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ABSTRACT

Thioamide substitutions of the peptide backbone have been shown to stabilize therapeutic and
imaging peptides toward proteolysis. In order to rationally design thioamide modifications, we
have developed a novel Rosetta custom score function to classify thioamide positional effects on
proteolysis in substrates of serine and cysteine proteases. Peptides of interest were docked into
proteases using the FlexPepDock application in Rosetta. Docked complexes were modified to
contain thioamides parameterized through the creation of custom atom types in Rosetta based on
ab intio simulations. Thioamide complexes were simulated and the resultant structural complexes
provided features for machine learning classification as the decomposed values of the Rosetta
score function. An ensemble, majority voting model was developed to be a robust predictor of
previously unpublished thioamide proteolysis holdout data. Theoretical control simulations with
pseudo-atoms that modulate only one physical characteristic of the thioamide show differential
effects on prediction accuracy by the optimized voting classification model. These pseudo-atom
model simulations, as well as statistical analyses of the full thioamide simulations, implicate steric
effects on peptide binding as being primarily responsible for thioamide positional effects on

proteolytic resistance.



INTRODUCTION

Hundreds of peptide therapeutics are under clinical development globally, sixty of which have
already been approved for clinical use in the United States.! Peptide therapeutics comprise an
interesting and diverse portion of FDA approved drugs. Peptides have been used in both cancer
diagnosis and treatment, as well as directly as hormones such as GLP-1, or to disrupt protein—
protein interactions.>* Due to their diverse biochemical properties and applications, peptides have
become a standard therapeutic strategy both academically and industrially resulting in tens of new

peptide-based pharmaceuticals entering clinical trials annually.'*

While peptides can potentially act as external modulators of many biochemical systems of
interest, they have intrinsic limitations on their ability to act as effective therapeutics. Cellular
instability due to degradation by proteolytic enzymes and membrane impermeability due to the
need for desolvation of the backbone as well as polar and charged residues prove to be major
challenges for peptides as therapeutics.’ ®® The popularity of cyclic peptides has grown in order to
combat both issues.’!? Cyclic peptides typically exhibit increased stability in serum as opposed to
their linear counterparts due to an inability of the cyclic peptide to adopt the extended conformation
necessary to fit into a protease active site. Alternative methods for improving peptide serum
stability have been achieved through peptidomimetic substitutions such as 3-amino acids, N-alkyl
glycine residues (peptoids), and thioamides.*! Thioamides are a single atom substitution of
oxygen-to-sulfur substitution of an amide bond, and have been shown to impart peptides with

resistance to degradation by proteases if placed at or near the scissile bond.!”?

One of the principal challenges associated with designing proteolytically resistant
thioamide containing peptides is identifying the position of thioamide incorporation. To date, there

is no reliable way of rationally designing a thioamide containing peptide that will be resistant to



proteolysis. Our laboratory has previously shown that for a subset of the cysteine protease
cathepsins (Cts), the positions where incorporation of a thioamide will impart resistance to
proteolysis differ between each protease even for a singular peptide sequence.'” This is particularly
interesting as it suggests that even homologous proteases (35-59% sequence identity with
conserved active site residues) with the same mechanism process the same peptide substrate
differently. Additionally, we have shown similarly complex results for a subset of the trypsin-like
serine proteases.!® The positional differences found within the serine proteases were also distinctly
different compared to the cysteine proteases.'® ! While such findings would not be surprising in
the context of sidechain modifications, one might expect the interactions of the backbone amides
to be similar across proteases as this is integral to the serine/cysteine protease mechanism. Indeed,

some previous studies of thioamides indicated that this is the case.?!??

