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Abstract. By filtering the incoming climate signal when producing streamflow, river basins can attenuate – or amplify –

projected increases in rainfall variability. A common perception is that river systems dampen rainfall variability by averaging

spatial and temporal variations in their watersheds. However, by analyzing 671 watersheds throughout the United States,

we find that many catchments actually amplify the coefficient of variation of rainfall, and that these catchments also likely

amplify changes in rainfall variability. Based on catchment-scale water balance principles, we relate that faculty to the interplay5

between two fundamental hydrological processes: water uptake by vegetation and the storage and subsequent release of water

as discharge. By increasing plant water uptake, warmer temperatures might exacerbate the amplifying effect of catchments.

More variable precipitations associated with a warmer climate are therefore expected to lead to even more variable river flows

– a significant potential challenge for river transportation, ecosystem sustainability and water supply reliability.

Introduction10

The temporal variability of stream flow mediates a variety of social and ecological outcomes. For example, daily flow variability

determines the suitability of aquatic habitats (Fabris et al., 2018), whereas variations over longer time scales affect the resilience

of water supply (Vogel and Bolognese, 1995), river transportation (Marengo et al., 2013), local economic development (Brown

and Lall, 2006) and the potential for violent conflicts (Roche et al., 2020). The coefficient of variation of stream flow (CVQ,

defined as the ratio between the standard deviation of flow and its mean) plays a particularly important role, demarcating15

whether riverine processes are variance-dominated, with long periods of little to no flow interspersed with erratic bursts of high

discharge, or mean-dominated, with flow rates persistently at or near their long-term mean. This distinction has implications

for the form, function and resilience of river-dependent systems (Botter et al., 2013).

Although driven by the variability of incoming precipitation, stream flow variability is ultimately determined by physical

processes that take place throughout (and below) the land surface. Through these processes, catchments regulate stochastic20

weather fluctuations to sustain stream-dependent social and ecological systems, and to potentially buffer these systems against

changes in these fluctuations (Teutschbein et al., 2018; Chezik et al., 2017). This buffering of water variability is commonly

deemed an ecosystem service provided by the catchment (Guswa et al., 2017), and emerges from a long-term co-evolution
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between the landscapes and the systems that depend on them, against the backdrop of a continually changing climate (Porder,

2014; Sivapalan, 2006; Fan et al., 2019; Troch et al., 2015; Dietrich and Perron, 2006). Yet today’s climate is changing at an25

unprecedented rate. The temporal variability of rainfall is projected to increase in most regions of the world, where increased

temperatures will be associated with more intense and less frequent precipitation events (Donat et al., 2016). The standard

deviation of daily rainfall is projected to be more sensitive than rainfall averages to changing temperatures (4− 5% per ◦C

versus ≤ 1−2% per ◦C ) (Donat et al., 2016; Pendergrass et al., 2017). The coefficient of variation of both rainfall and stream

flow has increased significantly in most regions of the United States over the last four decades (red in Figure 1a). The ability30

of social and ecological systems to adapt to these changes is determined by the capacity of river catchments to buffer the effect

of rapidly changing rainfall variability as they generate flow.

Using daily stream flow and precipitation data from 671 catchments located across the contiguous United States for the 1980-

2015 period (see Methods), this paper highlights three important characteristics of catchments’ ability to modulate climate

variability. First, we show that many catchments in fact amplify the variability (as quantified by CV) of incoming precipitation35

(Figure 1 a-c). Second, these catchments might also amplify projected changes in rainfall variability, which has potentially

troubling implications for stream-dependent social and ecological systems. Third, we show that both characteristics are time-

scale dependent, meaning that a catchment can simultaneously dampen the CV of daily rainfall while amplifying the CV

of monthly rainfall. This implies that a catchment’s propensity to amplify changes in rainfall variability might depend on

the time scale that is relevant for the considered application. We build on a widely used model of catchment-scale water40

balance dynamics (Rodriguez-Iturbe et al., 1999; Porporato et al., 2004; Botter et al., 2007), to relate the amplifying effect

of catchments to the interplay between two fundamental hydrological processes: the partitioning of rainfall into runoff and

evapo-transpiration, and the retention of non-evapotranspired water as storage prior to its release as stream flow. We show

that an increase in the proportion of precipitation lost to evapo-transpiration (e.g., due to higher temperatures (Berghuijs et al.,

2014a)) will exacerbate the amplifying effect of catchments and ultimately increase the variability of stream flow, even if45

rainfall variability is held constant. This suggests that projected increases in rainfall variability and evapotranspirative losses

might both contribute to increasingly variable stream flows. We show that these two mechanisms had a driving influence on

observed historical changes in CVQ.

