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Abstract

Amorphous polymers exhibit a viscoplastic strain hardening behavior at large strains. To describe this hardening
behavior, we have developed an effective temperature model for the nonequilibrium behavior of amorphous polymers
that incorporate the effects of network orientation and relaxation at large plastic deformation. The development of
network orientation is introduced as a backstress that produces kinematic hardening in the stress response, while
network relaxation describes the effects of temperature and strain rate on the hardening response. The model was
applied to simulate the thermomechanical behavior of polycarbonate (PC) to determine the model parameters from
standard dynamic frequency sweep and differential scanning calorimetry tests. The simulation results showed that
the model can quantitatively capture the dependence of the hardening modulus on strain, strain rate, and temperature,
as well as the unloading and reloading behavior measured in uniaxial compression tests. We applied the model to
investigate the effect of plastic dissipation on the peeling of a polymer filament from a rigid substrate to guide the
design of peel tests to measure the intrinsic fracture toughness of polymers fabricated by melt extrusion additive
manufacturing processes.
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1. Introduction

The post-yield behavior of glassy polymers is characterized by strain-softening followed by strain-hardening that
can produce a dramatic upswing in the stress-strain curve at large strains. The degree of hardening varies between
different polymers and can determine whether the material fails by brittle or ductile mechanisms. The initial strain-
softening response can be attributed to a decrease in the resistance to local rearrangements of polymer chain segments
caused by the disordering effects of plastic deformation. The yield stress and the post-yield stress drop increase at
lower temperatures, higher strain rates and longer annealing times. Likewise, the strain-hardening modulus increases
with lower temperatures and higher strain rates [1, 2, 3, 4, 5, 6, 7].

The temperature- and rate-dependence of the yield stress has been captured by the Eyring model [8, 9] for stress-
activated viscous flow [7] and various microstructurally motivated models, such as the double kink model of Argon
[10] and the shear transformation zone model of Hasan and Boyce [11]. The post-yield stress drop is commonly
described by the evolution of the Eyring activation stress, or an analogous microstructural variable, with the plastic
strain rate, while physical aging is similarly described by the static recovery of the activation stress and analogous
microstructural variables [12, 13, 14]. An alternative approach, developed by Buckley and coworkers [15, 16] and
Xiao and Nguyen [17, 18, 19, 20, 21], applies the effective temperature thermodynamic theory to connect the post-yield
stress drop and physical aging to the evolution of a nonequilibrium configurational structure. The effective temperature
theory splits the degrees of freedom of amorphous polymers into a kinetic subsystem that equilibrates instantaneously

*Official contribution of the National Institute of Standards and Technology; notsubject to copyright in the United States.
*Corresponding author
Email address: Vicky.Nguyen@jhu.edu (Thao D. Nguyen)

Preprint submitted to Journal of BIgX Templates August 15, 2020



% Intermolecular
resistance to

segmental
rearrangement

Intermolecular
resistance to
segmental

rearrangement
Network

Intermolecular Intermolecular .
resistance to Network ; resistance to Network Stretching &
Network segmental Stretching & segmental ! Eﬂ Orientation

Stretching & rearrangement Orientation rearrangement 2xation
Network Segmental Orientation 9 9
Stretchin i

9 relaxation Segmental Network Segmental Segmerl\tal
Relaxation Relaxation relaxation Relaxation

|
@ ®) © @

Figure 1: One dimensional rheological representations of constitutive models for the large deformation viscoplastic behavior of amorphous polymers
developed by (a)Haward and Thackray [25], (b) Bergstrom et. al. [36], Goavaert et. al. [37], and Buckley et. al. [38]. (c) Dupaix et. al. [39] (d)
Hempel [40] and the present work

with the temperature and a slowly-evolving configurational subsystem characterized by an effective temperature. Heat
transfer between the kinetic and configurational subsystems drives the effective temperatures towards equilibrium over
time, while plastic deformation disorders the structure, driving it away from equilibrium. In Xiao and Nguyen [19],
this process was coupled to viscoplastic deformation using the nonlinear Adam-Gibbs [22, 23] theory to describe the
effect of the nonequilibrium configurational structure on the viscous resistance to plastic deformation. This allowed
the model to explain a wide range of temperature-dependent and time-dependent phenomena, including physical aging
and mechanical rejuvenation, on the stress response through post-yield softening [19, 14, 24].

The goal of this work was to extend the Xiao and Nguyen [19] model to describe the strain-hardening behavior
of glassy polymers at large strains. The hardening behavior of glassy polymers is attributed to the stretching and
development of long-range orientation of the entangled polymer network. Haward and Thackray [25] first modeled
strain hardening as an entropy-elasticity mechanism and developed a nonlinear rheological model consisting of a
spring for the initial linear elastic response in series with a Voigt element for the viscoplastic response. The Voigt
element includes an Eyring dashpot for the intermolecular resistance to yield and viscous flow in parallel with a spring
for the entropy change of the entangled network with deformation. For uniaxial tension, the entropic hardening stress

can be derived as, oy = —}»T(%])T, where A is the axial stretch, 1) is the entropy per unit volume, oy is the true stress
and T is the temperature. Assuming that the chains obey Gaussian statistics yields the Gaussian hardening model,
o1 (1) = Gr(A* —1/2), M

where G is defined as the hardening modulus [26]. Haward and Thackray used a Langevin statistical model for
an oriented polymer chain instead of the Gaussian approximation to describe the dramatic increase in the hardening
modulus near the limit of chain extensibility [27, 28]. Molecular dynamics simulations have shown that the transition
between Gaussian hardening and Langevin hardening strongly depends on the entanglement density [5]. The model
has been generalized to three-dimensions by replacing the Langevin spring with rubber elasticity models [29, 30, 31,
32, 33, 34] including the 8-chain network model [28] and the full-chain model [35].

In the Voigt arrangement (Fig. 1a), the entropic spring functions as a nonlinear backstress that produces a
strong Bauschinger effect upon unloading [30] and an anisotropic yield and post-yield stress response in cold-worked
polymers [41]. Subsequent constitutive developments replaced the backstress with an equilibrium stress (Fig. 1b)
[36, 37, 38]. The two formulations can reproduce the same features of the stress-strain curves during loading, but
elastic hardening cannot capture the Bauschinger effect at large strains and can erroneously produce yielding during
unloading [42]. Experiments and molecular dynamics studies have also revealed significant inconsistencies in the
entropic model for strain hardening. Entropic elastic hardening models produce the opposite temperature trend than
observed experimentally. Moreover, the hardening modulus is orders of magnitude larger than the modulus calculated
from the entanglement density [4, 25, 26].

To produce the negative temperature dependence of the hardening modulus, various studies have modified the
temperature dependence of network models to account for the loss of entanglements at higher temperatures [6, 43].



However, this approach can lead to unphysical stress response in a constrained cooling and heating cycle [40]. More
recent studies have incorporated a molecular relaxation mechanism for the network chains to describe the temperature
dependence and rate-dependence of the hardening modulus [44, 39, 45]. Boyce and coworkers replaced the entropic
elastic hardening model with the Bergstrom-Boyce [36] model, developed for the nonlinear viscoelastic behavior of
elastomers, to describe the effects of network deformation relaxation in glassy and semicrystalline polymers. Hempel
incorporated the network relaxation into the original formulation of Haward and Thackray by replacing the entropic
spring with a Maxwell fluid element (Fig. 1c). An evolution law inspired by the work of Bergstrom-Boyce was
proposed for the network relaxation to capture the effects of temperature, strain, and strain rate on the hardening
response. The authors showed that the viscous backstress model produced a more physical stress response than the
athermal backstress and temperature-dependent backstress [6, 43], models to a complex thermomechanical history.
[40]

In this paper, we developed a model for the large deformation viscoplastic behavior of amorphous polymers by
incorporating the rate-dependent backstress formulation for network orientation and relaxation (Fig. 1d) into the
Xiao and Nguyen [19] effective temperature model, to capture the temperature-dependent and strain-rate dependent
post-yield strain-hardening behavior and the Bauschinger effect under reversed loading. A relaxation spectrum is
applied to more accurately describe the post-yield rate-dependent response over a wide range of temperatures below
the glass transition temperature. The constitutive model was applied to simulate the uniaxial compression response of
a polycarbonate (PC) material used for fused filament fabrication (FFF), a widely used polymer melt extrusion process
for 3D printing. Results showed that the model was able to accurately capture the strain hardening behavior, unloading
and reloading behavior over a wide range of strain rates and temperatures. The model was then applied to simulate the
peeling of PC fibers to investigate the effects of the post-yield softening and hardening response on the peel energy
and intrinsic plastic dissipation. The findings provide insights for the design of peel tests to measure the weld strength
of FFF printed fibers.

2. Methods

2.1. Experimental methods

2.1.1. Materials and specimen preparation

Polycarbonate (PC) fibers with a molecular mass of M,, = 1.671 x 10* g/mol and a fiber diameter of (2.85+0.05)
mm were purchased from Ultimaker! (Watermolenweg 2, 4191PN, Geldermalsen, The Netherlands). The fibers were
cut into cylindrical specimens with an average length of 4 mm for uniaxial compression tests. The cut surfaces were
polished with sandpaper. Thin film specimens were processed by melting the PC fibers at 200 °C and injecting the melt
into a square steel mold of lengths 50.0 mm and thickness 2.0 mm then cooling to room temperature on the counter.
The film was cut into 20.0 mm X 5.0 mm x 2.0 mm strips specimens with a band saw for dynamic mechanical testing.

