-
imizes one or a combination of the following design ob-
jectives: motor energy consumption, motor torque, and
motor velocity. The recommendations in Sec. 4 explain
why these are relevant objectives for the design of series
springs for quasi-direct drives. This section shows how
g(as) can represent these objectives and yield a convex
optimization program.

3.83.1. Minimizing motor energy consumption

The sum of winding Joule heating, 72 k2, and the rotor
mechanical power, TG, represents most of the energy
consumption of an electric motor in a backdrivable SEA.
When the motor and electric drive allow actuation and
regeneration in the four quadrants of the speed and torque

axes, the energy consumption is

ty
E, = / (T2kn? + Timdm) dt,
to

tr
= / (Takn® + bmdn, — na) dt,  (33)
to

where we assume that the motion is periodic, i.e., kine-
matics and kinetics are the same at tp and t¢. A previous
version of our work [11] explains in detail the derivation
of (33). Using numerical integration and the definitions in
(11) and (14), we approximate the integration in (33) as

E, ~ (Tﬁka;Q + b — Tlel) At
=o' Gas + has +w (34)
where
G = (FTFk;f + meTB> At,
h = (2" Fk.? + 2bnma” B) At,

w= (eeky? +bma’a—1{q) At.

The optimization program (32) is convex using (34) as
the objective function; the objective function has a posi-
tive semidefinite quadratic form (the matrix G is positive
semidefinite; it is the sum of the Gramian matrices of F
and B) and the constraints are all intersections of convex
sets such as polytopes or positive semidefinite cones.

8.8.2. Minimizing motor torque or velocity

Using (14) or (11), we can write any vector norm of
motor torque or motor velocity as the objective function,
g(a). For example, in Sec. 4, we will minimize the 2-norm
of the torque or velocity vector multiplied by n='/2 to
minimize the RMS torque or RMS velocity. In both cases
the objective function is a vector norm composed by an
affine function of ay and therefore (32) is convex [25, p.
79]. Minimizing motor velocity can be of interest for a
system with a high reduction ratio. The higher the reduc-
tion ratio the more difficult is to model the energy losses



in the transmission. This is because friction, damping,
hysteresis, non-backdrivability, and backlash in the trans-
mission become more dominant as the number of stages
in the transmission or reduction ratio increase. For those
cases, minimizing the motor speed minimizes the motion of
the motor, which indirectly reduces the difficult-to-model
transmission losses.

3.3.8. Minimizing peak power

Traditionally, the size and mass of the electric motor
have been considered proportional to the peak power of
the motor; thus, minimizing peak power is a typical objec-
tive for the co-design of series springs and electric motors
[11, 29]. Minimizing peak power is beneficial when the
selection of the motor is part of the design. However, for
a given motor, minimizing energy consumption is more
beneficial than minimizing peak power as long as the motor
torque and motor speed constraints are satisfied. In our
framework, if the motor has not been selected, we can solve
the feasibility problem of (32) to reduce size and mass of
the system, i.e., we can check if (32) is robust-feasible for
a given motor and iterate the process with progressively
smaller motors. Convex optimization solvers can find a
global solution of our optimization program within seconds,
which speeds-up the iteration process.

4. Case Studies: Robust-Feasible Robotic Ankles

In the following case studies, we design multiple opti-
mal series springs for the robotic ankle of a hypothetical
65 kg user walking on level ground. Our purpose is to
provide working examples of our methodology, evaluate
the performance of robust feasible designs, and provide
insight into the selection of different objective functions, as
defined in Sec. 3.3. The mean kinematics and kinetics of
the ankle joint during human walking, as reported in [32]
and discretized in n = 1000 samples, defined the nominal
reference g, and 7). We used the variance of the kinematics
and kinetics in [32] to define the uncertainty in the load
kinematics and kinetics, i.e., €7, €n.s Egm»> a0d €4, (Ta-
ble 1). The uncertainty in the load kinetics and kinematics
can be interpreted as the result of the interplay between
the human and the wearable robot or admissible error in
the controller design. Changes in user mass are propor-
tional to the multiplicative uncertainty in load torque, €5, .
In our case studies, the load torque had a multiplicative
uncertainty of 15% (Table 1). This can be interpreted as
15% admissible change in user mass.