Results

The ratio r =
CVQ
CVP

between the coefficients of variation of stream flow and precipitation spans several orders of magnitude50

across the conterminous United States. For about a third of the 671× 4 considered combinations of catchments and seasons,

daily stream flow has a higher coefficient of variation than the incoming daily precipitation (Figure 1b). However, the analysis

also reveals a persistent pattern of variations in the r ratio across seasons, observation time scales and geographic regions,

as shown on Figure 1c. Catchments in seasons (summer) or locations (Great Plains and Southwest) where temperature and

precipitation peaks are in phase see a larger share of their precipitation ’lost’ as evapo-transpiration (Berghuijs et al., 2014b)55

and tend to amplify the variability of rainfall (r > 1). In contrast, catchments where flow generation is governed by long term
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(seasonal) water storage, either as snow pack (Rocky Mountains and High Plains) or in the subsurface (West Coast summers),

tend to dampen the variability of daily rainfall. However, a majority (83%) of catchments and seasons amplify the variability

of monthly rainfall (obtained from daily observations using a 30-day moving average, Figure 1d). Based on these results, we

hypothesize that the partitioning and retention of rainfall by catchments, along with the considered observation time scale, play60

an important role in determining whether catchments amplify or attenuate incoming rainfall variability.

N gages

CVQ<CVP
CVQ≥CVP
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Figure 1. a. Changes in the coefficient of variation of daily streamflow (CVQ, large symbols) and precipitation (CVP , small symbols)

by season (symbol quadrants) and region of the conterminous United States. Colors indicate statistically significant (p < 0.05) increases

(red) or decreases (blue) between 1980 and 2015, as indicated by the statistical significance of linear regression coefficients of CV against

time. CV values computed over successive periods of 5 years for 563 of the 671 considered catchments with uninterrupted time series of

observations (see Methods). Geographical Regions (Addor et al., 2017) correspond to the Pacific Northwest (PNW), Pacific Coast (PCS),

Great Basin (GBS), Southwest (SWS), Rockies (RMT), High Plains (HPN), Great Plains (GPN), Mississippi Valley (MSV), Great Lakes

(GLK), Tennessee Valley (TNV), Gulf Coast (GCS), Ohio Valley (OHV) and Atlantic Coast (ACS). Numbers below the symbols indicate

the number of catchments per region. b. Gage locations of the 671 catchments of the dataset (Addor et al., 2017), with symbols split into

seasonal quadrants. Colors indicate whether theCV of daily streamflow in the 1980-2015 period is larger (red) or smaller (blue) than rainfall.

c. Ratio between CVQ and CVP for different regions (RMT vs. SWS, all seasons), seasons (summer vs. winter, all regions) and observation

time scales (daily vs. monthly-averaged observations, all seasons and regions). d. Comparison betweenCVQ andCVP for monthly-averaged

observations. The proportion of catchment-season combinations with CVQ >CVP increased from 33% to 83%, compared to the equivalent

map for daily observations in Panel b.
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We formalize this hypothesis by deriving the r ratio of catchments based on four common, albeit extremely simplifying,

assumptions about the underlying hydroclimatic processes. First, rainfall is assumed to follow a stationary marked Poisson

process with exponentially distributed event depths (Rodriguez-Iturbe et al., 1999). Second, instantaneous evapo-transpirative

losses from the unsaturated zone are assumed proportional to its volumetric water content. Under these conditions, pulses of65

deep infiltration from the unsaturated zone to the saturated zone (here designated as ‘recharge events’) themselves follow a

stationary marked Poisson process with a lower event frequency than rainfall, but with identically distributed event depths

(Porporato et al., 2004). Third, stream flow generation by the saturated subsurface is assumed proportional to the volume

of stored water (with proportionality constant, or inverse mean hydraulic response time, k [T−1]), implying an exponential

decrease in stream flow through time between recharge events (Botter et al., 2007). Lastly, contributions to stream flow from70

overland runoff and lateral flows in the unsaturated zone are negligible, or effectively captured via the linear recession model.