2.1.2. Dynamic frequency sweep tests

We used a previously developed method [46, 18, 19] to characterize the stress relaxation spectrum of the PC
material. Dynamic frequency sweep tests were performed using a TA Q800 Dynamic Mechanical Analyzer (DMA),
whose manufacturer rated resolution is 0.0001 N and 1 nm. Thin film specimens, described in Sec. 2.1.1, were mounted
between the tensile grips with a gauge length of 10 mm. The specimens were subjected to stepwise temperature
increases from 35 °C to 143 °C in 2 °C increments in air. At each temperature, a dynamic strain of 0.2 % amplitude
was applied at 0.32 Hz, 1.0 Hz, 3.2 Hz, 10.0 Hz, and 31.6 Hz to measure the storage modulus G(®,T). Applying
the time-temperature superposition (TTS) principle for thermorheologically simple materials, the storage modulus at
different temperatures were shifted to the reference temperature 7o =143 °C to obtain the master curve of the frequency
response [47]. The resulting temperature dependent shift factor a(T') in the glass transition temperature range was used

I Certain commercial equipment, instruments, or materials are identified in thispaper in order to specify the experimental procedure adequately.
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intended to imply that the materials orequipment identified are necessarily the best available for the purpose.



to determine the parameters of the Williams-Landel-Ferry (WLF) equation,

—CY (T —T
logar(T) = Ma 2
2

where C) and CY are the WLF constants at the reference temperature Ty. The WLF constants can be shifted to 7, as
C5 = CY+ T, and C{C5 = CYCY [47].

2.1.3. Differential scanning calorimetry

Differential scanning calorimetry (DSC) measurements were performed to determine the heat capacity of polycar-
bonate below and above glass transition temperature as well as the structural relaxation spectrum. Specimens weighing
8.9 mg were cut from the PC fiber and put in a TA Q20 DSC. The manufacturer rated precision for TA Q20 was £0.1
°C. The specimens were equilibrated at 150 °C for 30 mins to remove the thermal history then cooled to 88 °C at 3
°C/min and annealed for 24 h. The annealed specimens were cooled to 20 °C at 3 °C/min and then heated to 250 °C
at 5 °C/min to measure the heat flow rate.

2.1.4. Uniaxial compression

Uniaxial compression tests at constant temperatures were performed to measure the strain hardening behavior of
the polycarbonate. Cylindrical specimens with dimensions specified in Sec. 2.1.1 were equilibrated at 143 °C and
annealed 30 mins to erase the thermal history. The specimens were cooled at 3 °C/min to the test temperatures, 95
°C, 37 °C, 27 °C or 15 °C and annealed at the test temperature for 30 mins in an incubator (Ecotherm, Hartkirchen,
Austria). The annealed specimens were placed in an MTS Insight 5 electromechanical testing system (Eden Prairie,
MN, USA) equipped with an environmental temperature chamber (Thermcraft, Inc. Winston Salem, NC, USA), set at
the test temperature, and subjected to compressive loading to 100 % true strain at true strain rates 10~3/s, 10%/s, and
1073/s. Three tests were performed at each strain rate and temperature to ensure repeatability. To measure the material
response to unloading and reloading, another set of specimens were first compressed at room temperature (27 °C) to
60 % true strain at an engineering strain rate of 1073/s or 10~#/s, unloaded to zero force at the same strain rate and
reloaded to 100 % true strain at the same strain rate.

2.2. Constitutive model

2.2.1. Kinematics

Consider a deformation x = @(X) that maps points X in the reference configuration Qg to points x in the spatial
configuration Q. The deformation gradient is defined as F = g—g and maps material lines dX € Qg to spatial lines
dx € Q. To model the rate-dependent yield and viscous flow response, we assumed a multiplicative split of the
deformation gradient into elastic and and viscous parts,

F =FF’ 3)

The viscous part F” represents the local rearrangements of polymer segments that give rise to the rate-dependent yield
and viscoplastic deformation. The elastic and viscous deformation gradients can be decomposed further into a stretch
and rotation by polar decomposition, F¢ = R°U° = V°R® and F¥ = R"U" = V'R". This allows the deformation gradient
to be expressed as F = V°RU", where R = R°R" is the rotation [30]. We choose to assign all of the rotation to the
viscous deformation, R” = R and R® = I, which results in a symmetric elastic deformation gradient F¢ = V¢[28].
To model strain hardening and relaxation, the viscous deformation gradient is further decomposed multiplicatively
into two components,
F’ = F“F". (4)

The elastic network deformation F"¢ is the recoverable part of F¥ arising from the resistance to the stretching of
network chains and F" is the unrecoverable part caused by the relaxation of the network chains. The sequence of
deformation maps generated by the successive decompositions of the deformation gradient is illustrated in Fig. 2(a).
The viscous deformation gradient F¥ describes an intermediate configuration Q resulting from the instantaneous un-
loading from the current configuration, while F’*V describes an intermediate configuration Q obtained by instantaneous



unloading by the total elastic deformation gradient F¢ = FeFre. Applying the polar decomposition, the viscous de-
formation gradient can be expressed as F¥ = V"*R"U", where R" = R"R"™. We choose to assign all of the rotation
to the network viscous tensor, R” = R" = R, which causes R™ =1 and F" = V". Furthermore, we can show
that the total elastic deformation gradient F¢ = F°F" is symmetric and F¢ is coaxial with F"¢. The total deforma-
tion gradient can be expressed as, F = VeRRMU™. However, R¢ = I, because R = R, thus F¢F" = ve. Then,
FF* = (FEF"e)T =F'F = F"F°, which shows that F¢ is coaxial with F"**. These assumptions will significantly
simplify the constitutive formulation for the rate of the viscous deformations in the following developments. Boyce
et al. [30] compared three constitutive assumptions for the internal rotation, including the R” = R applied here, and
showed that they had no effect on the elastic kinematic hardening model developed by Boyce et al. for glassy polymers.
The right and left Cauchy-Green deformation tensors for F, F¢ and F"¢ are defined as,

C= FTF, Ce = FeT Fe7 Cre = FneT Fre

5
b=FF', b*=FF', 6 b*=FF°. ®

The spatial velocity gradient and inelastic counterparts in the intermediate configurations & and Q are defined respec-
tively as,
L=FF!, L'=FF ', L"=FvF" (6)

Fe

Fne

(@)

Figure 2: Decomposition scheme for the deformation gradient.

2.2.2. Effective temperature thermodynamic theory

In the effective temperature thermodynamic theory, the internal energy and entropy of an amorphous material can
be decomposed into contributions from two weakly interacting subsystems. [48, 49, 50, 19] The kinetic subsystem
contains fast processes, such as vibrational motion, that equilibrate instantaneously with the thermal reservoir at a
temperature 7. The configurational subsystem contains slow processes, such as configurational arrangements, that are
in quasi-equilibrium at an effective temperature 7,. Each thermodynamic subsystem is characterized by an internal
energy density, entropy density, heat flux and entropy flux, and these sum to provide the total internal energy density
e = ¢k + ¢, entropy density 7 = n* + n¢, heat flux Q = QX + Q¢ and entropy flux H = H* 4 H¢ of the system.
The entropy flux of the kinetic and configurational subsystems are defined using the characteristic temperature of
the system, H* = Q¥/T and H® = Q°/T, [48]. It follows that the Helmholtz free energy density can be additively
decomposed into kinetic and configurational contributions [49],

W =W we — (k- Tk 4 (&5 — T,n°), (7)



In general, the free energy density ¥(T, T, C, C¢, C") depends on the temperature, effective temperature, deformation,
and internal variables for inelastic deformations. Formulating the ¥ in terms of the Lagrangian deformation tensors
C, C¢ and C™ ensures objectivity in the current and intermediate configurations.

The first law of thermodynamics in the reference configuration can be written as,

1.
¢=8:5C-Vx-Q, (®)

where S is the second Piola-Kirchhoff stress tensor, e is the internal energy density and Q is the heat flux. The second
law of thermodynamics can be written in the reference configuration as,

n+Vx-H>0, )

where 1) is the entropy density and H is the entropy flux. The decomposition of the Helmholtz free energy density eq.
(7) can be applied to eqgs. (8) and (9) to rewrite the first and second laws in terms of ¥ as,

. 1. :
ek—&—eC:S:EC—VX-Qk—VX-Q‘, (10
Vx-Q¢ 1 T 1. . . .
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e e
Expanding W gives,
0¥, O¥, 0¥ 1. 0¥ . o¥ .
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y aTT+aTeTe+28C.2C+aCe.C + 5 1 € (12)

The rate of the elastic deformation tensors can be written as, C¢ = F*~ CF*~' — 2sym[C¢L”] and C" = F sym [LY]F"e —
2sym [C"L™]. Applying these relations to eq. (12) and rearranging terms give,
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Substituting the above expression into eq. (11) for the entropy inequality gives,

Vx-Q 1, T
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w! WN

(T-T)n+(T-T)

where W/ and W¥ represent the internal dissipation from local segmental motions and network deformation, respec-
tively. Considering an arbitrary approach to equilibrium, where 7,, T and C vary independently, we arrive at the
following definitions for the second Piola-Kirchhoff stress tensor and entropy densities,

v v ¥ v

i v—1 v—T k__ Y~ c_ _ -
S= 28C+F 28C"’F , N Pl n 9T, (15)

The Cauchy stress can be evaluated from S as, 6 = J~'FSF? = J~! (ZF IVFT 4 F2 gg‘e F¢ )

To develop constitutive relations for the remaining internal variables, eqs. (15) and (13) are applied to simplify the
first law in eq. (10),

0¥ 1. LI 1 0¥
+€ —2aC 2C+2ﬁ *C aC”"

1. . .
:EC”E—S—W“‘—&—WI"+WN—VX-Q]‘—VX-Q", (16)



where the additive split of the internal dissipation from segmental rearrangements, W/ = W/ + w’<, follows from the
split of the free energy density into kinetic and configurational contributions in eq. (7). The dissipation from network
deformation can also be split into kinetic and configurational contributions. As shown in Appendix A the hardening
stress response is insensitive to the split in W» between the two material subsystems. Thus, we chose to assign the
network dissipation to the kinetic subsystem to simplify the formulation.

