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We describe a technique for self consistently characterizing both the quantum state of a single-
qubit system, and the positive-operator-valued measure (POVM) that describes measurements on
the system. The method works with only ten measurements. We assume that a series of unitary
transformations performed on the quantum state are fully known, while making minimal assumptions
about both the density operator of the state and the POVM. The technique returns maximum-likely
estimates of both the density operator and the POVM. To experimentally demonstrate the method,
we perform reconstructions of over 300 state-measurement pairs and compare them to their expected
density operators and POVMs. We find that 95% of the reconstructed POVMs have fidelities of
0.98 or greater, and 92% of the density operators have fidelities that are 0.98 or greater.

I. INTRODUCTION

Quantum tomography is an important tool for char-
acterizing quantum systems and is useful for a diverse
range of quantum information processing applications. It
is useful not only for characterizing quantum gates [1, 2],
but also for tasks such as detecting errors in quantum
key distribution [3, 4] and quantifying the randomness
or privacy of quantum-random-number generators [5, 6].
Quantum-state tomography (QST) estimates the den-

sity operator of an unknown quantum state by perform-
ing a series of measurements with well calibrated detec-
tors [7–10]. Quantum-detector tomography (QDT) es-
timates the positive-operator-valued measure (POVM)
that describes a detector, by probing it with a series of
well characterized quantum states [11–13]. In quantum
process tomography (QPT) the properties of an opera-
tion that is applied to a state is characterized by operat-
ing on known states and performing QST on the outputs
[14–16].
Additionally, there exist techniques for self-

consistently determining an unknown state and an
unknown measurement POVM, if one has some known
state preparations or measurements available. For
example, it is possible to use known states to calibrate
detector POVMs, which are then used for QST [17].
Another option is to use a single, well-characterized
state and a limited number of high-fidelity unitary op-
erations [18]. In data-pattern tomography one measures
outcomes (data patterns) for known states, and then
matches them to outcomes for unknown states [19–21].
The use of self-calibrating states is a further option
[22]. Using somewhat different assumptions, Stark has
shown that the state and measurement operators can be
determined if one has a large set of state preparations
and projective measurements (not more general POVMs)
that are globally complete [23].
There are some techniques for self-consistently de-

termining the state and/or the POVM if there are no
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known states or POVMs. It is possible to perform self-
characterization of quantum detectors without the need
to know any states [24]. Gate-set tomography (GST) is a
very general technique, where not only are the state and
the POVM determined, but so are the operators describ-
ing a series of gate operations that are applied between
the state and the measurement [1, 25–27]. Operational
tomography accomplishes what GST does while using a
Bayesian framework [28].

Here we describe a technique for self-consistently esti-
mating both the state of a single qubit, and the parame-
ters of a POVM that describes a detector, while attempt-
ing to minimize assumptions made about the state and
the POVM. Our technique is similar to that of Ref. [18]
in that we assume that we can perform known unitary
transformations between the state preparations and the
measurements. Our technique differs from that of Ref.
[18] in that we do not require any known state prepara-
tions.

The assumption that the transformations are known
will not be valid in all situations. But it is valid if the
transformations can be calibrated using a bright, classi-
cal source and a classical detector, and this is the case for
the polarization transformations in our experiments (see
Appendix A). Indeed, in optical quantum information
processing applications it is often the case that unitary
transformations can be calibrated classically. For exam-
ple, it is possible to implement an arbitrary linear trans-
formation of optical modes by using an array of 2x2 beam
splitters and phase shifters [29, 30], and these transforma-
tions are now frequently implemented using photonic in-
tegrated circuits (PICs) [31–33]. Such circuits have been
used to perform Boson sampling [34], teleportation [35],
quantum state synthesis [36], quantum simulation [37],
and quantum logic operations [31]. PICs are often char-
acterized using classical optics [32, 35, 38].

Both self-characterization and GST are more general
than our technique, in that they do not require known
transformations [24, 25]. However, because of this they
require more measurements. Fifty probe states were used
in Ref. [24] to self-characterize the detectors, while GST
requires at least 56 measurements. The technique we de-
scribe here uses 10 measurements to determine both the
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density operator and the POVM describing a single-qubit
system. This smaller number of measurements offers an
advantage, even if only in time saved, to experimentalists
interested in performing these types of experiments. As
is the case with most other self-consistent tomography
methods, the state and POVM are determined to within
a choice of gauge [24, 25, 39]. We note that operational
tomography can eliminate the need to choose a gauge,
but requires some a priori knowledge of the system [28].

II. THEORY

A. Operators and probabilities

Suppose we have a qubit that is prepared in a state
described by the density operator ρ̂, which can be ex-
pressed in terms of the Pauli matrices σ̂i (i = 1,2,3) and

the identity operator 1̂ as

ρ̂ =
1

2

(

1̂ +

3
∑

i=1

piσ̂i

)

. (1)

The parameters that describe ρ̂ can be arranged into a
3-component vector ~p, whose magnitude is p. Further-
more, we have a two-outcome POVM described by the

operators
{

Π̂1, Π̂2

}

, These operators can be written in

terms of a 3-component vector ~w (magnitude w) and a
bias parameter u as [39]

Π̂1 =
1

2

[

(1 + u) 1̂ +

3
∑

i=1

wiσ̂i

]

, (2a)

Π̂2 =
1

2

[

(1− u) 1̂−

3
∑

i=1

wiσ̂i

]

. (2b)

These satisfy the constraint on two-outcome POVMs,
Π̂1 + Π̂2 = 1̂. Positivity is ensured by the constraints
p ≤ 1 and w + |u| ≤ 1.