Under these assumptions, the (squared) r ratio of catchments can be expressed as (see Methods):

r2 =
CV 2

Q

CV 2
P

=
f(ψ)

φ
, (1)

where f(ψ) = ψ−1+e−ψ

ψ ∈ [0,1] is a strictly increasing function. Parameter φ ∈ [0,1] represents the water yield, that is, the

proportion of the incoming rainfall that leaves the catchment as stream flow. Parameter ψ ≥ 0 is the ratio between the obser-75

vation time scale (e.g. monthly versus daily flows) and the mean hydraulic response time of the catchment (see Methods).

Equation (1) allows isovalues of r to be mapped on the φ×ψ plane (Figure 2a). Of particular interest is the isovalue line r = 1,

which separates catchments that amplify (above the line on Figure 2a) or attenuate precipitation variability. The four assump-

tions that underpin Equation (1) are restrictive and likely fail to capture some of the processes that dominate flow generation

in individual catchments. For example, the model is parametrized independently for each season, which allows it to capture80

seasonal changes in rainfall and temperature: a different water yield value is estimated for each season. However, carryover

water storage between wet and dry seasons (both as soil moisture and groundwater) might violate the model’s stationarity

assumption (Müller et al., 2014). In addition, the stream flow recession in many catchments might be better-approximated

as a nonlinear power-law relationship (Patnaik et al., 2018), rather than the linear storage-discharge relationship assumed in

Equation (1). However, these processes are unlikely dominant controls on CVQ at the daily to monthly time scales that we85

consider, as suggested by the numerical simulations presented in the Supplementary Discussion.

Applied to the 671×4 combinations of catchments and seasons of the dataset at daily, weekly, and monthly observation

time scales, the model predicted observed values of r with a mean absolute percentage error (MAPE) of 49%. As expected,

predictions are substantially better in small catchments that are well aligned with the lumped nature of the model, and in

regions and seasons where dominant hydrologic processes are expected to align with the theoretical assumptions of the model90

(Figure 2c). For example, snow-dominated hydrology throughout the winter season in the Rocky Mountain region violates

the assumption that catchment storage occurs in the subsurface and is proportional to discharge at the outlet. In many of the

seasonally dry western regions, wet season onset during the Fall months of September, October, and November violate the

assumption that rainfall statistics within a given season are stationary (Müller et al., 2014). In the summer months of the
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desert Southwest, monsoonal rainfall likely arrives in short, intense bursts that trigger overland flow (Howes and Abrahams,95

2003), which is not strictly accounted for by the underlying runoff generation model (Botter et al., 2007). Removing the 15% of

catchments in region-seasons, where hydrology is likely dominated by snow (Fall and Winter in the Rockies, High Plains, Great

Plains, Great Basin and Sierra Nevada) or overland flow (Summer and Fall Monsoon in the Southwest) reduces the MAPE to

33%. Notably, although simplifying assumptions on streamflow recession have little effect at the daily time scale, the theory

does not accurately predict r at the weekly or monthly time scales for catchments with strongly non-linear storage discharge100

relationships (Figure S6). We speculate that this is because longer observation time scales (and the associated time averaging)

tend to shave off high flows and increase the preponderance of lower flows, for which the effect of non-linear storage-discharge

on the recession limb is most salient (Karst et al., 2019). Despite its shortcomings in predicting the actual value of r in some

catchments, the model predicted whether catchments amplify (r > 1) or attenuate (r < 1) rainfall with an accuracy above 80%

for the full sample of catchments and seasons (Figure 2b). Model performance did not vary substantially across observation105

time scales (Figure S6).

