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Abstract. By filtering the incoming climate signal when producing streamflow, river basins can attenuate — or amplify —
projected increases in rainfall variability. A common perception is/that river systems dampen rainfall variability by averaging
spatial and temporal variations in their watersheds. However, by analyzing 671 watersheds throughout the United States,
we find that many catchments actually amplify the coefficient of variation of rainfall, and that these catchments also likely
amplify changes in rainfall variability. Based on catchment-scale water’balance principles, we relate that faculty to the interplay
between two fundamental hydrological processes: water uptake by vegetation and the storage and subsequent release of water
as discharge. By increasing plant water uptake, warmen,temperatures might exacerbate the amplifying effect of catchments.
More variable precipitations associated with a warmer climate are therefore expected to lead to even more variable river flows

— a significant potential challenge for river transportation, ecosystem sustainability and water supply reliability.

Introduction

The temporal variability of stream flow mediates a variety of social and ecological outcomes. For example, daily flow variability
determines the suitability of aquatichabitats (Fabris et al., 2018), whereas variations over longer time scales affect the resilience
of water supply (Vogel and Bolognese, 1995), river transportation (Marengo et al., 2013), local economic development (Brown
and Lall, 2006) and the potential for violent conflicts (Roche et al., 2020). The coefficient of variation of stream flow (C'V{,
defined as the ratio between thesstandard deviation of flow and its mean) plays a particularly important role, demarcating
whether riverine processes are variance-dominated, with long periods of little to no flow interspersed with erratic bursts of high
discharge, or mean-dominated, with flow rates persistently at or near their long-term mean. This distinction has implications
for the form, function and resilience of river-dependent systems (Botter et al., 2013).

Although driven,by-the variability of incoming precipitation, stream flow variability is ultimately determined by physical
processes that take place throughout (and below) the land surface. Through these processes, catchments regulate stochastic
weather fluctuations to sustain stream-dependent social and ecological systems, and to potentially buffer these systems against
changes in these fluctuations (Teutschbein et al., 2018; Chezik et al., 2017). This buffering of water variability is commonly

deemed an ecosystem service provided by the catchment (Guswa et al., 2017), and emerges from a long-term co-evolution



oNOYTULT D WN =

25

30

35

40

45

50

55

AUTHOR SUBMITTED MANUSCRIPT - ERL-111068.R1 Page 2 of 16

between the landscapes and the systems that depend on them, against the backdrop of a continually changing climate (Porder,
2014; Sivapalan, 2006; Fan et al., 2019; Troch et al., 2015; Dietrich and Perron, 2006). Yet today’s climate is’changing at an
unprecedented rate. The temporal variability of rainfall is projected to increase in most regions of the world, where increased
temperatures will be associated with more intense and less frequent precipitation events (Donat et al., 2016). The standard
deviation of daily rainfall is projected to be more sensitive than rainfall averages to changing temperatures (4 — 5% per °C
versus < 1 —2% per °C') (Donat et al., 2016; Pendergrass et al., 2017). The coefficient of variation of both rainfall and stream
flow has increased significantly in most regions of the United States over the last fourdecades(red in Figure 1a). The ability
of social and ecological systems to adapt to these changes is determined by the capacity.of river catchments to buffer the effect
of rapidly changing rainfall variability as they generate flow.

Using daily stream flow and precipitation data from 671 catchments locatéd'across the contiguous United States for the 1980-
2015 period (see Methods), this paper highlights three important characteristics of catchments’ ability to modulate climate
variability. First, we show that many catchments in fact amplify the variability (as’quantified by CV) of incoming precipitation
(Figure 1 a-c). Second, these catchments might also amplify projected changes in rainfall variability, which has potentially
troubling implications for stream-dependent social and ecological systems. Third, we show that both characteristics are time-
scale dependent, meaning that a catchment can simultaneously dampen the CV of daily rainfall while amplifying the CV
of monthly rainfall. This implies that a catchment’s propensity to amplify changes in rainfall variability might depend on
the time scale that is relevant for the considered application. " We build on a widely used model of catchment-scale water
balance dynamics (Rodriguez-Iturbe et al., 1999; Porporate et al., 2004; Botter et al., 2007), to relate the amplifying effect
of catchments to the interplay between two fundamental hydrological processes: the partitioning of rainfall into runoff and
evapo-transpiration, and the retention of non-evapotranspired water as storage prior to its release as stream flow. We show
that an increase in the proportion of precipitation lost/to evapo-transpiration (e.g., due to higher temperatures (Berghuijs et al.,
2014a)) will exacerbate the amplifying effect of catchments and ultimately increase the variability of stream flow, even if
rainfall variability is held constant. This’suggests that projected increases in rainfall variability and evapotranspirative losses
might both contribute to increasingly variable stream flows. We show that these two mechanisms had a driving influence on

