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Nectar is a sugary, aqueous solution that plants offer as a
reward to animal mutualists for visitation. Since nectars are so
nutrient-rich, they often harbor significant microbial
communities, which can be pathogenic, benign, or even
sometimes beneficial to plant fitness. Through recent
advances, it is now clear that these microbes alter nectar
chemistry, which in turn influences mutualist behavior (e.g.
pollinator visitation). To counteract unwanted microbial growth,
nectars often contain antimicrobial compounds, especially in
the form of proteins, specialized (secondary) metabolites, and
metals. This review covers our current understanding of nectar
antimicrobials, as well as their interplay with both microbes and
insect visitors.
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Introduction

Plants make two types of nectar. Floral nectar (FN) is the
major nutritional reward for pollinators, whereas extrafloral
nectar (EFN) attracts pugnacious insects, like ants and
wasps, for indirect defense against herbivores [1]. Both FN
and EFN are secreted by specialized glands called nectar-
ies, with their location on the plant (lowers versus vegeta-
tive tissues) being the main discriminator between nectary
type. Please note, throughout this manuscript we refer to
FN and EFN within the context of nectar only, not the
specialized gland known as nectaries. Beyond sugars, nec-
tars often contain biologically relevant concentrations of
amino acids, lipids, specialized (secondary) metabolites,
metals, and proteins (reviewed in Ref. [1]). Some of these
compounds have demonstrable impacts on pollinator

visitation [1]; however, since nectar is a nutrient-rich
resource, it is perhaps unsurprising that it can also be an
outstanding medium for microbial growth. Nectar microbes
can range from being pathogenic to the plant to having a
potentially benign impact on the nectar chemistry. For
instance, Erwinia spp. are the causal agents of fire blightand
can infect the plant vasculature through growth in nectar
followed by invasion of the nectary in a variety of plant
species (e.g. apple and pear) [2-5]. In addition to Erwinia
spp., there are a variety of other pathogens that can infect
plants through the nectary, including documented cases in
cotton, bean, squash, apple, pear, aucuba, banana, pineap-
ple, hawthorn and gourds [5-8].

In addition to pathogenic microbes, nectars often harbor
nectarivorous yeasts [9-11] and bacteria at relatively high
densities [12,13]. Nectar microbial communities are gen-
erally species-poor, containing either yeast or bacteria
[14] and are often vectored by visiting insects [15,16].
It may be that in some, or even most, cases that nectar-
ivorous microbes are neutral and have little to no impact
on nectar, but nectar-adapted microorganisms can poten-
tially alter nectar chemistry in ways that influence polli-
nator preference. Both nectar yeasts and bacteria can
influence nectar pH [17,18], volatiles [19°°,20°°], temper-
ature [21], sugar content [22-24,25°], amino acid content
[25°,26-28,29°] and nectar volume [25°]. Some nectar
microbiota may even help prevent the growth of microbes
that may be deleterious to the plant [30]. There is also
very interesting research beginning to look at how nectar
microbes, both bacteria and yeasts, interact with one
another and how that may influence their overall effects
on pollinator attraction [reviewed in Ref. [31]]. Exactly
how these alterations in nectar chemistry impact pollina-
tor visitation and plant fecundity is a growing area of
research. Here we provide an overview of how nectar
composition might impact microbial communities in such
ways that influence pollinator visitation.

It should be noted that not all floral visitors are pollinators,
and that nectars may contain toxic or distasteful chemicals
to deter ‘nectar robbers’ [62°]. Nectar robbers are classi-
fied as floral visitors that consume nectar but provide no
pollen transfer or pollination services to the plant. This
review will deal exclusively with pollinators in an effort to
maintain focus, but we readily acknowledge the impor-
tance of nectar chemistry and its impact on the ecology of
floral visitors outside of pollinators. As such, the focus of
this review is on compounds in nectar that have demon-
strated antimicrobial activity and how this activity, by
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Table 1

Partial list of nectar antimicrobials and their impacts on nectar quality

Nectar
type

Antimicrobial component of
nectar

Species

Evidence for antimicrobial activity Ref.