These results suggest that the amplifying effect of catchments is ultimately determined by a competition between two

fundamental processes captured by the model, precipitation partitioning and storage retention, which appear to transcend the

complex and highly local nature of stream flow generating processes in individual catchments. On the one hand, the water yield

φ quantifies how infiltrated precipitation is partitioned between river discharge and evapo-transpiration. If all other conditions110

remain the same, an increase in water yield increases the mean value of stream flow and therefore decreases its coefficient

of variation and r ratio. On the other hand, the parameter ψ quantifies how non-evapotranspired water is retained between

precipitation events and gradually released into the stream. Catchment retention affects stream flow variability differently for

different observation time scales. If the observation time scale exceeds the average response time of the catchment (ψ > 1),

the serial correlation introduced by catchment retention is ‘integrated out´ in the observed stream flow time series and will115

have little effect on r. In contrast, stream flow observations taken at a short enough time scale (ψ < 1) will capture the serial

correlation introduced by catchment retention. These correlations attenuate the variance of stream flow and therefore decrease

r.

We turn to investigating whether catchments that amplify the variability of incoming precipitation also amplify changes in

that variability. This may not be the case, for instance, if changing rainfall variability affects catchments’ ability to partition or120

retain water through changes in vegetation cover or snow pack. To estimate these effects, we use a linear regression framework,

where the r ratio is taken to be a function of relative rainfall variability (CVP ) and time, and where CVP is a function of time.

Taking the full time-derivative of the coefficient of variation of stream flow, CVQ, then yields a linear function of ∂CVP
∂t and

CVP :

5
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Figure 2. a. Theoretical (squared) r ratio as a function of the water yield φ and the ratio ψ between the observation time scale and the mean

response time of the catchment. Partitioning (φ) and retention (ψ) processes interact non-linearly to determine the r ratio of catchments.

b. Empirical validation of catchment types (r > 1 vs r < 1). Colored dots represent 671 catchments × 4 seasons × 3 observation time

scales (1,7 and 30 days). Catchments with empirical r above (below) the unit are represented in red (blue) and are located above (below)

the theoretical separation line with an accuracy above 80%. c. Absolute percentage error (APE) between observed and predicted r ratios by

geographical region and season. The mean APE across all catchments, seasons and time scales (daily, weekly and monthly) is 49%, N=8,004.

Removing 1,616 observations in regions and seasons dominated by snow (Fall and Winter in the Rockies, High Plains, Great Plains, Great

Basin and Sierra Nevada) or desert monsoon (Summer and Fall in the Southwest) reduces the mean APE to 33%.

6

Page 6 of 16AUTHOR SUBMITTED MANUSCRIPT - ERL-111068.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



dCVQ
dt︸ ︷︷ ︸

Total

=
d(r ·CVP )

dt
(2)125

= r
∂CVP
∂t︸ ︷︷ ︸

Direct

+
∂r

∂CVP

∂CVP
∂t

CVP︸ ︷︷ ︸
Indirect

+
∂r

∂t
CVP + r

∂CVP
∂r

∂r

∂t︸ ︷︷ ︸
Exogenous

The first term of the derivative represents the direct (linear) response of the catchment to changing rainfall variability, as

described by the ratio r. This term demonstrates that catchments that amplify rainfall variability may also amplify changes in

rainfall variability. The second term represents the indirect (non linear) effect of changing rain regimes, where the r ratio is itself

a function of rainfall variability. For example, more variable precipitation might affect vegetation cover in a way that decreases130

the proportion of rainfall lost to evapo-transpiration (Feng et al., 2015). This increase in water yield would lower the r ratio

(per Equation 1), in which case ∂r/∂CVP would be negative. The last terms represent the effects of an exogenous change in

the r ratio that is not elicited by a change in rainfall variability. For example, warmer temperatures will cause less precipitation

to fall as snow, which has been linked to lower water yields (Berghuijs et al., 2014a). This would increase r (per Equation 1)

irrespective of changing precipitation variability, in which case ∂r
∂t would be positive. Such changes in catchment processes135

will directly influence streamflow variability (third term of Equation 2) but might also feed back to affect the variability of

precipitation (last term of Equation 2), for instance by affecting precipitation recycling processes (Spera et al., 2016).

We use linear regressions to estimate the four terms of Equation 2 based on historical changes in rain and flow variability

(see Methods). We focus on a subset of 563 catchments that have 35 years of continuous daily observations available, as shown

in Supplementary Table S1. Regression results are shown in supplementary Table S2 and used to construct the graphs on Figure140

3. Figure 3a shows a general historical increase in CVQ (p<0.01) for daily, weekly and monthly observations in all seasons,

except winter when CVQ decreased (p<0.01). Changes in CVQ are dominated by exogenous changes in r (Figure 3a, red).