observed historical changes in CV,.

Results

The ratio r = g—gﬁ between the coefficients of variation of stream flow and precipitation spans several orders of magnitude
across the contefminous United States. For about a third of the 671 x 4 considered combinations of catchments and seasons,
daily stream flow has a higher coefficient of variation than the incoming daily precipitation (Figure 1b). However, the analysis
also reveals @ persistent pattern of variations in the 7 ratio across seasons, observation time scales and geographic regions,
as shown on Figure 1c. Catchments in seasons (summer) or locations (Great Plains and Southwest) where temperature and
precipitation peaks are in phase see a larger share of their precipitation ’lost’ as evapo-transpiration (Berghuijs et al., 2014b)

and tend toramplify the variability of rainfall (r > 1). In contrast, catchments where flow generation is governed by long term



Page 3 of 16 AUTHOR SUBMITTED MANUSCRIPT - ERL-111068.R1

oNOYTULT D WN =

60

(seasonal) water storage, either as snow pack (Rocky Mountains and High Plains) or in the subsurface (West Coast.summers),
tend to dampen the variability of daily rainfall. However, a majority (83%) of catchments and seasons amplify the yariability
of monthly rainfall (obtained from daily observations using a 30-day moving average, Figure 1d). Based on these results, we
hypothesize that the partitioning and retention of rainfall by catchments, along with the considered obseryation time scale, play

an important role in determining whether catchments amplify or attenuate incoming rainfall variability.
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Figure 1. a. Changes in the coefficient of‘variation of daily streamflow (C'V(, large symbols) and precipitation (C'Vp, small symbols)
by season (symbol quadrants) and region of/the conterminous United States. Colors indicate statistically significant (p < 0.05) increases
(red) or decreases (blue) between 1980 and 2015, as indicated by the statistical significance of linear regression coefficients of C'V against
time. C'V values computed over successive periods of 5 years for 563 of the 671 considered catchments with uninterrupted time series of
observations (see Methods). Géographical Regions (Addor et al., 2017) correspond to the Pacific Northwest (PNW), Pacific Coast (PCS),
Great Basin (GBS), Southwest (SWS), Rockies (RMT), High Plains (HPN), Great Plains (GPN), Mississippi Valley (MSV), Great Lakes
(GLK), Tennessee Valley«(TNV), Gulf'Coast (GCS), Ohio Valley (OHV) and Atlantic Coast (ACS). Numbers below the symbols indicate
the number of catchments per region. b."Gage locations of the 671 catchments of the dataset (Addor et al., 2017), with symbols split into
seasonal quadrants. Colorsindicate whether the C'V of daily streamflow in the 1980-2015 period is larger (red) or smaller (blue) than rainfall.
c. Ratio between C'V and,C'Vp for different regions (RMT vs. SWS, all seasons), seasons (summer vs. winter, all regions) and observation
time scales (daily vs. monthly-averaged observations, all seasons and regions). d. Comparison between C'Vy and C'Vp for monthly-averaged
observations. The proportion of catchment-season combinations with CVg > C'Vp increased from 33% to 83%, compared to the equivalent