A fundamental assumption of the effective temperature theory is that the kinetic and configurational subsystems
are only weakly coupled by an internal heat transfer. Consequently the first law in eq. (16) can be decomposed into
energy balances for each subsystem as [48],

W 1. 9wk 1., _9Wk 1,
& k_ ke Lk N ‘ "
=-Vx-Qf— WrAWoi+2—==: 5C+25-: 5C 42 3¢
P X Q Q +\W+_/+ 9C 2 + 9Ce "2 + oCre " 2 )
dissipation
Elastic Power, ¥%, (17)
W 1. 0¥ o¥ 1
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m
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Dissipation

e oL
2 b)

where QK¢ is the heat transfer between the kinetic and configurational subsystems. .We can further apply the decom-
position of Helmholtz free energy density eq. (7) and its expansion eq. (13) to simplify above equations,

A L . (18)
T = —Vx - Q + 0+ W',

The above equations can be applied to eliminate the configurational heat flux in the second law eq. (14) to give the
reduced dissipation inequality:
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The last two terms in the above equation can be rewritten as,
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where the Kirchhoff nonequilibrium (flow) stress TVE€ and backstress T2 are given by.
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We now assume that the material is initially isotropic, such that W is an isotropic tensor function that can be equiva-
lently expressed in terms of (T, T,,b,b¢,b"). Then TVEC is coaxial with b¢ and T is coaxial with b, which causes
TVEChe™" and 78b" to be symmetric. Furthermore, we showed in Sec. 2.2.1 that the constitutive assumptions for
the viscous rotations resulted in F¢ = V® and F"® = V"¢ being symmetric and coaxial with each other. As a result
F¢ = /b’ is coaxial with 7V and F¢ ' 78F¢ ' = £8b¢ ' and symmetric. The rate of viscous deformation FCL"F¢’ can



be expanded into symmetric and skew parts, where the symmetric part is the Lie derivative of the elastic left deforma-
tion tensor, sym {FeL"FfT} = —%FC"_'FT = —%iﬁ,b“. Likewise, sym [F”eL’“’F”eT} = —%FVC"V_] P = —%.jﬁ,b”e.
With these results, we can rewrite the reduced dissipation inequality in eq. (19) as,

—(T.-T)%" — LQ*-VxT — Q- VXT, — (TVE0 —7P) L Zbeh — 2 L Abb e 20, (22)

The backstress T2 is coaxial with TVF€ because b® is coaxial with b,

To satisfy the positive dissipation criteria, each term of eq. (22) must be positive. Positive thermal dissipation
can be satisfied by specifying a Fourier-type linear conduction law for heat transfer in the kinetic and configurational
subsystems and for the inter-subsystem heat transfer

q" =KV, q=—kVT,, Q"=-K(T,-T), (23)

where q¢ = 1/det(F)FQF and q¢ = 1/det(F)FQ° are the spatial heat fluxes of the kinetic and configurational sub-
systems, k¥ > 0 and k° > 0 are the thermal conductivity of each subsystem, and K > 0 is the inter-subsystem thermal
conductivity. To satisfy the positive dissipation criteria for the viscous dissipation, we assumed the following linear
relationships,

1 e o] 1
—Eﬁ;bb :ﬁ€7 C:TNEQ—TB

1 -1 1 24
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where v/ > 0 and vV > 0 are the viscous resistances to local segmental rearrangements and network deformation
respectively.

We can obtain the evolution equations for 7 and 7, by substituting the constitutive relations in eq. (15) for the
entropy densities and eq. (23) for the heat conduction into the energy balance for the kinetic and configurational
susbystems eq. (18) and rearranging terms,

. owF 1 B 1 -1 p 1 -1
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AcT, = —K(T,—T) —F¢ ffbebe —2T,—— e T,C¢ ‘DY +kVx - (CT'VXTL), 26
¢ e T egc 2 CTTC Gee (DK VX (CTIVRT), (26)
where ¢, = —T%}sz is the heat capacity of the kinetic subsystem and Ac = ~T,% % a 2 is the heat capacity of the

conﬁguratlonal subsystem. Dividing the governing equation for 7, by Ac and defining the structural relaxation times
as IR = 3, K gives the familiar expression for the evolution of the effective temperature,

. 1 1 0¥ _r 1 -1 2T an‘ an‘ k¢ ]
fo= L) el L Te e vy Kgg (civam). @7
P R vl Tl “Ac oC zC C ace D a VX (€)@

Equation (27) is identical to the evolution equation for 7, in the Xiao and Nguyen model [19] because of the assumption
that the stored energy of network deformation is part of the kinetic subsystem and not the configurational subsystem.
The consequences of this assumption are discussed in Appendix A. Xiao and Nguyen [19] discussed the physical
significance of eq. (27) in detail. The first term on the right hand side describes structural relaxation which drives
the configurational subsystems equilibrium. Conversely, the second term represents the mechanical rejuvenation that
drives configurational subsystems away from equilibrium. The third and fourth term are thermomechanical coupling
terms while the last term represents the diffusion of the effective temperatures.



2.2.3. Incorporating a relaxation spectrum

Amorphous polymers typically exhibit a broad stress and structural relaxation spectrums, which must be repre-
sented to accurately capture the kinetics of physical aging, post-yield softening response, and temperature dependence
of the stress response for temperatures near the glass transition. Xiao and Nguyen [19] incorporated a discrete spectrum
of stress relaxation processes into the effective temperature theory by applying parallel multiplicative decompositions
of deformation gradient into elastic and viscous parts,

F=FF, j=1LN (28)

To incorporate kinematic hardening from network deformation and relaxation, we assume that the viscous deformation
of each process can be further decomposed into elastic and viscous network components,

F;=FFFY, j=1.N. (29)

This decouples the kinematics of network deformation and relaxation of each process, which significantly simplifies
the theoretical developments. We apply the same constitutive assumption assigning all of the rotation to the viscous
deformations for each process R}¥ = R} = R, such that F}, and F}}¢ are symmetric and coaxial with each other.

Following Xiao and Nguyen [19], we assume a discrete distribution of configurational subsystems and their as-
sociated effective temperatures T,, for i = 1..P to incorporate a spectrum of structural relaxation times. Then the
Helmbholtz free energy density can be decomposed additively into the respective contributions from the kinetic and
configurational subsystems as,

,
W= Y= (Tt + Z ~T,n) (30)

For simplicity, we assume that the configurational subsystems do not interact with each other, and they only interact
with the kinetic subsystem through a inter-subsystem heat transfer. This results in the following decomposition of the
first law into energy balances for each subsystem,

P
ék:—Vx'Qk—ZQf‘“+W”"+WN+lP§1 an

=V QO W,

where Q{-‘C is the heat transfer between the kinetic subsystem and the configurational subsystem i. The thermodynamic
interactions between each subsystems and contributions to the internal energy are illustrated in Fig. 3.

Applying these assumptions to effective temperature thermodynamic theory in Sec. 2.2.2, we can arrive at the
following definitions for the stress and entropy densities,

8‘1’ N ¥

v—1
S= 8C+ZF 2

¥ ¥
v—T k_ _Z- c—_
HCeFJ 9 TI - aTa Th aTei’ (32)

and obtain the following reduced dissipation inequality ,
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The Kirchhoff nonequilibrium stresses and backstresses for stress relaxation processes are defined as,

Ik P L, OFS oWk _ 1
NEQ el e ne n
Tj 2Fj QCEF +227 J acé 2F/ acm F/e )

for j=1..N. (34)

To satisfy the second law for an arbitrary thermal and deformation history, we can define the following Fourier-type
heat conduction laws
—KViT,  df = —k{VsT,;, Qf =-Ki(T,,~T), (35)



and evolution equations for the viscous deformations

1 1 EQ B

2.,% bfbe = 2v]’. gj, gj. = fjv -1

| 1, (36)
neyne _

Zgb b = —Zvjyrj.

Substituting the constitutive relations into the energy balances in eq. (31) gives the following evolution equations for
the temperature and effective temperatures,

coT = le- (T, —T) - ivz 2F AP L Zpene Zr 2y
- i ; oC A ) J
o1 ‘ZT'C ZC+ZTC, 3:’; DY +KVx - (CT'VxT), (37)
f= g G T L geR s pamy 2 G e
n Ijv ATZ_ C 323 D A]%VX (CT'VRTL), (38)
where ¢, = T * is the heat capacity of the kinetic subsystem, Ac; = Te, ° is the heat capacity and g, = A&, is

the structural relaxatlon time of the subsystem i,
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Figure 3: Diagram of the energy transfer between the kinetic and configurational subsystems and contributions to the internal energy. The diagram
shows the contribution of the stress power and spatial heat transfer to the total internal energy, as well as the con ational heat transfer between
the subsystems. The term W'* and WI-"r are the internal dissipation rates from local segmental motions in the kil\% subsysts d " configu-
rational subsystem, W is the dissipation rate from network deformation, ‘P’,‘,, and ‘Pl‘m are the elastic power flowing into the k@%ic subsystem

ith

and """ configurational subsystem.
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2.2.4. Constitutive model for Polycarbonate

In the following subsection, we apply the multiprocess effective temperature theory in Sec. 2.2.3 to develop a
constitutive model for polycarbonate, which is a common amorphous thermoplastic. For the free energy density in eq.
(30), the compressible Neo-Hookean model is applied to describe the internal energy and entropy densities associated
with local segmental motion in the kinetic and configurational subsystems,

P (1— neq _ P _
w3 T (@) - 3) 5 (- 210 - 1) e (r_TO_TmTT> STy e (),

j 0 j
Lo T.,\ Ac, )
‘I’f:; 21 (tr (C4) —3) + Acy, (Tei—To—Teiln]fz’> - (T = 1),

(39)

The Arruda-Boyce eight-chain model [28] is applied to describe the internal energy associated with network deforma-
tion to account for the limiting stretch of the network structure:

_ Aert. . _ 1 . et
ne\ __ ,,backy 2 eff, . Xj o - ne R -1 ﬂ
E(CF) = )™ A\ [ ),ijj_Hnsinhxj]’ Aeff_,_,/3trcj , X =2 ( ALJ> (40)

where J = detF is the volumetric deformation, Jj‘f = detFj is the elastic part of J and Jj-v’e = detFlly’e is the elastic