This suggests that relative streamflow variability might be particularly sensitive to changes in factors (such as temperature

(Berghuijs et al., 2014a) and land cover (Levy et al., 2018)) known to strongly affect water yield and recession behavior,

which our theoretical model associates with r. The indirect effect of changes in CVP (green) generally operates in the opposite145

direction to the direct (blue) and exogenous (red) components. This suggests that, on average across our dataset, catchments

tend to ‘adapt’ their response to increasing rainfall variability so as to attenuate its overall effect on the variability of river flow

– a negative feedback that has been associated with hydrologic resilience in past studies (Harder et al., 2015). The indirect

effect of CVP on changes in CVQ is also substantially smaller in magnitude than the direct effect. The ratio between the two

effects is significantly smaller in absolute value than 0.55 (p < 0.01) for all seasons and observation time scales (dots on Figure150

3b). Note that catchments in different geographic regions are lumped together in the linear regressions in order for sample

sizes to be sufficiently large for statistical inference. Consequently, the results in Figure 3 represent average effects across

catchments. To investigate regional disparities, we replicated the analysis individually for each geographic region (but lumping

across seasons and observation time scales). Results in Figure S4 show that the exogenous effect varies substantially across

regions, as expected by the variety of factors affecting recession and water yields across regions. However, the directions and155
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relative magnitude of the direct and indirect effects are similar to those found in the main analysis. In addition, a Monte Carlo

analysis (see Methods) carried out to simulate variations of the estimated effect across catchments within the sample shows

that the direct effect remains larger than the indirect effect for nearly all (> 95%) simulated instances (box plots on Figure 3b).

Together, these results suggest that catchments that currently amplify rainfall variability are also likely to amplify changes in

rainfall variability.160

0.25

0.50

1.00

2.00

spring summer fall winter

Observed mean and Std Dev.

Regression Coefficient

Observed and predicted r ratio

[-]

−0.004

0.000

0.004

[y−1]

Direct

Exogenous

a c

Indirect

Total

spring summer fall winter

Components of change in CVQ

D W M D W M D W M D W M D W M D W M D W M D W M

−2

−1

0

spring summer fall winter

[-]

b

Cross-gage mean and associated 95% CI

Simulated cross-gage variability

Ratio of Indirect vs. Direct Effects

D W M D W M D W M D W M Time scale:
Season:

1

dCVQ/dt Indirect/Direct r

Figure 3. a. Components of changes in historicalCVQ. Dots represent the average annual change inCVQ across all gages (N=563) by season

and for daily (D), weekly (W) and monthly (M) observations. Colored bars represent the direct (blue) and indirect (green) contributions of

changes in CVP , and the contribution of exogenous changes in r (red) estimated through linear regression. b. Ratio between the indirect and

direct effects of CVP on historical changes in CVQ. Dots indicate the ratios between α12 ·E[CVP ] and α1, where α1 and α12 are linear

regression coefficients (see methods) and E[CVP ] is the observed CVP averaged across gages. Bootstrapped 95% confidence intervals are

smaller than symbol sizes so not displayed. Purple boxplots represent simulated variations across catchments: α12 and α1 are drawn from

independent normal distributions with mean and standard deviation given by the linear regression, and CVP s are observed individually at

each gage. The ratio between average indirect and direct effects is smaller than 0.55 for all seasons and time scales (p<0.01). The direct effect

is larger than the indirect effect for > 95% of the simulations. c. Comparison between the regression coefficient α2 (black) and empirically

estimated r ratios (purple), see Methods. Most regression coefficient lie within one standard deviation (error bar) of the mean empirical

observation of r (empty symbol).

Conclusion

River catchments filter incoming climate signals, and therefore determine the extent to which changing rain regimes ultimately

translate into changing water availability for stream-dependent social and ecological systems. Whether a catchment amplifies
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or attenuates changes in rainfall variability emerges from the competition between two fundamental hydrologic functions –

partitioning and retention – that are active in all watersheds. The universal nature of these drivers can facilitate the assessment165

of climate vulnerability in data-scarce basins, which is an enduring global challenge (Blöschl et al., 2019). The two parameters

that describe this competition – water yield and the mean catchment response time – can be directly estimated if (even sparse)

rainfall and stream flow records are available (Doulatyari et al., 2015; Müller and Thompson, 2015).