Due to the wide array of potential applications for stabilized peptides, the need for an
accurate computational method of predicting where a thioamide can imbue proteolytic stability for
a general peptide sequence and protease combination is of great importance. The two previously
noted works have attempted to use Rosetta modeling in order to explain the positional effects of
thioamides by modeling the bound all-amide substrates, however, the identification of peptide-
protein interactions was insufficient for establishing a clear mechanism for the thioamide activity
or intuition for predicting thioamide impacts on proteolysis for new peptide/protease
combinations.!®!? In this work, we demonstrate that explicitly modeling the thioamide peptides in
Rosetta provides such predictability, but that simply using the structures or energies from the
thioamide simulations is insufficient. Rather, the simulations are used as inputs for machine
learning to create a custom score function (Thio_Class) which accurately predicts thioamide

proteolysis effects for holdout sets including novel data for cathepsin L. Lastly, through feature



analysis as well as the use of theoretical amide analogs with specific mixtures of amide and
thioamide parameters, we identify which physical characteristics of the thioamide most influence

the predictability of protease resistance.

COMPUTATIONAL METHODS

The work herein utilizes the Rosetta modeling suite, PyRosetta, and sci-kit learn.?*?* Instruction
on how to access our data and utilize our models can be found on our github at
https://github.com/Sam-Giannakoulias/RML_ThioClass/tree/master/Anaconda. Development of a
classification model which can accurately predict thioamide effects on proteolysis was
accomplished using an approach similar to the one used by Shringari et al. in the prediction of
AAG of mutations at protein-protein interfaces.?® The general approach in this work is to simulate
the experimental complexes of interest and extract structural information from Rosetta Simulations

as inputs for machine learning.

Experimental Dataset

The data used for PyRosetta simulation and machine learning are derived from previously
published thioamide scanning data across different proteases and peptides as well as one
previously unpublished data set.'®!° The data set spans ten protease/peptide combinations where
six include cysteine proteases (Cts B, Cts K, Cts L, Cts S, Cts V, and papain) and the remaining
four include serine proteases (chymotrypsin, kallikrein, trypsin with Lys-containing substrates,
and trypsin with Arg-containing substrates). Thioamide positions correspond to the amides on
either side of the scissile bond (Fig 1). Those which are N-terminal to the scissile bond are
considered PX positions (non-primed positions) where the value of X increases with each amide

towards the N-terminus. Positions which are C-terminal to the scissile bond are considered PX'



positions (primed positions) where the value of X increases with each amide towards the C-
terminus. The y in the peptide sequences denotes a 7-methoxycoumarin-4-yl-alanine amino acid.
For each position in the inhibitor peptides, a value of 1 or -1 was assigned to denote imbued
resistance on proteolysis, which was defined as a (>1.7 fold) decrease in the cleavage rate and can

be viewed for all members of the dataset in Table S2a/b compared to the control peptides.

Flexible Peptide Docking

Experimental complexes were simulated using the flexible peptide docking application in
Rosetta.?” In order to run FlexPepDock, both the peptides and proteases had to be prepared as
inputs for docking. For proteases where a structure of the protease in complex with a peptide
inhibitor existed, the native peptide inhibitor was trimmed and mutated to the sequence of interest
using PyYMOL and PyRosetta respectively. If an experimental structure of the protease in complex
with a peptide inhibitor representing both primed and non-primed positions was not available, the
corresponding peptides of interest were prepared externally using PyRosetta. The peptides were
then manually docked into the protease active site maintaining proximity of the active site residue

to scissile bond.

All of the protease-peptide complexes of interest were then simulated using the
FlexPepDock application with the prepack and refine flags in Rosetta in order to optimize the
binding interactions of the peptides in the context of the protease. The FlexPepDock refine protocol
functions primarily by iteratively optimizing the backbone geometry of the peptide in addition to
the rigid-body orientation of the peptide relative to the protease. Finally, “on the fly” side-chain

optimizations are performed. Each of the initial complexes were simulated 100 times in the flexible



docking protocol and the output structures were sorted based on their full atom total score. The

lowest energy complex from each FlexPepDock was then carried forward.