map for daily obseryations in Panel b.
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We formalize this hypothesis by deriving the 7 ratio of catchments based on four common, albeit extremely simplifying,
assumptions about the underlying hydroclimatic processes. First, rainfall is assumed to follow a stationary marked Poisson
process with exponentially distributed event depths (Rodriguez-Iturbe et al., 1999). Second, instantaneous evapo-transpirative
losses from the unsaturated zone are assumed proportional to its volumetric water content./Under these conditions, pulses of
deep infiltration from the unsaturated zone to the saturated zone (here designated as ‘recharge events’) themselves follow a
stationary marked Poisson process with a lower event frequency than rainfall, but with identically distributed event depths
(Porporato et al., 2004). Third, stream flow generation by the saturated subsurface 1s"assumed proportional to the volume
of stored water (with proportionality constant, or inverse mean hydraulic response time, £ [T~!]), implying an exponential
decrease in stream flow through time between recharge events (Botter et al.,/2007). Lastly, contributions to stream flow from
overland runoff and lateral flows in the unsaturated zone are negligible, oreffectively captured via the linear recession model.

Under these assumptions, the (squared) r ratio of catchments can be expressed as (seée Methods):

2 OV f()
e A @

where f(v) = %ﬂ € [0,1] is a strictly increasing function. Parameter ¢ € [0, 1] represents the water yield, that is, the
proportion of the incoming rainfall that leaves theé catchment as stream flow. Parameter ¢) > 0 is the ratio between the obser-
vation time scale (e.g. monthly versus daily flows) and the mean hydraulic response time of the catchment (see Methods).
Equation (1) allows isovalues of  to be mapped on the ¢ x ¥\plane (Figure 2a). Of particular interest is the isovalue line r = 1,
which separates catchments that amplify (above.the line on Figure 2a) or attenuate precipitation variability. The four assump-
tions that underpin Equation (1) are restrictive and likely fail to capture some of the processes that dominate flow generation
in individual catchments. For example, the model is/parametrized independently for each season, which allows it to capture
seasonal changes in rainfall and temperature: a different water yield value is estimated for each season. However, carryover
water storage between wet and dry seasons (both as soil moisture and groundwater) might violate the model’s stationarity
assumption (Miiller et al., 2014). In,addition, the stream flow recession in many catchments might be better-approximated
as a nonlinear power-law relationship (Patnaik et al., 2018), rather than the linear storage-discharge relationship assumed in
Equation (1). However, these processes are unlikely dominant controls on C'Vy at the daily to monthly time scales that we
consider, as suggested by-the numerical simulations presented in the Supplementary Discussion.

Applied to the 671 x4 combinations of catchments and seasons of the dataset at daily, weekly, and monthly observation
time scales, the model predicted observed values of r with a mean absolute percentage error (MAPE) of 49%. As expected,
predictions are substantially better in small catchments that are well aligned with the lumped nature of the model, and in
regions and seasons;where dominant hydrologic processes are expected to align with the theoretical assumptions of the model
(Figure 2c). For example, snow-dominated hydrology throughout the winter season in the Rocky Mountain region violates
the assumption.that catchment storage occurs in the subsurface and is proportional to discharge at the outlet. In many of the
seasonally dry western regions, wet season onset during the Fall months of September, October, and November violate the

assumption, that rainfall statistics within a given season are stationary (Miiller et al., 2014). In the summer months of the
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desert Southwest, monsoonal rainfall likely arrives in short, intense bursts that trigger overland flow (Howes and,Abrahams,
2003), which is not strictly accounted for by the underlying runoff generation model (Botter et al., 2007). Removing the 15% of
catchments in region-seasons, where hydrology is likely dominated by snow (Fall and Winter in the Rockies, High Plains, Great
Plains, Great Basin and Sierra Nevada) or overland flow (Summer and Fall Monsoon in the/Southwest) reduces the MAPE to
33%. Notably, although simplifying assumptions on streamflow recession have little effect'at the daily time scale, the theory
does not accurately predict r at the weekly or monthly time scales for catchments with strongly non-linear storage discharge
relationships (Figure S6). We speculate that this is because longer observation time scales (and the associated time averaging)
tend to shave off high flows and increase the preponderance of lower flows, for which the effect of non-linear storage-discharge
on the recession limb is most salient (Karst et al., 2019). Despite its shortcomings. in predicting the actual value of r in some
catchments, the model predicted whether catchments amplify (r > 1) or atténuate (r < 1) rainfall with an accuracy above 80%
for the full sample of catchments and seasons (Figure 2b). Model performance did'not vary substantially across observation
time scales (Figure S6).