These findings have three important implications in the context of climate change. First, by decreasing the water yield (for

instance by decreasing the fraction of precipitation falling as snow (Berghuijs et al., 2014a)), increased temperatures will likely170

increase catchments’ propensity to amplify the relative variability of incoming rainfall. The model associates any relative

decrease in φ with an equivalent relative increase in r2, per the inverse proportional relation between φ and r2 in Equation 1.

This implies that, by affecting water yield, increasing temperatures will increase the coefficient of variation of stream flow, even

if rainfall variability remains constant. Regression results in Figure 3a suggest that, indeed, the effects of exogenous changes in

r (as might arise from changes in temperature) dominate historical changes in CVQ. Second, partitioning (φ) and retention (ψ)175

interact non-linearly to determine the r-ratio of the catchment. By capturing this relation, the model may be used to evaluate

the effect of catchment alterations− land cover changes, for instance− on the amplification or attenuation of changing rainfall

variability. For example, an increase in water yield from φ= 0.36 to φ= 0.4 (perhaps associated with deforestation (Levy

et al., 2018)) will have a disproportionately large bearing on r2 for catchments with short response times, where a large value

of ψ maps to steep isovalues of r in the φ×ψ plane on Figure 2a. Third, the theory elucidates the relation between observation180

time scales and catchments’ ability to filter incoming rainfall variability. A catchment that attenuates rainfall variability for

short (e.g., daily) observation time scales will nonetheless amplify rainfall variability for sufficiently long (e.g., monthly)

time scales. The appropriate time scale of observation is determined by the considered application. This implies that a given

catchment can both attenuate changes in rainfall variability for some applications (e.g., fish habitat driven by daily variability),

while amplifying it for others (e.g., agricultural yields driven by seasonal variability). Therefore, the application context, not185

only the underlying hydrologic processes, determines the vulnerability of watersheds to changing rain regimes (Müller and

Thompson, 2019).

Methods

Data and pre-processing

Stream flow data were obtained from the Catchment Attributes and Meteorology for Large Sample Studies (CAMELS) dataset190

compiled by the United States Geological Survey (Addor et al., 2017). We used precipitation data from the North America

Land Data Assimilation data preprocessed to match the catchments of the CAMELS dataset (Addor et al., 2017). The combined

stream flow and precipitation dataset is publicly available at https://ral.ucar.edu/solutions/products/camels and provides daily

rainfall and stream discharge observations from 671 gaged catchments with minimal human impact in the lower 48 US states

between 1980 and 2015. Observations from 16 season-catchment combinations, most of them in winter, (Supplementary Table195

S1) were removed because we were unable to identify suitable recessions to determine k (see below), likely due to snow-
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dominated runoff processes. Separately, we removed 108 gauges from the regression analysis due to incomplete (interrupted)

time series of observations (Table S1). Our sample sizes were therefore 2668 and 2252 catchment-season combinations for

the validation and regression analyses, respectively. All data used in both analyses are freely available at https://curate.nd.edu/

show/bc386h47534. As seen on Supplementary Figure S1, the dataset covers a very wide range of catchment sizes, topography,200

vegetation and hydroclimatic characteristics (Addor et al., 2017).

Time series of daily precipitation and stream flow observations were split into four seasons according to their observation

month: December to February, March to May, June to August and September to November, respectively for Winter, Spring,

Summer and Fall. Moving average window of seven and thirty days were then applied to aggregate the 35 years of daily

precipitation and stream flow time series into weekly (T0 = 7) and monthly (T0 = 30) observation time scales, respectively. The205

coefficient of variation (CV ) of precipitation and stream flow, and their ratio r, was then computed using the aggregated time

series. Note that CVQ [−] is unit-less and represents the CV of both specific (i.e. area-normalized) and total discharge. Water

yields φ were then computed for each season and catchment by taking the ratio between total seasonal stream flow volume and

total seasonal precipitation volume, both taken over the whole period of data observation. Lastly, the linear recession constant

k was estimated by identifying suitable recessions (at least 4 consecutive days with a decreasing, concave-up hydrograph) to be210

fitted with non-linear least squares, as detailed in (Dralle et al., 2017b). The recession constant was used to compute ψ = k ·T0
for each combination of catchments, seasons, and observational time scales.