We designed the optimal springs for the ankle joints of
the second generation of the robotic leg at the University
of Texas at Dallas (UTD) [18, 33] and the Open Source
Leg (OSL) at the University of Michigan [20, 22]. The
ILM85x26 brushless motor from TQ-RoboDrive coupled
with a 22:1 geared transmission powered the UTD leg [18]
and the ActPack v0.2b brushless motor from Dephy Inc.
coupled with a 50:1 belt transmission powered the OSL

Table 1: Uncertainty based on the variance in [31, 32]. €a.,, Tunci,
€Tim,ar Edim,. Teler to the uncertainty in the spring compliance, the
modeling torque, the load torque (multiplicative and additive), and
the load velocity (multiplicative and additive), respectively. Sec. 3.1
describes in detail all sources of uncertainty.

Uncertainty  Units

Eogn 420 % of linear spring compliance

Tunci +260mN-m (10 % motor rated torque)
en +0.15

€ma +4.42N-m (10 % RMS load torque)

Einm £0.2

€1a +0.7440rad/s (20 % RMS load velocity)

[22] (Table 2). The UTD leg is of interest because its ankle
actuator has been proven to satisfy our definition of a quasi-
direct drive [18]. Likewise, for the normative ankle joint
moments, the OSL leg has also been shown to be backdriv-
able [31]. Furthermore, the excellent documentation of the
OSL leg’s actuators [20] provides a different perspective to
our case studies, while its open-source nature can help our
analysis reach to a broader audience. Our expression of
energy consumption (33) neglects the energy dissipated by
Coulomb friction. This assumption may be less accurate
for the OSL since its transmission dynamics have not been
as well-characterized as the UTD leg.

We used the values of I, and by, experimentally vali-
dated in [18, 20, 22] and the rest of the parameters from
the manufacturer’s datasheets. The values of uncertainty
in manufacturing of the spring matched the variance of
stiffness for the manufactured rotational springs in [31].
Tables 2 and 1 illustrate the nominal and uncertain param-
eters of the SEA and the task. In all simulations, CVX
(Matlab Software for Disciplined Convex Programming) ex-
ecuted the solvers Mosek [34] or Gurobi [35] with precision
settings cvx_precision default. The optimization pro-
gram (32) is convex and can be solved in polynomial time
(e.g., with n = 1000, a Windows 10 PC with an Intel i7 -
9700 processor computed 8000 solutions in less than 1.5s
each). The source code for these simulations is available as
a capsule in CodeOcean, with the corresponding hyperlink
available in the online version of this article.

The robust-feasible solution modifies the torque-
elongation profile of the spring depending on whether or
not the actuator constraints for the nominal case are ac-
tive. Active constraints are inequality constraints where
the inequality is satisfied at the boundary, i.e., the optimal
solution x* satisfies f(x*) <0 at f(a*) = 0 [25]. Inactive
constraints represent inequality constraints satisfied with
some slack, i.e., f(z*)+a < 0 for some a € Ry ;. In Sec. 4.1,
we use energy consumption and RMS motor velocity as the
optimization objectives to analyze nominal solutions when
all the constraints are inactive. Sec. 4.2 analyzes active
constraints by minimizing RMS motor torque.



Table 2: Simulation parameters for the ILM85x26 brushless motor
from TQ-RoboDrive and the ActPack v0.2b from Dephy Inc. The
values are in the g-axis using the direct quadrature transformation
in [21]. The values of I, and by match the experimental results
for the reflected inertia and damping reported in [18, 20, 22]. For
example, [18] reports the inertia of the ILM85x26 at the load side to
be 0.0696 kg:m?, which is equivalent to an inertia of 1.438 kg-cm? at
the rotor side with a 22:1 transmission ratio.