These results suggest that the amplifying effect of catchments is /ultimately determined by a competition between two
fundamental processes captured by the model, precipitation partitioning and storage retention, which appear to transcend the
complex and highly local nature of stream flow generating processes.in individual catchments. On the one hand, the water yield
¢ quantifies how infiltrated precipitation is partitioned between river discharge and evapo-transpiration. If all other conditions
remain the same, an increase in water yield increases the mean value of stream flow and therefore decreases its coefficient
of variation and 7 ratio. On the other hand, the parameter) quantifies how non-evapotranspired water is retained between
precipitation events and gradually released into the stream. Catchment retention affects stream flow variability differently for
different observation time scales. If the observation, time scale exceeds the average response time of the catchment (1) > 1),
the serial correlation introduced by catchment retention is ‘integrated out” in the observed stream flow time series and will
have little effect on 7. In contrast, stream flow observations taken at a short enough time scale (1) < 1) will capture the serial
correlation introduced by catchment retention. These correlations attenuate the variance of stream flow and therefore decrease
7.

We turn to investigating whether catchments that amplify the variability of incoming precipitation also amplify changes in
that variability. This may not be the case, for instance, if changing rainfall variability affects catchments’ ability to partition or
retain water through changes inwvegetation cover or snow pack. To estimate these effects, we use a linear regression framework,
where the r ratio is taken to be a funetion of relative rainfall variability (C'Vp) and time, and where C'Vp is a function of time.
Taking the full time-detivative of the‘coefficient of variation of stream flow, C'V(, then yields a linear function of 8%% and
CVp:
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Figure 2. a. Theoretical (squared) 7 ratio as a function of the water yield ¢ and the ratio 1) between the observation time scale and the mean

response time of the catchment.-Partitioning (¢) and retention (¢/) processes interact non-linearly to determine the r ratio of catchments.

b. Empirical validation of catchment types (r > 1 vs r < 1). Colored dots represent 671 catchments X 4 seasons X 3 observation time

scales (1,7 and 30 days). Catchments with empirical r above (below) the unit are represented in red (blue) and are located above (below)

the theoretical separation line with an aceuracy above 80%. c. Absolute percentage error (APE) between observed and predicted r ratios by

geographical region and s€ason.

The mean APE across all catchments, seasons and time scales (daily, weekly and monthly) is 49%, N=8,004.

Removing 1,616 observations in regions and seasons dominated by snow (Fall and Winter in the Rockies, High Plains, Great Plains, Great

Basin and Sierra Nevada) or desert monsoon (Summer and Fall in the Southwest) reduces the mean APE to 33%.
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The first term of the derivative represents the direct (linear) response of the catechment_to changing rainfall variability, as
described by the ratio r. This term demonstrates that catchments that amplify rainfall variability may also amplify changes in
rainfall variability. The second term represents the indirect (non linear) effect of changing rain regimes, where the r ratio is itself
a function of rainfall variability. For example, more variable precipitation mightaffect vegetation cover in a way that decreases
the proportion of rainfall lost to evapo-transpiration (Feng et al., 2015). This increase in water yield would lower the r ratio
(per Equation 1), in which case dr/0CVp would be negative. Thedastterms represent the effects of an exogenous change in
the r ratio that is not elicited by a change in rainfall variability. For example, warmer temperatures will cause less precipitation
to fall as snow, which has been linked to lower water yields (Berghuijs et al., 2014a). This would increase r (per Equation 1)
irrespective of changing precipitation variability, in which case % would be positive. Such changes in catchment processes
will directly influence streamflow variability (thitd term.of Equation 2) but might also feed back to affect the variability of
precipitation (last term of Equation 2), for instance by affecting precipitation recycling processes (Spera et al., 2016).