As shown in Fig. 1, we define the vector ~k(θ, φ) to
make an angle of θ from the 2-axis in the Bloch sphere,
and its projection onto the plane perpendicular to this
axis to make an angle of φ from the 3-axis [40]. With

this convention, ~k is given by

~k =





k1
k2
k3



 =





sin (θ) sin (φ)
cos (θ)

sin (θ) cos (φ)



 . (3)

Rotations in the Bloch sphere are given by unitary trans-

formations Ũj = Ũ
[

~k(θj , φj), ϕj

]

that are performed be-

tween the state preparation and the measurement. Here
j labels the device settings, and we use the tilde to de-
note a 3x3 matrix. This transformation rotates ~p in the

Bloch sphere by an angle ϕj about the axis ~k(θj , φj), and

(a) (b)

p

kk

FIG. 1. (a) The rotation axis ~k (red) is described in the Bloch
sphere by a polar angle θ, and an azimuthal angle φ. Since in
our experiments we use the polarization of individual photons
as qubits, we take the 1-axis to correspond to |+45〉, the 2-
axis to correspond to |R〉, and the 3-axis to correspond to |H〉.
(b) A vector that describes the polarization state ~p (blue) is
rotated by an angle ϕ about the rotation axis.

transforms it into ~pj ′: ~pj ′ = Ũj~p. This transformation

is equivalent to ρ̂j
′ = Ûj ρ̂, where Ûj is the Hilbert-space

operator that corresponds to the Bloch-sphere rotation
Ũj.
After such a transformation, the probability that a

photon will be detected on detector 1, P1,j , is

P1,j = Tr
(

Π̂1ρ̂j
′

)

=
1

2

[

(1 + u) + ~w · ~pj ′
]

=
1

2

[

(1 + u) + ~w · Ũj~p
]

.

(4)

Similarly, we have

P2,j =
1

2

[

(1− u)− ~w · Ũj~p
]

. (5)

Assigning a value of +1 to a detection at 1 and −1 to a
detection at 2, we can use Eqs. (4) and (5) to write the
expectation value of a measurement as

Ej = P1,j − P2,j = u+ ~w · Ũj~p. (6)

To distinguish experimentally measured and theoreti-
cally predicted probabilities, we will use Pi,j to represent
the theoretical probability of detection on detector i for
setting j [Eqs. (4) and (5)], and fi,j to represent the
corresponding experimentally measured fraction.

B. Self-consistent tomography

Our goal is to determine, in a self-consistent manner,
the parameters ~p, ~w and u that determine the state and
the POVMs. They are determined by applying a set
of transformations Ũj and experimentally measuring the
fractions fi,j . An initial solution is obtained by substi-
tuting fi,j for Pi,j in Eq. (6) and solving for ~p, ~w and
u.
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Equation (6) is nonlinear in the components of ~p and
~w, but if we define the products of these components as
xij = piwj (i, j = 1, 2, 3) Eq. (6) is linear in u and the
nine different xij ’s. If we make ten measurements we
can solve ten linear equations in these ten unknowns to
determine a solution for u and the xij ’s. Details of how
we do this are given in Appendix B.
As is well described in Ref. [25], self-consistent to-

mography techniques determine the parameters that de-
scribe the state and the measurements to within a choice
of gauge. State and measurement operators expressed
in different gauges are equivalent, and every observable
probability is identical. Each gauge, therefore, corre-
sponds to an arbitrary “reference frame” that one must
use to express the operators mathematically [24, 25]. For
example, by examining Eqs. (4) and (5) we see that if
we simultaneously make the substitutions ~w → −~w and
~p → −~p, the probabilities are unchanged. As such, the
two solutions (~w, ~p) and (−~w,−~p) are equivalent, but rep-
resent different gauges and we must choose one. Physi-
cally, what does this choice of gauge represent? Changing
the sign of ~p, for example, would change the polarization
state |H〉 → |V 〉. For photons this choice of gauge effec-
tively defines what we mean by “horizontal” and “verti-
cal”.
Next, recall that positivity places the constraints p ≤ 1

and w ≤ 1− |u|. Furthermore, if Ũ1 = 1̃, for example,
we can rewrite Eq. (6) as ~w · ~p = wp cos(β) = E1 − u,
where β is the angle between ~w and ~p. From this we see
that the measured expectation values (probabilities) de-
termine the product of the magnitudes of ~p and ~w, but
cannot determine their individual magnitudes because of
a gauge degree of freedom. Physically, this gauge choice
trades off between the purity of the state and the dis-
crimination power of the detector. Because of this, in
the reconstructions presented below we choose the gauge
where w = 1− |u|, and this choice then determines p.
This choice is motivated by the design of our experi-
ment, where we expect that the bias parameter is the
only thing that degrades the discriminating power of the
detector [41].
The solution to the 10 linear equations, as described in

Appendix B, determines u, which, given the discussion
above, determines w and p. What we now need to deter-
mine is the directions of ~w and ~p. Given the measured
values of the xij ’s, if we find pi, we could determine wj

from wj = xij/pi. However, this is problematic if pi is
0, or nearly so. Dividing by wj to find pi is similarly
problematic. To avoid this problem, we first find the
maximum of the xij ’s, which we refer to as

max xij = ximaxjmax
= pimax

wjmax
. (7)

With this definition, we can be confident that neither
pimax

nor wjmax
are nearly 0. We can then safely write

the wj ’s as

wj =
ximaxj

pimax

. (8)

To eliminate the pi’s, we can solve these equations to
write two of the wj ’s in terms of the third. For example,
suppose that the maximum xij is x23, so imax = 2 and
jmax = 3; then p2 = x23/w3 and

w1 =
x21

x23
w3 (9a)

w2 =
x22

x23
w3. (9b)

The w3 component is used to ensure that the magnitude
of ~w is consistent with our choice of gauge, and this de-
termines ~w. We can then solve for the components of ~p
using

pi =
xijmax

wjmax

. (10)

This completes the analytic solutions for u, ~p and ~w.
These solutions are used as the initial starting point for
a maximum-likelihood solution.
Before moving on, note that there are seven parame-

ters that determine u and the components of ~p and ~w.
In principle one should be able to find these parameters
with only 7 measurements. Indeed, we find that it is pos-
sible to do this for most states and POVMs. However,
there are certain special cases where a particular set of
7 measurements might not be enough. For example, as-
sume that ~p = (1, 0, 0) and ~w = (0, 1, 0). In this case
x12 = 1, and all other xij ’s are 0. In order to determine
u and all the xij ’s we need 10 measurements, and with
only 7 measurements x12 might not be determined. If
there are not too many 0’s in the components of ~p or
~w is is possible to determine them with only 7 measure-
ments, but in general we cannot assume that this will be
the case.