. . = -2/3 = -2/3 . . .
network volumetric deformation. The C§ = J§ / C5 and C° = J§ / C' are the isochoric parts of the elastic and
elastic network right deformation tensors respectively. The parameter x is the bulk modulus, 75 is the Kauzmann
temperature, A is the limiting stretch in the eight-chain model. The u* for j = 1..N forms the spectrum of non-

equilibrium shear moduli for the stored energy of local segmental rearrangements and the ,u;’“"k describes the spectrum
of shear moduli for the stored energy of network deformation. The parameters cg, and cg, are the coefficients of the
heat capacity of the kinetic subsystem, where ¢, = co0 + c17; Aco, and Acy; are the coefficients of the heat capacity
of the configurational subsystems, where Ac; = Aco, + Acy,T,,. We split the inelastic internal energy into contributions

P
for the kinetic and configurational subsystems using a fractional parameter 0 < a < 1, where Y a; = a is the total

1
configurational contributions to the internal inelastic energy, and 1 — a is the kinetic contribution. For simplicity, we
assume that the physical properties share the same distribution function over the P configurational subsystems. Thus

P
we can write the properties as, 1;°Y = ¢;11°, a; = ¢;a, Aco, = §;Aco, Aci, = ¢;Acy, where 0 < ¢; < 1 and ) ¢; = 1. The
i

Aco and Acy represent the difference between the rubbery and glassy heat capacity, ¢, = (cg0 +Aco) + (co1 +Acy)T.
Note for thermosets, the configurational ¥ can be augmented with an entropic rubber elasticity model to describe the
high temperature elastic response [19].

The second Piola-Kirchhoff stress can be evaluated as defined in eq. (32) and the Cauchy stress can be evaluated
as 0 = JFSF,

P
o= ;Zu;?e‘f <B’}e;tr(5j)l> +%K(J2—1)I, (41)
J N—————
ol P

J

. . . - e—2/3 = e=2/31 ne . s
where I is the second-order identity tensor, b = J7 / b$ and b = J§ / b’¢. The Kirchhoff nonequilibrium flow
stress and backstress can be evaluated as,

B0 =xfo (1a(f 1) (5o (5)1)

_ 42)
B _ back A co—1 | 2t5i \ (vne 1o (§ (
= ﬂjac ﬁg ( ALI> (b;@e —3tr (b;@e) I) )

From eq. (24), the inelastic rate of deformation tensor is related to the flow stress § i= ‘L';V EQ_ 'tf through the viscous
resistance to local segmental rearrangements VJI- while the rate of deformation tensor for network relaxation is related to
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the backstress 1.'? through the viscous resistance to network deformation v}v . We applied the model proposed by Xiao

and Nguyen [19] for VJI. that used the Adam-Gibbs model [22] and the Eyring model [8] to describe the temperature
and deformation dependence of viscosity:

1 B\ VzZ v,z 17!
7;}7 VJI' _ v;,ref exp ( ) Yz& |:Sinh(z):| . (43)

1 -1
—=Z4bb = —
27T 2vi Tnc) RT RT

The n¢ = Y7 n¢ is the aggregate configurational entropy of the subsystem, § = szv §; is the total driving stress,

Z=\/ %g : § is the magnitude of the driving stress, B is the thermal activation energy, and V7 is the activation volume
for local segmental rearrangements.

The Eyring model was applied to describe the temperature-dependence and strain rate-dependence of the viscous
resistance to network deformation:

1 neyne”!

2VN

A —a, VsSP Vss?]™!
8, vV =y e (2 ) (B e g ) B2 ginh 23 : (44)
J J J T o — o RT RT

where 78 = szv 1.'? is the total backstress, S5 = A/ %TB : T8 is the magnitude of the total back stress, A is the thermal ac-
tivation parameter, and Vg is the activation volume for network relaxation. Various studies have proposed a dependence
of v on the network deformation, e.g., b"™, to capture the dramatic hardening at large strains [40, 44, 51]. Dupaix et.
al. [39] showed that specifying a dependence on the network orientation parameter & of the 8-chain network model
produced a more accurate dependence of the stress response on the strain state, i.e. uniaxial tension vs. plane strain.
The orientation parameter is defined as, @ = w/2 —max{a;, 0, o3}, where (a1, 0, @3) are the angles between the
end-to-end vector of a polymer chain of the §8-chain network model and each of the three principal axes. The polymer
chains rotate and stretch to align in the direction of deformation and « describes the extent of chain alignment with a
principle axis. The parameter m is a power-law exponent for @ and o = 0.616 rad for a unit cube in the eight-chain
model. The parameter o, is the orientation level where the relaxation cutoff occurs, which was introduced to avoid
underestimating strain hardening at very large strains [39]. Dupaix et. al. [39] showed that the uniaxial tension and
plane strain hardening stress response reached the limiting stretch at the same value of ¢. Note that the vj-v does not
depend on the configurational entropy 7 or the effective temperatures 7. Appendix A compares the effects on the
hardening stress response of applying the Arrhenius model versus the Adam-Gibbs model, which imposes a depen-
dence on 1€ as well as T. The Adam-Gibbs model resulted in a decrease in the hardening modulus with increasing
strain rate, which is opposite of what is observed in experiments for polycarbonate.

For the applications in this model, we will neglect the effects of the diffusion of 7, in eq. (27) to simplify the
numerical implementation and evaluation. For the free energy density shown in eq. (39), the evolution equation for
effective temperatures eq. (27) reduces to,

, 1 a L | _ 1 -
= — (T, -T)+—2 Y (bt -t (b)1):
=g )+Aco+Ac1TeiZi’275j ( i3 (B5) ) g

1
Lref

B v B \ V,Z Vyz 17!
Tr, = Ty exp (Tnc> , TS = Wexp (Tn‘) RZ—T {sinh(RZT)}
J

(45)

where we have substituted the evolution equation (43) for the Lie derivate b°. We applied the Adam-Gibbs model
[22] to describe the temperature dependence and structure dependence of the structural relaxation time. In previous
work, we showed that these assumptions provided accurate predictions of the effects of physical aging and mechanical
rejuvenation on the stress response and the temperature-dependent enthalpy change. The proposed constitutive model
was summarized in Table 1.



Kinematics
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Table 1: Summary of the effective temperature model incorporating kinematic hardening

2.2.5. DSC simulations

We developed a finite element model of the DSC experiments in Sec. 2.1.3 to fit the spectrum of structural re-
laxation times (¢;, Tx,). Fig. 4 shows a schematic of an axisymmetric finite element model, with height 3.2 mm and
radius 1.35 mm, of the specimen used in the DSC experiments. The geometry was discretized using 10x 10 bilinear
quadrilateral elements. The coupled thermomechanical problem was solved using a staggered scheme. The thermal
diffusion equation (37) was solved for the temperature field, and used to solve the mechanical equilibrium equations
for the displacements, stress response (eqs.(41)-(44)) and effective temperatures (eq. (45)). The displacement bound-
ary conditions were applied to fix the horizontal displacement of the axis of symmetry, u,(AB) = 0, and to fix the
vertical displacement of the bottom of the specimen, u,(AC) = 0. The remaining surfaces were traction free. To sim-
ulate the heat transfer to the specimen, convection boundary conditions were applied on surfaces BD and DC and AC.
Surfaces AC and BD were assumed to be in contact with the DSC aluminum pan and lid, and the heat flux between the
specimen and metal can be described by q = h; (T — Tpsc) n, where n is the direction of the surface normal, Tpsc is the
temperature history of DSC experiments, and /1; = 7500W /(m?K) is the heat transfer coefficient between polymer and
metal obtained from Dawson et al. [53]. Surface CD was assumed to be in contact with air, and the heat flux between
the specimen and air was described by q = h, (T — Tpsc) n, where iy = 10W/(m?K) is the heat transfer coefficient
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for air. The macroscopic specific heat flux can be calculated from eqgs. (37) and (38) as,

P N N

0= piv / <(ch +eaT)T+Y 0i(Aco+AciT,) T, + Y § ;- Zb%bS gt Y o b ] ) av, (46)
i J J

where p = 1.2g/cm? is the density of the polymer and V is the volume of the specimen.

q = hy(T —Tpsc)n
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1.35mm q=hi(T—Tpsc)n
Figure 4: Finite element model of an axisymmetric cylindrical specimen.

2.2.6. Uniaxial compression simulations

The thermomechanical model (eqs.(41)-(45)) were applied to simulate the stress response in the uniaxial compres-
sion experiments under constant strain rate and temperature (Sec. 2.1.4 ). We assumed that the heat generation is
negligible for the low strain rates 107> to 10~> of the experiments, such that the temperature change 7" experienced by
the specimen is negligible. We also assumed for the slow cooling rate and long annealing time of the of the experiment
that specimen is under thermal equilibrium and the temperature field, effective temperature field, and stress field are
homogenous. This reduced the simulations to a material point simulation for the stress response for an applied true
strain rate. To calculate the initial nonequilibrium structure (7,), the temperature was cooled from 143 °C to the test
temperature at 3 °C/min and held for 30 min. The rate-dependent experiments at 37 °C were used to calibrate the
model parameters for the evolution equations (43)-(44) for b® and b™, as described in Sec. 3. The model was then
applied to simulate the compression test at 95 °C and load-reload tests at 27 °C without additional fitting parameters.

2.2.7. Peel simulations

The thermomechanical model was applied to simulate peeling of a thin polymer fiber from a rigid substrate and
evaluate the effect of the post-yield stress drop and strain hardening modulus on the peel energy and intrinsic viscoplas-
tic dissipation rate. Figure 5 shows a schematic of a plane-strain finite element model for a typical 90° peel test. The
model described a polycarbonate fiber of length 20 mm and thickness 0.4 mm adhered to a rigid substrate with a pre-
crack of length 7.5 mm. The fiber was discretized using a structured mesh of 337 x 14 bilinear quadrilateral elements.
The surface AF was discretized using bilinear cohesive surface elements, which prescribed a traction-separation law
between two initially unseparated surfaces. The displacements of the bottom surface of cohesive elements were fixed
ux = uy = 0 to simulate a rigid substrate. The remaining surfaces were assumed to be traction free. Peeling was
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achieved by applying displacement uy at a constant speed v =0.01 mm/s at point E, which was the midpoint of the
fiber thickness.