Motor parameter ILM85x26  ActPack

Torque constant, k; (N-m/A) 0.24 0.14
Winding resistance, Ry, (m€2) 323 186
Continuous torque, Teont (N-m) 2.6 1.1
Motor inertia, I, (kg-cm?) 1.438 1.2
Gear ratio, r 22 50
Viscous fric., by, (mN-m-s/rad) 0.861 0.16
Max. torque, Tmax (N-m) 8.3 4.02
Max. velocity, ¢max (rpm) 1500 2455
Voltage (V) 48 36

4.1. Robust feasibility in the case of inactive constraints

For inactive constraints with enough slack the optimal
springs from the nominal and robust-feasible solutions will
be the same. In this scenario, the purpose of the robust-
feasible solution is to certify that the nominal solution will
be feasible despite of the uncertainty. Table 3 summarizes
the optimal solutions using energy consumption and RMS
velocity as the objective functions. The dual variables of
our numerical solution to (32) define what constraints are
active or inactive.

Our solutions to (32) are strictly feasible [25]. Thus,
from Slater’s condition, strong duality holds for our convex
formulation, i.e., there is no gap between the dual and
primal optimal [25]. Strong duality allows us to analyze
which constraints are active for our optimal solution using
complementary slackness [25]; if the optimal dual variable
A; associated with an inequality constraint is A\; > 0 then
our ith constraint is active [25]. The dual variables are
also useful for a sensitivity analysis. The higher the dual
variable the more sensitive is the optimal with respect to
perturbations of that constraint. Table 3 includes the value
of the maximum dual variable and its index ¢ within the
set of inequality constraints. Given the order in which
we programed the constraints and n, for 0 < i < 1998,
1999 < ¢ < 3996, 3997 < i < 7992, and ¢ = 7993 the
inequality represents an elongation, torque, torque-velocity,
and RMS torque constraint, respectively. From the values
of the maximum dual variables and the slack in the left and
right hand sides of the associated inequality constraints,
we state that minimizing energy consumption and RMS
velocity lead to optimal designs with inactive constraints.

4.1.1. Minimizing energy consumption

Our global-optimal nonlinear and linear springs reduced
energy consumption by 3.5% (UTD) and 7.8% (OSL) with
respect to the rigid case (Table 3). To contextualize this
energy reduction it is fundamental to understand how series
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Table 3: Simulation results using energy, RMS velocity, and RMS
torque as the objective function. The reported stiffness corresponds
to the stiffness of the optimal linear spring. For comparison, we show
the energy consumption and RMS velocity for an actuator without
spring (rigid) and the linear and nonlinear optimal springs. LHR and
RHS refer to the left-hand and right-hand sides of the inequalities at
constraint ¢. The dual variables correspond to the nominal program
to design the optimal linear spring.

UTD OSL
nonlin. 38.14 23.62
Energy (J) linear 38.23 23.62
rigid 39.51 25.61
Max. dual variable \; 3.62e-08 1.17e-07
Index dual variable ¢ 6539 7561
LHS/RHS at constraint 4 21.7/46.9  -28.6/5.6
Stiffness nominal (N-m/rad) 197.80 176.79
Stiffness robust (N-m/rad) 197.92 176.86
nonlin. 21.52 44.84
RMS velo. (rad/s) linear 23.72 49.41
rigid 35.84 74.66
Max. dual variable \; 1.38e-07 1.1e-07
Index dual variable ¢ 999 3426
LHS/RHS at constraint 4 0.38/1.6 -0.01/2.1
Stiffness nominal (N-m/rad) 285.3 285.3
Stiffness robust (N-m/rad) 285.29 285.3
RMS torque (N-m) nonlin. 1.87 0.87
(nominal) linear 1.88 0.88
RMS torque (N-m) nonlin. 1.89 0.90
(robust-feasible)  linear 1.90 0.91
RMS torque rigid (N-m) 1.94 0.98
Max. dual variable \; 1.23e-03 1.44e-03
Index dual variable ¢ 6539 6537
LHS/RHS at constraint 4 46.8/46.8 42.25/42.35
Stiffness nominal (N-m/rad) 91.53 123.5
Stiffness robust (N-m/rad) 131.74 183.3




springs affect motor speed and torque. We can interpret
energy consumption as a weighted sum of the square of
RMS torque and square of RMS velocity, as shown in (34).
In this weighted sum, the RMS torque is a dominant term
relative to RMS velocity, i.e., the heat losses are higher
than the viscous losses for quasi-direct drives where the
motor torque is high and thus dominant [36]. In a quasi-
direct or direct drive, the only chance for a series spring to
modify torque is to modify the motor position such that
the viscous and inertial torques of the motor modify the
load torque. However, the inertial and viscous torques
in these case studies are negligible, e.g., the RMS motor
torque for the UTD leg without series spring was 1.94 N-m
out of which 0.026 N-m and 0.07 N-m are RMS viscous and
inertial torques. As a consequence, the energy savings from
using series springs was less than 8% in both cases.

