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Abstract
This paper presents a multi-sensor data collection and data fusion procedure for nondestructive evaluation/testing
(NDE/NDT) of a concrete bridge deck. Three NDE technologies, vertical electrical impedance (VEI), ground-penetrating
radar (GPR), and high-definition imaging (HDI) for surface crack detection, were deployed on the bridge deck. A neural
network autoencoder was trained to quantify the relationship between VEI and GPR results using the data collected at
common positions. This relationship was then used for fusion of VEI and GPR data to increase the reliability and spatial
resolution of the NDE measurements and to generate a data-fused condition map that showed novel characteristics.
Threshold values for VEI and GPR tests were obtained and used to determine the color scale in the fused map. Surface
cracks identified from HDI show reasonable agreement with the deterioration areas on the data-fused condition map.
Chloride concentration measurements on sound and deteriorated areas of the deck were consistent with the NDE
results.

Keywords: Nondestructive testing, Data fusion, Ground-penetrating radar, Vertical electrical impedance,
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Introduction
Concrete bridge decks are subject to deterioration caused
by reinforcement corrosion, freeze-thaw cycling, con-
struction deficiencies, traffic loads, and other factors.
Nondestructive evaluation/testing (NDE/NDT) methods
can provide quantitative assessment of both the extent
and severity of such bridge deck deterioration, beyond
that achieved by visual inspection [1]. With improve-
ments in instruments and technologies, modern NDE
tests have increased data acquisition speed and enhanced
data quality. Although no single NDE method is yet able
to fully characterize deterioration in reinforced concrete
structures, using multiple NDE technologies in a syner-
gistic manner may provide complementary information
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and increase the reliability and accuracy of bridge deck
condition assessments. The increasing availability and
diversity of NDE methods provide new opportunities and
challenges in data analysis and decision-making through
aggregation of data from multiple sensing modalities.
Although inconsistency in multi-sensor NDE data can

be a challenge when dealing with data collection in the
field, data fusion, which involves aggregating complemen-
tary information, has been shown to be a viable solution
[2–5]. Data fusion can be described as systematic inte-
gration of data from multiple sources to obtain more
information than would be possible using a single source
[6]. Data fusion techniques have been studied in multi-
sensor NDE of bridge decks to quantify mechanical prop-
erties of materials [7], identify defects [8], and visualize
multi-modal data [2].
In this research, three complementary NDEmethodolo-

gies were used to evaluate a concrete bridge deck with a
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concrete overlay. The methodologies were vertical elec-
trical impedance (VEI), ground-penetrating radar (GPR),
and high-definition imaging (HDI) [9] for detecting sur-
face cracks. VEI is a newly developed NDE system [10–12]
that measures the electrical impedance of concrete from
the deck surface to the nearest rebar mat at low frequen-
cies (≈100 Hz). VEI is particularly sensitive to surface
cracks that can provide a direct pathway for chloride ions
to penetrate the concrete and accelerate corrosion of the
reinforcement. GPR has been widely used for condition
assessment of bridge decks by measuring rebar reflection
amplitudes over the entire bridge deck. This technique
also permits estimation of relative permittivity and elec-
trical conductivity of concrete cover in the GHz frequency
range.
Data fusion across NDE techniques can quantitatively

increase bridge condition assessment resolution and accu-
racy beyond any single technique alone. The techniques
in this work were selected because they can all be effi-
ciently performed over relatively large areas. Because
both VEI and GPR measure electrical properties of cover
concrete, but at different frequencies and with differ-
ent spatial resolution because of electrode configuration
differences, their results are expected to show high cor-
relation and provide complementary information. These
similarities and differences make VEI and GPR ideal can-
didates for data fusion. This study demonstrates fusion of
VEI and GPR data, enables quantitative determination of
the nonlinear relationship between those two test results,
and improves spatial resolution. The resulting data-fused
map includes features that are not as visible in the indi-
vidual VEI and GPR maps. As an additional technique,
the vehicle-mounted HDI system allows fast collection of
bridge deck surface images. Locations of surface cracks
identified from the stitched images can be compared with
VEI and GPR measurements to improve data interpreta-
tion, or HDI can be used as a stand-alone NDEmethod for
quick screening evaluations of bridge decks. In this study,
features identified from the fused VEI and GPR data are
validated by the HDI images.
This paper briefly reviews the basic principles of VEI,