20 mm C

O

A A A A
12.5mm

>

>
>

0.4mm

>

>
>
>

Y
E
X

Figure 5: Finite element model of a thin fiber adhered to a rigid substate used for the simulation of 90 peel.

The Xu-Needleman model [54] was used to describe the traction-separation constitutive relations for the cohesive
surface elements. The model prescribes a potential function for the cohesive energy ® (A, A;) that depends on the
normal separation A, and tangential separation A;. The normal and tangential tractions are defined as the partial
derivates of the @ relative to the normal and tangential separations, respectively. The reader is referred to work by
Xu et al. [54] for a detailed derivation of the traction-separation law. The Xu-Needleman model is characterized by 5
parameters, the normal cohesive energy ®,,, characteristic normal separation &, and characteristic tangential separation
&, ratio of tangential cohesive energy to normal cohesive energy ¢, normal opening after pure shear separation r. For
simplicity, we set ¢ = 1 and » = 0. We assumed &, = 0.4 kJ/m> for the cohesive energy based on the measurements
of Pitman and Ward [55] for Lexan, a commercial polycarbonate, with a similar molecular mass (Mw=17000) as the
Ultimaker fiber (Mw=24000). Both the maximum normal and tangential tractions of the cohesive zone were assumed
to be 50 MPa, which was approximately the draw stress exhibited in uniaxial compression stress-strain curves, after
post-yield softening and before hardening, measured at 37° and strain rate 10735~ !. The maximum tractions was used
to calculate characteristic separation parameters &, and &;.

The stress response of a glassy polymer at a given temperature, strain rate, and strain state can be described by
5 material properties: the Young’s modulus E, Poisson’s ratio v, peak stress o, and draw stress oy under uniaxial
compression, and hardening modulus H. Previous studies have shown that the v and the ratio of the Young’s modulus
to the yield stress do not significantly affect the Mode I fracture energy. Here, we focused the investigation on the
effects of the hardening modulus and the peak stress relative to the draw stress. A brief survey of uniaxial compression
tests of different glassy polymers showed that the ratio A for uniaxial tension can vary from 0.15 to 1.21 [56, 57, 58].
Klompen et al. showed that the ratio of the peak to draw stress for uniaxial tension of PC can vary from 1.0 to 2.0
depending on the thermal history [12].

The baseline case of the parameter study is given by the model parameters in Table 2 determined for Ultimaker
polycarbonate fiber. The uniaxial compression response of the baseline case at 37 °C and strain rate 10735~ was
characterized by 6, = 50MPa, H /6, =0.39, and 6,/ 6, =1.45. The hardening modulus was calculated from the slope
of true stress versus gaussian function at range of 1.4 to 1.7 (true strain 55.1 % to 67.4 %) and the draw stress was
determined as the lowest stress after yield. The draw stress 0, was maintained constant while changing either the peak
stress 0, or hardening modulus H, while keeping the other constant (Table 2) by tuning the parameters a, Vz, and the
hardening modulus scaling factor d» (Sec. 3). For case 1, 2, 4 and 5, the material was cooled at rate of 3 °C/min from
418K to 37 °C and annealed for 1800 s. For case 3, the material was cooled at 0.36 °C/min from 418 K to 37 °C and
annealed for 2000 s.

Case g—z 6% Vs a dy
1 1.37 037 103.5 0.35 0.007
2 1 0.37 180 0 0.00446
3 1.89 0.37 65.33 1 0.00573
4 1.37 0.57 10238 0.4289 0.01
5 1.37 0.13 1093 0.2063  0.003

Table 2: Parameter study of the effect of the post-yield stress drop and strain hardening modulus on the peel energy. The variables ©,, 6; and H
denote the peak stress, draw stress, and hardening modulus respectively at 37 °C and strain rate of 1073/s.
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The peel force was evaluated from the reaction force at node E. It can be shown, using the well-known energy
balance [59, 60, 61] that the peel force is equivalent to the energy release rate for steady-state 90° peeling. For a
viscoplastic material, the peel force includes the cohesive energy, the intrinsic viscoplastic dissipation rate caused by
the propagation of the peel tip, the viscoplastic dissipation rate from bending the peel arm, and the stored energy of
the peel arm. To derive and expression for the viscoplastic dissipation rate under constant temperature conditions,
consider the balance of mechanical power of the fiber.

/ 2s Cav = / £ vds (47)

P ext

The surface of the fiber is subjected to the cohesive traction and the peel force F', and the external power can be written

as,
dy da
Py =F— —®— 48
e = F o (48)

where F is the peel force, dy/dt is the peel velocity and da/dt is the crack speed. The internal stress power can be
written in terms of the free energy density and viscoplastic dissipation using eq. (13) as,

1,
Pi,,,:/S:ECdV
JQ (49)
:/ (B + W W) av,
Q

where ¥,, = ¥ — ‘%’T -y, 3—7‘5721. is the mechanical part of the rate of the free-energy density and WY and W/ are
respectively the viscoplastic diséipation from segmental relaxation and network relaxation defined in eq. (14). The vis-
coplastic dissipation can be written as, W/ =¥ i 2C5 ggﬁ, L} and WN =Y. j ( Fie2 acll,,‘e F"e 1L} +2C75 3‘9(:% L"")

Substituting these expressions for the internal and external power in the mechamcal energy balance in eq. (417) divid-
ing both sides by the crack speed da/dt, and assuming elongation of the peel arm is negligible such that dy/da = 1 at

steady-state gives,
1 .
¥,,dV + / wi+whav. 50
dy/dt/Q " d /d (50)

v D

mtot

F=d+

The peel force F is the energy release rate for peeling that includes the cohesive energy, rate of stored mechanical
energy and viscoplastic dissipation D. Plastic deformation during peeling can occur from the stress concentration
at the crack tip and large bending stresses in the peel arm. The intrinsic dissipation from crack growth D™ was
approximated by integrating the viscoplastic dissipation rate W/ 4+ W? in a rectangular domain bounded by the midline
of the peel arm and the bottom surface of the peel arm where the cohesive tractions were non-zero. The dissipation
from bending D”"¢ was approximated by integrating W/ +W?" over the remaining area of the peel geometry. Bending
stresses may also cause plastic deformation around the crack tip, in the domain used to evaluate D"

3. Model Parameters

Parameter Physical significance Values
T,(K) Glass transition temperature 383

K (MPa) Bulk modulus 2085.3
V{(cm?®/mol)  Activation volume for viscous flow 860.63
B{/g) Thermal activation energy 357.0
T>(K) Kauzmann temperature 350.428
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To(K) Reference temperature 416
c,0(J/(gK)) Coefficient of heat capacity of kinetic subsystem -0.3005
cq1J/(gK)) Coefficient of heat capacity of kinetic subsystem 0.003665
Aco(J/(gK)) Coefficient of excess heat capacity of configurational subsystems 0.2822
Ac1(J/(gK)) Coefficient of excess heat capacity of configurational subsystems -0.0001112

a Configurational contribution to the internal inelastic energy 0.5
(’c§j,,u;'eq) Discrete stress relaxation spectrum Fig. 6(b)
(‘L'I%l_, o) Discrete structural relaxation spectrum Fig. 7(b)
(‘cf\',j , uj’“"k ) Discrete network relaxation spectrum Fig. 10(a)
A(K) Temperature coefficient 6154.3
Vs(cm?®/mol)  Activation volume for network relaxation 1474

m Power of the orientation parameter 14.91

Q Cessation value of the orientation parameter for network relaxation  0.05

o Initial value of the orientation parameter 0.616

AL Limiting stretch 1.41

Table 3: Parameters of the constitutive model for polycarbonate.

Table. 3 lists the parameters, their physical significance and values determined for the polycarbonate material. We
used the DMA, DSC, and specific aspects of the uniaxial compression stress-strain response at 37 °C and 95 °C to
determine the model parameters as described below. The parameters were applied to predict the uniaxial compression
response at 27 °C and 15 °C for model validation.

The nonequilibrium Young’s modulus E"°? = 1876.8MPa was approximated by the maximum storage modulus
of the master curve (Fig. 6a). The nonequilibrium shear modulus u"“? = 695.1 MPa and bulk modulus k¥ = 2085.3

MPa were calculated from E"¢? assuming a glassy Poisson’s ratio v, = 0.35. The parameters of the discrete relaxation
neq

spectrum (7§, 11" at T, (Fig. 6b), where t§, = v§ /1

neq
J

6a) using the methods developed by Xiao and Nguyen [18] and Guo et al. [62] (Appendix B.1). The thermal activation
parameters B and 7, of the Adam-Gibbs model were determined by fitting to the temperature-dependence of the shift
factor measured in the TTS test in the glass transition region (Fig. 6¢) [19]. The DSC curve for the enthalpy change
with temperature (Fig. 7a) was used to fit the discrete structural relaxation spectrum (TR,.,;,LI-” “7) at T, (Fig. 7b) using
the finite element model described in Sec. 2.2.5 and methods developed by Xiao and Nguyen [19] (Appendix B.2).

Figure 8 shows the experimentally measured uniaxial compression stress response plotted against the Gaussian
hardening function g(A) = (1/A —A?). The plots show the average and the variation of 3 tests at each strain rate
and temperature. As expected, the stress response exhibits yielding, where the yield stress decreased with increasing
temperature and decreasing strain rate, post-yield strain softening, followed by strain hardening. The strain hardening
response was initially Gaussian, 6 = Ggg (1), then became nonlinear. The Gaussian hardening region occurred earlier,
at smaller strains, and extended over a larger strain range at 95 °C as illustrated in Figure 8.