4.1.2. Minimizing RMS velocity

Our global-optimal nonlinear and linear springs reduced
RMS velocity by 40% and 33.8% with respect to the rigid
case (Table 3). The percentage of reduction and the op-
timal springs were the same for the OSL and UTD. The
definition of motor velocity in (11) is independent of the
motor parameters and all the constraints were inactive;
hence, the optimal elongation-torque profile of the spring
was motor-agnostic. Minimizing motor velocity is beneficial
to reduce the motion of the motor and indirectly minimize
the energy consumption without an accurate energy model,
e.g., SEAs with a high-ratio transmission. Modeling energy
losses of SEAs with a high-ratio transmission requires an
accurate estimate of friction and torques that make the sys-
tem non-backdrivable. These effects are difficult to model
as they depend in temperature and lubrication.

4.2. Robust feasibility in the case of active constraints

Minimizing RMS torque produced optimal springs with
active torque-speed constraints for the OSL and the UTD
prosthetic legs (Table 3). When the optimal solution has
at least one active actuator constraint, the constraint may
become unfeasible in the presence of uncertainty. In such
case, the robust-feasible and nominal solution will have
different optimal series springs. Fig. 3 shows the optimal
linear and nonlinear springs for the nominal and robust-
feasible solutions. The linear and nonlinear springs reduced
less than 3.7% (UTD) and 11.3% (OSL) of the RMS torque
compared to the rigid case (Table 3). As discussed in
Sec. 4.1.1, the motor torque is not sensitive to changes in
stiffness. Thus, the robust-feasible and nominal solutions
had a similar cost, i.e., there was a weak trade-off between
optimality and robustness. However, the changes in stiff-
ness between the robust-feasible and nominal solution had
an important impact in the feasibility of motor speed as
shown in Fig. 4.
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Figure 3: Series springs that minimize RMS motor torque for the
ActPack (top) and ILM85x26 (bottom). We designed the optimal
SEAs for the ankle joint of a 65kg subject walking in level ground
[32] with cadence of 105 steps per minute. The biomechanical data in
[32] used a sample of 16 participants with average age of 25.6 years
and standard deviation of 6.2 years. The robust feasible springs result
from solving (32) using the uncertainty in Table 1.



% 200 —— nominal |
B robust
1001 rigid
= i
2 N\
g 0 - \ // o |
§ \/\/
o
2 _100 L | | | | | | | i
0 02 04 06 08 1 1.2
T T T
0 A o~ ]
g \
2 ~ |
g _9L \\ | i
o
5 \
= 4 AN -
| | | | | | |
0 02 04 06 08 1 1.2
Time [s]

Figure 4: Angular velocity for the ILM85x26 motor using the linear
spring that minimizes RMS torque (Fig. 3). The robust solution leads
to a motor speed that satisfies the actuator constraints despite the
uncertainty in Table 1. Notice that robustness did not imply a signif-
icant trade-off in terms of RMS torque reduction (nominal: 0.88 N-m,
robust: 0.91 N-m, Table 3).

5. Discussion and Conclusion

We introduced a method for the optimal robust-feasible
design of springs for SEAs. Our robust-feasible solution
implies that the resulting SEA will satisfy all the actua-
tor constraints of Sec. 2.3 despite any of the sources of
uncertainty introduced in Sec. 3.1. Our formulation works
for arbitrary motion of the load except when we design
the spring to minimize energy consumption. Minimizing
energy consumption requires the load motion to be pe-
riodic, e.g., walking, running, or a combination of those
two. Our optimization framework can minimize any of the
objective functions in Sec. 3.3. We showed that the optimal
robust-feasible spring is equivalent to the optimal point of
a convex program. The numerical solution of this program
can be computed efficiently and reliably with plenty of
commercial and open source solvers [25].