Thioamide Patches

Backbone thioamides were introduced into PyRosetta simulations using appropriate patch files. In
order to accurately populate the thioamide patch file, N-acetyl-thioalanine methyl amide was
optimized in Gaussian at the Hartree-Fock level of theory with a 6-31G(d) basis set according to
Renfrew et al *?° Atomic charges were calculated using CHELPG. Using these data, patch files
for converting the carbonyl oxygen to a sulfur in the nth residue and adjusting the charge
parameters of an amide to that of a thiomide for the nitrogen in the n + 1 residue were created. The
patch file for the sulfur was written such that the mainchain oxygen atom was set to a virtual atom
and replaced by a custom atom type TS. The atom type TS has the van der Waals radius of sulfur
and the bond length of the carbon sulfur double bond from the HF/6-31G(d) calculation. We
assigned the appropriate CHELPG charge to the sulfur and allowed hydrogen bonding interactions
with the thioamide sulfur to be counted towards the hydrogen bonding score terms, as Lee et al.
demonstrated that thioamide sulfurs have the ability to act as hydrogen bond acceptors albeit to a
lesser extent compared to their oxoamide counterparts. The patch file for the nitrogen atom simply
altered the charge to match that from CHELPG. Alternative patch files which retained subsets of
these properties were created for the control simulations and can be found in the supplemental

section titled Pseudo-atom Modeling.

“Local Relax’ and Feature Generation

Relaxed complexes were modified to insert the thioamide at the appropriate locations P3-P3'.
Following mutation, all complexes were put into five independent unconstrained relax trajectories.

Relaxes were performed such that only the residues of the peptide and residues which contained a



C, within 8 A of the C, of the residue containing the sulfur of the thioamide. We denote this as a
“local relax”, which has previously been used to show good correlations for protein design.*® For
each position in the peptide, a control simulation corresponding to a local relax without insertion
of the thioamide was also performed. The locally relaxed complexes were scored with the
beta_nov16 score function. The score terms of the Rosetta full atom score function were recorded
for every residue and averaged over the five local relax simulations for both the all-amide and
thioamide complexes. Following averaging, score deltas were computed, where thioamide scores
were subtracted from the all-amide scores from both the protease and peptide. Features for machine
learning were extracted as scores corresponding to the residue containing the sulfur of the
thioamide, the residue containing the nitrogen of the thioamide, and the average of the residues

which were locally relaxed.

Feature Engineering

Hypothesis testing was performed to identify which features if any were significantly different
between the all-amide simulation and the thioamide simulations. The Wilcoxon signed rank test
was used for hypothesis testing as there is no expectation of a normal distribution of features.
Hypothesis testing demonstrated that almost half of the features were significantly different from

the all-amide simulation.

In order to reduce the dimensionality of our features given the size of the experimental data
set, features were selected by ranking the most important features through the SelectK Best module
in sklearn with the 7> distribution as the score function.?® The following nine machine learning
algorithms were used with their default parameters to coarsely assess the effect of prediction
accuracy as a function of number of features: Logistic (LOG), Support Vector (SVM), K Nearest

Neighbors (KNN), Gaussian Naive Bayes (GNB), Gradient Boosted Random Forest (GBT),



Gaussian Process (GPC), Ridge (KR), Stochastic Gradient Descent (SGD), and Linear
Discriminant Analysis (LDA) classifiers were used to average the prediction accuracy from five-

fold cross validation trials for 2 through 75 features.

Logistic Classification (LOG)

Logistic classification is the process of making a decision informed by logistic regression.*!
Logistic regression utilizes a quantitative response variable given by the logarithm of the odds of
being classified in the i™ group of a binary or higher order class response. The transformation of
the response variable yields a continuous probability distribution which is bounded between 0 and

1. The transformation is that of a sigmoid function which takes the following form.
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If the response is binary as is in the case in this study, a logistic regression model is given as a

weighted linear combination of input features plus a bias term in each instance.
Finally, in the logistic regression, the classification is made after probabilities are computed when

the weights in the linear combination of terms has minimized the negative log likelihood or in

other words, optimizing the average cross entropy which is given by Eqn. 43!