GPR, and HDI techniques and then describes their appli-
cation to field testing of a reinforced concrete bridge deck
with a concrete overlay. Basic machine learning principles
are then outlined. VEI and GPR results are presented sep-
arately in the form of conditionmaps, which are compared
to chloride concentrations measured at two locations, and
plotted on an image of the bridge deck. HDI-identified
surface cracks are plotted on a stitched image of the bridge
deck. Data fusion procedures for combining the informa-
tion obtained from VEI and GPR tests are then presented.
After an autoencoder-based data fusion technique was
used to estimate the relationship between VEI magnitude
and GPR amplitude, the transformed VEI and GPR data

were mapped to common coordinates to generate a fused
condition map that agrees well with the identified surface
cracks.

Methods for bridge deck evaluation
Vertical electrical impedance
VEI is an NDE technique used to quantitatively estimate
the protection offered to steel reinforcement against chlo-
ride ion ingress [10–17]. A VEI measurement in a scan-
ning configuration with a large-area electrode is shown
schematically in Fig. 1. An alternating-current voltage
potential (100 - 1000 Hz) is applied to the deck, and
electrical current emanating from the center electrode of
a guarded probe is measured. The applied voltage and
measured current are used to estimate the impedance
of the concrete cover from the bridge deck surface to
the reinforcing steel. Impedance testing generally involves
measurement of the in-phase (resistive) and out-of-phase
(reactance) current that is measured when an alternating
potential is applied to a material. Because an alternating
potential is used, the frequency at which interrogation is
performed is important [11].
VEI is a suitablemethod for characterizing cover protec-

tion because the electrical resistivity of concrete is largely
a function of the properties of the concrete matrix and the
pore water. A concrete matrix with high porosity charac-
terized by high interconnectivity and low tortuosity allows
for the passage of high amounts of electrical current and
would have low resistivity compared to a concrete with
low porosity. Regarding the pore water, high ion concen-
trations and high temperatures allow for the passage of
high amounts of electrical current through the concrete
due to the high abundance and mobility of current carri-
ers. Because higher values of porosity, moisture content,
chloride concentration, and temperature are all consis-
tently correlated with higher corrosion rates, resistivity
values can consequently be useful for identifying areas
of deteriorating protection of the reinforcing steel. Low
VEI indicates locations where the deck is susceptible to
chloride ingress, rebar corrosion, and delaminations, or
subsurface cracking, in the deck.

Ground-Penetrating radar
GPR is a widely used NDE method for localizing rebars
and evaluating reinforced concrete condition. Figure 2
shows a typical GPR B-scan image recorded over a con-
crete bridge deck. Hyperbolic-shaped patterns in the
image indicate reflections from rebars in the deck. The
GPR antenna contains a transmitter module to emit
electromagnetic pulses and a receiver to capture echoes
from subsurface interfaces. The amplitude of the signals
reflected from rebars depends on the electrical proper-
ties of the concrete through which the EM wave travels.
Moisture and free charge carriers such as chloride ions
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Fig. 1 Schematic of VEI measurement system consisting of an impedance analyzer connected to a probe and a large-area electrode

increase the attenuation of the signal. Therefore, analysis
of the reflection amplitude is commonly used to iden-
tify regions with a high probability of corrosion-induced
deterioration.
In this work, GPR data were analyzed by applying zero

time offset and migration and then normalized by surface
direct-coupling amplitude with depth correction. Zero
time offset and migration of rebar reflections are used
to detect rebars and estimate the electromagnetic wave
velocity profile. The rebar reflection amplitudes are fur-
ther normalized by the surface direct-coupling amplitude
over each rebar to remove the effect of surface conditions
and then corrected based on the rebar depths that were
calculated from the wave velocity and travel time. The sur-
face normalization and real depth correction improve the
accuracy of GPR data analysis. Details are described in
recent publications by the authors [18, 19].