Nectarin | protein Floral Tobacco

Nectarin IV protein Floral Tobacco

Nectarin V protein Floral Tobacco

Pathogenesis-related (PR) Extrafloral

proteins

Acacia cornigera,
A. hindsii, A. collinsii

BrLTP2.1 Floral Brassica rapa

GDSL lipase Floral Jacaranda mimosifolia

Acidic chitinase Ill protein Floral Apple

Floral nectar (component Floral

unknown)

Cucurbita pepo

Anabasine Floral Tobacco

Gelsemium
sempervirens
Culluna vulgaris

Gelsemine Floral

Callunene Floral

Methylglyoxal/dihydroxyacetone Floral Leptospermum sp.

NEC1 is a manganese superoxide dismutase that produces high [49,50]
amounts of hydrogen peroxide in floral nectar, which is
antimicrobial in nature

Purified NEC4 protein displayed xyloendoglucanase inhibitory
activity when incubated with xyloglucan-specific endoglucanase
(XEG) from Aspergillus aculeatus. XEGs are hemicellulose
degrading enzymes utilized by many pathogenic fungi to colonize
plant tissues

Berberine bridge enzyme (BBE)-like protein that displays glucose
oxidase activity, generating hydrogen peroxide which then
contributes to the nectar’s antimicrobial nature

Nectar inhibited the growth of Phytophthora parasitica, Fusarium
oxysporum, Verticillium dahliae and Alternaria alternata. In-gel
assays revealed glucanase and chitinase activity of various
proteins from the nectar

Non-specific lipid transfer protein (nsLTP) with direct
antimicrobial activity against certain plant pathogens such as
Alternaria solani

Raw nectar and the protein JNP1 display lipase/esterase activity.
JNP1 is hypothesized to produce free fatty acids that act as
antimicrobials

Machi3-1 protein inhibits growth and biofilm formation of Erwinia
amylovora

Nectar inhibited the growth of Escherichia coli and Erwinia [7]
tracheiphila when compared to glucose controls. Increased
transmission of E. tracheiphila via flowers when nectar was
artificially removed

The alkaloid anabasine in the nectar of Nicotiana spp., reduced
pathogen load and transmission of the parasitic Crithidia bombi in
bumblebees

Gelsemine consumption reduced pathogen load of Crithidia
bombi in bumblebees

Callunene consumption causes Crithidia bombi inhibition by
inducing flagellum loss

High levels of methylglyoxal in honey derived from
dihydroxyacetone in Leptospermum sp. nectar shows strong
positive relationship with non-peroxide antibacterial activity
(against Staphylococcus aureus ATCC 25923)

[48]

[51]

[55,60]

[611

[59]

[58]

[69,71]

[70]
(83™]

[81,82]

influencing the growth of microorganisms, may impact
nectar chemistry in such a way that attracts or deter
pollinators.

Antimicrobial compounds in nectar

Nectar has been shown to limit the growth of certain
microbes [32,33], with some of the known antimicrobial
compounds being summarized in Table 1. Here we
discuss these different nectar compounds, the mecha-
nisms through which they limit microbial growth, and
potential impacts on pollinator visitation.

Sugars

Sugars are the primary nectar solutes. Sugar concentration
and composition (primarily sucrose, glucose and fructose)
are important factors in mutualist attraction [34]. Some
rarer sugars, such as arabinose, galactose, mannose, gen-
tiobiose, lactose, maltose, melibiose, trehalose, melezi-
tose, raffinose, and stachyose have been found in FN and,

interestingly, can be toxic to some pollinators [35-37], but
are not known to have direct antimicrobial properties.
However, nectars can contain up to ~70% (w/w) sugar.
"T'his high osmolarity in itself could clearly limit microbial
growth and serve as a filter as to what kinds of micro-
organisms can inhabit nectar, as has been seen in honey
[38], but this hypothesis does not appear to have been
tested /2 vivo and warrants further investigation. For
instance, the nectars from flowers visited by insects are
usually more concentrated than ones pollinated by verte-
brates [39-43], but it is unclear if vertebrate-pollinated
flowers generally contain more microbes than insect-pol-
linated ones. For a more detailed examination of how
sugar-rich environments might influence microbiological
dynamics, Lievens ¢z a/. is an excellent review [44].