We estimated temporal changes inCVP andCVQ by assuming that long-term precipitation and stream flow dynamics emerge

from stationary processes that take place within multiple juxtaposed periods (Botter et al., 2013; Porporato et al., 2006). The

35 years of continuous daily observations available for 563 catchments of the data-set (see Supplementary Table S1) were split215

into seven non-overlapping periods of five years. To ensure that our results are not driven by the arbitrary period length, we

reproduced our analyses using period lengths of two and 10 years (see Supplementary Figures S2 and S3). The coefficients

of variation of precipitation and river flows were then computed for each period, catchment, season and (daily, weekly and

monthly) observation time scales. Pairs of successive periods (t− 1 and t) were then combined to estimate temporal changes

in stream flow and precipitation variability (∆CV (t)
Q = CV

(t)
Q −CV

(t−1)
Q and ∆CV

(t)
P = CV

(t)
P −CV

(t−1)
P ) along with the220

average level of rainfall variability (CVP
(t)

= 0.5CV
(t)
P + 0.5CV

(t−1)
P ) across the pair.

Hydrological Model

The model assumes that precipitation is a marked Poisson process, with frequency λP [T−1] and exponentially distributed event

volumes with (area-normalized) mean αP [L] (Rodriguez-Iturbe et al., 1999). Due to the assumed independence of rain events,

the coefficient of variation (CV ) of total rain volume, aggregated over T0 days, is CVP =
√

2/(T0λp) (see Supplementary225

Discussion for derivation details). All incoming water is assumed to infiltrate into a subsurface unsaturated zone, meaning that

canopy interception processes are embedded in αP .

Once infiltrated, water exits the unsaturated zone layer, either via evapo-transpiration (at a rate assumed proportional to

current unsaturated zone water content (Porporato et al., 2004)) or via percolation into the saturated zone. Such runoff gen-

erating recharge events are created when a contemporaneous rain event causes unsaturated zone moisture content to exceed230
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an effective field-capacity, where water freely drains to the saturated zone. Under the above assumptions about the rainfall

process and drainage from the unsaturated zone, it can be shown that the probability distribution of depths of recharge events

is approximately equal (Botter et al., 2007) to the probability distribution of rainfall depths (i.e., both distributions are expo-

nential with mean αp). Climate processes and water storage dynamics in the unsaturated zone therefore jointly determine the

water delivered to the saturated zone, which generates discharge in the stream as water tables lower between recharge events.235

These recharge events can be described as a marked Poisson process with a censored frequency λ < λP . The censoring ratio

φ provides a simple measure for quantifying the fraction of total rainfall that exits the catchment as stream flow over the long

term (Doulatyari et al., 2015), also known as the water yield:

φ=
λ

λP
=
µQ
µP
∈ [0,1] (3)

where µp and µQ are the long-term mean precipitated and discharged water volumes. Note that the above expression neglects240

contributions to total stream flow volume that are not associated with discharge generated by a subsurface saturated zone. This

explains the relatively poorer performance of the model in catchments (e.g., SWS in summer, Figure 2c) where overland flow

is likely substantial.

Discharge at the catchment outlet is assumed proportional to storage within the saturated zone, with a proportionality con-

stant k [T−1], implying an exponential flow recession between rainfall events with characteristic drainage timescale k−1 [T].245

In contrast to the rainfall and recharge events, the stream flow time series is serially correlated due to retention and slow release

of storage at a rate dependent on the hydraulic response time of the catchment k−1 (Dralle et al., 2017a). This process affects

the variance of cumulative stream flow as follows (see Supplementary Discussion for derivation details):

σ2
Q = 2λα2

P k
−1
(
kT0− 1 + e−kT0

)
(4)

Expressing mean cumulative stream flow over a period T0 as T0λαP leads to an expression for the coefficient of variation250

of stream flow (CVQ) and the (squared) r ratio:

r2 =
CV 2

Q

CV 2
P

=
λP
λ
· kT0− 1 + e−kT0

kT0
=
f(ψ)

φ
(5)

where ψ = kT0 > 0 is the ratio between the observation time scale (T0) and the mean response time of the catchment (k−1).