The activation volume for local segmental relaxation V7 was fit to the rate-dependence of the yield stress at 37
°C. The fraction parameter 0 < a < 1, which controls the rate of strain-softening, was determined by fitting to the
post-yield stress drop at 37°C for all the strain rates.

The activation volume for network relaxation Vs = 860.63 cm? /mol and the parameters for the dependence of the
network viscosities on the chain orientation ¢ were determined from the rate-dependence of the backstress at 37°C.
We approximated the backstress for the different strain rates at 4 true strains, 60 %, 70 %, 80 %, and 90 %, as the
difference between the experimentally measured stress response and the model stress response without hardening. We
further approximated the effective viscosity for network relaxation vV as the backstress divided by the applied true
strain rate. From eq. (43), the relationship between V¥, the effective back stress S?, and chain orientation angle « for a
given temperature can be expressed as, In (1/v") = C (o) —In (8%) + Vlse—;g, where C(a) =mln(a) +1n(ot — o)+ Co
and Cy is a constant that depends on temperature and other model parameters. The activation volume Vg and C () for

, were fit to the master curve of the storage modulus (Fig.
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Figure 6: (a) The master curve of the storage modulus obtained from time-temperature superposition for a reference temperature of 7p = 143°C

was used to fit the (b) discrete stress relaxation spectrum <T§,- s /,L;‘eq) for j = 1..20 at T,. (c) The temperature-dependent shift factor ar was used to
fit the parameters B and 7, of the Adam-Gibbs model were fit to the temperature dependent shift factor ar.
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Figure 7: (a) The DSC curve was used to fit (b) the discrete structural relaxation spectrum (Tg;, ul-" “1) for i = 1..20 at T,.
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Figure 8: The uniaxial compression stress response plotted against the Gaussian hardening function g (A) = (1/A — A?) for polycarbonate speci-

mens tested at (a)37°C and (b) 95°C and true strain rates 10~3/s, 10~%/s and 10~3/s. The plots show the average of 3 tests for each strain rate and
temperature with error bars showing the variations of 3 tests. The dashed black lines indicate the linear region of Gaussian hardening, o = Ggg (1),
used to determine the Gaussian hardening modulus Gg.
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Figure 9: (a) The activation volume for segmental relaxation V; was fit to the rate-dependence of the yield stress at 37 °C. (b) The activation volume
for network relaxation Vg and the factor C was fit to the network viscosity at 37 °C, 60 %, 70 %, 80 %, 90 % true strains, and 1073 /s, 1074 /s,
1073 /s strain rates. (c) The power-law exponent for the dependence on the chain orientation was determined by fitting C —In (&t — o) at 60 %, 70
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Figure 10: (a) The network relaxation spectrum (Tf,/_, uback) for j =1..20 at T, was obtained by scaling the stress relaxation spectrum such that
r,f,,_ =d; rgj and ;L}’"‘k =d, yj'.‘eq. (b) The Gaussian hardening modulus G at 37°C for all strain rates was used to fit the scaling factors d; and d,

of the network relaxation spectrum. (c) The G at 95°C and 1073 /s was used to fit the thermal activation parameter A for network relaxation. The
model was used to predict G at the lower strain rates 10~* /s and 10~ /s for model validation.
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Figure 11: Uniaxial compression response of polycarbonate at 15 °C, 37 °C and 95 °C for different strain rates: (a)10~/s (b) 10™*/s and (c) 10~%/s.
In general, the modeling resuls showed good agreement with experimental measurements of the uniaxial compression stress response for a wide
range of temperatures and strain rates.

the 4 strains were fit to plots of In (1 JvN ) as a function of the backstress for the different strains and strain rates (Fig.
9¢). The exponent m was determined from the slope of a line fit to a plot of C (&) —In (¢ — @) as a function of Inc.
(Fig. 9d). The initial chain orientation angle o = 0.616 rad was calculated from the geometry of the 8-chain unit
cube, and the critical chain orientation angle for the cessation of network relaxation was set to o, = 0.05 rad so that
the corresponding 176.5 % critical strain was significantly greater than applied in the uniaxial compression test.

We assumed for simplicity that the network relaxation spectrum (Fig. 10a) can be approximated by scaling the
stress relaxation spectrum, such that ‘L'f,j = d11§ ~and ujback =d, “;?eq. The scaling factors d; and d> were fit to the
Gaussian hardening modulus Gy, of the stress response at 37°C for the 3 strain rates (Fig. 10a). The Gg was determined
as the slope of the stress plotted against the Gaussian hardening function g(1) = (1 /A —/’Lz) in the linear range
g(A) =1.41to0 1.7 (Fig. 8a). The activation energy A = 6949.5 K for the network viscosity was fit to Gg measured
at 95 °C for the 1073 /s strain rate (Fig. 10b). For 95 °C, the Gaussian hardening region extended over the range
g(A) =1.1to 1.5 (Fig. 8b). Finally, the limiting stretch A;, was determined from the strain at which the hardening
stress responses transition from Gaussian hardening to a more nonlinear hardening.

4. Results

4.1. Uniaxial Compression

The uniaxial compression stress response at 15 °C, 37 °C and 95 °C are plotted in Fig. 11 for the different strain
rates comparing the experimental data and modeling results. The stress response at 15 °C and for the lower strain
rates 107> /s and 10~* /s at 95 °C were not used to fit the model parameters. The model was able to capture the major
features of the different regions of the average stress-strain response, including the rate-dependence and temperature-
dependence of the yield peak, post-yield strain-softening and strain hardening. The model predictions for the Gaussian
hardening modulus at 95 °C for the lower strain rates 1073 /s and 10~* /s were within 10 % of the experimental (Fig.
10c).

The model was applied to simulate the load-unload-reload uniaxial compression experiments at 27°C at 10~3/s and
10~%/s (Fig. 12) to further test the predictive capability of the model. A single sample was tested at each strain rate.
As observed in experiments, the model exhibited strain recovery during unloading, which caused the reloading curve
to be on the left of the unloading curve. The reloading stress response experienced yielding at the maximum stress
before unloading, no post-yield stress drop because of mechanical rejuvenation, and a stiffer strain-hardening response
that followed the hardening response of a specimen continuously loaded to the same total strain [42]. The model
predicted a smaller strain recovery response during unloading, but otherwise showed good quantitative agreement
with experiments for the 1073/s data. The stress response for the 10™#/s strain rate experienced a sudden drop in
the stress response before unloading, which led to large quantitative differences between the model and experimental
results. However, the reloading stress response exhibited the same strain hardening modulus as the experiments.
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Figure 12: Loading-unloading-reloading response of polycarbonate specimens deformed at room temperature (27°C) and engineering strain rates
of (a)1073/s and (b) 10#/s. The yield and post-yield stress response follows that of a specimen continuously deformed to the same total strain.

4.1.1. Parameter Study

We investigate the effects of the parameters of the network relaxation model in eq. (44) on the strain-hardening
response. The activation temperature A controls the temperature dependence of strain hardening. To examine its ef-
fects, we compared the Gaussian hardening modulus for A = 6154.3K and A = 10000K (Fig. 13(a)). A larger value
of A resulted in a larger hardening modulus and a stronger temperature dependence. We also compared the Gaussian
hardening modulus for Vs = 6651 cm?/mol and Vs = 1474 cm? /mol for the same range of temperatures and strain
rates (Fig. 13b). Decreasing the activation volume resulted in a larger hardening modulus and stronger strain rate
dependence. The power-law exponent m describes the degree in which molecular orientation increases the resistance
to network relaxation. A higher m produced a stiffer and more nonlinear hardening response (Fig. 13c). The parame-
ter A;, determines the nonlinear stiffening of the rate-independent backstress response at large strains. Decreasing A,
decreased the transition strain between Gaussian and non-Gaussian hardening (Fig. 13d), which produced a stronger
strain-stiffening effect after the transition strain but otherwise did not affect the strain-stiffening response in the Gaus-
sian hardening region. The parameter d; describes the reference viscosity. Increasing d; increases the stress response
slightly in both Gaussian hardening region and non-Gaussian hardening region.

21



40 . . . : 25 . 200
3L T~ T
s S~ £ 20
s -~ = 5150}

30 ~ o
ES S~a é 15 =
3 T~ g1 2
Sa5) ~o 2 3100 -
2 gor ®
c20r & 2
S ° =
5] S 5| 50
T {5} T —_—=T

= = = = = = = = ff]l = - = - - - =-m=1491
S R CETEH m = 30
10 . . . . . . 0 ” s 0 | | | T
30 40 5 60 70 8 9 100 10 10 10 0 0.2 0.4 0.6 0.8 1
Temperature ('C) Strain Rate (s") True Strain In(\)
(a) (b) (c)
120 120 T T T T

© <
o o
= =
12 1]
7] 7]
o [}
2 2
= =

—d; = 539510

20 - -d; =5.39%10712

----- dy =5.39%107

0 . . . : 0
0 05 1 15 2 25 0 02 04 0.6 08 1
1//\-)\2 True Strain In(\)
d (e)

Figure 13: Effects of parameters that control the temperature, strain rate and strain state dependence of hardening (a) Hardening modulus at 37°C
and 95°C with strain rate of 1073/s, for A = 6949.5K and A = 10000K respectively. (b) Hardening modulus at 10=3/s, 10~*/s and 10~/s with
temperature of 37°C, for Vs = 1474cm?® /mol and Vs = 6651cm? /mol respectively. (c) Stress response at 95°C and 1073/s, for m =7, m = 14.91
and m = 30 respectively. (d). Stress response at 37 °C and 10_3/5, for A, = 1.41, A, = 1.6, A1, = 1.8 respectively. (e). Stress response at 37 °C and
1073/s, for d1=5.39 x 10~ d;=5.39 x 10712, d;=5.39 x 10~!3 respectively
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4.2. Peel Simulation
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Figure 14: Uniaxial compression strain stress curves of material properties investigated in this section, 37°C 0.001/s true strain rate.