Proteins
Nectars consistently contain arrays of a few major pro-
teins, often referred to as nectarins, along with a larger
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number of minor ones. The specific proteins vary from
species to species, but nectar proteins are usually
involved in plant defense and constitutively secreted
(uninduced by any biotic or abiotic stress). For instance,
a recent report identified 144 proteins in the nectars of 23
Nicotiana species, with the majority having known or
predicted roles in defense or stress responses [45°]. Some
of these proteins included lipid transfer proteins, ‘nectar
redox cycle’ proteins, and protease inhibitors [45°], which
are detailed further below.

Proteins secreted into nectar may either directly or indi-
rectly influence the growth of nectar-inhabiting micro-
organisms. Perhaps the most well characterized example
of indirect inhibition, meaning the protein does not
directly bind or interact with the inhibited microorgan-
ism, of microbial growth is the nectar redox cycle in the
FN of ornamental tobacco (NVicotiana spp.). The nectar of
ornamental tobacco produces high levels of hydrogen
peroxide (accumulating up to ~4 mM) that can inhibit
microbial growth [46,47]. There are five nectarins
(NEC1-NEC5) that accumulate to concentrations of
~250 wg/mL [47,48]. NECI1, a superoxide dismutase
[49,50], and NECS5, a glucose oxidase [51], both contrib-
ute to generating hydrogen peroxide in nectar, which has
direct activity against known plant pathogens. We suggest
hydrogen peroxide in nectar is most likely a defense
mechanism against a broad spectrum of microbes, both
bacterial and fungal. Interestingly, Nicotiana alata plants
silenced for a trypsin proteinase inhibitor had higher
levels of both nectarins and hydrogen peroxide, but were
less visited by pollinators [52]. These results suggest that
hydrogen peroxide homeostasis is important to maintain a
balance between nectar defense and its palatability to
pollinators.

Other nectarins may interact directly with microorgan-
isms to reduce their growth. Pathogenesis-related (PR)
proteins have been found in both EFN and FN [1,53,54].
An interesting study examined the proteins and antimi-
crobial activity in the EFN of myrmecophytes (plants that
associate with mutualistic ants and constitutively secrete
EFN) against non-myrmecophytes (these plants secrete
EFN upon herbivore damage in order to attract ants as a
defense mechanism) [55]. Since myrmecophyte EFN is
constitutively produced, and may remain on the plant for
long periods, it was hypothesized that this type of nectar
would require enhanced protection from exploitation by
microbes relative to non-myrmecophytes. Perhaps unsur-
prisingly, the study found that myrmecophyte nectar had
more protein content and antimicrobial activity because
their long-exposed nectar is potentially more vulnerable
to microbial infestation. The myrmecophyte-nectar con-
tained chitinases and glucanases that were effective at
inhibiting the growth of yeasts [55,56]. Chitinases have
also been found in FN [57,58]. Specifically, a recent
report found that an apple cultivar with enhanced

resistance to Erwinia amylovora, the causal agent of fireb-
light, contained a nectar chitinase that was absent in a
susceptible cultivar [58]. It is worth noting that the source
of chitinases (and other antimicrobials) in the prior exam-
ples were of plant origin. While yet to be demonstrated, it
is possible that some nectar antimicrobials might be
produced by other nectar-inhabiting microbes.