High-Definition imaging
In this study, HDI included data acquisition, localization,
and detection of deficiencies which in this study were sur-
face cracks on the bridge deck. For data acquisition, four
machine-vision cameras attached to a vehicle were used

to collect high-resolution images from the bridge deck as
shown in Fig. 3.
Although a global positioning system (GPS) and an

odometer sensor can be used for localization, GPS sig-
nals are not always available or stable in some urban areas,
and GPS does not provide pose information. In addition,
odometer sensor data can provide relative position along
the direction of scanning but not in the perpendicular
direction. Because GPS and odometer sensor data may
not work for every case, the system [9] employed in this
research used non-contact optical sensors to complete the
localization task.
Among the four cameras, two were used to simplify

the localization process with a wide field-of-view (angle)
that helped localize image frames in both the longitudi-
nal (direction of traffic) and transverse directions. The
two large field-of-view cameras captured the full width of
the bridge deck and helped compensate for the relative
pose changes during the stereo reconstruction of 3D point
clouds.
Two other cameras having a deeper focal length were

used to capture detailed high-resolution images to sup-
port the detection task. These cameras were able to pro-

Fig. 2 GPR B-scan image that is captured with a 1.5-GHz antenna over a concrete bridge deck
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Fig. 3 High-resolution images collected from machine-vision
cameras mounted on a vehicle

vide twice the resolution of the other pair of cameras,
which allowed detection of cracks with a width of approx-
imately 0.25 mm; this width is considered to be about half
of the average crack width typically observed on bridge
decks [20].

Chloride concentration testing
Along with NDE tests of the bridge, chloride concentra-
tion testing was also performed at two locations on the
bridge deck. Chloride concentration measurement is a
destructive evaluation technique that involves drilling into
the bridge to a particular depth, pulverizing the concrete
into powder, carefully collecting the pulverized powder,
and subsequently titrating the powder samples in the
laboratory to estimate the chloride concentration in the
concrete at particular depths. Chloride concentration test-
ing can provide ground-truth comparisons for other NDE
measurements.

Autoencoders
Neural networks (NN) are a major class of machine learn-
ing algorithms in which the computer uses optimization

techniques to adjust network parameters to create com-
putational relationships between observed features and
their target values. NNs have been used to model com-
plex phenomena and solve regression problems and have
been applied to NDE of materials [21, 22]. In supervised
learning, every set of parameters is labeled with its corre-
sponding response. Unsupervised learning, on the other
hand, is based on finding the relationship between obser-
vations based on similarities or dissimilarities between
observations without labeling.
Autoencoders are unsupervised NNs that are trained

to replicate the input data. Applications of autoencoders
include dimensionality reduction [23, 24], noise removal
[25, 26], and nonlinear principal component analysis [27].
Figure 4 shows the architecture of a prototypical type
of deep autoencoder with multiple hidden layers. The
NN consists of two main parts: Encoder and Decoder.
The Encoder transforms the input data into the Code
layer, which has fewer neurons than the Input layer.
The Decoder part is trained to reconstruct the original
inputs from the Code layer outputs. Reducing the input
dimensions in the Code layer prevents the NN parame-
ters from reaching an identity function. Through several
optimization iterations, the Encoder part learns to pre-
serve and transform important features, and the Decoder
part learns to invert these features to substantially rep-
resent the original data. This architecture can allow the
network to reduce the input dimension for better inter-
pretation with no major loss of information. Assuming
that input noise does not have patterned features that
can be learned by the NN, the NN output will have less
noise.

Field test results
A three-span, two-lane, steel-girder bridge was selected
for the NDE field demonstration. The reinforced concrete
bridge deck has a total length of 55 m, a width of 12.1

Fig. 4 Autoencoder diagram with fully connected layers
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m, and a 5 cm-thick concrete overlay. A satellite image of
the bridge is shown in Fig. 5. Due to constraints associ-
ated with traffic control provided for testing, only one lane
and the adjacent shoulder were inspected, as highlighted
in Fig. 5.
The unique modes of data acquisition determined the

order of data collection. Because the vehicle-mounted
HDI system could scan the bridge deck at a normal traf-
fic speed, HDI was performed first. Since GPR results
could be affected by the water applied for VEI, GPR
measurements were obtained second. VEI was the last
nondestructive test performed on the bridge.
The locations of VEI measurements were recorded by

using a combination of GPS, light detection and ranging
(LIDAR), and imaging. The locations of GPR measure-
ments were recorded by a real-time kinematic (RTK) GPS
system. After all of the NDE data were collected on the
bridge deck, VEI maps produced on-site were used to
guide collection of concrete powder samples taken for
chloride concentration testing at two locations and at two
depths on the bridge deck, one in an area of higher VEI
magnitude and one in an area of lower VEI magnitude.