C. Maximum likelihood analysis

The expected probability of measuring a photon on
detector i for measurement setting j, Pi,j , is given in Eqs.
(4) and (5). The log-likelihood of obtaining a measured
fraction of photons on this detector, fi,j , is given by

L(f, P ) = log L(f, P ) =
∑

i,j

fi,j log(Pi,j) . (11)

Following Ref. [18], we maximize the likelihood func-
tion by alternating between QST and QDT. When per-
forming QST we hold the POVM fixed, and the density
operator is fixed while performing QDT.
For QST we use the RρR method [42, 43]. In this

method the density operator at iteration k+1 is written
in terms of the density operator at iteration k as

ρ̂(k+1) = R̂(k)ρ̂(k)R̂(k) , (12)
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where

R̂(k) =
∑

i,j

fi,j

P
(k)
i,j

Π̂i,j (13)

and Π̂i,j = Π̂iÛj. At each iteration the likelihood is guar-
anteed to increase, and the density operator is guaranteed
to remain positive. After each iteration we renormalize
the density operator.
For QDT we use the method of Lagrange multipliers

described in Refs. [12, 44]. The POVM in iteration k+1
is given by

Π̂
(k+1)
i = R̂

′(k)
i Π̂

(k)
i R̂

′(k)
i , (14)

where

R̂
′(k)
i =

∑

j

fi,j

P
(k)
i,j

(

∑

l

∑

m,n

fl,m

P
(k)
l,m

fl,n

P
(k)
l,n

ρ̂mΠ̂
(k)
l ρ̂n

)1/2

ρ̂j .

(15)

Here ρ̂j = Ûj ρ̂. Again, the likelihood is guaranteed to
increase after each iteration, and the POVM will always
be positive.
We use separate termination conditions for QST and

QDT, stopping when both conditions are reached. To
set the stopping point for QST, we follow the method of
Refs. [18, 43]. At each iteration we calculate Sρ, which
is an upper bound on the difference between the current
likelihood and the unknown maximum likelihood

L (ρ̂ML)− L (ρ̂k) ≤max
[

eigenvalues
(

R̂(k)
)]

−N

=Sρ.
(16)

Here ρ̂ML is the density operator at maximum likelihood
and N is the number of measurements, in our case 10.
To set the stopping point for QDT we use the Frobe-

nius norm of consecutive iterations of the POVM. At each
iteration, we calculate

∣

∣

∣

∣

∣

∣Π̂
(k)
1 − Π̂

(k+1)
1

∣

∣

∣

∣

∣

∣ = SΠ. (17)

We stop once both Sρ and SΠ are less than 10−5.
It would be possible to use other, possibly more effi-

cient, techniques for maximizing the likelihood. But we
have found that the technique we use works well, and
is more than efficient enough (the experimental data is
acquired in minutes, while the data analysis takes only
seconds).

D. Figures of merit

To compare the theoretically expected POVM (or
state) to that reconstructed by our technique we use the
fidelity F , which for two POVMs is given by [45, 46]

F =

[

Tr

(√

√

Π̂1Π̂2

√

Π̂1

)]2

Tr(Π̂1)Tr(Π̂2)
. (18)

The fidelity takes on values 0 ≤ F ≤ 1 , with F = 1
corresponding to Π̂1 = Π̂2 and F = 0 corresponding to
orthogonal operators. To compare density operators we
simply replace Π̂ by ρ̂.
The fidelity is a convenient figure of merit in that it is

a measure of how well the measured state agrees with the
expected state. However, one needs to trust one’s knowl-
edge of the expected state in order to have confidence
in the fidelity. As such, it is also convenient to have a
measure that does not depend on explicit knowledge of
the expected state. Here we use the total variation dis-
tance (TVD) to compare the experimentally measured
fractions fi,j to the probabilities returned by the fit to
the model, Pi,j [47]. The TVD is a measure of how close
the measured and modeled probabilities are, and it is
given by

TVD =
1

2

∑

i,j

|Pi,j − fi,j |. (19)

The TVD also has another useful property. Since it de-
pends only on measured and modeled probabilities, and
these are independent of the choice of gauge, the TVD is
gauge invariant. Any choice of gauge that we make will
not affect our determination of the TVD. However, there
is no well-motivated measure of fidelity that is gauge in-
variant [25]. As such, in our experiments we choose be-
tween the (~w, ~p) and (−~w,−~p) gauges by using the one
that maximizes the fidelity with the expected state [48].

E. Larger numbers of qubits

The potential exists for scaling this technique to larger
numbers of qubits. An efficient means for doing this is
as follows. Imagine a 2-qubit system with two detec-
tors. We can simply use the technique above to perform
detector tomography on each of the two detectors, even
without knowing the state. This requires 10 measure-
ments to be performed with each detector. We can then
use the reconstructed POVMs to perform QST on the
source. For a 2-qubit system, QST can be accomplished
with as few as 9 measurements [10]. As such, we can
self-consistently determine both the unknown state, and
both POVMs for a 2-qubit system, with ∼ 30 measure-
ments. Due to the gauge degrees of freedom, there are
4 possible state-POVM pairs that describe the system
(the continuous gauge degrees of freedom are also still
present).
Note, however, that if the source is in a Bell state,

for example, the marginal density operator for each indi-
vidual qubit is a perfectly random mixed state. In this
case all of the xij ’s are 0, and the technique described
above will not work. As such we need to use condi-
tional measurements on one qubit to project the other
qubit into a state that is not perfectly random. In this
way we can perform detector tomography on each detec-
tor. Note that conditional measurements are only needed
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if the marginal distributions for the one or both of the
qubits are perfectly random.
No knowledge of the underlying state is needed here.

For example, consider the Bell state

|φ+〉 =
1

2
(|H,H〉+ |V, V 〉) . (20)

A measurement of polarization on one of the photons
will project it onto some elliptical polarization state
|e1〉 = a|H〉+ beiφ|V 〉. This projects the other photon
into the polarization state |e2〉 = a|H〉+ be−iφ|V 〉 via
quantum steering. If measurements of the second pho-
ton are performed conditionally with the first, the second
photon will not be in a random mixed state, and it will
be possible to reconstruct both its state and the POVM
of the detector that performs measurements on it. If the
original beam is in a different Bell state then the sec-
ond photon will be projected into a different state, but it
will always be the case that it will not be in a perfectly
random mixed state.
For other more general two-qubit states whose

marginals are perfectly random, any conditional mea-
surement that projects the conditionally prepared state
into a state that is not perfectly random will suffice.
As long as there is some correlation between the qubits,
nearly any measurement should accomplish this.