Another example that illustrates potentially conserved
antimicrobial mechanisms between EFN and FN is the
presence of GDSL-lipases. The lipid-rich nectar of the
tropical tree Jacaranda mimosifolia contains a GDSL-
lipase, which appeared to limit microbial growth [59].
Interestingly, the EFN of Populus trichocarpa (poplar)
displays antimicrobial activity and also contains GDSIL.-
lipases and other PR proteins [60]. Of course, this is a
small sample size and warrants more studies that examine
the protein content of both FN and EFN to see if there
are conserved mechanisms by which these nectars limit
microbial growth.

Non-specific lipid transfer proteins (nsL'TPs) are
members of a large protein family that has been found
in a variety of nectars from various species [24,35,36],
unpublished data]. A common feature of nsL.'TPs is that
they generally have antimicrobial activity, particularly
against fungi [62]. A recent study identified the major
protein secreted into the nectar of Brassica rapa as a
nsL'TP (BrLL'TP2.1) [61°]. BrL'TP2.1 is extremely heat
stable, has a binding affinity for free fatty acids found in
nectar, and is a potent antifungal agent against a series of
plant pathogens [61°]. The mode of action for Br. TP2.1
as an antimicrobial agent is still unknown.

Preliminary evidence suggests that these nectar nsLL.'TPs
are effective at inhibiting the growth of pathogenic fila-
mentous fungi but are not very active against some
common nectarivorous yeasts and bacteria. These results
suggest that, if the primary function of these nectar
ns’T'Ps is to limit microbial growth, their activity might
be selective. While the exact mechanisms of how nsL'TPs
inhibit fungal growth is still unknown, there is some data
to suggest that they directly target the membrane integ-
rity of certain fungi [63]. If the selectivity of nectar
ns.’I'Ps is confirmed, its activity may be interpreted to
have evolved to target microbes that could be deleterious
to nectar chemistry, plant health, and reproduction while
enabling proliferation of microbial communities that are
beneficial.

Taken together, the current body of literature suggests
that plants secrete antimicrobial peptides into nectar in
order to prevent it from being exploited by potentially
deleterious microbial communities. These unwanted
microorganisms could be directly pathogenic to the plant,
as 1s the case with Erwinia spp., or they could simply alter
nectar in such a way that is not as appealing to pollinators.
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Interestingly, to date, no studies have evaluated the
impacts of plant-derived nectar proteins on the growth
of commonly occurring nectarivorous microbes.

Specialized (secondary) metabolites

Nectar contains a variety of specialized (secondary)
metabolites that may also provide antimicrobial func-
tions. Specialized metabolites have been suggested to
have an assortment of functions in nectar (see reviews
Refs. [1,64°°]) and may also help mitigate the spread of
pathogens among pollinators. There is an established
body of literature that has demonstrated that specialized
metabolites may add a level of toxicity or bitterness to
nectar as a way to mediate floral visitors outside of its
potential ability to limit microbial growth [65-67]. For
example, the variance of nicotine concentrations in the
flowers of Nicotiana attenunata lead to increased outcross-
ing [68]. This suggests that specialized metabolites by
themselves, irrespective of their potential antimicrobial
activity, can attract or deter pollinator visitation.

Recent studies suggest that pollinators consume nectar
specialized metabolites as a way to help reduce pathogen
load and pathogen spread among other members of
pollinator colonies [69-73]. For example, the alkaloid
anabasine in the nectar of Nicotiana spp., reduced patho-
gen load and transmission of the parasitic, unicellular
eukaryote Crithidia bombi in Bombus terrestris [69,71].
Parasitized Bombus spp. are also more likely to visit
flowers of Chelone glabra that contain higher concentra-
tions of the iridoid glycosides aucubin and catalpol [74°°].
In turn, this higher visitation leads to an increase in pollen
donation to conspecific stigmas from those C. glabra with
nectar containing higher concentrations of iridoid glyco-
sides [74°°]. It should be noted that the consumption of
nectar containing gelsemine has also been shown to
reduce the pathogen load of the microbial parasite C.
bombi in some bee pollinators [70]. Although speculative,
these results suggest that the variation in antimicrobial
specialized metabolites in nectar may be a driver in the
evolution of some plant-pollinator interactions.