The effective temperature model and parameters determined for the polycarbonate material in Table 2 were applied
to study for the effects of the post-yield stress drop and hardening modulus on 90° peeling of a single 3D-printed fiber
from a rigid substrate. The uniaxial compression stress response corresponding to the different cases are shown in Fig.
14. The annealing time was varied in the simulation of the specimen before mechanical loading to vary the ratio of the
peek stress to draw stress from 1 to 1.89. The post-yield stress drop for the highest ratio was 40 MPa larger than the
lowest ratio. The parameters of the network relaxation were varied (Sec. 2.2.7) to produce a range of the hardening
modulus normalized by the draw stress from 0.13 to 0.57.

The steady-state peel energy (Fig. 15(a)), intrinsic viscoplastic dissipation, viscoplastic dissipation from bending,
and the rate of stored mechanical energy (Fig. 15(b)) decreased significantly with increasing ratio of the peak yield
stress to the draw stress. Post-yield soften promotes localization of the plastic zone; thus a material with a greater
post-yield stress drop exhibit a smaller plastic zone around the crack tip and at near the upper surface of the 90° bend
(Fig. 17), which leads to a smaller intrinsic dissipation rate, bending dissipation rate, and stored mechanical energy
release rate.

Increasing the ratio of the hardening modulus to the draw stress from 0.13 to 0.57 produced a small increase
the tear energy from 1.49 @ to 1.51 &, where @ is the cohesive energy (Fig. 15(a)). For the parameters of the
study, the maximum principle Euler-Almansi (true) strain in plastic zone was less than 15% for all cases (Fig. 16(c)),
which corresponds to the post-yield stress drop in the viscoplastic stress response. Hardening develops at higher
strains, near 30 % true strain. Thus, the mechanical behavior in front of the crack tip was dominated by post-yield
softening response (Fig. 14) rather than strain hardening. This result was consistent with the findings of Tvergaard and
coworkers [63] that the steady state mode 1 fracture toughness do not depend significantly on the hardening modulus
when T,"** / 6,; was not significantly larger than 1.

5. Discussion

We developed an effective temperature theory for the viscoplastic behavior of glassy polymers by incorporating
the effects of kinematic hardening and relaxation of the hardening stress. The new theory inherits the ability of
the original effective temperature theory of Xiao and Nguyen [19, 64] to accurately describe the rate-dependent and
temperature-dependent yield and post-yield softening over a wide range of temperatures, including the glass transition
region, the effects of physical aging and mechanical rejuvenation on the post-yield softening response, and the plastic
heating deficit [21, 19]. The introduction of a viscoplatic backstress with a spectrum of relaxation processes allowed
the new theory to capture the temperature-dependent and rate-dependent strain hardening behavior at larger strains.
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Figure 15: The steady-state (a) peel energy F, (b) rate of intrinsic viscoplastic dissipation D™", rate of viscoplastic dissipation caused by bending
DP"d and rate of stored mechanical energy Y .10t normalized by the cohesive energy ® for different ratios of peak stresses to draw stress. A
larger ratio of the peak stress to draw stress produced a smaller normalized peel energy F/®, and smaller normalized intrinsic dissipation, bending
dissipation and stored mechanical release rate.

The kinematic hardening formulation also allowed the model to accurately predict the viscoplastic behavior of a cold-
worked (plastically pre-deformed) material, including the greater yield strength and hardening modulus. The model
also captured the Bauschinger effect under a fully reversed strains and the development of an anisotropic yield stress
and strain hardening response in a cold-worked material. The result is a predictive modeling tool for applications
that involve large plastic deformation and a wide temperature range spanning the glass transition, such as traditional
polymer processing, melt extrusion additive manufacturing, and fracture.

The network relaxation mechanism was introduced previously by Dupaix and Boyce [39] to capture the temperature-
dependence, rate-dependence and strain-dependence of the post-yield hardening response. The network deformation
and relaxation mechanism in the Dupaix and Boyce model acted in parallel with the mechanism for local segmental
rearrangement that produced yielding and post-yield softening (Fig. 1c). We took an alternate approach and incor-
porated network deformation and relaxation as a viscoplastic backstress (Fig. 1d). This allows the model to capture
the effects of the plastic pre-deformation history on the yield and post-yield hardening stress response. The same ap-
proach was used in the original elastic hardening model of Haward and Thackray [25] and Arruda and Boyce [41], and
the viscoplastic hardening model of Hempel [40]. Compared to the model of Hempel [40], the present multi-process
model incorporates the effect of the broad distribution of stress and structural relaxation times. More importantly, the
effective temperature thermodynamic framework allows the model to describe the effects of plastic pre-deformation
(mechanical rejuvenation) and aging on the yield stress and post-yield stress-drop.

The effective temperature viscoplastic model was applied to characterize the thermomechanical properties of a
polycarbonate fiber used for FFF, a melt extrusion polymer additive manufacturing process, and to investigate the
effects of the viscoplastic material behavior on peel tests of a single FFF printed fiber. The effect of viscoelasticity,
plastic yield stress and hardening modulus have been examined widely in the literature for the cohesive failure of bulk
materials and interfacial failure of thin films. In bulk materials, hardening prohibits plastic localization resulting in
a more ductile failure process. In peel tests, plasticity increases the peel energy but the effect of hardening modulus
is dependent on the cohesive energy and the cohesive strength relative to the yield strength of the bulk material
[59, 60, 65]. We found that for the properties of the polycarbonate filament, the strain hardening response had a small
effect on the peel energy, viscoplastic dissipation rate and rate of stored energy of viscoplastic work. Increasing the
hardening modulus by a factor of 4.3 increased the peel energy by 1.3%. This was consistent with finite element
analysis study of peeling of a power-law hardening material by Georgiou et. al. [65] that found a small effect of
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Figure 16: The steady-state (a) peel energy F, (b) rate of intrinsic viscoplastic dissipation D™", rate of viscoplastic dissipation caused by bending
DPe" and rate of stored mechanical energy W n.10r normalized by the cohesive energy @ for different ratios of hardening modulus H to the draw
stress. (c) Contour of maximum principle Green-Lagrange strain around crack tip, showing that the maximum strain did not exceed 15 %. Strain
hardening is negligible at these strain levels, and the hardening modulus A does has a small effect on the peel energy, rate of viscoplastic dissipation
and rate of mechanical stored energy.
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Figure 17: The contour of the plastic dissipation W/ +W* (eqn. 50) at steady-state around crack tip for the case (a). 0,/04 = 1.89, and the case
(b). 6,/04 = 1. The larger post-yield stress drop caused the plastic deformation to localize into a smaller zone ahead of the crack tip.

hardening. This trend might be sensitive to the magnitude of cohesive energy and maximum tractions in the cohesive
zone model.

In contrast, the post-yield softening response had a significant effect on the peel energy and its contributions from
viscoplastic dissipation and stored viscoplastic energy. The highest peel energy was obtained for a material behavior
with no post-yield softening, and a smaller peel energy was obtained for a larger post-yield stress drop. Post-yield
softening inhibited plastic dissipation and promoted increasingly localized plastic deformation. These results were
consistent with the fact that physical aging embrittles glassy polymers [66, 67]. Moreover, polymers that exhibit a
larger post-yield softening than hardening, such as polystyrene, exhibit brittle failure [68].

We are currently applying the findings of the peel simulation to design a peel test of a single FFF printed polycar-
bonate fiber to measure the effect of the printing history on the fiber-fiber welds. Among the main takeaways of the
results is that the time in between printing and peel testing and the temperature variations during that storage time may
be a significant source of variability in the measured peel force. In the future, we plan to fit the cohesive parameters
from the experiment and provide a quantitative comparison on the effect of the printing conditions on the fracture
energy of the printed welds.

The model presented here has a number of limitations. The model does not capture the effects of the hydrostatic
pressure on the yield strength. It is well known that the yielding of glassy polymers is pressure dependent. For
example, Spitzig and Richmond [69] showed that an applied confining pressure of 1104 MPa increases the yielding
stress of polycarbonate from 64 MPa to 209 MPa. However, we don’t expect such extreme hydrostatic pressures for
the applications of filament deposition after melt extrusion. For uniaxial tension, the yield strength in compression
is only 20% higher than in tension for polycarbonate [69]. Therefore, we did not include the effect of pressure in
our model. However, this feature can be incorporated into the model by adding a pressure dependent term in V, the
activation volume for the viscous flow. The parameter can be fit to the asymmetry between the tension and compression
stress-strain response.

We neglected the spatial conduction of the effective temperature for simulating the uniaxial compression tests
and peel tests. We made the assumption because the configurational subsystems are slow to relax near T, and are
effectively frozen below the glass transition. Thus, the characteristic time for the disorder to diffuse becomes very
long near T,. However, this assumption preludes the model from capturing certain phenomena with a high gradient of
plastic strain, such as the diffusive widening of shear bands [48]. For more discussion on the conduction of effective
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temperature and its boundary conditions, the readers are referred to Manning et al. [70] and Bouchbinder and Langer
[71].

For simplicity, we neglected the energy interactions between the configurational subsystems and assumed that the
configurational properties, e,g. heat capacity, all had the same distribution over the Q configurational subsystems.
The stress and structural relaxation processes were assumed to share the same dependence on the temperature and
nonequilibrium structure. We have validated this assumption experimentally for a family of acrylate thermosets [19],
but the assumptions need to be examined for a wider range of thermosets and thermoplastics.

In developing the model, we assumed that the internal elastic deformation gradients F¢ and F"¢ are coaxial, such
that the nonequlibrium stress tensor TVF€ and the backstress tensor are coaxial. This simplified the numerical im-
plementation of the model, but placed a severe restriction on the inelastic rotations, which may lead to unrealistic
predictions for deformation states involving large rotations, such as simple shear. In future work, we plan to develop
a more generalized model without these restrictions and associated numerical implementation that involves numerical
integration of the full inelastic deformation tensor, see for example the work by Dettmer and Reese [72], and evaluate
the errors introduced by this assumption.