J(©) = ——=%p;log(y) + (1 — plog (1 - y;) )



Support Vector Classification

Support vector machines (SVMs) are used for classification tasks as they are highly effective at
linearly separating data.’> SVMs function through optimization of the margin of the data-

separating hyperplane which takes the form:

wix+b=0 (5)

Optimization of the margin guaranties the lowest rate of misclassification as it provides the
maximally wide boundary between the response classes. Due to noise or insufficiently descriptive
features, a hard margin SVM which strictly splits the data may not be found. Therefore, soft
margin, or error tolerant margins are found instead. Slack parameters §; are introduced to create

such tolerance. The form of the hyperplane can therefore be generalized to the following:

yiwlx;+b)=>1—-5,i=123...,n (6)

The primal problem is now set to minimize %WTW + C Y, 5 with respect to w where the C

parameter controls the extent with which the support vector machine is error tolerant.
Finally, the optimal weights and biases are found through Lagrange multipliers «;.*
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K Nearest Neighbors Classification



In K nearest neighbors (KNN) classification, training data is clustered through an unsupervised
method.** Following clustering, the dissimilarity measure is computed with the Minkowski

distance which is given by:

distance(xy,x;) = (Xie,(xq; — le-)qﬁ (8)

Where q is a small positive tunable constant. Following computation of all distances, classification
is determined by the value of K, or the number of nearest neighbors which are used to assign a

cluster to the classified testing data.*

Gradient Boosted Random Forest Classification

Random forests are ensemble-based learning algorithms. Forests are comprised of n collections of
de-correlated decision trees. Random Forest models utilize several decision trees as votes and
ultimately use majority voting to make predictions. The architecture of a decision tree consists of
a top node which is recursively split at nodal points until a terminal node is reached at which point
a decision is made. Nodal points are split unambiguously based off a value called “entropy.”
Entropy is a measure of homogeneity within a subset data and is given by Eqn. 9, where p and q

are the frequency of a feature in a class

entropy = —plog,(p) — qlog,(q) 9)

The bounds of entropy are O and 1. When entropy is calculated using a feature, if classification is
maximally split, which is to say half the points have been classified as 1 and the other half -1,

entropy has been maximized at a value of 1. If there is any amount of unequal classification,
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entropy will decrease all the way down to a value of O where all points are classified homogenously
as either 1 or -1. Random forest methods split nodal points on features that maximize entropy.
When feature importance is analyzed following classification in a random forest algorithm, the
values for entropies at the nodal points are used to quantify the magnitude of importance a feature
brings to the overall model. Finally, gradient boosting is the technique of further optimizing the

ensemble behavior of the random forest through optimization of a loss function.?

Gaussian Process Classification

Similarly to Bayesian based classification algorithms, Gaussian Process Classification (GPC)
assumes that the distribution of feature space takes the functional form of a Gaussian distribution.?
GPC’s function through application of the Gaussian distribution to a latent function which
produces a continuous probability distribution that is then transformed by a logistic function. The

predictions of GPC can be made by computing the following:

T, = Elmlxy,x]= [o(f.)a(f.|% v x.)df. (10)

The implementation used specifically in sklearn applies the Laplace approximation for the binary

classification.?

Gaussian Naive Bayes Classification

The Naive Bayes classification algorithm is, in principal, based on applying Bayes' theorem with
naive independence assumptions between model features.*®* In Gaussian Naive Bayes
classification, there is an implicit assumption that the continuous features are normally distributed.
For each feature, the mean and Bessel corrected variance are computed. Then, for any feature, the

probability distribution can be computed as the following:
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For each feature and the respective distribution, test features can serve as inputs into the
distributions to calculate likelihoods which are then multiplied together under independence
assumptions. Finally, this is repeated for distributions coming from known -1 and 1 labels and

whichever score is more likely is classified as such.*

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is typically a dimensionality reduction technique, but can also
be used in classification problems.?” For a binary response class, the first assumption made in LDA
is that the two conditional probability distributions are normally distributed with the following

mean (W) and covariance (})) parameters.

p(xly = —-1),(u_1, X —1) (12)

pxly =1), (W,X1) (13)

Like the Gaussian Naive Bayes classifier, classification can be predicted by computing likelihoods
and selecting for the more likely distribution. LDA, however, has an additional intrinsic
assumption that each of the feature random variables have the same finite variance. This is called
the homoscedastic assumption and the implications are that the response class covariances are

equal and have full rank.
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Finally, this leaves us with the criterion that for an arbitrary input vector to be in a given response

class, is given purely by a linear combination of the known observations for some threshold T.*’