III. EXPERIMENT

A. Apparatus

We use 5 mW of power from a 405 nm, single-frequency
laser diode to pump a 25 mm long, type-II, periodically-
polled, potassium titanyl phosphate (PPKTP) crystal.
This produces spontaneous-parametric-down conversion
at 810 nm, and we separate signal and idler beams with
a polarizing beam splitter (PBS). The idler beam is fo-
cused into a single-mode optical fiber, filtered by a 10 nm
bandwidth filter centered at 810 nm, and detected by a
single-photon-counting module (SPCM). Detection of an
idler photon heralds the production of a coincident, sin-
gle photon in the signal beam. For coincidence counting
we use a coincidence window of 3.2 ns on a commercial
time-to-digital converter, and we subtract the expected
accidental coincidences.
The signal beam is focused into a single-mode,

polarization-preserving optical fiber, and emerges as the
“Source in Fig. 2. Before being detected with SPCMs,
signal photons are also filtered with 10 nm bandwidth,
810 nm filters. The heralded signal photons produced
by our source have a measured degree of second-order
coherence g(2)(0) = 0.024 ± 0.002, so the signal beam
is well described by a single-photon state. Furthermore,
by blocking the signal beam we find that the ratio of
heralded background detections, including dark counts,
to heralded signal-photon detections is 0.0004. As such,

DaWP

PBS

Source

WP

Measurement

l/2

BDP

SBC

l/4 l/4

 

State Preparation

BDP

Db

LP

LP

jU
ɶ

FIG. 2. The experimental apparatus. The source consists of
heralded single photons emerging from a single-mode optical
fiber. BDP denotes a beam-displacing polarizer, λ/2 denotes
a half-wave plate, λ/4 denotes a quarter-wave plate, WP de-
notes optional half- and/or quarter-wave plates, SBC denotes
a Soleil-Babinet compensator, LP denotes a linear polarizer
and PBS denotes a polarizing beam splitter (a Rochon prism).
Light emerging from the LPs is wavelength filtered and cou-
pled into multi-mode optical fibers (not shown), which are
then coupled to single-photon-counting modules (labeled Da

and Db).

we conclude that background detections have a minimal
effect on our measurements.

Linearly-polarized photons from the source pass
through a half-wave plate that rotates their polarization.
These photons then pass through a beam-displacing po-
larizer (BDP) that spatially displaces the horizontal com-
ponent of the polarization from the vertical component;
the fraction of the horizontal and vertical components is
adjusted by the rotation angle of the half-wave plate. A
second BPD spatially recombines the beams, but the hor-
izontal component is delayed by a time longer than the
coherence time of the individual photons. This creates
an adjustable mixture of horizontal and vertical polar-
izations. Half- and/or quarter-wave plates placed after
the BDPs allow us to rotate the polarization, and create
any state of single-photon polarization. Likewise, half-
and/or quarter-wave plates in front of a PBS allow us to
perform measurements of any projection of the polariza-
tion.

In our data analysis we are able to model the POVMs
that describe our detectors in two different ways, and
we will present the results separately. In the first model
we treat the entire subsystem labeled “Measurement” in
Fig. 2 as a two-outcome POVM. We post select on coin-
cident detections between an idler photon, and a signal
photon at either Da or Db. In this model detection at
Da corresponds to Π̂1 and detection atDb corresponds to
Π̂2. We exclude events with heralded detections at both
Da and Db, which are small in number because of our
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low measured value of g(2)(0). As described above, back-
ground events are a small percentage of coincidence de-
tections, so the vast majority of our post-selected events
represent true signal-photon detections, and include only
a very small number of events where no photons were
present at Da or Db.

In order to treat the two detectors as corresponding to
different operators in a two-outcome POVM, it is neces-
sary for their corresponding values of u and ~w to be the
same. The use of a high-quality Rochon PBS (extinc-
tion ratio of > 104 for both polarizations) ensures that
the two detectors monitor orthogonal polarizations, thus
ensuring that ~w is the same. To ensure that u is the
same we need the detection efficiencies to be the same.
We do this by inserting linear polarizers after the PBS.
These allow us to adjust the amount of light hitting the
two detectors, and hence balance their their measured
count rates to within ∼ 3%. The advantage of this post-
selected detector model is that inefficiencies in detection
do not effect the POVMs.

In the second model, each detector is assigned its own
two-outcome POVM. For example, consider Da: Π̂1 cor-
responds to a coincident detection between the idler de-
tector and Da, while Π̂2 corresponds to a heralding de-
tection at the idler detector, but no coincident detection
at Da. The heralding serves as a “clock” that tells us
when to interrogate the detector and observe the out-
come. This model has the advantage that we need not
assume that the values of u and ~w for Da and Db are
the same. The disadvantage is that for our relatively low
heralding efficiency, the imbalance u between no detec-
tions and detections is large, and dominates the param-
eters of the POVM.

We use a Soleil-Babinet compensator (SBC) placed be-
tween two quarter-wave plates to implement the trans-

formations Ũ
[

~k(θj , φj), ϕj

]

. The rotation angles of the

wave plates and the phase shift of the SBC that make up
these transformations are all under computer control. We
use the theoretically expected Ũj ’s, given the settings of
our device, to perform our tomographic reconstructions.
Our calibrations, details of which are found in Appendix
A, show that all of our Ũj ’s have a mean process fidelity
of at least 0.994 with the actual experimentally imple-
mented transformation.

To generate the 10 measurements necessary to deter-
mine the state and the detector POVMs the computer
steps through the transformations and records the singles
and coincidence counts. For each measurement setting
we acquire approximately 20,000 coincident detections.
From the raw counts we calculate the probabilities and
expectation values necessary to perform the reconstruc-
tions.