We use linear regressions to estimate the four terms of Equation 2 based on historical changes in rain and flow variability
(see Methods). We focus on a subset of 563 catchments that have 35 years of continuous daily observations available, as shown
in Supplementary Table S1. Regression results are shown in supplementary Table S2 and used to construct the graphs on Figure
3. Figure 3a shows a general historical increase.in Vg (p<0.01) for daily, weekly and monthly observations in all seasons,
except winter when C'Vg decreased (p<0.01), Changes in C'Vy are dominated by exogenous changes in r (Figure 3a, red).
This suggests that relative streamflow variability might be particularly sensitive to changes in factors (such as temperature
(Berghuijs et al., 2014a) and land cover (Levy et al., 2018)) known to strongly affect water yield and recession behavior,
which our theoretical model associates with r. The indirect effect of changes in C'Vp (green) generally operates in the opposite
direction to the direct (blue) and exogenous (red) components. This suggests that, on average across our dataset, catchments
tend to ‘adapt’ their respense to inereasing rainfall variability so as to attenuate its overall effect on the variability of river flow
— a negative feedback that has been associated with hydrologic resilience in past studies (Harder et al., 2015). The indirect
effect of C'Vp on.changesyin' C'Vg is also substantially smaller in magnitude than the direct effect. The ratio between the two
effects is significantly smaller in absolute value than 0.55 (p < 0.01) for all seasons and observation time scales (dots on Figure
3b). Note that catchments in different geographic regions are lumped together in the linear regressions in order for sample
sizes to be sufficiently large for statistical inference. Consequently, the results in Figure 3 represent average effects across
catchments.To.investigate regional disparities, we replicated the analysis individually for each geographic region (but lumping
across seasons and observation time scales). Results in Figure S4 show that the exogenous effect varies substantially across

regions, as expected by the variety of factors affecting recession and water yields across regions. However, the directions and
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relative magnitude of the direct and indirect effects are similar to those found in the main analysis. In addition, a Monte Carlo
analysis (see Methods) carried out to simulate variations of the estimated effect across catchments within the sample shows
that the direct effect remains larger than the indirect effect for nearly all (> 95%) simulated instances\(box plots on Figure 3b).
Together, these results suggest that catchments that currently amplify rainfall variability are also likely to amplify changes in

rainfall variability.

a Components of change in CV, b Ratio of Indirect vs. Direct Effects c ' Observed and predicted r ratio
dcv/dt Indirect/Direct . r
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Figure 3. a. Components of changes in historical C'V. Dotsiépresent the average annual change in C'Vg across all gages (N=563) by season
and for daily (D), weekly (W) and monthly (M) observations. Colored bars represent the direct (blue) and indirect (green) contributions of
changes in C'Vp, and the contribution of exogenous,changes in r (red) estimated through linear regression. b. Ratio between the indirect and
direct effects of C'Vp on historical changes/in CVg. Dots indicate the ratios between a12 - E[C'Vp] and a1, where o1 and a1 are linear
regression coefficients (see methods) and E[C'Vp] is the observed C'Vp averaged across gages. Bootstrapped 95% confidence intervals are
smaller than symbol sizes so not displayed. Purple boxplots represent simulated variations across catchments: «12 and «; are drawn from
independent normal distributions with'mean and standard deviation given by the linear regression, and C'Vps are observed individually at
each gage. The ratio between average indirect and direct effects is smaller than 0.55 for all seasons and time scales (p<0.01). The direct effect
is larger than the indirecteffect for > 95% of the simulations. c¢. Comparison between the regression coefficient a2 (black) and empirically
estimated r ratios (purple), see Methods. Most regression coefficient lie within one standard deviation (error bar) of the mean empirical

observation of r (empty symbol).

Conclusion

River catchments filter incoming climate signals, and therefore determine the extent to which changing rain regimes ultimately

translate into changing water availability for stream-dependent social and ecological systems. Whether a catchment amplifies
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or attenuates changes in rainfall variability emerges from the competition between two fundamental hydrologic functions —
partitioning and retention — that are active in all watersheds. The universal nature of these drivers c¢an facilitate’the assessment
of climate vulnerability in data-scarce basins, which is an enduring global challenge (Bloschl et al.;2019). The two parameters
that describe this competition — water yield and the mean catchment response time — can be/directly,estimated if (even sparse)
rainfall and stream flow records are available (Doulatyari et al., 2015; Miiller and Thompson;2015).