Vertical electrical impedance results
The VEI system used in this study consisted of a vehicle-
towed apparatus with six parallel channels spaced approx-
imately 0.6 m apart [11]. Two scanning passes were
recorded along the bridge deck in the direction of traf-
fic. Figure 6 shows the map of measured VEI impedance.
The map shows consistent transverse lines characterized
by low impedance across the bridge deck. It also has a
longitudinal line characterized by low impedance approx-
imately 3 m from the parapet wall. This line corresponded
to a construction joint present on the bridge shoulder line.
Another main feature of the impedance map is the occur-
rence of multiple large areas of low impedance near both
ends of the bridge. Although these areas exhibited no visu-
ally apparent defects, a chain-drag test indicated that these
locations were delaminated. Lastly, areas along the shoul-
ders of the deck in which debris had accumulated also
correlated spatially with some of the low-impedance areas

on the map; these areas may have been more susceptible
to salt accumulation during winter.

Ground-Penetrating radar results
A GSSI SIR-4000 GPR system with a 1.5 GHz antenna
was used in this study. Ten GPR scans were recorded
along the bridge deck in the direction of traffic, with
a line spacing of 0.6 m. The longitudinal resolution of
GPR scanning was fixed at 3 mm, and the recorded sig-
nal time was 15 ns. The positions of the GPR scans were
recorded using a rover RTK GPS device mounted on a
survey cart. GPR signals were processed using the previ-
ously described algorithm developed by the authors [18].
After migration, the longitudinal resolution of the GPR
scans was equal to the rebar spacing, which is 12.5 cm in
the traffic lane and 25 cm in the shoulder. Figure 7 shows
the GPR amplitude map of the bridge deck. Low ampli-
tude means high attenuation of the GPR signals, which
may indicate deterioration of concrete cover and/or cor-
rosion of rebars. Scattered high-attenuation regions are
observed from the left joint to 15 m on the bridge deck.
From 40 m to the right joint, four major high-attenuation
areas were detected. These high-attenuation regions were
consistent with low-impedance areas indicated on the
VEI map.
Although the VEI and GPR maps have different back-

ground colors, they highlight similar defect regions. The
data range and color scale used in each figure are based
on either the maximum and minimum values in the data
set or on experience. With the ‘jet’ colormap used in
this study, warm color regions are interpreted as dete-
rioration, suggesting that the VEI map indicates more
deterioration than the GPR map. The difference between
the VEI and GPR maps results from the different sen-
sitivities inherent in the measurements and the differ-
ent threshold values used in each map; determination of
proper thresholds continues to be a challenging topic in
many NDE methods. In this paper, the authors employ
machine learning algorithms to determine unified values
to relate VEI and GPR and use these values to prepare a
fused-data map.

Fig. 5 Satellite image of bridge S077 05693R (map data ©2018 Google)
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Fig. 6 VEI map of the bridge deck (locations of chloride sampling are indicated by circles)

High-Definition imaging results
Compared to many other image-based crack-detection
algorithms applied to a local region, this study focused on
implementation of the detection method reported in [9]
on a larger scale for the entire bridge deck. While most
crack-detection methods rely only on detecting line seg-
ments and their intensities, this study created a hierarchy
of crack pixels and crack segments to detect cracks using a
circular histogram to capture not only the crack presence
but also the crack orientation.
The detection of cracks was completed in two steps.

First, crack pixels were detected by examining the local
image patches centered at each pixel. For each pixel, a
circular histogram from the image patches was built to
check whether the pixel had a dominant orientation of
low-intensity pixels or not. This information allows the
orientation of the detected cracks to be determined. Sec-
ond, from each detected crack pixel, crack segments were
formed if the detected crack pixel exhibited the following
features: 1) supporting cracks pixels were within a local
window defined by a specific radius, 2) crack pixels had
similar orientation, and 3) the relative direction of the
crack pixels was consistent with the orientations of mul-
tiple crack pixels and the crack pixel of interest. A crack
segment was formed when a minimum number of sup-
porting pixels within a local window were observed for a