(a) (b)

(c) (d)

p
r

p
r

p
r

p
r

w
r

w
r

w
r

w
r

FIG. 3. Experimental determinations of the vectors that de-
scribe the state ~p (blue) and the POVM ~w (yellow); (a)-(d)
show four different experiments. The corresponding theoret-
ically expected vectors are shown as dashed red arrows. The
reconstructions here use the first detector model.

B. Results

We have performed measurements for different states
and detector POVMs. Essentially, we place ~p and ~w in
different places in the Bloch sphere. We vary the di-
rections of both of these vectors, and we also vary the
magnitude of ~p by controlling the purity of the state. We
perform five trials for each set of parameters that deter-
mine the state and the POVMs. We performed a total
of 310 trials.

1. First detector model

Four example reconstructions are shown in Fig. 3. In
this figure we are using the first detector model, in which
detection at Da corresponds to Π̂1 and detection at Db

corresponds to Π̂2. The theoretically expected, and ex-
perimentally determined parameters that describe the
state and the POVMs corresponding to those displayed
in Fig. 3 are given in Table I. The theoretically expected
parameters are calculated from the known wave-plate set-
tings that determine the state and the measurement.
From the reconstructed state and POVM parameters

we can use Eqs. (4) and (5) to calculate the detection
probabilities Pi,j associated with the model. These and
the measured fractions fi,j determine the TVD of the
reconstruction using Eq. (19). We can use Eq. (18) to
calculate the corresponding fidelities. The TVDs and
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TABLE I. The data corresponding to the plots in Fig. 3.

Fig. ~p Expected ~p Measured ~w Expected ~w Measured u Expected u Measured

3(a) (−1/2, 1/
√
2,−1/2) (−0.486, 0.697,−0.488) (0, 0, 1) (0.017,−0.084, 0.970) 0 0.026

3(b) (0, 0,−1) (0.057, 0.117,−0.991) (1/2,−1/
√
2, 1/2) (0.487,−0.620, 0.553) 0 0.037

3(c) (0, 0,−0.6) (−0.076,−0.074,−587) (0, 1, 0) (0.045, 0.998, 0.0004) 0 0.0006

3(d) (0.275,−.389, 0.275) (0.356,−0.364, 0.201) (−1/2,−1/
√
2,−1/2) (−0.571,−0.588,−0.556) 0 0.009

TABLE II. The fidelities and total variation distances corre-
sponding to the data in Fig. 3 and Table I.

Fig. Fidelity ρ̂ Fidelity Π̂1 Fidelity Π̂2 TVD
3(a) 0.990 0.998 0.998 0.065
3(b) 0.996 0.998 0.998 0.073
3(c) 0.997 0.988 0.999 0.124
3(d) 0.997 0.994 0.994 0.049

fidelities corresponding to the entries in Table I are given
in Table II.

The fidelities of ρ̂ and the Π̂i’s, and the total varia-
tion distances of all the trials are shown as histograms
in Fig. 4. For the POVMs the fidelities are above 0.99
for 82% of trials, and above 0.98 for 95% of the trials.
Fidelities for the density matrices are above 0.99 in 91%
of trials, and above 0.98 in 98% of trials. The mean TVD
for all trials was found to be 0.11 ± 0.05. There are 20
terms in the sum of Eq. (19) for the TVD (2 outcomes,
10 measurements), so on average the modeled probabil-
ities and the measured fractions differ by approximately
0.01.

We have estimated our experimental ability to ac-
curately generate the Bloch sphere transformations

Ũ
[

~k(θj , φj), ϕj

]

by comparing our experimentally mea-

sured TVD data to numerically simulated data. We per-
formed simulations while varying the amount of error in
the transformation angles, and compared the resulting
TVDs to the distribution in Fig. 4(d). The statistics of
the errors were assumed to be the same for each of the
three angles, having a Gaussian distribution with 0 mean
and an adjustable standard deviation. Statistical errors
due to finite numbers of counts were also simulated. After
performing simulations with differing amounts of error,
we find that the distribution of TVDs in the simulations
were most similar to those of Fig. 4(d) for a standard de-
viation of 0.05 radians, and the simulated TVDs in this
case are shown in Fig. 5. For this amount of error, the
simulated TVD’s had a mean of 0.11± 0.04. The agree-
ment between the simulations and the experiment lead us
to believe that the accuracy of our technique is currently
limited by errors on the order of 0.05 radians in control-

ling the angles in the transformations Ũ
[

~k(θj , φj), ϕj

]

that we desire [49]. It might be possible to improve our
results by applying a neural network or a Bayesian anal-
ysis to help us compensate for these errors [28, 50].
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FIG. 4. Histograms (a) and (b) show the fidelities of the the-

oretically expected Π̂1 and Π̂2 with the experimentally deter-
mined operators, (c) shows the fidelity of the theoretical and
experimental ρ̂, and (d) the total variation distance between
the measured and the model probability distributions. This
data was analyzed using the first detector model.
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FIG. 5. Histogram of TVDs obtained from numerically sim-
ulated data, using parameters chosen to align with those of
the experimental TVDs displayed in Fig. 4(d).

2. Second detector model

In the second detector model each detector is treated
separately, and the two-outcome POVMs correspond to
heralded detections Π̂1 or no detections Π̂2 for each de-
tector. We use the same experimental data as was used
in the first detector model, we just analyze it differently.

Expected and reconstructed state and measurement
parameters for detector Db are shown in Table III (all
results for detector Da are very similar to those of Db),
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TABLE III. The data for the second detector model, as applied to detector Db, and corresponding to the same measurements
as in TABLE I.

~p Expected ~p Measured ~w Expected ~w Measured u Expected u Measured

(−1/2, 1/
√
2,−1/2) (−0.482, 0.694,−0.482) (0, 0,−0.046) (−.001, 0.004,−0.046) -0.960 -0.954

(0, 0,−1) (0.057, 0.089,−0.972) (−0.025, 0.035,−0.025) −0.027, 0.033 − 0.028) -0.960 -0.949
(0, 0,−0.6) (−0.060,−0.068,−0.558) (0,−0.035, 0) (−0.002,−0.035,−0.001) -0.960 -0.964

(0.275,−.389, 0.275) (0.329,−0.347, 0.194) (0.017, 0.023, 0.017) (0.020, 0.019, 0.019) -0.960 -0.967

TABLE IV. The fidelities and total variation distances corre-
sponding to the data in TABLE III.