When minimizing energy consumption, we assume that
the reference trajectory is periodic, the transmission has
negligible backlash and Coulomb friction, and the energy
losses in the transmission can be represented by viscous
friction losses. These assumptions imply that our energy
savings results apply for direct and quasi-direct drives.
Our energy consumption analysis does not apply for SEAs
with high-ratio transmissions where the system may not
be backdrivable or friction is not negligible.

In general, the potential energy savings from serial
elasticity are load and motor dependent. As discussed in
Sec. 4.1.1, in applications where the inertial and viscous
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torques are low and the system is backdrivable, the energy
savings may not be enough to justify the mechanical com-
plexity and mass inherent of the extra series spring, e.g.,
series elasticity reduced 3.5% (UTD) and 7.8% (OSL) of
energy consumption for the prosthetic ankles in our case
studies in Sec. 4.

As discussed in Sec. 4.1.2, the optimal spring that mini-
mized RMS motor speed was motor agnostic. Compared to
linear springs, nonlinear springs were only beneficial when
minimizing motor RMS speed. The nonlinear springs mini-
mized around 10 % more RMS velocity than linear springs.
For all the other cases, the linear and nonlinear springs
had almost the same cost. Considering the uncertainty
in the compliance of the final springs, we note that the
manufactured spring can be different from the optimal and
still guarantee a reduction of cost and feasibility of the con-
straints. Our future work will extend this formulation to
optimize parallel springs and co-design elastic components,
the electric motor, and the control algorithm.

References
[1] G. Pratt and M. Williamson, “Series Elastic Actuators,” in Proc.
1995 IEEE/RSJ Int. Conf. Intell. Robot. Syst. Hum. Robot
Interact. Coop. Robot., vol. 1. IEEE Comput. Soc. Press, 1995,
pp- 399-406.
D. W. Robinson, “Design and Analysis of Series Elasticity in
Closed-loop Actuator Force Control,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2000.
D. P. Losey et al., “A Time-Domain Approach to Control of
Series Elastic Actuators: Adaptive Torque and Passivity-Based
Impedance Control,” IEEE/ASME Trans. Mechatronics, vol. 21,
no. 4, pp. 2085-2096, 2016.
D. Rollinson et al., “Design and Modeling of a Series Elastic
Element for Snake Robots,” in Dynamic Systems and Control
Conference, vol. 1. American Society of Mechanical Engineers,
oct 2013, pp. 2-6.
J. Hurst and A. Rizzi, “Series compliance for an efficient running
gait,” IEEE Robot. Autom. Mag., vol. 15, no. 3, pp. 42-51, 2008.
A. Bicchi and G. Tonietti, “Fast and “Soft-Arm” Tactics,” IEEE
Robot. Autom. Mayg., vol. 11, no. 2, pp. 22-33, 2004.
D. J. Braun et al., “Robots Driven by Compliant Actuators:
Optimal Control Under Actuation Constraints,” IEEE Trans.
Robot., vol. 29, pp. 1085-1101, 2013.
B. Vanderborght et al., “Exploiting Natural Dynamics to Reduce
Energy Consumption by Controlling the Compliance of Soft
Actuators,” Int. J. Rob. Res., vol. 25, no. 4, pp. 343-358, 2006.
A. Jafari, N. G. Tsagarakis, and D. G. Caldwell, “A novel
intrinsically energy efficient actuator with adjustable stiffness
(AwAS),” IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp.
355-365, 2013.
E. Bolivar, S. Rezazadeh, and R. D. Gregg, “A General Frame-
work for Minimizing Energy Consumption of Series Elastic Ac-
tuators With Regeneration,” in ASMFE Dynamic Systems and
Control Conference, 2017, p. VOO1T36A005.
E. A. Bolivar Nieto, S. Rezazadeh, and R. Gregg, “Minimizing
Energy Consumption and Peak Power of Series Elastic Actuators:
a Convex Optimization Framework for Elastic Element Design,”
IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1334-1345,
2019.
E. A. Bolivar Nieto, S. Rezazadeh, T. Summers, and R. D. Gregg,
“Robust optimal design of energy efficient series elastic actuators:
Application to a powered prosthetic ankle,” in IEEE Int. Conf.
Rehabil. Robot. (ICORR), Aug 2019.
K. R. Embry et al., “Modeling the kinematics of human loco-
motion over continuously varying speeds and inclines,” IFEE

(4]

(8]

[9]

[10]

[11]

[12]

[13]



(14]

(15]

(17)

(18]

(19]

[20]

23]

24]

Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 12, pp. 2342-2350,
2018.