Whether specialized metabolites reduce microbial growth
in nectar is an area that requires further investigation.
Interestingly, several alkaloids found in nectars — caf-
feine, nicotine and anabasine — were tested against
nectar bacterial isolates, but there were no detectable
impacts even at concentrations beyond those found nat-
urally in nectar [12]. These experiments were conducted
in vitro, so it could be possible that synergistic effects
found among nectars’ full suite of chemical compounds
went undetected in this study. Yet, in another report, the
composition of nectar bacterial species greatly changed in
a nicotine-deficient Nicotiana attenuata mutant [75]. Nic-
otine in itself can inhibit microbial growth in a dose-
dependent manner with detectable impacts as low as 1
g/ml. for some microbial species [76]. Nicotine in the

nectar of N. attenuata has an average concentration of 27.6
wg/ml [75] while Nicotiana glauca, used as an outlier in
the study due to its low levels of nicotine in its nectar, has
an average concentration of nectar nicotine which is
55 times lower. Surprisingly, the bacterial communities
from N. glauca nectar were more comparable to those
cultured from wild-type N. attenuata plants than in the
nicotine-deficient mutant nectar. This suggests that nic-
otine, even at low concentrations, may influence bacterial
assemblages in nectar. N. glauca also contains higher
concentrations of anabasine (5.4 pg/ml. on average
[77]), which also has antimicrobial activity [78,79], sug-
gesting that anabasine may have similar effects as nico-
tine at higher concentrations in nectar. An additional
interesting finding was that a novel species of yeast,
Candida gelsemii, was isolated from Carolina Jessamine
(Gelsemium sempervirens), whose nectar is considered to be
relatively poisonous as it contains the toxic alkaloid
gelsemine [80]. These results suggest that some nectar
specialized metabolites may be a factor in filtering the
type of microbes that inhabit nectar, but more research is
needed to clarify this role. There also needs to be a push
to better understand the potential synergistic effects that
specialized metabolites may have on the growth of nectar
microorganisms in conjunction with other nectar solutes.

Another example of the antimicrobial role of nectar metab-
olites comes from studies with medical grade manuka
honey. Manuka honey is unique for its known strong
antimicrobial properties [81]. This therapeutic honey is
derived from the nectar of Leptospermum scoparium (man-
uka) plants that are found in New Zealand and Australia.
The causal agent of this antimicrobial activity has been
purported to be methylglyoxal, which is produced from
dihydroxyacetone [82]. Recent reports suggest that there is
a positive correlation between methylglyoxal levels and the
honey’s antimicrobial activity [82].

There are still many avenues to be studied on the impacts
of specialized metabolites on microorganisms that inhabit
nectar, as well as animal mutualists. For example, very
little is known about mechanisms of how specialized
metabolites may reduce microbial growth, either iz planta
or in pollinators. An interesting report recently showed
that callunene from the nectar of Calluna vulgaris can
inhibit C. bombi growth through the removal of its flagel-
lum, which is required for anchoring in its host bees
[83°°]. Another avenue worth pursuing might be to eluci-
date how domestication of crops that are reliant on
pollinators may have their nectar chemistry altered in
such a way that can be deleterious to the survival of their
pollinators. For example, domesticated blueberries have a
significant reduction in caffeic acid esters. These caffeic
esters were found in higher concentrations in non-domes-
ticated plants and may be important for mitigating path-
ogen load in visiting pollinators [84°°]. Furthermore,
while there has been some exploration of antimicrobial
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Figure 1
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The secretion of antimicrobials into nectars and their influence on
biotic interactions: (1) Arrival of actively transported or passively
secreted antimicrobial molecules in nectar drops (2) inhibit harmful
plant/insect pathogens, while (3) either stimulating or not affecting
nectar specialist growth. (4) Microbial-derived metabolites can
stimulate or negatively impact pollinator feeding preference. Created
with BioRender.com.