Fidelity ρ̂ Fidelity Π̂1 Fidelity Π̂2 TVD
0.986 0.998 0.999996 0.0042
0.986 0.999 0.999991 0.0066
0.997 0.999 0.999998 0.0030
0.997 0.993 0.999675 0.0029

while Table IV shows the measured fidelities and TVDs
corresponding to this data. Each row of Table III corre-
sponds to an analysis of the same data used to construct
the corresponding row of Table I. The primary difference
between the two models is the imbalance parameter u.
The first model is insensitive to the heralding efficiency,
while the second model is sensitive to it. The heralding
efficiency is equal to 1− |u|, and we see that the data in
Table III reflect an overall heralding efficiency of 3-5%,
which is consistent with independent measurements of
this parameter. We measure this efficiency by dividing
the total number of signal-idler coincidence detections
by the total number of idler (heralding beam) detections
[51]. We find that the efficiency fluctuates slightly from
day to day as the fiber-coupling of the source changes.
The low efficiency is primarily due to the fact that we
have not optimized the coupling of our source into the
single-mode fibers.

In Table III the theoretically expected parameters that
describe ~p and ~w are calculated from the known wave-
plate settings that determine the state and the measure-
ment. We use an expected value for the bias parameter
of u = −0.96, corresponding to a heralding efficiency of
4%, which is consistent with our measured efficiencies.
We note that the fidelities are not particularly sensitive
to changes in the expected value of u. If this value is
varied between −0.93 and −0.98, the fidelities for Π̂1 in
Table IV are unchanged, while those of Π̂2 remain above
0.999.

Fig. 6 shows histograms of the measured fidelities and
TVDs corresponding to all of the trials. One thing to
note is that despite the relatively low heralding efficiency,
the reconstruction of the density operator is nearly as
good here as it was for the first detector model. The
fidelity of ρ̂ is over 0.99 for 76% of the trials, and over
0.98 for 92% of trials.

The fidelities for the POVMs are better for the sec-
ond detector model than they were for the first. For Π̂1
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FIG. 6. Histograms (a) and (b) show the fidelities of the the-

oretically expected Π̂1 and Π̂2 with the experimentally de-
termined operators, (c) shows the fidelity of the theoretical
and experimental ρ̂, and (d) the total variation distance be-
tween the measured and the model probability distributions.
This data was analyzed using the second detector model, as
applied to Db.

the fidelities exceed 0.99 for 89% of the trials, and 0.98
for 97% of trials. For Π̂2 the lowest fidelity is 0.999424.
Clearly the large imbalance is having a strong effect on
the fidelities of Π̂2. With u ≈ −1, Π̂2 is approximately
equal to the identity operator and is largely independent
of ~w.
Finally, the TVDs for the second detector model have

an average value of 0.006 ± 0.003, so the model fits the
data quite well. Note that this measure is independent of
any assumptions about the theoretically expected state
or POVMs. In particular, it is independent of the ex-
pected value of u.

3. Discussion of the models

Recall that the first detector model treats the appara-
tus in the box labeled “Measurement” in Fig. 2 as a sin-
gle, two-outcome POVM. The advantage of this model
is that because the detections are post selected, it is in-
sensitive the heralding efficiency of the single-photon de-
tections. For this model to be valid, it is necessary for
u and ~w to be the same for both Da and Db. Impor-
tant contributors to these parameters are the detector
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efficiencies, and the ability of the PBS to accurately sep-
arate orthogonally polarized photons.

If the detection apparatus does not satisfy these condi-
tions, it is necessary to use the second detector model and
determine separate POVMs for Da and Db. In our ex-
periments the low heralding efficiency meant that there
was a significant bias toward no detections, so the no-
detection measurement operator was nearly equal to the
identity operator, and hence largely independent of the
measurement parameters. The fidelity of the operator
corresponding to a detection was found to be somewhat
insensitive to changes in the expected value of u, and
hence to changes in the expected w. Thus, if the detec-
tion efficiency is low, one should be aware of these limita-
tions in the reconstructed POVMs. This problem would
be reduced or eliminated in the case of higher detection
efficiencies. Despite these issues, the polarization state
is reconstructed with high fidelity, so one can still have
high confidence in it, even with low efficiency detection.

IV. CONCLUSIONS

We have described a technique which is capable of es-
timating both the unknown quantum state of a single
qubit, and a two-outcome POVM that performs mea-
surements of this qubit, in a self-consistent manner. This
is done by performing a series of known, unitary trans-
formations between the state preparation and measure-
ment stages. This technique makes minimal assumptions
about the state and the POVMs. We present two differ-
ent models for the POVMs. In one model we assume
that the u and ~w parameters of the two detectors are the
same, but in the other we do not need this assumption.

We assume that the unitary transformations are
known. In our experiments this assumption is valid be-
cause the transformations are characterized classically
with high fidelity, as demonstrated in Appendix A. While
our assumption will not be valid in all experiments, it will
be valid in many optical experiments where the trans-
formations can be calibrated classically [31–33]. Know-
ing these transformations is what allows us to self-
consistently determine the state and the POVMs with
only ten measurements. This saves time when compared
to other techniques that do not assume the transforma-
tions are known, but require approximately 50 measure-
ments [24, 25].

We have experimentally implemented this technique,
and applied it to a system described by the polarization
of individual photons. We find that the technique works
quite well, as the fidelities between expected and mea-
sured density operators and POVMs are found to exceed
0.98 for at least 92% of our 310 experimental trials.
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Appendix A: Polarization transformations

Here we describe our apparatus that generates rota-

tions Ũ
[

~k (θ, φ), ϕ
]

in the Bloch sphere for polarization

qubits. We describe the theory behind the design of our
device that implements these general polarization trans-
formations [52–54], and present experimental results that
demonstrate its performance.