W. R. Brown and A. G. Ulsoy, “A Maneuver Based Design
of a Passive-Assist Device for Augmenting Active Joints,” J.
Mechanisms Robotics, vol. 5, no. 3, p. 031003, 2013.

——, “Robust design of Passive Assist Devices for multi-DOF
robotic manipulator arms,” Robotica, vol. 35, no. 11, pp. 2238—
2255, nov 2017.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimiza-
tion, ser. Princeton Series in Applied Mathematics. Princeton
University Press, October 2009.

H. Asada and K. Youcef-Toumi, Direct-Drive Robots: Theory
and Practice. The MIT Press, 1987.

T. Elery, S. Rezazadeh, C. Nesler, and R. D. Gregg, “Design
and Validation of a Powered Knee-Ankle Prosthesis with High-
Torque, Low-Impedance Actuators,” IEEE Trans. Robot., 2020.
T. Verstraten et al., “Modeling and design of geared DC motors
for energy efficiency: Comparison between theory and experi-
ments,” Mechatronics, vol. 30, pp. 198-213, 2015.

U. H. Lee, C.-W. Pan, and E. J. Rouse, “Empirical Characteri-
zation of a High-performance Exterior-rotor Type Brushless DC
Motor and Drive,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst.
IEEE, 2019, pp. 8018-8025.

R. H. Park, “Two-reaction theory of synchronous machines
generalized method of analysis-part I,” Trans. Am. Inst. Electr.
Eng., vol. 48, no. 3, pp. 716-727, jul 1929.

A. F. Azocar, L. M. Mooney, J.-f. Duval, A. M. Simon, L. J.
Hargrove, and E. J. Rouse, “Design and clinical implementation
of an open-source bionic leg,” Nat. Biomed. Eng., vol. 4, no. 10,
oct 2020.

T. Lenzi et al., “Design, development, and testing of a lightweight
hybrid robotic knee prosthesis,” Int. J. Rob. Res., vol. 37, no. 8,
pp. 953-976, 2018.

J. M. Hollerbach, I. W. Hunter, and J. Ballantyne, “A Compar-
ative Analysis of Actuator Technologies for Robotics,” in Robot.
Rev. 2, 1992, pp. 299-342.

S. P. Boyd and L. Vandenberghe, Convex Optimization.
York, NY: Cambridge University Press, 2004.

P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and
S. Kim, “Proprioceptive Actuator Design in the MIT Cheetah:
Impact Mitigation and High-Bandwidth Physical Interaction for
Dynamic Legged Robots,” IEEE Trans. Robot., vol. 33, no. 3,
pp- 509-522, jun 2017.

S. Rezazadeh and J. W. Hurst, “On the Optimal Selection of
Motors and Transmissions for Electromechanical and Robotic
Systems,” in IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2014,
pp. 4605-4611.

S. K. Au and H. M. Herr, “Powered ankle-foot prosthesis,” IEEE
Robot. Autom. Mag., vol. 15, no. 3, pp. 52-59, 2008.

K. W. Hollander et al., “An Efficient Robotic Tendon for Gait
Assistance,” J. Biomech. Eng., vol. 128, no. 5, p. 788, 2006.
M. Tucker, J. Olivier, A. Pagel, H. Bleuler, M. Bouri, O. Lam-
bercy, J. del R Milldn, R. Riener, H. Vallery, and R. Gassert,
“Control strategies for active lower extremity prosthetics and
orthotics: a review,” J. Neuroengineering and Rehabilitation,
vol. 12, no. 1, 2015.

A. F. Azocar, L. M. Mooney, L. J. Hargrove, and E. J. Rouse,
“Design and Characterization of an Open-Source Robotic Leg
Prosthesis,” in 2018 7th IEEE Int. Conf. Biomed. Robot.
Biomechatronics, 2018, pp. 111-118.

D. A. Winter, “Biomechanical Motor Patterns in Normal Walk-
ing,” J. Mot. Behav., vol. 15, no. 4, pp. 302—-330, dec 1983.