¢ = ;T = S+ WS ) (15)

Ridge Classification

Like Logistic classification, Kernel Ridge (KR) classification utilizes Ridge Regression in order
to classify the output.’® Ridge regression with a linear kernel utilizes only the o parameter to
introduce bias. The bias used in Ridge regression is L2 regularization which is a penalization of
the sum of squared weights scaled by the o parameter. As a approaches zero, Ridge regression

approaches ordinary linear regression. Ridge regression can be described in the following way:

i = Xho xB)? + a X BF (16)

Loss Function L2 Regularization

Here y; are experimental values, x; and f; are the features and their corresponding weighting

factors respectively. The a parameter acts as a tunable scaling factor for the L2 bias. The sum is
performed over all experimental values, i, and features, j, to the respective total number of each,
n and p. Ridge classification can be thought of simply as an SVM which utilizes a linear kernel

and least squares loss.

Stochastic Gradient Descent Classification

13



Stochastic gradient descent (SGD) is not a classification method in and of itself, but rather a
method for optimizing a loss function. In sklearn the SGD classifier allows for tuning of different
loss functions alongside different regularization techniques. SGD optimizes a loss function
through computation of the gradient at a random single point instead of the whole set of data like

in traditional gradient descent.*

Parameter Tuning

For each of the ten different protease-peptide combinations, the corresponding six-point scanning
data was used as a holdout set. Additionally, a holdout set corresponding to the Cts L and kallikrein
data was created in order to train a model which has predictability against cysteine and serine
proteases as well as across different peptide sequences. Each holdout set was validated by the nine
algorithms that were tuned using five-fold cross validation (CV5) in an exhaustive grid search in

sklearn. Tuning parameters can be found in Tables S17-S32 in SI.

RESULTS AND DISCUSSION

PyRosetta Simulations

For each protease and all-amide peptide combination, the complexes of the P3-P3' thioamide
peptides (see Fig. 1) as well as the complex of the all-amide peptide were analyzed following local
relax to identify any potential differences in structure induced by the incorporation of thioamides.
We hypothesized that positions which demonstrated proteolytic resistance would show greater
structural change when compared to nonperturbing positions. However, the structures from both

the thioamide and all-amide complexes were extremely similar for all positions regardless of the
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observed impact on proteolysis. CaRMSD analysis showed that across different relax trajectories,
every position converged to a single structure for both the all-amide and thioamide complexes,
with a CaRMSD of the locally relaxed residues no greater than 0.5 A (data shown in SI, Tables
S5-S6), and that the complexes retained all major contacts. Figure 2 shows Cts S in complex with
the all-amide and P1 thioamide forms of the yLLKAAApu peptide and trypsin in complex with the
all-amide and P1 thioamide forms of the yLLRAAAu pepride. In the case of Cts S, there does not
appear to be any discernable difference between the P1 thioamide (blue) and the all-amide (green)
complexes, and for trypsin, the only visible distinction between the complexes is a small
translation of the C-terminal methoxycoumarin amino acid. Further investigation, shown in the
inset panels, reveals that both the thioamide and all-amide peptides are making the exact same sets

of polar contacts in the Cts S and trypsin active sites.

In addition to the Wilcoxon testing, analysis of the minimum, maximum, mean, and
standard deviation metrics of the population values for each feature were analyzed. Tables S8-S9
in the SI section Feature Analysis demonstrate that while feature values from decoy sets were
convergent, many features showed great variance over the population, suggesting utility in
machine learning. Features for machine learning were generated by subtraction of the thioamide

complex scores from the all-amide complex scores for each Rosetta energy feature.
Feature Selection