1. Theory

Polarization transformations that do not modify the
total intensity are unitary transformations, and may be
represented by 3x3 matrices. As seen in Fig. 1, a general
polarization transformation is represented in the Bloch

sphere by a rotation R̃ (θ, φ, ϕ), having a rotation axis ~k
and a rotation angle ϕ. The rotation axis is parameter-
ized by two angles, θ and φ.

As seen in Fig. 1, we take the rotation axis ~k to make
an angle of θ from the 2-axis (|R〉) in the Bloch sphere,
and its projection onto the plane perpendicular to this
axis to make an angle of φ from the 3-axis (|H〉). With
this convention, the rotation axis is given by Eq. (3).
If we define c = cos (ϕ), d = 1 − cos (ϕ), s = sin (ϕ),

we can express R̃ (θ, φ, ϕ) in matrix form as

R̃ (θ, φ, ϕ) =




dk21 + c dk1k2 − sk3 dk3k1 + sk2
dk1k2 + sk3 dk22 + c dk3k2 − sk1
dk3k1 − sk2 dk3k2 + sk1 dk23 + c



 . (A1)

Furthermore, let Rij be the element in the ith row and

jth column of matrix R̃. Given a 3x3 unitary matrix that
represents a rotation, we can extract the rotation angle
and rotation axis using [55]

cos (ϕ) =
1

2

[

Tr
(

R̃
)

− 1
]

(A2a)

k1 =
1

2 sin (ϕ)
(R32 −R23) (A2b)

k2 =
1

2 sin (ϕ)
(R13 −R31) (A2c)
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k3 =
1

2 sin (ϕ)
(R21 −R12) . (A2d)

We wish to implement general polarization transfor-
mations, described by Eq. (A1), using wave plates. Con-
sider a wave plate that has a phase shift φW between
its fast and slow axes, and whose fast-axis is rotated by
θW from the horizontal. If we define c′ = cos (2θW ) and
s′ = sin (2θW ), the transformation matrix that describes
this wave plate can be written as [56]

M̃ (θW , φW ) =




s′2 + c′2 cos (φW ) −c′ sin (φW ) c′s′ [1− cos (φW )]
c′ sin (φW ) cos (φW ) −s′ sin (φW )

c′s′ [1− cos (φW )] s′ sin (φW ) c′
2
+ s′

2
cos (φW )



 .

A special case that is of interest to us is the matrix
that corresponds to a quarter-wave plate, M̃Q (θW ) =

M̃ (θW , φW = π/2).
The wave plate implementation of a general polariza-

tion transformation that we use is given by

R̃ (θ, φ, ϕ) =

M̃Q

(

φ
2

)

M̃
[

π
4 + 1

2 (φ− θ) , ϕ
]

M̃Q

(

φ
2 + π

2

)

. (A3)

Multiplying the matrices to the right of the equal sign in
Eq. (A3), and applying Eq. (A2) to the resulting ma-
trix, verifies that this combination of wave plates does in-
deed implement R̃ (θ, φ, ϕ). Physically, this corresponds
to a variable-wave plate placed between two quarter-wave
plates. From Eq. (A3) we find that the phase shift of the
variable-wave plate must be equal to the rotation angle
in the Bloch sphere, φW = ϕ, and its rotation angle must
be

θW =
π

4
+

1

2
(φ− θ) . (A4)

The rotation angle of the second quarter-wave plate is
θQ = φ/2 , while the rotation angle of the first is θQ+π/2.

2. Process Fidelity

We verify the operation of our device by inputting clas-
sical light of known polarization into it, and measuring
three of the Stokes parameters of the light that emerges
from it. (The fourth Stokes parameter is the total inten-
sity, and we normalize this to 1.) The classical Stokes pa-
rameters are equivalent to the parameters of the vector ~p
that we use to describe the quantum state of polarization
(although the numbering scheme for the two is different:
p1 = S2, p2 = S3 and p3 = S1).
We wish to determine the “classical fidelity” of our

transformations. Note that the theoretically expected
Stokes vectors in our experiment are “pure”: they have

Source

l/2

LP

l/4

SBC

l/4 l/4

 jU
ɶ

Polarimeter

FIG. 7. The experimental apparatus for characterizing our de-
vice that implements Ũj . The source is a laser diode coupled
to a single-mode optical fiber. Here LP denotes a linear polar-
izer, SBC denotes a Soleil-Babinet compensator, λ/2 denotes
a half-wave plate and λ/4 denotes a quarter-wave plate. The
two quarter-wave plates on either side of the SBC are Berek
compensators that have been adjusted for λ/4 retardation.

unit magnitude. If one of the states is pure, the quantum
fidelity of Eq. (18) can be simplified to [57]

F = Tr(ρ̂1ρ̂2). (A5)

Using Eq. (1), it is straightforward to demonstrate that
we can rewrite this expression in terms of the vectors that
describe the states as

F =
1

2
(1 + ~p1 · ~p2). (A6)

As such, we take the classical fidelity to be given by Eq.
(A6), where ~p1 and ~p2 are the Stokes vectors of the ex-
pected and measured polarizations. The fidelity of the
entire process that describes the transformation is given
by the fidelity between the measured output state and the
theoretically expected output state, averaged over many
states [15, 58].

3. Experiment

Our experimental apparatus is depicted in Fig. 7.
The light source is an 808nm laser diode, coupled to
a polarization-preserving, single-mode fiber, which acts
as a spatial filter. We prepare the polarization that we
input to our device by rotating a linear polarizer and
a quarter-wave plate. A half-wave plate preceding the
linear polarizer allows us to adjust the intensity. The
beam passes through our unitary-transformation appa-
ratus, and the polarization emerging from it is analyzed
by a commercial polarimeter (Thorlabs PAX1000IR1).
To illustrate how our device implements general polar-

ization transformations, we perform a series of measure-
ments. We begin by fixing the rotation angles of the wave
plates in our device that implements Ũj, which fixes the
rotation axis in the Bloch sphere. Next we fix the input
polarization by setting the rotation angles of the linear
polarizer and quarter-wave plate that follow our source.
Now we scan the phase shift of the SBC (which scans
the rotation angle) in 17 equally-spaced steps that range
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(a) (b)

FIG. 8. Experimentally measured Stokes vectors (black dots)
and corresponding theoretical predictions (green lines). The
rotation axis is shown as a red arrow. (a) is a side view of the
Bloch sphere, while (b) shows a view looking down along the
rotation axis.