The function f(ψ) = ψ−1+e−ψ

ψ ∈ [0,1] is strictly increasing and represents the serial correlation introduced by retention, and

its attenuating effect on streamflow variability.255

The model was validated by computing the absolute percentage error between the r2 ratio predicted using Equation 5 based

on estimated k and φ, and the r̂2 ratio obtained from empirical estimations of CVQ and CVP :

APE = 100× | r
2− r̂2 |
r̂2

We also evaluate the model based on the frequency of correct predictions of r < 1.
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Regression analysis

We used linear regressions to analyse temporal changes in CVQ and CVP . We first assessed time trends in CV between subse-260

quent periods. We examined the sign and statistical significance of the regression coefficient of CVQ and CVP calculated for

each period, against the median year of the period. The analysis was conducted independently for each season and geographical

region (Figure 1a), with standard errors clustered by catchment (Williams, 2000).

To relate changes in CVQ to changes in CVP , Equation 2 is expressed as the following linear regression:

∆CVQ︸ ︷︷ ︸
Total

= α0 +α1CVP︸ ︷︷ ︸
Exogenous

+α2 ·∆CVP︸ ︷︷ ︸
Direct

+α12 ·∆CVP ·CVP︸ ︷︷ ︸
Indirect

+ε. (6)265

where ε is a random error term assumed to have a mean value of zero and be independent across catchments. Variables

∆CVQ, ∆CVP and CVP are obtained from CVQ and CVP estimated for successive 5-year periods of the observation record

as described above. Assuming that these estimates are discrete approximations of the corresponding terms in Equation 2,

regression coefficients can be interpreted as the exogenous (α1 ≡ ∂r/∂t and α0 ≡ r · ∂CVP /∂r · ∂r/∂t), direct (α2 ≡ r) and

indirect (α12 ≡ ∂r/∂CVP ) components of ∂CVQ∂t . Regression coefficients were estimated for each season and observation time270

scale using ordinary least squares, with standard errors clustered by catchment (Williams, 2000).

Plugging regression estimates back into Equation 6 and omitting random errors allowed us to plot the average contributions

of the direct, indirect and exogenous effects on the average temporal change in CVQ across catchments, for each season and

considered time scale (Figure 3a). The relative importance of the direct and indirect effects was estimated by taking the ratio

between the corresponding terms of Equations 6 (Figure 3b, dots). The variability of this ratio across catchments was estimated275

through numerical simulations by (i) sampling CVP from the set of 563 catchment-averaged observations; (ii) sampling α2

and α12 from independent normal distributions with mean and standard deviations given by the relevant regression estimates;

and (iii) computing the ratio of indirect vs. direct effects as CVP α12

α2
. Box plots on Figure 3b represent the distribution of that

ratio obtained from 1000 Monte Carlo repetitions.

We carried out two robustness checks to build confidence in our regression results. First, the analysis implies that the regres-280

sion coefficient α2 can be interpreted as the average value of r across all catchments, as seen by comparing Equations 2 and

6. Figure 3c compares regression coefficient α2 (black) with r ratios obtained empirically from period-of-record stream flow

and precipitation observations at each catchment (purple): α2 remains within one standard deviation (error bar) of the mean

empirical value of r (empty symbols) for nearly all seasons and time scales. Second, we replicated the analysis using changes

in CVQ and CVP estimated over different periods lengths. Periods longer (10 years) or shorter (2 years) than the preferred285

duration (5 years) lead to increases in both the uncertainty of regression estimates and in errors on r ≡ α2 (Supplementary Fig-

ure S3). However, the mean contributions of the direct, indirect and exogenous effects and the spatial distribution of historical

trends remain similar to those presented for periods of 5 years (Supplementary Figures S2 and S3). We interpret the errors and

uncertainties for longer and shorter periods as likely caused by sample size limitations. Namely, there appears to be a tradeoff

on the duration of periods between (i) having enough observations within each period to accurately estimate CVP and CVQ290
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at daily to monthly time scales and (ii) having enough periods represented to implement the linear regression analysis over a

large enough sample size. The sensitivity analysis in Supplementary Figure S3 points to the chosen period length of 5 years as

optimal in regards to that tradeoff.
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