We a applied a phenomenological model for the relaxation of the kinematic backstress, where the nonequilibrium
configurational structure does not affect viscous resistance to kinematic hardening and kinematic hardening does not
affect the evolution of the configurational structure (i.e., effective temperatures). Incorporating the dependence of the
configuration structure in the viscous resistance to kinematic hardening produced a rate-dependence of strain hardening
that was opposite to experimental observation. In the effective temperature theory, the evolution of the effective
temperature approaches a stable nonequilibrium state after the post-yield stress drop, where the effect of mechanical
rejuvenation from plastic work balances the structural relaxation process [64]. Without hardening, this would result
in a stable draw stress. However, it is unclear if the molecular orientation achieved by the large plastic deformation
process affects the configurational entropy and properties of the configurational subsystem. The large molecular
orientation may also affect the viscous resistance to local segmental motion, which was not considered in the present
work. The temperature dependence of the strain hardening response was achieved through the Arrhenius function and
the activation energy A, which does not have a clear physical significance. Finally, we assumed that the relaxation
spectrum for the hardening stress can be obtained through vertical and horizontal scaling of the stress relaxation
spectrum. This assumption greatly simplified the parameter determination process and it seems to be appropriate
based on the model’s performance in describing the uniaxial compression stress response of polycarbonate. However,
a more accurate method is needed to the characterize the network relaxation mechanism.

6. Conclusions

In conclusion, we developed an effective temperature theory model for the viscoplastic behavior of glassy polymers
with strain hardening that incorporates a broad spectrum of structural relaxation, stress relaxation, and relaxation of
the backstress. The model can capture a wide range of nonequilibrium behaviors including the rate-dependent yield,
post-yield softening, and strain harding response over a wide range of temperatures; the effects of physical aging
and mechanical rejuvenation on the post-yield softening response and the stress response upon reloading. The model
was calibrated for a polycarbonate material for FFF additive manufacturing and applied to investigate the effects of
the post-yield stress drop and hardening modulus on the peel energy and associated viscoplastic dissipation. The
simulations showed that a larger post-yield stress drop inhibits plastic deformation and decreased the peel energy
while the hardening modulus had little effect on plastic dissipation and the peel energy.

Appendix A. Kinetic vs. configurational contributions of the network resistance

This section examines the effects of replacing the Arrhenius model for the temperature-dependence of the network
viscosities in eq. (44) with the Adam-Gibbs model for the temperature-dependence and structure-dependence:
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Figure A.18: Incorporating the Adam-Gibbs model for the temperature-dependence and structure-dependence of the viscous resistance to network
deformation and simulating the uniaxial compression response at 95 °C, comparing the (a) evolution of configurational entropy, (b) evolution of
viscous resistance to network deformation and (c) stress-strain curves for two strain rates, 10~2/s and 10~3/s. Incorporating the configurational
structure led to a smaller hardening at the higher strain rate, which is opposite from experiments.

where BV is the activation energy analogous to B in eq. (43). The model was applied to simulate uniaxial com-
pression at 95 °C and two strain rates, 0.01/s and 0.001/s, to determine effects of the structural dependence on the
rate-dependence of the hardening modulus. Upon yielding, mechanical rejuvenation from the disordering effects of
the viscoplastic dissipation caused the configurational entropy to increase to a steady-state value. The larger strain
rate imparted a greater disordering effect and higher steady-state configurational entropy (Fig. A.18a), which led to a
more mobile chains and lower network viscosity (Fig. A.18b). This caused the hardening modulus to be smaller at the
higher strain rate, which was the opposite observed in experiments.

As aresults, we decided to omit the dependence of the v;v on the configurational structure, which made the network
relaxation mechanism and the backstress independent of the effective temperatures. Configurational contributions of
the network resistance can affect the evolution of the effective temperatures, but have little effects on the hardening
stress response. This is demonstrated in Fig. A.19, where we simulated the uniaxial compression response at 95° d
engineering strain rate of 3 x 10~#/s. The contributions of network resistance were either all assigned in the kin ic
subsystem, which gives eq. (37) for T in the present model, or all assigned in the configurational subsystems, which
would add to eq. (38) for 7. The stress response for both cases were nearly identical (Fig. A.19), we assumed pure
kinem ontributions.
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Appendix B. Parameter Determination

Appendix B.1. Determining the stress relaxation spectrum

We applied the method developed by Xiao and Nguyen [18] to determine relaxation spectrum (‘L’é’:/’ u;?eq) of the

undeformed material F = I in equilibrium at T = T, = T,. From eq. (43), we can express the stress relaxation times
at any temperature 7 in terms of ’L’é’f,

B B vis vis
=158 - 2 [sinh(-5-)] 7L B.1
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Here 1€ can be evaluated from eq. (15) as,
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The 75,4 and ,u;'eq were determined from the master curve of storage modulus. The storage modulus measured
at different temperatures was plotted on a log-log scale in Fig. 6a and shifted horizontally to a reference temperature
Tp = 143°C to form the master curve for the frequency-dependence of the storage modulus as shown in Fig. 6b. We
determined the temperature range of the glass transition region by finding the range of the shift factor ar (T') that
can be fitted to the WLF function (Fig. B.20). This gave T, = 110°C for the onset temperature and C? =9.7136 and
CY = 65.572K at reference temperature.

We developed a second-order approximation method based on Schwarzl and Staverman [73] to determine the
discrete relaxation spectrum [62]. We first used a polynomial function denoted as log G’ = fy(log ) to fit the master
curve in Fig. 6b, where G’ is the storage modulus and @ represents the angular frequency. The relation between
relaxation modulus and a continuous relaxation spectrum was defined as [47],

G(r) = ueq—k/ h(v)e v'dv, (B.3)
0
where h(V) is the continuous relaxation spectrum. The cumulative relaxation spectrum is defined from A (V) as,

H(v) = /0 " h(2)dz. (B4)
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Figure B.20: The WLF function was fit to the temperature-dependent shift factor ar (T'). The onset T, = 110 °C was determined from the lowest
temperature for which WLF can be fitted to ar.

Evaluating h(V) requires inverting the integral equation (B.3) which can be challenging. A number of approximations
have been developed. In particular, we used a second-order accurate approximation developed by Schwarzl and
Staverman [73],
h(v) = Y26/ (0)[d1og G’ /dlog & — 1 (dlog G' /dlog w)*
—ﬁdz log G’ /d(log )?] |w=ﬁv'
Applying the polynomial fit to eqs. (B.5) and (B.4), we can calculate the continuous relaxation spectrum and cumula-
tive distribution from polynomial function fj as,

(B.5)
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The relaxation modulus of the discrete model can be written as,
Gise(t) = fq+2u”eq exp(—1V;). (B.8)

The discrete cumulative spectrum can be evaluated by combining egs. (B.3), (B.4) and (B.8) as,
Hyise(V Zu"eq v—v) —pe, (B.9)

where <>l denotes a step function. We then assume a power law distribution for the relaxation frequencies,
Yo\ U=D/(P=1)
VO — 0 ( max) , (B.10)

where V0 and vI?un are the maximum and minimum of relaxation frequencies and are selected based on the frequency
range of the master curve. Finally, the nonequilibrium moduli ,u;wq corresponding to the relaxation frequencies v}) were

determined from the continuous cumulative distribution as follows [74, 46],

s = (D) +HO),
uit =3 (H(V?+1) H(VI ), 1<j<P-1,
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(B.11)
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The stress relaxation time 78 s; can be evaluated from v}),

8 —lex( B B ) (B.12)
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neq

Fig. 7a plots the stress relaxation spectrum (’L‘S o ) with P = 20 processes determined as described above. The

spectrum was applied to evaluate the storage modulus of the discrete model,

P Eneq
E'( E€q+2 /v ; (B.13)
1+ 02/ (V0

The results shown in Fig. B.21 show excellent agreement with the measured master curve.
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Figure B.21: Comparison of the experimentally measured master curves and the fit of the discrete model.

Appendix B.2. Determining the structural relaxation spectrum and heat capacities
Similar to Sec. Appendix B.1, we aimed to determine ‘L',%i, which is the structural relaxation time at glass transition

temperature and no deformation, in this subsection. And from eq.(45), the structural relaxation time in the general

case can be expressed as,
B

B
n(T,;,C)  Tyn(Ty,1)
To determine the structural ’L‘f’éi and ¢;, we first assumed that the structural relaxation spectrum can be described by

the Kohlrausch-Williams-Watts (KWW) model [18, 19] and then discretize this continuous spectrum to get Tlge,- and ¢;.
The KWW model can be expressed as infinite series [75],

TR, = Tr,% exp( ). (B.14)
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where J is the characteristic structural relaxation time, 0 < 8 < 1 represents the breadth of the structural relaxation
spectrum and I'() is the gamma function. We also assumed a power law distribution for discrete structural relaxation

times,
o\ =D/
Tp = Tm( max) : (B.16)

Tmin

31



The discrete structural relaxation spectrum were determined by a stepwise approximation of the cumulative relaxation
spectrum Hgww (T) = o hxww (1)dt as,

o1 = 5 (Hiww (T, ) + Hrww (T%R,)),
o= E(Hwa(TgR,-H) _HKWW(TgRi—l))’l <i<@-1,

0-1
po=1-% ¢

(B.17)

We simulated the DSC experiments using the method in 2.2.5 and tuned the characteristic time } = 5000s and breadth
B = 0.30 to fit the position, width and height of the DSC endothermic overshoot (Fig. B.22)).
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Figure B.22: Comparison between the measured and model predicted DSC response.

The coefficients for heat capacities can be obtained through linear fits of the DSC curve in different temperature
ranges. Specifically, the kinetic components c o and ¢, were determined from a linear fit of the DSC curve from 40°C
to 60°C, while the heat capacity for the whole system was determined from a linear fit of the DSC curve from 130°C

to 150°C. Subtracting the kinetic components from the heat capacity of the whole system gives the configurational
components of heat capacity Acg and Ac;.
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