(b)

(c)

(a)

FIG. 9. Experimentally measured Stokes vectors (black dots)
and corresponding theoretical predictions (green lines). The
rotation axis is shown as a red arrow. (a) and (b) are side
views of the Bloch sphere, while (c) shows a view looking
down along the rotation axis.

from 0 to 2π inclusive, while measuring the normalized
Stokes vectors of the output polarization. These vectors
should form a ring around the rotation axis. We can now
vary the input polarization, and repeat the sequence of
measurements described above to sweep out another ring.
In order to obtain reproducible results, the rotation axes
of the three wave plates that make up our device are con-
trolled by computer via stepper motors. The phase shift
of the SBC is also computer controlled using a DC servo
motor.

Figure 8 shows the result of measurements performed
with our device set to perform a rotation about the |R〉
axis. In this figure there are 5 different input polariza-
tions, so there are 5 rings. The black dots show the exper-

imentally measured Stokes vectors, while the green lines
represent the theoretical predictions. Figure 9 shows the
same thing, but for a rotation axis given by the angles
θ = φ = π/4. As expected, the experimental Stokes vec-
tors all lie near the surface of the Bloch sphere, which
means that the measured polarization states are nearly
pure. The experimental points lie near the theoretical
curves, indicating at least qualitative agreement between
the theory and the experiments.
To verify that the agreement is quantitative, we can

compute process fidelities from our measurements. The
data from the transformation displayed in Fig. 8 yield
an average process fidelity of F = 0.997± 0.002. For the
data depicted in Fig. 9 we find F = 0.994± 0.005. The
transformations that we use in our experiments are listed
in Table V. We have determined the fidelities for each
of these and find that the mean process fidelity between
the theoretically expected and corresponding measured
transformation is at least 0.994. These fidelities are sim-
ilar with those that we obtained for the quantum density
operators (e.g., Fig. 4). These measurements are thus
consistent with the idea that the thing that currently
limits the precision of our measurements is our ability to
control the unitary transformations.
In the tomographic reconstructions of Sec. 3.B we use

the theoretically expected Ũj ’s of Table V. We do this
because it is these transformations that yield the linear
inversion of Eq. (B2), given below. It might be possible
in the future to perform some form of “classical process
tomography” from our classical calibration data to yield
maximum likely descriptions of our transformations, and
this might improve our results. But, as stated above, the
theoretical transformations we use in our reconstructions
have a process fidelity of at least 0.994 with the measured
transformations, so a full process tomography determi-
nation of the Ũj ’s cannot yield transformations that are
significantly more accurate than the ones we use.
To ensure that the classical calibration we perform here

is still valid for the quantum experiments, the apparatus
labeled Ũj in Fig. 7 is left in place, and the beam path is
defined with irises. The polarization preparation is then
replaced by the single-photon state preparation appara-
tus in Fig. 2, which is mode-matched into the irises. The
polarimeter is replaced by the measurement apparatus in
Fig. 2

Appendix B: Linear equations

Here we describe our solutions to the set of linear equa-
tions.
The ten Block-sphere rotations that we use for our

measurements are listed in Table V. Substituting these
into Eq. (6) yields

u+ p1w1 + p2w2 + p3w3 = E1 (B1a)

u+ p3w1 + p2w2 − p1w3 = E2 (B1b)
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TABLE V. The ten unitary transformations that we use in
our experiments.

Ũj θj φj ϕj

Ũ1 0 0 0

Ũ2 0 0 π/2

Ũ3 0 0 π

Ũ4 π/2 0 π

Ũ5 π/2 0 π/2

Ũ6 π/2 π/2 π/2

Ũ7 π/2 π/2 π

Ũ8 π/2 π/4 π

Ũ9 π/4 0 π

Ũ10 π/4 π/2 π

u− p1w1 + p2w2 − p3w3 = E3 (B1c)

u− p1w1 − p2w2 + p3w3 = E4 (B1d)

u− p2w1 + p1w2 + p3w3 = E5 (B1e)

u+ p1w1 − p3w2 + p2w3 = E6 (B1f)

u+ p1w1 − p2w2 − p3w3 = E7 (B1g)

u+ p3w1 − p2w2 + p1w3 = E8 (B1h)

u− p1w1 + p3w2 + p2w3 = E9 (B1i)

u+ p2w1 + p1w2 − p3w3 = E10. (B1j)

Substituting xij = piwj into Eq. (B1), we see that Eq.
(B1) represents a set of 10 linear equations in 10 un-
knowns u, xij (i, j = 1, 2, 3). Solving them yields

u =
1

4
(E1 + E3 + E4 + E7) (B2a)

x11 =
1

4
(E1 − E3 − E4 + E7) (B2b)

x12 =
1

4
(−E1 − E3 − E4 + 2E5 − E7 + 2E10) (B2c)

x13 =
1

4
(E1 − 2E2 + E3 − E4 − E7 + 2E8). (B2d)

x21 =
1

4
(E1 − E3 + E4 − 2E5 − E7 + 2E10). (B2e)

x22 =
1

4
(E1 + E3 − E4 − E7). (B2f)

x23 =
1

4
(−E1 − E3 − E4 + 2E6 − E7 + 2E9). (B2g)

x31 =
1

4
(−E1 + 2E2 − E3 − E4 − E7 + 2E8). (B2h)

x32 =
1

4
(E1 − E3 − E4 − 2E6 + E7 + 2E9). (B2i)

x33 =
1

4
(E1 − E3 + E4 − E7). (B2j)

Thus, performing measurements of expectation values
with the settings given in Table V and using Eq. (B2)
yields values for the quantities u, xij .
Note that the settings given in Table V are not unique.

Any ten settings that yield linearly independent equa-
tions for the expectation values [Eq. (B1)] will allow us
to solve for u and the xij ’s. We have chosen these partic-
ular settings because the solutions in this case [Eq. (B2)]
are fairly simple.
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[21] M. Cooper, M. Karpiński, and B. J. Smith, Local map-
ping of detector response for reliable quantum state esti-
mation, Nat. Commun. 5, 4332 (2014).
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