crack pixel. A detailed description of crack identification
and sample images are provided in [9].
Based on this hierarchy of crack pixels and crack seg-

ments, Fig. 8 shows the global map of all detected cracks
on the entire bridge deck. Approximately 30 transverse
cracks were detected for this 55 m bridge, indicating that
the average spacing between these transverse cracks was
approximately 1.8 m. Considering rebar spacing and con-
crete cover, which are two parameters that are considered
in crack control, the expected crack spacing was estimated
to be 0.3 m. Therefore, the detected transverse cracks
were spaced more widely than expected. The difference
may be at least partially attributable to the presence of
the overlay, through which only a portion of the cracks in
the deck may have reflected. The VEI data indicate more
frequent and longer transverse deterioration segments
across the deck, which suggest that VEI was sensitive to
early-stage deterioration conditions that may eventually
result in cracking observable by HDI.

Chloride concentration results
Two chloride concentration sampling locations, marked
by circles in Fig. 6, were selected based on the VEI results
obtained initially at the test site. On-site VEI map genera-
tion highlighted the rapid automated processing, localiza-
tion, and mapping algorithms developed for VEI scanning

Fig. 7 GPR amplitude map of the bridge deck
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Fig. 8 (a) Stitched HDI image of the bridge deck and (b) identified surface cracks overlapped on the bridge deck image (the blue markers only give
the crack locations and do not represent crack widths)

[11]. The low-VEI sampling location was positioned at a
longitudinal distance of 54 m and a transverse distance of
4.7 m, and the high-VEI sampling location was positioned
at a longitudinal distance of 31 m and a transverse dis-
tance of 3.6 m. The results of the chloride concentration
measurements are shown in Table 1. As expected, a high
chloride concentration corresponded to a lower VEI and
lower GPR amplitude, as shown in Fig. 7.

Data fusion results and discussion
Data fusion procedures
In reinforced concrete structures, the corrosion rate of
the reinforcement depends to a large degree on the mois-
ture content and chloride concentration of the concrete
[13]. Because VEI magnitude and GPR amplitude are both
significantly influenced by moisture content and chloride
concentration [10, 28], the results of VEI and GPR testing
are expected to be strongly correlated. In the field testing,
the scanning paths for the VEI and GPR testing were not
exactly aligned, as shown in Fig. 9, and the correspond-
ing data have different spatial resolutions. Data fusion of
these two data sets would therefore be expected to provide
improved spatial resolution and complementary informa-
tion about the bridge deck condition. The data fusion
analysis included two steps: (1) determine the statistical
relationship between VEI and GPR measurements using
NN analysis and (2) fuse transformed VEI and GPR data
to the same reference framework.

Data preparation
In order to determine the statistical relationship between
VEI and GPR measurements, VEI and GPR data collected
from the same or nearby positions needed to be spa-
tially associated. Because the VEI data have higher spatial
resolution, VEI values within a 12.5 cm radius of rebar
were averaged for each migrated GPR amplitude above a
rebar. This GPR amplitude and the averaged VEI magni-
tude were then regarded as a data pair obtained from the
same position. After all data points were extracted from
overlapped positions, outliers were removed using a sim-
ple quantile-based flooring and capping (2.5% and 97.5%)
method based on their histograms. Figure 10a shows the
scatter plot of the GPR amplitudes and VEI impedance
and histograms of each data set (3562 data points).

Autoencoder training
Before training, the logarithm of VEI magnitude and GPR
amplitude (dB) were linearly normalized (MinMax scal-
ing) to the range of [0, 1], which corresponds to the
unscaled VEI range of 103.4 ∼ 104.9! (2.5 - 83 k!) and
GPR range of [-16.6, 2.4] dB. After training, the normal-
ized output data were scaled back to their original data
ranges.
In Fig. 10a the calculated Pearson’s correlation coeffi-

cient is 0.603 with a corresponding p-value ≈ 0. Although
this correlation is significant with respect to statisti-
cal hypothesis testing, it cannot explain the nonlinear

Table 1 Chloride concentration test results

Long. Dist. (m) Trans. Dist. (m) Ave. Depth (mm) Cl. Conc. * VEI (!) GPR Amp. (dB)