peptides in EFN, at this time there appear to be very few
studies on specialized metabolites in EFN [85]. An
interesting avenue of study would be to explore what
types of specialized metabolites are found in EFN and
what influence they might have on its biological function.
Lastly, it is important to understand how some microbial
species interact with nectar specialized metabolites.
Vannette and Fukami found that nectar microbes can
reduce the levels of the nectar specialized metabolites
aucubin, catalpol, caffeine, nicotine and ouabain, and that
none of these compounds could reduce microbial growth
enough to prevent changes to nectar sugars [29°]. It might
be reasonable to suggest that nectar-adapted microbes
have evolved the ability to metabolize antimicrobial
specialized metabolites in nectar.

Metals

Metals in nectar could also be important for influencing
and shaping both the nectar microbiome and pollinator
attraction. Plants obtain metals from the soil. Numerous
studies have shown that soil supplemented metals do
translocate to floral organs and rewards such as nectar
[86-88]. This has implications in reproductive success
too since metals accumulated in floral rewards

sometimes negatively affect foraging behavior of polli-
nators [87,89] and could be toxic to them [90]. We
speculate that the presence of a very specific inorganic
ion composition in nectar of various plants would dictate
a specific microbiome. The nectars of metal hyperaccu-
mulating plants are of special interest. Hyperaccumula-
tion of metals has been suggested to be a defense
mechanism against both herbivores and pathogens
[91]. A field survey of selenium hyperaccumulators
revealed lesser arthropod load in these plants [92].
Another study reported nickel hyperaccumulation in
floral nectar and fewer flower visitations by pollinators
when plants were grown on nickel-supplemented soils
[89]. Nickel toxicity in microorganisms is not completely
understood [93] and it would be important to study how
higher nickel levels influence the microbiome of nectar
in nickel hyperaccumulating plants.

Conclusions and future directions

Nectar chemistry is complex, with multiple layers of
biotic interactions. The primary function of floral nectar
is to attract and manipulate pollinators to maximize
plant fecundity. Non-mutualistic visitors are known to
exploit the sweet carbohydrate-rich resource that is
nectar. Consequently, nectar must maintain some tox-
icity to inhibit the growth of some microorganisms that
could be deleterious to plant reproductive success
while still limiting its distastefulness or toxicity to
pollinators.

In Figure 1 we illustrate a proposed model by which
antimicrobial compounds function in nectar. Nectar anti-
microbial compounds are secreted actively or via a passive
symplastic route, although the mechanisms by which
these solutes are secreted into the nectar is still relatively
unknown and should be an intense focus of research going
forward. These antimicrobial compounds then limit
microbial growth, which left unchecked, could be dele-
terious to the plant or mutualist insects. The current
literature suggests pathogenesis-related proteins, such
as chitinases and lipid transfer proteins, may be the
primary mechanism by which plants limit growth of
deleterious microorganisms, particularly fungi, in their
nectar while still harboring microbial communities that
may be beneficial or neutral. The mechanisms by which
these proteins act upon specific microorganisms is still an
active area of research. Additionally, many specialized
metabolites in nectars have antimicrobial activity (either
in vivo or in vitro), although their experimentally demon-
strated effects appears to be more of a resource for
limiting pathogen growth and transmission among polli-
nators. Metals are also another potential source of toxicity
in nectar, but how these metals directly impact pollinator
preference and microorganisms growth is yet another area
of research that warrants attention. Interestingly, a recent
report showed that some nectar metals and hydrogen
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peroxide may be harmful to pollinators by disrupting
bumblebee microbiomes [94].

In conclusion, a concerted effort is needed to understand
the diversity and mode of action of antimicrobial nectar
components, as well as their downstream impacts on micro-
bial communities and pollinator visitation. Studies at the
intersection of plant, microbial, and pollinator ecology,
coupled with genomic and molecular approaches, will lead
to key advances in this field, but will likely require strong
collaborative and interdisciplinary efforts.
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