T. Elery et al., “Design and Benchtop Validation of a Pow-
ered Knee-Ankle Prosthesis with High-Torque, Low-Impedance
Actuators,” in IEEE Int. Conf. Robotics € Automation, 2018.
M. Aps, “MOSEK Optimization Suite,” 2017. [Online].
Available: http://docs.mosek.com/8.0/intro.pdf

L. Gurobi Optimization, “Gurobi optimizer reference manual,”
2020. [Online]. Available: http://www.gurobi.com

S. Seok et al., “Design Principles for Energy-Efficient Legged
Locomotion and Implementation on the MIT Cheetah Robot,”

New

13

IEEE/ASME Trans. Mechatronics, vol. 20, no. 3, pp. 1117-1129,
2015.

Appendix A. Direct method to constrain winding
temperature

In this appendix, we write the winding temperature as
a set of quadratic functions of spring compliance. Using
(7), (8), (9), and the state variables x, = (T}, — T) and

Tw = (Tw — Ta), we write the thermal dynamics in state
space as
[;”h] = Ar Eh} + (Br1%y + Bra)i2,, (A1)
where
A — _(Rha+Rwh)(RhaRthha)_1 (Rwhcha)_1
T (Rwhcvwa)_1 _(C’wafgwh)_1 ’
0 0

BTI N [Rm@aaCuC;alil ’ BT2 |:Rm@ac\;al:| ’

The term Bri7i2, in (A.1) makes this system nonlinear.
The copper’s temperature coefficient of resistance, acy, is
positive, which implies that any Ty, higher than T, will
increase R,,. The higher R, the more heat is dissipated
per unit of current, as seen in (8). We can generate a linear
approximation of (A.1) assuming that R, is constant and
corresponds to the worst-case scenario, where the winding is
at its maximum admissible temperature. Thus, we linearize
(A.1) replacing (9) with

Rm = Rm@a(1 + aCu<Tmax - Ta))7

where Tihax is the maximum admissible winding tempera-
ture. Depending on the manufacturer, Ti,,x =~ 150 °C. This
assumption will over-estimate the winding temperature,
especially when the winding is close to ambient tempera-
ture. However, the model provides the same steady-state
winding temperature in the case that T\, = Thax, as seen
in Fig. A.5. The resulting model is linear with respect to
i2, as follows:

’i,’h _ Th .2
|:.’EW:| = AT |;’IJW:| + BTZm7 (AQ)
where Br = Bri(Thax — Ta) + Bte.  We sam-

ple the winding and housing temperatures at n dis-
crete times by defining the vector x € R?" as x
[(Zn)1s (Tw)1s -5 (@), (Tw)n], Where (2(n/w)); refers to
the ith sample of the housing or winding temperature.
Using & ~ Dy, we rewrite (A.2) in discrete-time as

x = Apqi’,, (A.3)

where D; € R?"*2" ig the first-order derivative operator
in matrix form [11]; 'Lfn € R™; and

ATd = (D1 — diag(AT))_ldiag(BT),
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Figure A.5: Measured winding temperature for the quasi-direct motor
‘ActPack’ in [20]. We used the parameters in [20] to estimate the
winding temperature using the nonlinear model (Eq. A.1) and the
simplified linear model (Eq. A.2). The maximum percent error and
its location depend on ambient temperature, the current provided to
the motor, and the thermal time constant of the actuator. For the
conditions of this simulation, the maximum percent error between
the measured temperature and the nonlinear model is 2.9% at 10
minutes, and between the linear and nonlinear model is 8.8% at 8.8
minutes. We performed the simulations for 70 minutes.

where
Br 0 0
diag(BT) = 0 T 0
0 0 Br

is a R?"X™ non-square matrix.With (A.3), (14), and 7, =
kim we express the winding temperature as a function of
compliance:

1 n
- 72 (Ara)ij(€] +2e;F 0+ ol FIFj ).
t ‘:

Thus, the following convex quadratic inequalities constrain
the winding temperature to be less than the maximum
admissible value

1 n
=2 > (Ara)ij(€] +2¢;F o + ol F] Fj.cx)
ks J=1
S Tmaxa (A4)

where i refers to the states that match the winding tem-
peratures, i.e., ©; = (Zw);, j=1,...,n.
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