31 3.6
12.5 4.0

79,000 -3.1
40 1.1

54 4.7
12.5 13.3

2,500 -13.8
40 9.0

*(lb Cl−/yd3 of Concrete)
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Fig. 9 Scanning paths of VEI and GPR tests recorded by GPS (the VEI scanning path were curved near the start and end points)

relationship between VEI and GPR. Therefore, an autoen-
coder was designed as a function to represent this rela-
tionship.With an autoencoder, a prior assumption regard-
ing the intercorrelation of multi-sensor measurements
within the data is not necessary. For the autoencoder,
two neurons for the Input layer (VEI and GPR measure-
ments) and one for the Code layer (combined features)
were defined in Fig. 4. Multiple models with varying num-
bers of neurons in the hidden layers were trained, and,
based on the average mean-square error (MSE) of the
four-fold cross-validation sets (75% for training and 25%
for testing), the model with the least average MSE was
selected. In the optimal model, the Encoder part consisted
of 35 and 15 neurons for the first and second hidden lay-
ers, respectively. The Decoder part is a mirror replica of
the Encoder part with respect to the Code layer. The ini-
tial learning rate for training was set to 0.005. The learning

rate was updated through the training phase when the loss
value did not improve for five iterations.
Figure 10b plots the Output layer values from the

autoencoder after the data were scaled back to the origi-
nal data ranges. Although Fig. 10b has the same number
of data points as Fig. 10a, the transformed data shows
much less scattering and gives a clear nonlinear relation-
ship between the VEI and GPR data. The histograms on
each axis give distributions of the inputs and outputs,
which show some outliers were compressed.

Threshold values
The scatter plot in Fig. 10a shows a high concentration of
data points in the VEI ranges of 104 ∼ 104.7! (10 - 50 k!)
and GPR amplitude range of [-6, 0.3] dB. The VEI condi-
tion map (Fig. 6) shows that the threshold impedance is
around 104 !, which corresponds to both the impedance

Fig. 10 Scatter plot of VEI vs. GPR data collected at the same locations: (a) original input data and (b) autoencoder output (unscaled), where the
original data were normalized before input to the autoencoder model
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value for deterioration concern reported in other stud-
ies [11] and the lower bound of the data range with high
concentration in Fig. 10a. According to the literature, the
lower bound of the GPR data cluster with high concen-
tration corresponds to a moderate corrosion threshold
amplitude [29]. The lower bound value, -6 dB in Fig. 10a,
is also close to a threshold value of -5.3 dB previously
reported by the authors [18]. These values are also in
agreement with the chloride concentration measurement
results in Table 1. Therefore, in this study, the threshold
values for VEI and GPR are chosen as 10 k! and -6 dB,
respectively.

Data fusion results
With the equation shown in Fig. 10b, either VEI or GPR
data can be transformed to combine these two data sets.
Since the VEI data have better spatial resolution in the
longitudinal direction, all GPR data were converted to VEI
values, and then the two data sets were combined. If both
VEI and GPR values were available at the same coordi-
nates, the average value was used. A MATLAB® function
‘griddata’ was used to interpolate scattered data points in
the combined data set on a common coordinate frame.
Figure 11 shows the map generated from the fused VEI

and GPR values on the bridge deck, for which the thresh-
old value for VEImagnitude was set as 10 k! as previously
explained. In ‘jet’ color maps, light green is usually used to
represent a neutral value or a threshold value to differenti-
ate between sound and deteriorating regions; therefore, a
light green color was assigned to the threshold of 10 k! in
Fig. 11. If the VEI data were instead converted to GPR val-
ues to generate a fused map, then the GPR threshold of -6
dB would be used. When the proper threshold values are
used in the VEI, GPR, and fused maps, all maps will have
a similar background color.
The fused data set contains integrated information from

both the VEI and GPR measurements and has increased

spatial resolution. Compared to the individual VEI and
GPR maps shown in Figs. 6 and 7, the fused map not
only contains features from each map, but it also reveals
additional features that could not be clearly observed in
the individual maps. For example, in the region of 20-
38 m in the longitudinal direction and above 5 m in the
transverse direction, the fused map shows horizontally
oriented deterioration areas that are not as visible in the
VEI or GPR maps. These deterioration areas might cor-
respond to longitudinally oriented cracks. The fused map
also shows several other longitudinal deterioration areas
below the shoulder line (about 2.5 m in the transverse
direction) in the regions of 5-15 m and 40-60 m in the lon-
gitudinal direction. The fused data remain consistent with
the chloride concentration measurements.
Surface cracks on the bridge deck provide pathways for