We analyzed the simulations to determine whether thioamide modeling could directly explain
differences between resistant (an apparent decrease in the cleavage rate) and nonresistant positions
in the peptides. Interestingly, although the simulated complexes were structurally similar, clear

differences between the score terms of the Rosetta full atom score function were observed between
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thioamide complexes and their all-amide counterparts. We investigated whether the Rosetta total
REU scores were able to linearly separate our response classes (SI, Fig. S5).4° Given that total
score alone was not sufficient for perfect classification, we decided to train a new custom score
function by further examining the decomposed score terms of the Rosetta score function. A
Wilcoxon signed rank test of the score terms between these populations demonstrated that 34 of
the 75 score terms were statistically different using a p value of 0.05. This appeared to be a
surprisingly high number given how similar the complexes were structurally, and potentially
speaks to the sensitivity of Rosetta score functions. In addition to the Wilcoxon testing, analysis
of the minimum, maximum, mean, and standard deviation metrics of the population values for
each feature were analyzed. Tables S8-S9 in the SI section Feature Analysis demonstrate that while
feature values from decoy sets were convergent, many features showed great variance over the
population, suggesting utility in machine learning. Features for machine learning were generated
by subtraction of the thioamide complex scores from the all-amide complex scores for each

Rosetta energy feature.

In order to reduce the dimensionality of the system without losing direct information about
our features through techniques like principal component analysis, we used the select KBest
module to perform univariate statistical analysis. Feature selection coupled with untuned model
prediction showed that when considering each of the nine models discussed in the methods section
in a majority voting model, seven features provided the most accurate prediction of cleavability
(SI, Table S15). Those seven features include: total residue scores and van der Waals repulsion
terms for the residues which contain the sulfur atom and the nitrogen atom of the thioamide. Other
terms include the change in total score for the entire protein/peptide complex, the long-range back

bone hydrogen bonding term from the residue containing the sulfur of the thioamide, and the intra-

16



residue electrostatic interaction term for the residue containing the nitrogen. These terms
correspond directly to the overall energy of the thioamide containing residues and parameters
which are altered in thioamide substitution, such as repulsion, hydrogen bond ability, and atomic
charges. These results may seem unsurprising because these features are directly affected by the
modifications made to introduce the thioamide patches. It is important to note however, that other
differences which may be expected to result from the altered properties of the thioamide (e.g.,
solvation) were identified by the hypothesis testing, although they did not appear to be the most

important features by our univariate statistical testing.

Prediction of the holdout set

Following feature selection, exhaustive grid searching (CV5) was performed to tune the
hyperparameters of our models. Our holdout set is comprised of the unpublished Cts L dataset and
the Kallikrein dataset (selected because of an observed P3 thioamide effect that was not anticipated
based on the structural similarity of trypsin and kallikrein) was created in order to validate that our
trained model will have predictability against both cysteine and serine proteases as well as against
potentially diverse peptide sequences. When we applied our tuned models to this holdout set, we
found considerable success. Figure 3 shows the accuracy of each model in predicting the holdout
set. Five of the nine models were able to completely recapitulate the thioamide effects in the
holdout scanning data. At worst, two models predict the holdout data at 83%, corresponding to 10
out of 12 positions predicted correctly, and a 33% enrichment compared to random chance.
Analysis of additional holdout sets can be found in SI. Given that we had five models capable of
perfectly classifying the holdout set, we decided to create an ensemble majority voting model
composed of these five individual models for practical use. Although we cannot test the efficacy

of the ensemble model relative to any of the individual models in this work since they already
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predict the holdout set with 100% accuracy, we will further investigate the majority voting model’s
ability to predict larger novel holdout datasets as additional thioamide peptides and proteases are

studied in our laboratory.*!

Following accurate prediction of the holdout set, we wanted to investigate which features
the models found to be most important. Based on the kernels identified using exhaustive grid
searching, extraction of this information from the LOG, SVM, KR, and LDA models is available
in sklearn, while for models like GPC, it is not. Analysis of the normalized weights of the features
shows that the LOG, SVM, and KR models all weight features extremely similarly (Fig. 4). In
these models, the highest weighted features generally correspond to the total residue scores of the
two residues constituting the thioamide, followed by the repulsive terms of these residues, and
then finally the intra-electronic and hydrogen bonding terms. Interestingly, the LDA model
achieves the same perfect accuracy, but has an entirely different weighting of the features. The
LDA model barely considers the total residue scores of the residues constituting the thioamide and
relies almost exclusively on the repulsive term of the residue containing the sulfur of the thioamide
with some contribution from the change in global total score and the repulsive term of the residue

containing the nitrogen of the thioamide.