These findings have three important implications in the context of climate change. First, by decreasing the water yield (for
instance by decreasing the fraction of precipitation falling as snow (Berghuijs et al., 2014a)), increased temperatures will likely
increase catchments’ propensity to amplify the relative variability of incoming rainfall. The model associates any relative
decrease in ¢ with an equivalent relative increase in r2, per the inverse propoftional relation between ¢ and r2 in Equation 1.
This implies that, by affecting water yield, increasing temperatures will incréase the coefficient of variation of stream flow, even
if rainfall variability remains constant. Regression results in Figure 3a suggest that, indeed, the effects of exogenous changes in
r (as might arise from changes in temperature) dominate historical changes in €V,. Second, partitioning (¢) and retention ()
interact non-linearly to determine the r-ratio of the catchment. By capturing'this relation, the model may be used to evaluate
the effect of catchment alterations — land cover changes, for instance — on'the amplification or attenuation of changing rainfall
variability. For example, an increase in water yield from ¢ = 0.36.to ¢ = 0.4 (perhaps associated with deforestation (Levy
et al., 2018)) will have a disproportionately large bearing on 72 for catchments with short response times, where a large value
of ¥ maps to steep isovalues of 7 in the ¢ x ¥ plane on Figure 2a. Third, the theory elucidates the relation between observation
time scales and catchments’ ability to filter incoming rainfall variability. A catchment that attenuates rainfall variability for
short (e.g., daily) observation time scales will nonetheless/amplify rainfall variability for sufficiently long (e.g., monthly)
time scales. The appropriate time scale of observation is determined by the considered application. This implies that a given
catchment can both attenuate changes in rainfall variability for some applications (e.g., fish habitat driven by daily variability),
while amplifying it for others (e.g., agficultural yields driven by seasonal variability). Therefore, the application context, not
only the underlying hydrologic processes, determines the vulnerability of watersheds to changing rain regimes (Miiller and

Thompson, 2019).

Methods
Data and pre-processing

Stream flow data were obtained from the Catchment Attributes and Meteorology for Large Sample Studies (CAMELS) dataset
compiled by the United)States Geological Survey (Addor et al., 2017). We used precipitation data from the North America
Land Data Assimilation data preprocessed to match the catchments of the CAMELS dataset (Addor et al., 2017). The combined
stream flow and precipitation dataset is publicly available at https://ral.ucar.edu/solutions/products/camels and provides daily
rainfall and stream discharge observations from 671 gaged catchments with minimal human impact in the lower 48 US states
between 1980 and 2015. Observations from 16 season-catchment combinations, most of them in winter, (Supplementary Table

S1) were removed because we were unable to identify suitable recessions to determine k (see below), likely due to snow-
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dominated runoff processes. Separately, we removed 108 gauges from the regression analysis due to /incomplete (interrupted)

1 time series of observations (Table S1). Our sample sizes were therefore 2668 and 2252 catchment-season ¢ombinations for
g the validation and regression analyses, respectively. All data used in both analyses are freely available at https://curate.nd.edu/
4 200 show/bc386h47534. As seen on Supplementary Figure S1, the dataset covers a very wide range of catchment sizes, topography,
5 vegetation and hydroclimatic characteristics (Addor et al., 2017).

S Time series of daily precipitation and stream flow observations were split into four seasons according to their observation
8 month: December to February, March to May, June to August and September to November, respectively for Winter, Spring,
?O Summer and Fall. Moving average window of seven and thirty days were then applied to aggregate the 35 years of daily
11 205 precipitation and stream flow time series into weekly (7o = 7) and monthly (7 = 80) observation time scales, respectively. The
12 coefficient of variation (C'V') of precipitation and stream flow, and their ratioir, was then computed using the aggregated time
12 series. Note that C'Vy [—] is unit-less and represents the CV of both spéeific (i.e.‘aréa-normalized) and total discharge. Water
15 yields ¢ were then computed for each season and catchment by taking the ratioibetween total seasonal stream flow volume and
1? total seasonal precipitation volume, both taken over the whole period of data'observation. Lastly, the linear recession constant
18 210 k was estimated by identifying suitable recessions (at least 4 consecutive days with a decreasing, concave-up hydrograph) to be
19 fitted with non-linear least squares, as detailed in (Dralle et al., 2017b). The recession constant was used to compute ¢ = k- Ty
;? for each combination of catchments, seasons, and observational time scales.