chloride ions to penetrate into the concrete and cause
rebar corrosion and concrete deterioration. Figure 12
overlaps the HDI-identified concrete surface cracks on
the fused VEI/GPR map. Several general patterns are
observed. First, in the regions of 0-15 m and 40-55 m
in the longitudinal direction, there are many long trans-
verse cracks, which match the deck deterioration areas
indicated by the VEI and GPR data. Second, many deteri-
oration areas are visible at 3 m in the transverse direction,
which is along the longitudinal construction joint between
the driving lane and the shoulder. This result indicates that
the construction joint also provides a pathway for mois-
ture and chloride ion penetration. Third, many longitudi-
nal crack segments were identified by the HDI technique
not only at 2.5 m but also above 5 m in the transverse
direction. These cracks are in good agreement with the
deterioration features on the fused map that are not as
visible on the individual VEI and GPR maps in Figs. 6
and 7.
The fused image in Fig. 12 gives much more useful

information than a single NDE technique could provide.

Fig. 11 Fused VEI and GPR map (GPR amplitude was converted to VEI magnitude using the equation obtained in the autoencoder analysis, with the
threshold for VEI magnitude set at 10 k!)
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Fig. 12 Identified cracks from HDI images overlapped on the fused VEI/GPR map

Comparison of surface cracks with the fused VEI/GPR
image provides a better understanding of the effects of
surface cracks on concrete deterioration and rebar cor-
rosion. Fusing independent VEI and GPR test data not
only improves the spatial resolutions but it also reveals
additional features that could be missed by individual VEI
and GPR tests. Confirmation of these additional features
by HDI-detected cracks further validates the effective-
ness of the data-fusion algorithm. In future work, crack
width information may be extracted and correlated with
the fused map condition estimates.

Conclusions
This research presents a multi-sensor data collection and
data fusion study based on three NDE methodologies,
including VEI, GPR, and HDI. An autoencoder-based data
fusion was implemented on the GPR and VEI results
obtained from a concrete bridge deck to quantify their
relationship, which was then used to combine both data
sets and increase the spatial resolution and accuracy of
the overall condition map. The fused data were then com-
pared to the surface cracks obtained by HDI and the
chloride concentration test results. The main findings
from this work are summarized as follows:

1 Both the VEI and GPR methods measure electrical
properties of reinforced concrete. VEI is a relatively
new NDE technique for measuring the electrical
impedance of concrete, and GPR amplitudes are
sensitive to changes in the electrical conductivity of
concrete. Therefore, a strong correlation was
expected between these two measurements. This
hypothesis is verified in this study using experimental
data collected on a concrete bridge deck with a
concrete overlay for which VEI and GPR testing
provided similar results for bridge deck evaluation.

2 A neural network model can be used to quantify the
relationship between VEI and GPR data by using VEI

and GPR data collected from the same positions.
With the established nonlinear relationship from the
autoencoder, either VEI or GPR data can be
transformed to each other and combined in the same
coordinates to form a fused NDE map.

3 The density scatter plot shows a VEI threshold of
about 10 k! and a GPR threshold value around -6
dB, which are consistent with previous findings by
the authors [11, 18]. Use of proper threshold values
in all NDE maps is important for achieving
consistent visualization results.

4 The fused map contains features from each data set
and reveals additional features that are not as visible
in the individual NDE maps. Longitudinally-oriented
cracks and deterioration that are parallel with the
NDE scan paths may be missed by one NDE test.
However, data fusion increases the possibility of
detection of these types of defects.

5 Visible cracks on the concrete surface can be direct
pathways for water and chloride ion to reach the
steel reinforcement as suggested by the results of
chloride concentration testing. High correlation also
exists between the presence of major cracks and
deterioration estimates from VEI and GPR testing.
This finding highlights the importance of sealing
cracks in concrete bridge deck maintenance. VEI and
GPR are also suggested as useful tools to predict
eventual crack formation, specifically when data
fusion is applied to their combined data sets.
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