Pseudo-atom Modeling

Accurate classification of our holdout set with a small number of features and their corresponding
feature importance analysis demonstrated that in general, all model terms were important in
predicting the thioamide scanning data. However, the LDA feature importance strongly suggested
that thioamides may function in inducing proteolytic resistance through changes in steric repulsion

as the repulsive van der Waals term was the dominant feature. In order to further test which features

18



made the largest contribution to predicting the thioamide effects, we generated alternative patch
files which create pseudo-atoms which have mixed properties of oxygen and sulfur atoms that
allow us to more deeply probe specific characteristics of the thioamide. These patches act as
controls for analyzing the impact of individual properties of a thioamide, allowing us to test our
hypotheses, which are experimentally intractable, via molecular modeling. Specifically, we hold
all properties of sulfur constant and independently vary the van der Waals radius to that of oxygen,
the bond length to that of an amide carbon-oxygen double bond, the charge to that of an amide
oxygen, and the ability for the sulfur to act as a hydrogen bond acceptor. Additionally, we wrote a
patch for the nitrogen, turning off its ability to act as a hydrogen bond donor. As before, the same
local relax simulations at each P position were performed following modification of
FlexPepDocked structures using these pseudo-atoms, and the Rosetta score features were extracted
and score deltas were computed through subtraction of the corresponding values in the all-amide
peptide simulations as in the full thioamide patch analysis. When using features from the
alternative patch simulations as inputs into our tuned ensemble majority voting model, we found
variable prediction accuracy. Figure 5 shows the prediction accuracy of the features from each
new pseudo-atom. Ultimately, changing the ability of the nitrogen to hydrogen bond did not have
any effect on accuracy at all. However, if the sulfur is not allowed to be a hydrogen bond acceptor,
or the charge of the sulfur was set to that of oxygen, we saw a decrease in predictive accuracy to
91.67%, corresponding to 11 out of 12 positions classified correctly. Even more interestingly, if
the carbon-sulfur bond length was converted to that of a carbon-oxygen bond, accuracy decreased
to 83.33% corresponding to 10 out of 12 positions classified correctly. Finally, when the van der
Waals radius of the sulfur is converted back to that of an oxygen, we see the most dramatic decrease

to 67% accuracy, corresponding to 8 out of 12 positions classified correctly. These results along
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with the feature importance analysis have led us to a heuristic understanding that sterics, charge,
and hydrogen bonding ability play a role in how the thioamide alters proteolysis, however the
effect can be primarily attributed to the steric effects associated with the increased size of sulfur’s

van der Waals radius and carbon-sulfur bond length based on these modeling efforts.

In order to further investigate why some of the patches were more detrimental to prediction
accuracy than others, we performed hypothesis testing between the features from the full patch to
the alternative patches. Based on statistical significance alone, there did not appear to be one term,
or a set of terms, that recapitulated the prediction data. We then performed a set of multiple linear
regressions in which we used two of the model features at a time to attempt to recreate the observed
decreases in prediction accuracy. We found there were many combinations which yielded strong
linear correlations, with the highest being a product of the fa_rep_S and residue_total_score_N
terms displaying an R? value of 0.92 (Fig. 6). These data further indicated to us that the method
with which thioamides function to imbue proteolytic resistance is primarily through steric

repulsion of the sulfur.