22 We estimated temporal changes in C'Vp and C'V(y by assuming that long-term precipitation and stream flow dynamics emerge
;i from stationary processes that take place within multiple juxtaposed periods (Botter et al., 2013; Porporato et al., 2006). The
25 215 35 years of continuous daily observations available for 563 catchments of the data-set (see Supplementary Table S1) were split
26 into seven non-overlapping periods of five years. To ensure that our results are not driven by the arbitrary period length, we
;é reproduced our analyses using period lengths of two and 10 years (see Supplementary Figures S2 and S3). The coefficients
29 of variation of precipitation and river flows were then computed for each period, catchment, season and (daily, weekly and
g (1) monthly) observation time scales. Pairs 0f successive periods (t — 1 and ¢) were then combined to estimate temporal changes

32 220 in stream flow and precipitation Variability (AACVY = CVY) — oV and ACVYY = oV — VYY) along with the

33 average level of rainfall variability (CVp(t) =0.5C V;” +0.5C V}gtfl)) across the pair.

34

35 Hydrological Model

36

37

38 The model assumes that precipitation is:d marked Poisson process, with frequency Ap [T~ !] and exponentially distributed event
39 volumes with (area-normalizéd) mean ap [L] (Rodriguez-Iturbe et al., 1999). Due to the assumed independence of rain events,

2(1) 225 the coefficient (of variation (C'V) of total rain volume, aggregated over T days, is CVp = /2/(Tp\,) (see Supplementary

42 Discussion for derivation details). All incoming water is assumed to infiltrate into a subsurface unsaturated zone, meaning that
43 canopy interception processes are embedded in ap.

44 \ . . . . .

45 Once infiltrated, water exits the unsaturated zone layer, either via evapo-transpiration (at a rate assumed proportional to
46 current unsaturated zone water content (Porporato et al., 2004)) or via percolation into the saturated zone. Such runoff gen-

47 230 erating recharge events are created when a contemporaneous rain event causes unsaturated zone moisture content to exceed
48
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an effective field-capacity, where water freely drains to the saturated zone. Under the above assumptions about:the rainfall
process and drainage from the unsaturated zone, it can be shown that the probability distribution of depths of fecharge events
is approximately equal (Botter et al., 2007) to the probability distribution of rainfall depths (i.e., both distributions are expo-
nential with mean o). Climate processes and water storage dynamics in the unsaturated zone therefore jointly determine the
water delivered to the saturated zone, which generates discharge in the stream as water tables lower between recharge events.
These recharge events can be described as a marked Poisson process with a censored/frequency A < Ap. The censoring ratio
¢ provides a simple measure for quantifying the fraction of total rainfall that exits the catchment as stream flow over the long
term (Doulatyari et al., 2015), also known as the water yield:

b= ="12 e 3)

P WP

where (1), and p¢ are the long-term mean precipitated and discharged water volumes. Note that the above expression neglects
contributions to total stream flow volume that are not associated with discharge.generated by a subsurface saturated zone. This
explains the relatively poorer performance of the model in catchments'(e.g:, SWS in summer, Figure 2c) where overland flow
is likely substantial.

Discharge at the catchment outlet is assumed proportional to storage, within the saturated zone, with a proportionality con-
stant k [T~!], implying an exponential flow recession between rainfall events with characteristic drainage timescale &~ [T].
In contrast to the rainfall and recharge events, the stream flow time series is serially correlated due to retention and slow release
of storage at a rate dependent on the hydraulic response time of the catchment k~! (Dralle et al., 2017a). This process affects

the variance of cumulative stream flow as/follows (see Supplementary Discussion for derivation details):

04 =2Xapk ™" (kTy — 1+ ¢ ) 4)

Expressing mean cumulative stream flow over a period Ty as ToAap leads to an expression for the coefficient of variation

of stream flow (C'V(y) and the (squared) r ratio:

CVE A kTg ¢

where ¢ = kT > 0 is the ratio between the observation time scale (7) and the mean response time of the catchment (k=1).
The function f(¢)) = w—_l%i € [0,1] is strictly increasing and represents the serial correlation introduced by retention, and
its attenuating effect on\streamflow variability.