It is important to remember that all potential differences identified by Rosetta and machine
learning in this study are from modeling peptide binding to single structure that is part of a dynamic
process involving substrate binding, conformational changes of the active site, the chemical steps
of cleavage (both active site Ser or Cys nucleophilic attack and subsequent resolution of the peptide
ester by hydrolysis), and dissociation of the cleavage products. The modeled structure does not
necessarily represent any specific intermediate along this pathway, but it is reasonable to assume
that the simulated structures are most similar to the initially bound conformation. Therefore, the
high accuracy of our predictions, feature analyses, and pseudo-atom modeling imply that

thioamide substitution primarily affects this initial binding step via steric repulsion and that it is
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rate-limiting. For trypsin, we have directly measured the rates of binding and catalysis.”®* We
found that catalysis was the rate-limiting step for the all-amide substrates, but that binding and
catalysis steps became comparable for the thioamides at the M substrate concentrations used in
our assays, with a significant unbinding rate. This is consistent with our modeling results. While
a more extensive analysis of our machine learning models with a broader kinetic data set is clearly
necessary, the strong correlations that we see support the idea that steric interactions in the initial

binding step allow thioamides at certain locations to perturb cleavage.

CONCLUSION

In summary, complexes from thioamide scanning experiments were simulated using Rosetta and
energy terms of the simulated complexes were then used as inputs into machine learning models
that accurately predict the cleavage propensity of thioamide-substituted peptides for a diverse
holdout dataset. Feature analysis of the highest performing models as well as control simulations
suggested that resistance to proteolysis imbued by the thioamide is primarily the result of steric
interactions in the initial binding step. While five individual models already predict the challenging
holdout dataset with perfect accuracy, we have combined them in a majority voting ensemble to
provide a potentially more robust model for testing with future thioamide proteolysis data sets.
The resulting custom score function, Thio_Class, can easily be incorporated into Rosetta design to
create novel thioamide peptides with exhibit enhanced proteolytic stability. We will pursue such
applications in our future studies of thioamide peptides for therapeutic and imaging applications
and we will continue to expand our repertoire of custom score functions to study other aspects of

protein structure and binding interactions.
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Figure 1. Thioamide positional definitions. Peptides contain methoxycoumarinyl alanine (u) residues at both termini,
and amide (X=0) or thioamide (X=S) residues between. The red line represents the cleavage site. Amino acid residues
are denoted P3 to P1 from the N-terminus to the scissile bond, and P1' to P3' from the scissile bond to the C-terminus.
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Figure 2. Comparison of thioamide complexes (cyan) versus all-amide control (green). (A) Cts S (1MS6) in complex
with ULLKAAAL or pLLKSAAAp thioamide peptide (P1 position). (B) Trypsin (2PTC) in complex with tLLRAAA or
ULLRSAAAL thioamide peptide (P1 position).
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Figure 3. Bar chart demonstrating prediction accuracy of the Cts L and kallikrein holdout set by various models. KNN
(KNeighbors Classifier), GNB (Gaussian Naive Bayes Classifier), GBT (Gradient Boosted Random Forest Classifier),
SGD (Stochastic Gradient Descent Classifier), LOG (Logistic Classifier), SVM (Support Vector Classifier), GPC
(Gaussian Process Classifier), KR (Linear Kernel Ridge Classifier), LDA (Linear Discriminant Analysis Classifier),
Voters (Majority Voters Model: LOG, SVM, GPC, KR, LDA).
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Figure 4. Normalized feature importance for models used in Voters classification. (A) Logistic (LOG) classification
feature importance, (B) Linear SVM classification feature importance, (C) Ridge (KR) classification feature importance,

and (D) LDA classification feature importance.
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Figure 5. Bar chart demonstrating prediction accuracies of the features generated from simulation with alternative
patch files which include pseudo-atoms that retain only some of the physical characteristics of thioamides. The Full,
NNoHBond (without the ability for the nitrogen to hydrogen bond), Charge, SNoHBond (without the ability for the sulfur
to hydrogen bond), bond length (BL), NNoHBond (without the ability for the nitrogen to hydrogen bond) and van der
Waals (VDW) patches are defined in Sl.
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Figure 6. Scatter plot showing the relationship between a linear combination of model features (fa_rep_S and
residue_total_score_N) and the prediction accuracy from the patch simulations.
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Supporting Information.

The Supporting Information (SI) is available free of charge on the ACS Publications website at
http://pubs.acs.org . SI includes experimental methods and proteolysis data, Rosetta simulation

details, machine learning descriptions, feature analysis, and associated references (PDF).
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