The model was,validated by computing the absolute percentage error between the 72 ratio predicted using Equation 5 based
on estimated k and ¢, and the 72 ratio obtained from empirical estimations of C'V and C'Vp:
|2 =)

APE =100 x o)
7

We'also evaluate the model based on the frequency of correct predictions of 7 < 1.

11



AUTHOR SUBMITTED MANUSCRIPT - ERL-111068.R1 Page 12 of 16

Regression analysis

; 260 We used linear regressions to analyse temporal changes in C'Vg and C'Vp. We first assessed time/trends in C'V' between subse-
3 quent periods. We examined the sign and statistical significance of the regression coefficient:of\C'V, and’C'Vp calculated for
g each period, against the median year of the period. The analysis was conducted independently for each season and geographical
6 region (Figure 1a), with standard errors clustered by catchment (Williams, 2000).

; To relate changes in C'Vjy to changes in C'Vp, Equation 2 is expressed as the followingdinear regression:

9

10

11265 ACVg=ap+ai1CVp+as - ACVp+aia- ACVp-CVp +e. ©6)
1 g HTot’e“_/ Exogenous Direct Indirect

14 where € is a random error term assumed to have a mean value of zerorand be independent across catchments. Variables
12 ACVg, ACVp and CVp are obtained from C'Vg and C'Vp estimatédifor suceeSsive 5-year periods of the observation record
17 as described above. Assuming that these estimates are discrete ‘approximations of the corresponding terms in Equation 2,
18 regression coefficients can be interpreted as the exogenous (ay= Or /dtand oy = r - ICVp /Or - Or/Ot), direct (ag = r) and
;g 270 indirect (12 = Or/OCVp) components of ac;/Q . Regression coefficients were estimated for each season and observation time
21 scale using ordinary least squares, with standard eftors,clustered by catchment (Williams, 2000).

;g Plugging regression estimates back into Equation 6'and omitting random errors allowed us to plot the average contributions
24 of the direct, indirect and exogenous effects on the average'temporal change in C'V(y across catchments, for each season and
25 considered time scale (Figure 3a). The relativesimportance of the direct and indirect effects was estimated by taking the ratio
;? 275 between the corresponding terms of Equations 6 (Figure 3b, dots). The variability of this ratio across catchments was estimated
28 through numerical simulations by (i) sampling, C'Vp' from the set of 563 catchment-averaged observations; (ii) sampling s
gg and a5 from independent normal distributions with mean and standard deviations given by the relevant regression estimates;
31 and (iii) computing the ratio of indirect'vs. direct effects as CVP%"‘. Box plots on Figure 3b represent the distribution of that
32 ratio obtained from 1000 Monte Carlo repetitions.

2431 280 We carried out two robustness'echecks to build confidence in our regression results. First, the analysis implies that the regres-
35 sion coefficient as can befinterpreted as the average value of r across all catchments, as seen by comparing Equations 2 and
36 6. Figure 3c compares regression,coefficient ao (black) with r ratios obtained empirically from period-of-record stream flow
2573 and precipitation observations)at each catchment (purple): ao remains within one standard deviation (error bar) of the mean
39 empirical value of 7 (empty:Symbols) for nearly all seasons and time scales. Second, we replicated the analysis using changes
2(1) 285 in C'Vg and CVp estimated over different periods lengths. Periods longer (10 years) or shorter (2 years) than the preferred
42 duration (5 years)leadto increases in both the uncertainty of regression estimates and in errors on r = as (Supplementary Fig-
43 ure S3). Howeverj the mean contributions of the direct, indirect and exogenous effects and the spatial distribution of historical
jg trends remain similar to those presented for periods of 5 years (Supplementary Figures S2 and S3). We interpret the errors and
46 uncertainties for longer and shorter periods as likely caused by sample size limitations. Namely, there appears to be a tradeoff
j; 290 on the duration of periods between (i) having enough observations within each period to accurately estimate C'Vp and C'Vyg
49

50 12

51

52

53
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at daily to monthly time scales and (ii) having enough periods represented to implement the linear regtession analysis over a
large enough sample size. The sensitivity analysis in Supplementary Figure S3 points to the chosen period length of 5 years as

optimal in regards to that tradeoff.
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